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1. Introduction

Studying the maximum and its hitting time for a random process, denoted
(M,ρ), is an interest in numerous models in economics, biology, or data science.
The law of the maximum of some standard diffusion processes is used in statistics
to understand the quality of an estimator (such as the law of the maximum of a
reflected Brownian bridge which is the basis of the Kolmogorov-Smirnov test).
Moreover, a better understanding of these laws builds some connections between
probabilities and complex analysis: for example the maximum of a Brownian
excursion is closely related to the Riemann zeta function. See [3] for a review of
various probabilistic interpretations of this function. Finally, studying the law
of the time when various processes achieve their maximum yields to surprising
and often counter-intuitive answers. The first of this kind of results is the case of
the Brownian motion and the Brownian bridge on [0, 1]. These are the ‘arcsine
law’ and the ‘uniform law’ found by Levy in [21].

Brownian motion :
P(ρ ∈ du)

du
=

1

π
√

u(1− u)

Brownian bridge :
P(ρ ∈ du)

du
= 1

See also [31] for more background and some generalizations.

In [25], Satya. N. Majumdar, Julien Randon-Furling, Michael J. Kearney, and
Marc Yor have computed the joint density of the place and time of the maximum,
(M,ρ), for three constrained Brownian motions: the standard excursion, the
Brownian meander, and the standard reflected Brownian bridge. They have
used two methods. The first one relies on a physical argument, based on the
idea that the statistical weight of a path is proportional to a propagator defined
with a Hamiltonian and a potential (describing the constraints). Shortly said, it
is a path integral method. The second method uses some ‘agreement formulas’
and decomposition at the maximum (as discussed in Section 2). These formulas
are identities in law with the following form, where U and V are independent
positive random variables, c and μ some reals, and F an arbitrary non-negative
measurable function.

E[F (M2, ρ)] = cE

[
F

(
1

U + V
,

U

U + V

)
(U + V )μ

]
(1)



Time and place of the maximum for diffusion bridges and meanders 3

The laws of U and V and the values of c and μ depend on the case according
to the following table.

Excursion Meander Reflected bridge

c

√
π

2

√
π

8

√
π

2

μ
1

2
−1

2
−1

2

E(e−λU )

√
2λ

sinh(
√
2λ)

√
2λ

sinh(
√
2λ)

1

cosh(
√
2λ)

E(e−λV )

√
2λ

sinh(
√
2λ)

2√
2λ

tanh

(√
2λ

2

)
1

cosh(
√
2λ)

The authors of [25] verified that the two methods give the same expression
for the density of (M,ρ) in each case, and confirmed their results numerically
with high precision. The proofs of the above formulas can be found explicitly
in the literature for the case of the excursion and reflected Brownian bridge, in
[32], by Jim Pitman and Marc Yor, for example. However, in [25], it is pointed
out the same can not be said for the case of the meander. Here we present a
general theorem of decomposition at the maximum, then apply it explicitly to
derive these formulas, and so we focus ourselves on the method based on the
agreement formula.

In 2010, Schehr and Le Doussal also derived the joint density of (M,ρ) in
[36] thanks to another method called the real space renormalization group. This
method is powerful enough to study not only the Brownian excursion, meander,
and reflected bridge, but also Bessel bridges. It also shares with the path integral
method the quality to be more physically intuitive than the agreement formula
method. However, both of these methods raise some issues of technical rigor. So
we prefer to work here with the rigorous methods of one-dimensional diffusion
theory.

Moreover, the authors of [25] and [36] deduced expressions for the densities
of ρ and M for each case, as a double series. To do so, they integrated the
joint density of (M,ρ). Especially in [25], it was obtained thanks to a version
of the agreement formula (1) in the terms of densities and after expanding the
densities of U and V as a series. This yielded the following expressions, with
z > 0 and 0 < u < 1.
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Excursion

P(M ∈ dz)

dz
=

2
3
2 π

5
2

z4

∞∑
m,n=1

(−1)m+n m2n2

m2 − n2

(
e−

n2π2

2z2 − e−
m2π2

2z2

)

P(ρ ∈ du)

du
= 3

∞∑
m,n=1

(−1)m+n m2n2

[n2u+m2(1− u)]5/2

Meander

P(M ∈ dz)

dz
=

2
3
2 π

1
2

z2

∞∑
m,n=1

((−1)m+n − (−1)n)
n2

m2 − n2

(
e−

n2π2

2z2 − e−
m2π2

2z2

)

P(ρ ∈ du)

du
= 2

∞∑
m=0,n=1

(−1)n+1 n2

[n2u+ (2m+ 1)2(1− u)]3/2

Reflected bridge

P(M ∈ dz)

dz
=

2
3
2 π

1
2

z2

∞∑
m,n=0

(−1)m+n (m+ 1
2 )(n+ 1

2 )

(m+ 1
2 )

2 − (n+ 1
2 )

2

×
(
e−

(n+1/2)2π2

2z2 − e−
(m+1/2)2π2

2z2

)
P(ρ ∈ du)

du
= 2

∞∑
m,n=0

(−1)m+n (2m+ 1)(2n+ 1)

[(2n+ 1)2u+ (2m+ 1)2(1− u)]3/2

Bessel bridge of dimension δ > 0

P(M ∈ dz)

dz
=

4

Cνz1+δ

∑
m,n≥1

jν+1
ν,m

Jν+1(jν,m)

jν+1
ν,n

Jν+1(jν,n)

e−
j2ν,n

2z2 − e−
j2ν,m

2z2

j2ν,m − j2ν,n

P(ρ ∈ du)

du
= 2δ

∑
m,n≥1

jν+1
ν,m

Jν+1(jν,m)

jν+1
ν,n

Jν+1(jν,n)

1

[j2ν,nu+ j2ν,m(1− u)]ν+2

The notations used for the case of Bessel bridges are precised in Section 4.1.

Some of these series are not absolutely convergent. In [25], it is explained that
their meaning should be given by a regularization by adding some αn terms, or
said with other words, with the non-standard Abel summation. Abel summation
can give values to some divergent series but in general divergent series are not
Abel summable either. Even if those series were indeed Abel summable, their
Abel summations do not need to be equal to the desired densities. As these
points were not fully addressed in [25] nor [36], we shall make precise a sense of
these summations before proving them.

First, in Section 2, we will present a family of known results, called agreement
formulas, linked with a decomposition at the maximum for diffusion processes.
We will give some examples in Section 3, including (1) as a particular case.
In Section 4, from the agreement formula, we will rigorously derive the above
expressions for the densities of M and ρ for all Bessel bridges. Those expressions
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have been properly proven in [33] (Section 11) by Pitman and Yor for M and
Bessel bridges of index ν < −1/2, but our results are a generalization, and our
rigorous proof of the expression for the density for ρ seems to be new.

To deduce these results we will employ three tools already provided by others:
the agreement formula, the Abel summation, and a series expansion of the
density of the first hitting time of 1. We will discuss our use of these tools and
under which conditions the method might or might not be extended to a wider
class of processes. We also provide similar formulas for skew Brownian bridges
in Section 5, for which the same method can not be applied. In Section 6, we
provide some formulas for the case of generalized Bessel meanders.

2. Decomposition at the maximum and Agreement formula

We place ourselves within the framework of the theory of diffusion processes
detailed by Itō and McKean in Diffusion Processes and Their Sample Paths,
[12]. See [12] for the precise definitions of the following notions and the proofs
of the following facts.

Let X be a one dimensional regular diffusion process taking values on a real
interval I containing [0,∞), with infinite lifetime. Its infinitesimal generator
is A = DmDs, with s the scale function and m the speed function. Then, for
x ∈ I, the distribution of Xt given X0 = x, which is denoted Px, admits a jointly
continuous density according to m, denoted p(t, x, y). In other words,

Px(Xt ∈ dy) = p(t, x, y)m(dy).

Several functions of the path of X interest us. For z ∈ I, we denote by

Tz = inf{t ≥ 0, Xt = z}

the first hitting time of z. It is known, and we will use, that Tz has a continuous
Px-density relative to dt, denoted f , such that

Px(Tz ∈ dt) = fxz(t)dt.

Let also Mt = sup
0≤u≤t

Xu be the maximum of X on [0, t], and

ρt = inf{u ≥ 0, Xu = Mt}

be the first time when it is reached. Almost surely, ρt is the unique time s ∈ [0, t]
such that Xs = Mt. In the following, we will often denote by T the random
variable T1 under P0, and by f = f01 its density.

A result of decomposition at the maximum is an identity of law about the
paths of a stochastic process. Such theorem first describes the joint distribu-
tion of (Mt, ρt, Xt) then states that conditionally given (Mt, ρt, Xt), the path
fragments before and after the argmax are independent and follow some law.
Levy, in [22], Louchard, in [23], and Vincze, in [39], provided the cases of Brow-
nian motion and Brownian bridge. However, Williams first gave a general path
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decomposition on [0,∞) at the time when the maximum is reached for all diffu-
sion processes verifying M∞ < ∞ almost surely. Moreover, in those works, the
joint distribution of respectively (Mt, ρt, Xt) and (M∞, ρ∞) were described by
a factorization of their density.

This paved the way for various authors to extend those fundamental ideas to
a broader context. We can cite for example Denisov [7], Millar [28], Le Gall [19],
Pitman [30], Salminen [35]... About our needs, we will use the generalization of
the path decomposition at the maximum of Williams to all diffusion processes
on a finite time interval.

Theorem 1. Let 0 < u < 1, x, y ≤ z < ∞ and x, y, z ∈ I.

(i)

Px(Mt ∈ dz, ρt ∈ du,Xt ∈ dy) = fxz(u)fyz(t− u)s(dz)m(dy)du (2)

(ii)

Px(Mt ∈ dz, ρt ∈ du|Xt = y) =
fxz(u)fyz(t− u)

p(t, x, y)
s(dz)du (3)

(iii) Under Px, conditionally given Mt = z, ρt = u, and Xt = y, the path
fragments (Xv, 0 ≤ v ≤ u) and (Xt−v, 0 ≤ v ≤ t − u) are independent,
and respectively of law (Xv, 0 ≤ v ≤ Tz) under Px given Tz = u, and
(Xv, 0 ≤ v ≤ Tz) under Py given Tz = t− u.

This theorem has been stated exactly in the same form in [32] as the Theorem
2. The point (i) of the theorem is a density factorization for the joint law of
(Mt, ρt, Xt) and will be the main tool of this paper. It was independently proved
at the same time by Fitzsimmons in [9], a former unpublished manuscript, and
by Csáki, Földes, and Salminen in [6]. This fundamental formula generalizes
the results on the Brownian motion of Levy, Louchard, and Vincze. Moreover,
Shepp has written (2) for the Brownian motion with drift in [37], while Imhof in
[11] and Louchard in [24] have treated the cases of the killed Brownian motion
and the tree-dimensional Bessel process.

By conditioning on Xt, the point (ii) is a direct consequence of (2). The point
(iii) is shown by Fitzsimmons in [9], with a proof similar to that of Williams in
[40]. Since (2) is a key formula, we will briefly recall one of its proofs later.

As said in [32], if ∀z ≥ x, Tz < ∞ Px-a.s., then for any x, y, the theorem
gives two equivalent definitions of a σ-finite measure on the space of continuous
function on [0,∞) with compact support:

(I) pick t according to p(t, x, y)dt and run an X-bridge of length t to x from
y.

(II) pick z according to s(dz) restricted to (x ∨ y,∞), run two independent
copies of X till Tz, one starting from x and the other from y, then put
them back to back.

Remark. When X is a 3-dimensional Bessel process, this measure corresponds
to Ito’s excursion law. While (I) is conditioning on the length, (II) is conditioning
on the maximum.
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This ‘agreement’ between the two descriptions of the measure motivated Pit-
man and Yor to call the formula (3) an agreement formula, in [32]. We will do
the same in this work and we will also call agreement formula any particular
case or equivalent formulation of (3). In particular, in Section 3, we prove that
(1) is indeed an agreement formula, as a particular version of (3).

2.1. Standard bridge of a diffusion process with a Brownian scaling

In the following, we fix x = y = 0 and t = 1. We suppose ∀z > 0, Tz < ∞
a.s. and we denote by Xbr the X-bridge of length 1 from 0 to 0. Moreover, we
assume that X enjoys a Brownian scaling. In more precise words, we suppose

(Xt)
d
= (

√
cXt/c) for any c > 0. The scaling implies, for z > y ≥ 0,

fyz(u) =
1

z2
f y

z 1

( u

z2

)
and Ey(e

−λTz ) = E y
z
(e−λz2T1).

Futhermore, we let the reader show that the scaling implies that s is dif-
ferentiable and that there is a μ ∈ R such that s′(z) = s′(1)zμ. The proof of
those facts could also be found in [18]. Under those assumptions, the agreement
formula (3) becomes

P(Mbr ∈ dz, ρbr ∈ du) =
1

p(1, 0, 0)
f
( u

z2

)
f

(
1− u

z2

)
s′(z)

z4
dzdu. (4)

Inspired by the equivalence of definitions of the measure of paths presented at
the end of the previous section, we construct a process by re scaling the definition
(II) and we compare it with the standard bridge. It is a direct generalization of a
construction in [32] for Bessel bridges. In other words, the only useful hypotheses
to adapt the proof of Pitman and Yor are the ones above. The case for Bessel
bridges from [32] is also presented later.

Construction: Take X and X̂ two independent copies starting at 0, respec-
tively hitting 1 for the first time at T and T̂ . Define a new process by putting
them back to back.

X̃t =

{
Xt if t ≤ T

X̂T+T̂−t if T ≤ t ≤ T + T̂

Finally, let X̃br
u =

1√
T + T̂

Xu(T+T̂ ) for 0 ≤ u ≤ 1. Its maximum and its

argmax are respectively

M̃br =
1√

T + T̂
and ρ̃br =

T

T + T̂
.

Since the mutual density of T and T̂ is f , the joint density of (M̃br, ρ̃br) is easily

computed, thanks to change of variable t =
u

z2
and t̂ =

1− u

z2
.

P(M̃br ∈ dz, ρ̃br ∈ du) = 2f
( u

z2

)
f

(
1− u

z2

)
1

z5
dzdu
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Comparing this formula with (4), we deduce a new form of the agreement for-
mula for standard diffusion bridge with a Brownian scaling. If F is an arbitrary
non-negative measurable function, then

E[F ((Mbr)2, ρbr)]

=
1

2p(1, 0, 0)
E

[
F

(
1

T + T̂
,

T

T + T̂

)
1√

T + T̂
s′

(
1√

T + T̂

)]
. (5)

The point (iii) of the Theorem 1 extends (5) to the functions of the paths: if Ψ
is an arbitrary non-negative measurable function, then

E[Ψ(Xbr)] =
1

2p(1, 0, 0)
E[Ψ(X̃br)M̃brs′(M̃br)]. (6)

Remark. Starting from the above equality of expectations, and assuming the
scaling property, a simple change of variable gets us the agreement formula as
in Theorem 1 for the case of bridges from 0 to 0, and reversely. The assumption
Tz < ∞ is only needed to well define the construction, but not to have the
equivalence between (4) and (5).

2.2. Proof of the agreement formula

We recall a computational but straightforward proof of (2) provided in [6]. A
more probabilistic proof was also proposed in [6] and [9]. It is based on the
Levy-Khintchine representation of Levy processes, on the fact that the hitting
time process of a diffusion is a subordinator, and on the theory of the excursions
below the maximum of a diffusion. If the reader wishes to know more about the
excursions below the maximum, we advise to check [34].

Let α > 0, and let φ↑ and φ↓ respectively be the increasing and the decreasing
solution of

Aφ = αφ,

where we recall that A is the infinitesimal generator of X. We denote by W =
φ↓φ↑+ − φ↓+φ↑ the Wronskian, which is constant, where φ+ is the derivative
with respect to s. For x, z ∈ I, let also g be the Green function:

g(x, z) =

∫ ∞

0

e−αtp(t, x, z)dt.

Ito and McKean, [12], give expressions for g and for the Laplace transform of
Tz thanks to φ↑ and φ↓.

Ex(e
−αTz ) =

⎧⎨
⎩

φ↑(x)
φ↑(z) if x ≤ z
φ↓(x)
φ↓(z) if x ≥ z

g(x, z) =

{
1
W φ↓(z)φ↑(x) if x ≤ z
1
W φ↑(z)φ↓(x) if x ≥ z
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Because the Wronskian is constant, and since
φ↓

φ↑ (∞) = 0 because the lifetime

is infinite, we observe that

g(x, z) = φ↑(z)φ↑(x)

∫ ∞

x∨z

s(dv)

(φ↑(v))2
.

Now, let u ∈ [0, t] and x, y ≤ z.∫ ∞

0

e−αt
Px(Xt ∈ dy,Mt ≥ z)dt

=

∫ ∞

0

e−αt

∫ t

0

Px(Tz ∈ ds)Pz(Xt−s ∈ dy)dt

=

∫ ∞

0

e−αs
Px(Tz ∈ ds)

∫ ∞

0

e−αt
Pz(Xt ∈ dy)dt

= Ex(e
−αTz )g(z, y)m(dy)

= φ↑(x)φ↑(y)

∫ ∞

z

s(dv)

(φ↑(v))2
m(dy)

The first equality comes from the strong Markov property at Tz, while the last is
an use of the formulas for g and for the Laplace transform of Tz. We differentiate
with respect to z to found:∫ ∞

0

e−αt
Px(Xt ∈ dy,Mt ∈ dz)dt =

φ↑(x)

φ↑(z)

φ↑(y)

φ↑(z)
s(dz)m(dy)

= Ex(e
−αTz )Ey(e

−αTz )s(dz)m(dy).

By uniqueness of the Laplace transform, we deduce the joint density of (Xt,Mt).

Px(Xt ∈ dy,Mt ∈ dz) =

(∫ t

0

fxz(u)fyz(t− u)du

)
s(dz)m(dy)

Eventually,

Px(Xt ∈ dy,Mt ∈ dz, ρt > u)

= Ex(1[Mu < z]PXu(Xt−u ∈ dy,Mt−u ∈ dz))

= Ex

(
1[Mu < z]

∫ t

u

fXuz(v − u)fyz(t− v)dv

)
s(dz)m(dy)

=

(∫ t

u

Ex(1[Tz > u]fXuz(v − u))fyz(t− v)dv

)
s(dz)m(dy)

=

(∫ t

u

fxz(v)fyz(t− v)dv

)
s(dz)m(dy).

Here, we have used the Markov property at u. The formula (2) follows by dif-
ferentiating with respect to u.
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3. Examples

We apply the previous section to write the agreement formula for three ex-
amples of Brownian-related processes, all enjoying a Brownian scaling, at least
indirectly. In this section, F and Ψ are arbitrary non-negative measurable func-
tions, z > 0, and 0 < u < 1. Various examples of (2) or (4) can be found in the
excellent Handbook of Brownian Motion – Facts and Formulae of Borodin and
Salminen, [4]. Let us cite that 3.1.13.8 page 351 and 5.1.13.8 page 449 represent
(2) respectively for the cases of reflected Brownian motion and 3-dimensional
Bessel process.

3.1. Case of Bessel bridges

A Bessel process of parameter δ > 0 is the solution of the stochastic differential
equation

dXt = dBt +
δ − 1

2

dt

Xt

where B is a one-dimensional Brownian motion. When δ is a positive integer,
X has the law of the norm of a δ-dimensional Brownian motion. Precise def-
inition, background, and more details about Bessel processes are provided in
[32] by Pitman and Yor. Moreover, our application of the decomposition at the
maximum and the agreement formula for the Bessel bridges is already presented
more carefully in [32].

Let δ > 0, X
d
= BES(δ) and δ = 2(ν + 1), we can choose s(dx) = x1−δdx,

m(dx) = 2xδ−1dx. We have p(t, 0, y) = (2t)−
δ
2Γ

(
δ

2

)−1

exp

(
−y2

2t

)
. We denote

Cν =
1

2p(1, 0, 0)
= 2

δ
2−1Γ

(
δ

2

)
.

For the case of a (standard) Bessel bridge of dimension δ, we can respectively
write (4), (5), and (6) as follows.

P(Mbr ∈ dz, ρbr ∈ du) =
2Cν

z3+δ
fν

( u

z2

)
fν

(
1− u

z2

)
dzdu (7)

E[F ((Mbr)2, ρbr)] = CνE

[
F

(
1

T + T̂
,

T

T + T̂

)
(T + T̂ )ν

]
E[Ψ(Xbr)] = CνE[Ψ(X̃br)(M̃br)2−δ]

Moreover, we have the well-known Laplace transform

E(e−λT ) =
(2λ)

ν
2

CνIν(
√
2λ)

where Iν is the modified Bessel function of the first kind of index ν.

Iν(z) =
∑
k≥0

1

k!Γ(ν + k + 1)

(z
2

)2k+ν
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For δ = 1, the Bessel bridge is simply the reflected Brownian bridge. For
δ = 3, we have the case of the Brownian excursion. Respectively,

E(e−λT (1)

) =
1

cosh(
√
2λ)

, E(e−λT (3)

) =

√
2λ

sinh(
√
2λ)

,

and

C−1/2 = C1/2 =

√
π

2
.

Observe that we have retrieved the formulas (1) of [25].

3.2. Case of skew Brownian bridges

Let 0 < β < 1, the skew Brownian motion of parameter β is a diffusion process
which behaves like the Brownian motion away from 0, but such that we have
P(Xt > 0) = β for any t > 0. It can be constructed as a Brownian motion
where the signs of the excursions away from 0 are independent and identically
distributed. See the survey of Lejay [20] for definitions and more details on skew
Brownian motions.

Let X be a skew Brownian motion of parameter β, we define

σ(x) =

{
1
β if x ≥ 0
1

1−β if x < 0

and we can choose s(x) = σ(x)x (then s′(x) = σ(x)) and m(dx) =
2

σ(x)
dx. For

a > 0, P(X1 > a) = 2βP(B1 > a) and P(X1 < −a) = 2(1 − β)P(B1 < −a),

so, p(1, 0, y) = 1√
2π

exp
(
−y2

2

)
, which is the density of B1 against dy. After

application of the agreement formulas (4) and (5) for the case of a (standard)
skew Brownian bridge, we find the following formulas.

P(Mbr ∈ dz, ρbr ∈ du) =

√
2π

βz4
fβ

( u

z2

)
fβ

(
1− u

z2

)
dzdu (8)

E[F ((Mbr)2, ρbr)] =

√
π

2

1

β
E

[
F

(
1

T + T̂
,

T

T + T̂

)
1√

T + T̂

]

To compute the Laplace transform of T , we consider the successive excursions
above 1 of a reflected Brownian motion and condition on which one is the first
to remain positive for X.

E(e−λT ) =
β

cosh(
√
2λ)− (1− β)e−

√
2λ

Remark. By applying the equality with β = 1, corresponding to the reflected
Brownian bridge, we easily verify that we found the same formula as before. It
is not surprising, as a consequence of a convergence in law.
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The case β = 1/2 corresponds to the (non-reflected) Brownian bridge, and
we have √

π

2

1

β
=

√
2π and E(e−λT ) = e−

√
2λ.

3.3. Case of generalized Brownian meanders

Let k ∈ N
∗. The kth Brownian meander is a continuous stochastic process

Xk−me on [0, 1] such that P(Xk−me
1 ∈ dy) =

2

2k/2Γ(k/2)
yk−1e−

y2

2 dy for y > 0,

and conditionally given Xk−me
1 = y, Xk−me is a Bessel bridge of dimension 3,

from 0 to y, and of length 1. In fancier words Xk−me
1 follows the chi distribution

of dimension k. In particular, the cases k = 1, 2, 3 are respectively called the
Brownian co-meander, the Brownian meander, and the 3-dimensional Bessel
process started at 0 on [0, 1]. Mansuy and Yor give some background, properties,
and equivalent definitions of these processes in [26].

From (3), the Brownian scaling of a Bessel process, and after integrating with
respect to y, we have

P(Mk−me ∈ dz, ρk−me ∈ du) = 2ck
zk

z6
f
( u

z2

)
φk

(
1− u

z2

)
dzdu,

where

ck =
1

k
× 23/2Γ(3/2)

2k/2Γ(k/2)
and φk(t) =

∫ 1

0

kxk−1fx1(t)dx ≥ 0.

Here, fx1 is the density of T1 = T for the 3-dimensional Bessel process started
at x and f = f01. The function φk is the density of some random time Sk ≥ 0

because

∫ ∞

0

φk(t)dt = 1. We can assume Sk to be independent from T and

rewrite the identity with the densities as an equality of distribution.

E[F ((Mk−me)2, ρk−me)] = ckE

[
F

(
1

T + Sk
,

T

T + Sk

)(
1√

T + Sk

)k−1
]

We already know E(e−λT ) =

√
2λ

sinh(
√
2λ)

. Let us compute the Laplace trans-

form of Sk.

E(e−λSk) =

∫ ∞

0

e−λtφk(t)dt

=

∫ 1

0

kxk−1
Ex(e

−λT1)dx

=
k

sinh(
√
2λ)

∫ 1

0

xk−2 sinh(
√
2λx)dx
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The last equality comes from the strong Markov property and the Brownian
scaling of the 3-dimensional Bessel process:

E0(e
−λT1) = E0(e

−λTx)Ex(e
−λT1) = E0(e

−λx2T1)Ex(e
−λT1).

Moreover, for θ > 0, n ∈ N, it is easy to prove by induction the following
identities.

θ2n+1

(2n)!

∫ 1

0

x2n sinh(θx)dx = cosh(θ)

n∑
i=0

θ2i

(2i)!
− sinh(θ)

n−1∑
i=0

θ2i+1

(2i+ 1)!
− 1

θ2n+2

(2n+ 1)!

∫ 1

0

x2n+1 sinh(θx)dx = cosh(θ)

n∑
i=0

θ2i+1

(2i+ 1)!
− sinh(θ)

n∑
i=0

θ2i

(2i)!

They can be written for any m ∈ N as

θm+1

m!

∫ 1

0

xm sinh(θx)dx =
e−θ

2

m∑
i=0

θi

i!
+ (−1)m

eθ

2

m∑
i=0

(−θ)i

i!
− 1 + (−1)m

2
.

For the case k = 1 (or m = −1) we use the function Shi, the hyperbolic sine
integral.

Shi(x) =

∫ x

0

sinh(t)

t
dt

To serve as an example, we explicitly give the expressions of ck and E(e−λSk)
for the cases k = 1, 2, 3, i.e the Brownian co-meander, the classical Brownian
meander, and 3-dimensional Bessel process.

c1 = 1 E(e−λS1) =
Shi(

√
2λ)

sinh(
√
2λ)

c2 =

√
π

8
E(e−λS2) =

2√
2λ

tanh

(√
2λ

2

)

c3 =
1

3
E(e−λS3) =

3

2λ sinh(
√
2λ)

(
√
2λ cosh(

√
2λ)− sinh(

√
2λ))

Remark. For k = 2, we have retrieved (1) for the case of the Brownian meander.
Moreover, we recognize 4S2 has the same law as the last zero of a reflected
Brownian motion started at 0 before hitting 1.

For k = 3, E(e−λT (5)

)E(e−λS3) = E(e−λT (3)

) where T (5) or T (3) is the first
hitting time of 1 respectively for the 5-dimensional or the 3-dimensional Bessel
process started at 0.

4. Marginal densities for Bessel bridges

In this section, we deduce the marginal densities of M and ρ from the agreement
formula for Bessel bridges. The expressions are already presented in [25] for
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the reflected Brownian bridge and the Brownian excursion, and in [3] for all
Bessel bridges, after non-rigorous manipulations (see our introduction). To make
rigorous the expressions of the densities of M and ρ from agreement formula we
need to ‘sum’ divergent series.

4.1. Some background on divergent series

The addition of a finite number of terms enjoys very natural and pleasant prop-
erties, associativity and commutativity. Sadly, the situation is far less obvi-
ous when the numbers of terms is infinite. For example, if we try to consider
S = 1 − 1 + 1 − 1 + . . . , then by analogy with the summation of a finite
number of terms, we could be tempted to use the property of associativity: S =
(1−1)+(1−1)+(1−1)+(1−1)+· · · = 0+0+0+0+· · · = 0. But on the other hand,
S = 1+(−1+1)+(−1+1)+(−1+1)+(−1+1)+ · · · = 1+0+0+0+0+ · · · = 1.
The core of the problem was to give a value of a not-defined-yet object. The
formalism developed by Cauchy of convergent and absolute convergent series
brought a satisfying answer to those concerns and provided a wonderful tool in
analysis. However, it excluded the now-called divergent series such as S.

As noticed by Euler, Abel, Ramanujan and many others, careless manipula-
tion of divergent series often leads to absurd and confusing observations. Never-
theless, sometimes a divergent series seems to have a ‘natural’ value, simply de-
duced by algebraic manipulation. Specifically, S = 1−(1−1+1−1+. . . ) = 1−S,
then we would like to say that S = 1/2, which is also the mean of 0 and 1, the
two values guessed above. A method of summation should be a way to give some
value to some series, should share as many properties as possible with classical
summation, and should be consistent with the addition of a finite number of
terms. In 1890, Cesàro gave the first rigorous definition of sum of some divergent
series with its Cesàro summation. This opened the way for several other sum-
mation methods. However, more a method can be applied to a lot of series, more
it lacks good properties. Even when two methods can be applied to the same
series, they do not need to give the same value in general. The book Divergent
Series of Hardy, [10], perfectly presents those years of work and gathers the
most important results about divergent series. It is a wonderful and essential
reference for the reader who would like to learn more about this subject.

Here, we will use the same non-standard summation as in [25], called the
Abel summation in the literature. It is motivated by the Abel’s Theorem on
radius convergence of entire series and has inherited its name.

Definition. Abel summation

Let (un) be a sequence of complex numbers. If ∀α ∈ (0, 1),
∑
n≥0

αn|un| < ∞

and if there is S ∈ C such that∑
n≥0

αnun −→
α→1

S,
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we say that S is the Abel summation of (un) and we denote∑
n≥0

un = S (A).

For example, 1− 1 + 1− 1 + · · · =
∑
n≥0

(−1)n =
1

2
(A). This summation has

good properties and often gives a value for divergent series with alternating
terms. See [10] for details and the proof of the proposition below.

Proposition 1. The Abel summation enjoys these three properties.

Linearity: If
∑
n≥0

un = S (A) and
∑
n≥0

vn = T (A) then

∑
n≥0

un + λvn = S + λT (A).

Stability: If
∑
n≥0

un = S (A) then
∑
n≥0

un+1 = S − u0 (A).

Regularity [Abel’s Theorem]: If

N∑
n=0

un −→
N→∞

S then
∑
n≥0

un = S (A).

We will use a straight-forward generalization for double series that keeps the
above properties.

Definition. Let (um,n) be a double sequence of complex numbers. If for all

α ∈ (0, 1),
∑

m,n≥0

αm+n|um,n| < ∞ and if there is S ∈ C such that

∑
m,n≥0

αm
1 αn

2um,n −→
α1→1−

α2→1−

S,

we write ∑
m,n≥0

un,m = S (A).

In particular, in this case,
∑
k≥0

⎛
⎜⎜⎝ ∑

m,n≥0
m+n=k

um,n

⎞
⎟⎟⎠ = S (A).

4.2. The formulas and their proof

In this subsection, δ = 2(ν + 1) > 0 is fixed. Let us begin by defining some
notations: Cν = 2νΓ(ν + 1) and jν,n are the strictly positive zeros in increasing
order of Jν , where Jν is the Bessel function of the first kind of index ν defined
by

Jν(z) =
∑
k≥0

(−1)k

k!Γ(ν + k + 1)

(z
2

)2k+ν

.
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We recall the agreement formula (7) for a standard Bessel bridge of dimension
δ: for z > 0 and 0 < u < 1,

P(M ∈ dz, ρ ∈ du) =
2Cν

z3+δ
fν

( u

z2

)
fν

(
1− u

z2

)
dzdu,

where fν is the density of the first hitting time of 1 of a Bessel process of
dimension δ started from 0 (previously denoted T ). From [15] and [33], we know
a series expansion formula for fν .

fν(t) =
1

Cν

∑
n≥1

jν+1
ν,n

Jν+1(jν,n)
e−

j2ν,n
2 t =

1

Cν

∑
n≥1

(−1)n−1gν,ne
−

j2ν,n
2 t (9)

This series expansion is a key-point for the following work. We will discuss
its basis later. We precise some notations and asymptotic equivalents (see [29]
pages 237-242 and 247-248). Plus, most of useful facts about Bessel functions
and their zeros can be read in [8].

gν,n = (−1)n−1
jν+1
ν,n

Jν+1(jν,n)
> 0

jν,n ∼ πn

gν,n ∼
√

π

2
(πn)ν+3/2

Theorem 2. The density of the max of a standard Bessel bridge is equal to

P(M ∈ dz)

dz
=

2

Cνz3+δ

∑
n≥1

(
jν+1
ν,n

Jν+1(jν,n)

)2

e−
j2ν,n

2z2

+
4

Cνz1+δ

∑
m,n≥1
m �=n

jν+1
ν,m

Jν+1(jν,m)

jν+1
ν,n

Jν+1(jν,n)

e−
j2ν,n

2z2 − e−
j2ν,m

2z2

j2ν,m − j2ν,n
(A). (10)

The convergence in (α1, α2) → (1−, 1−) is uniform on (0,∞).

Theorem 3. The density of the argmax of a standard Bessel bridge is equal to

P(ρ ∈ du)

du
= 2δ

∑
m,n≥1

jν+1
ν,m

Jν+1(jν,m)

jν+1
ν,n

Jν+1(jν,n)

1

[j2ν,nu+ j2ν,m(1− u)]ν+2
(A).

(11)
The convergence in (α1, α2) → (1−, 1−) is uniform on every segment of (0, 1).

Remark. We would like to integrate the agreement formula with respect to z
or u to find the marginal densities. However, for example with δ = 3,

π2
∑
n≥1

(−1)n−1n2

∫ ∞

0

exp

(
−n2π2

2
t

)
dt = 2

∑
n≥0

(−1)n �= 1 =

∫ ∞

0

f 1
2
(t)dt ?!
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The integration erases the small exponential term so the series can not commute
with the integral. It is why the Abel summation would be so useful because it
adds new small terms independent of the integration and allows the commuta-

tion. We can remark also that with
∑
n≥0

(−1)n =
1

2
(A) the previous calculation

works just fine.

Proof. For this proof, to simplify the notations, we could forget the indexes ν.
Let us define for 0 < α < 1 and t ≥ 0,

fα(t) =
1

Cν

∑
n≥1

αn−1
jν+1
ν,n

Jν+1(jν,n)
e−

j2ν,n
2 t =

1

Cν

∑
n≥1

(−1)n−1αn−1gne
− j2n

2 t.

By normal convergence, fα is continuous on [0,∞). We denote naturally f1 = f .

If t > 0 and 0 < α ≤ 1, |fα(t)| ≤ 1

Cν

∑
n≥1

gne
− j2n

2 t. Thus, by dominated

convergence, there is t0 > 0 such that for any 0 < α ≤ 1:

If t > t0, then |fα(t)| ≤ e−
j20
4 t −→

t→+∞
0. (12)

First, we are going to show

1

z3+δ

∫ 1

0

fα1

( u

z2

)
fα2

(
1− u

z2

)
du −→

α1→1−

α2→1−

1

z3+δ

∫ 1

0

f
( u

z2

)
f

(
1− u

z2

)
du

uniformly for z ∈ (0,∞), then we will compute the LHS by inverting the series
and the integral. We begin by a simple estimate for t > 0.

|f(t)− fα(t)| ≤ 1

Cν

∑
n≥1

|1− αn−1|gne−
j2n
2 t ≤ |1− α| × 1

Cν

∑
n≥1

ngne
− j2n

2 t (13)

So for any r > 0, ||f − fα||∞,[r,∞) ≤ |1− α| × 1

Cν

∑
n≥1

ngne
− j2n

2 r −→
α→1

0.

Let us first admit a lemma we will prove later.

Lemma 1. For any q > 0, the family (fα)0<α<1 is bounded in L2(R+, t
q−1dt)

by a constant C(q) > 0.

The reader could remark that this lemma (with the inequality (13)) implies
||f ||L2(R+,tq−1dt) ≤ C(q). Since we will often apply the lemma with q = 1, i.e.
the family (fα)0<α≤1 is bounded in L2(R+), we will simply write C(1) = C.

Let ε > 0. For any 0 < α1, α2 ≤ 1 and z > 0, by using (12) and the lemma,

∣∣∣∣∣ 1

z3+δ

∫ 1
2

0

fα1

( u

z2

)
fα2

(
1− u

z2

)
du

∣∣∣∣∣ ≤ e−
j20
8z2

z3+δ

∫ 1
2

0

∣∣∣fα1

( u

z2

)∣∣∣ du for small z
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≤ e−
j20
8z2

√
2z3+δ

z||fα1 ||L2(R+)

≤ C
e−

j20
8z2

√
2z2+δ

≤ ε for small z.

For big z, we can provide an other inequality,∣∣∣∣ 1

z3+δ

∫ 1

0

fα1

( u

z2

)
fα2

(
1− u

z2

)
du

∣∣∣∣
≤ 1

z3+δ

√∫ 1

0

fα1

( u

z2

)2

du

√∫ 1

0

fα2

(
1− u

z2

)2

du

≤ 1

z3+δ
z2||fα1 ||L2(R+)||fα2 ||L2(R+)

≤ C2

z1+δ

≤ ε for big z because 1 + δ > 0.

So we can choose a small r > 0 and a big R > r such that

sup
0<α1,α2≤1

z∈(0,r)∪(R,∞)

∣∣∣∣ 1

z3+δ

∫ 1

0

fα1

( u

z2

)
fα2

(
1− u

z2

)
du

∣∣∣∣ ≤ ε.

Moreover, thanks to the uniform convergence deduced from (13), for any η > 0
we know that

1

z3+δ

∫ 1−η

η

fα1

( u

z2

)
fα2

(
1− u

z2

)
du −→

α1→1−

α2→1−

1

z3+δ

∫ 1−η

η

f
( u

z2

)
f

(
1− u

z2

)
du.

uniformly on [r,R].
Now, to obtain the desired convergence, we only need a small η > 0 such that

sup
0<α1,α2≤1

z∈[r,R]

∣∣∣∣
∫ η

0

fα1

( u

z2

)
fα2

(
1− u

z2

)
du

∣∣∣∣ ≤ ε.

Using (12), there is a constant c > 0 such that for all 0 < α ≤ 1, we have
||fα||∞,[1/2R2,∞) ≤ c. For any small η > 0 and z ∈ [r,R],

∣∣∣∣
∫ η

0

fα1

( u

z2

)
fα2

(
1− u

z2

)
du

∣∣∣∣ ≤
√∫ η

0

fα1

( u

z2

)2

du

√∫ η

0

fα2

(
1− u

z2

)2

du

≤ z||fα1 ||L2(R+) × ||fα2 ||∞,[1/2R2,∞)
√
η

≤ RCc
√
η



Time and place of the maximum for diffusion bridges and meanders 19

≤ ε for small η.

Finally, we only need to compute the integral depending on α. Notice all
equalities are justified thanks to absolute convergence coming from αn.

α1α2

∫ 1

0

fα1

( u

z2

)
fα2

(
1− u

z2

)
du

=
1

C2
ν

∑
m,n≥1

(−1)m+nαn
1α

m
2 gmgn exp

(
− j2m
2z2

)∫ 1

0

exp

(
j2m − j2n
2z2

u

)
du

=
1

C2
ν

∑
n≥1

(α1α2)
ng2n exp

(
− j2n
2z2

)

+
2z2

C2
ν

∑
m,n≥1
m �=n

(−1)m+nαn
1α

m
2

gmgn
j2m − j2n

(
e−

j2n
2z2 − e−

j2m
2z2

)

The convergence

∑
n≥1

(α1α2)
ng2n exp

(
− j2n
2z2

)
−→

α1→1−

α2→1−

∑
n≥1

g2n exp

(
− j2n
2z2

)
< ∞

is ensured by monotone convergence. From the equality∫ 1

0

f
( u

z2

)
f

(
1− u

z2

)
du =

1

C2
ν

∑
n≥1

g2ne
− j2n

2z2

+
2z2

C2
ν

∑
m,n≥1
m �=n

(−1)m+n gmgn
j2m − j2n

(
e−

j2n
2z2 − e−

j2m
2z2

)
(A)

and the formula (7), we deduce the first theorem (10).
The proof of the second theorem is also based on the lemma 1 and various

control inequalities. Let U ∈ (0, 1/2), u ∈ [U, 1− U ] and ε > 0.∫ ∞

0

2

z3+δ
f
( u

z2

)
f

(
1− u

z2

)
dz = 2

∫ ∞

0

f(x2u)f(x2(1− u))x1+δdx

=

∫ ∞

0

f(xu)f(x(1− u))x
δ
2 dx < ∞ (14)

To control what happens near 0 (for x), let us take a small r, for any 0 <
α1, α2 ≤ 1, ∣∣∣∣

∫ r

0

fα1(xu)fα2(x(1− u))x
δ
2 dx

∣∣∣
≤ r

1+δ
2

∫ ∞

0

1√
x
|fα1(xu)fα2(x(1− u))|dx
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≤ r
1+δ
2

√∫ ∞

0

fα1(xu)2√
x

dx

√∫ ∞

0

fα2(x(1− u))2√
x

dx

≤ C(1/2)2

4
√
U(1− U)

r
1+δ
2

≤ ε for small r because 1 + δ > 0.

To control what happens near ∞ (for x), notice that thanks to (12), for any t

big enough, ∀α ∈ (0, 1], |fα(t)| ≤ e−
j20
4 t, and for R big enough,∣∣∣∣

∫ ∞

R

fα1(xu)fα2(x(1− u))x
δ
2 dx

∣∣∣∣ ≤
∫ ∞

R

|fα1(xu)||fα2(x(1− u))|x δ
2 dx

≤
∫ ∞

R

x
δ
2 e−

j20
4 xdx

≤ ε for big R, by dominated convergence.

After choosing a small r and a big R, we have that for all < α1, α2 ≤ 1 and
u ∈ [U, 1− U ],∣∣∣∣

∫ r

0

fα1(xu)fα2(x(1− u))x
δ
2 dx

∣∣∣∣+
∣∣∣∣
∫ ∞

R

fα1(xu)fα2(x(1− u))x
δ
2 dx

∣∣∣∣ ≤ ε.

Moreover, by (13), uniformly on [U, 1− U ],∫ R

r

fα1(xu)fα2(x(1− u))x
δ
2 dx −→

α1→1−

α2→1−

∫ R

r

f(xu)f(x(1− u))x
δ
2 dx.

Eventually,∫ ∞

0

fα1(xu)fα2(x(1− u))x
δ
2 dx −→

α1→1−

α2→1−

∫ ∞

0

f(xu)f(x(1− u))x
δ
2 dx

uniformly on [U, 1− U ].
The proof ends with some easy computations.

α1α2

∫ ∞

0

fα1(xu)fα2(x(1− u))x
δ
2 dx

=
1

C2
ν

∑
m,n≥1

(−1)m+nαn
1α

m
2 gmgn

∫ ∞

0

xν+1 exp

(
−j2nu+ j2m(1− u)

2
x

)
dx

=
1

C2
ν

∑
m,n≥1

(−1)m+nαn
1α

m
2 gmgn

(
2

j2nu+ j2m(1− u)

)ν+2 ∫ ∞

0

xν+1e−xdx

=
2ν+2Γ(ν + 2)

C2
ν

∑
m,n≥1

(−1)m+nαn
1α

m
2

gmgn
[j2nu+ j2m(1− u)]ν+2



Time and place of the maximum for diffusion bridges and meanders 21

2ν+2Γ(ν + 2)

C2
ν

= 4(ν + 1)× 2νΓ(ν + 1)

C2
ν

=
2δ

Cν

After using (7), we find the second theorem (11).

P(ρ ∈ du)

du
= 2δ

∑
m,n≥1

(−1)m+n gmgn
[j2nu+ j2m(1− u)]ν+2

(A)

For the Brownian excursion and the reflected Brownian bridge, there are
explicit expressions for jn and gn, and the formulas (10) and (11) can be written
as follows.

Theorem 4. For the Brownian excursion, i.e. when ν = 1/2, we have

P(M ∈ dz)

dz
=

√
2ππ4

z6

∑
n≥1

n4e−
n2π2

2z2

+
2
√
2ππ2

z4

∑
m,n≥1
m �=n

(−1)m+n m2n2

m2 − n2

(
e−

n2π2

2z2 − e−
m2π2

2z2

)
(A), (15)

and
P(ρ ∈ du)

du
= 3

∑
m,n≥1

(−1)m+n m2n2

[n2u+m2(1− u)]5/2
(A). (16)

Theorem 5. For the reflected Brownian bridge, i.e. when ν = −1/2, we have

P(M ∈ dz)

dz
=

√
2ππ2

z4

∑
n≥1

(
n+

1

2

)2

e−
(n+1/2)2π2

2z2

+
2
√
2π

z2

∑
m,n≥1
m �=n

(−1)m+n (m+ 1/2)(n+ 1/2)

(m+ 1/2)2 − (n+ 1/2)2

×
(
e−

(n+1/2)2π2

2z2 − e−
(m+1/2)2π2

2z2

)
(A), (17)

and

P(ρ ∈ du)

du
= 2

∑
m,n≥0

(−1)m+n (2m+ 1)(2n+ 1)

[(2n+ 1)2u+ (2m+ 1)2(1− u)]3/2
(A). (18)

Remark. The use of the Abel summation is not arbitrary. First, (10) becomes
false with the standard summation because they are an infinity of not-small
terms, as said in [33]. However, Pitman and Yor pointed out the formula could
become correct for ν = 1

2 (the case of the excursion) when you use the equality∑
n≥1(−1)n−1 = 1/2, as it happens with Abel summation. Furthermore, in [25],

the authors interpret their numerical calculations with a regularization α → 1.
The summation in (10) is absolutely convergent iff ν < −1

2 while the summation
in (11) is never absolutely convergent.
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Let us point out there exists simpler formulas than (15) and (17) to express
the density of the maximum for the Brownian excursion and for the reflected
Brownian bridge. For the excursion,

P(M ∈ dz)

dz
= 8z

∑
n≥1

(4n2z2 − 3)n2e−2n2z2

was found by Chung [5] and by Kennedy [14]. For the reflected bridge, the
famous formula

P(M ∈ dz)

dz
= 8z

∑
n≥1

(−1)n−1n2e−2n2z2

appears within the study of the statistical Kolmogorov-Smirnov test, and was
first demonstrated by Kolmogorov in [17]. The reader could also check [27] for
more information about this test.

In fact, these two formulas are the cases δ = 3 and δ = 1 of an expression
proven in [33] by Pitman and Yor, called the Gikhman-Kiefer Formula, for the
density of the maximum of the δ-dimensional Bessel bridge.

P(Mδ ∈ dz)

dz
=

2

Cνzδ

∑
n≥1

j2νν,n
J2
ν+1(jν,n)

(
j2ν,n
z3

− δ

z

)
e−

j2ν,n

2z2 (19)

The cases δ = 3 and δ = 1 of (19) can be also found in [4], respectively as
5.1.1.8 page 435 and 3.1.1.8 page 339, but in a different form from the two above
formulas. More precisely, it is possible to obtain them from (19) by using the
functional relation of Jacobi’s theta function (see [33] for more details).

The formula (10) has also been found in [33] (Section 11) for ν < −1
2 , but

with the standard summation. Moreover, in this article, Pitman and Yor deduced
formulas on the zeros of the Bessel functions, equating their double series with
the Gikhman-Kiefer Formula. This led to interesting identities since (10) is quite
different from other representations in the literature. Indeed, Pitman, Yor, and
us were not able to prove directly that the RHS of (10) and (19) give the same
result. Even for the particular cases δ = 3 or δ = 1, this respectively leads in
[33] to the noteworthy identities for any n ∈ N

∗,

∑
m≥1
m �=n

(−1)mm2

m2 − n2
=

3

4
(−1)n−1 (A), and

∑
m≥1
m �=n

(−1)m(2m− 1)

(2m− 1)2 − (2n− 1)2
=

(−1)n−1

4(2n− 1)
.

We will unsuccessfully try to derive more identities in the same way later in
Section 4.4. Justifying this method seems theoretically promising and extending
it to ρ may be the goal of another publication.

The formulas (10) and (11) could also be applied for numerical simulations.
We advise the reader to check [25] for a very nice numerical analysis of (16).
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Moreover, they could be useful to study more easily the tails of the distributions
of M and ρ. Eventually, we will show in Section 4.4 that the Abel summation
in (10) and (11) commutes with the integration when we compute the expected
value of a bounded function of M or ρ. Once again, this could lead to some
theoretical identities of interest or facilitate numerical approximations of the
law of M or ρ.

4.3. Proof of the lemma

We keep the same notations as before. First,∫ ∞

0

fα(t)2tq−1dt =

∫ ∞

0

1

C2
ν

∑
m,n≥1

(−α)m+n−2gmgn exp

(
−j2m + j2n

2
t

)
tq−1dt

=
1

C2
ν

∑
m,n≥1

(−α)m+n−2gmgn

∫ ∞

0

tq−1 exp

(
−j2m + j2n

2
t

)
dt

=
2qΓ(q)

C2
ν

∑
m,n≥1

(−α)m+n−2 gmgn
(j2m + j2n)

q

=
2qΓ(q)

C2
ν

∑
n≥2

(−α)n−2un with un =

n−1∑
k=1

gkgn−k

(j2k + j2n−k)
q
.

Begin by observing that (un) has a polynomial growth. We only need to show
((−1)nun) is Abel summable. The strategy of the proof is to provide an asymp-
totic expansion of un where all the terms are either of the form constant×na or
absolutely summable. For this, we use the existence of asymptotic expansions
of the following form at any order for j2n and gn: for all N ∈ N

∗,

j2n
(πn)2

= 1 +

N−1∑
i=1

constant(i)× n−i +O(n−N ), and

√
2

π

gn
(πn)ν+3/2

= 1 +

N−1∑
i=1

constant′(i)× n−i +O(n−N ).

It comes (after some manipulations) from Hankel’s expansion of Jν+1(z) for
large z and McMahon’s expansion of jn for large n (see [29] pages 237-242 and
247-248 or more simply [8]). Then, we will conclude thanks to the following fact.

Proposition 2. ∀s ∈ C,
∑
n≥1

(−1)n−1

ns
xn−1 is absolutely convergent for x ∈ C,

|x| < 1 and can be continuously extended to 1. In particular, ((−1)nn−s) is Abel
summable.

Remark (A short digression about η and ζ functions). In fact,

η(s) =
∑
n≥1

(−1)n−1n−s (A)
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defines an entire function. Since the series is absolutely convergent for s > 1,
we can easily verify the relation η(s) = (1 − 21−s)ζ(s) where ζ is the Riemann
zeta function. Then, we can use the relation to extend ζ to C except to the
points sn = 1 + 2inπ/ ln(2), n ∈ Z. More work is required to show η(sn) = 0
for n �= 0 and to give an analytic definition of ζ on C\{1}. Moreover, the
well-known value of the alternating harmonic series gives η(1) = ln(2) and so
(s − 1)ζ(s) −→

s→1
1. While (n) is not Abel summable, it is not difficult to prove

η(−1) = 1/4 to assign to
∑
n≥1

n the famous value ζ(−1) = −1/12. This is a

particular case of another non-standard summation called the method of zeta
function regularization. See [13] for more details and a proof of the proposition.
The proof of the Abel summability of ((−1)nn−s) is also done in [10], Section
6.10. [38] solves the problem of the vanishing of η at the sn.

We use the symbol � when an inequality is true up to a multiplicative con-
stant independent of k or n. We denote

x(k, n) =
j2k − π2k2 + j2n−k − π2(n− k)2

π2k2 + π2(n− k)2
, and

1

j2k + j2n−k

=
1

π2(k2 + (n− k)2)

1

1 + x(k, n)
.

Observe that

|x(k, n)| � k + (n− k)

k2 + (n− k)2
� n

n2
� 1

n
.

By classic Taylor expansion, we have a polynomial P which does not depend on
our problem such that, for x → 0,

1

(1 + x)q
− P (x) = O(xδ+4).

It follows that∣∣∣∣∣un −
n−1∑
k=1

gkgn−k

π2q(k2 + (n− k)2)q
P (x(k, n))

∣∣∣∣∣ �
n−1∑
k=1

|gkgn−k|
π2q(k2 + (n− k)2)q

x(k, n)δ+4

�
n−1∑
k=1

kν+3/2(n− k)ν+3/2

π2q(k2 + (n− k)2)q
1

nδ+4

�
n−1∑
k=1

n2ν+3

nδ+4

� 1

n2
.

We only need the Abel summability of (−1)n
n−1∑
k=1

gkgn−k

(k2 + (n− k)2)q
x(k, n)d where

d ∈ N, by linearity. We write the asymptotic expansion for j2k and gk with
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order O

(
1

kd+ν+3/2+2

)
and after expanding

gkgn−k

(k2 + (n− k)2)q
x(k, n)d, without

precising the constant coefficients, we have a finite number of terms of the form

function(k)× ˆfunction(n− k)

(k2 + (n− k)2)q+d
. The functions do not depend on k or n and can

be either explicit, with the form function(k) = ka where a ≤ d + ν + 3/2, or

implicit, with the form function(k) =
μ(k)

k2
where μ is a bounded function.

We now want to show

lim
α→1

∑
m,n≥1

αm−1αn−1(−1)m+n function(m)× ˆfunction(n)

(m2 + n2)q+d

exists for each type of terms.

Lemma 2. Let q > 0. If f(x, y) =
∑

m,n≥1

xm−1yn−1am,n absolutely converges

for |x|, |y| < 1 and x, y ∈ C, and if it can be continuously extended to (1, 1),
then the function g defined by

g(x, y) =
∑

m,n≥1

xm−1yn−1 am,n

(m2 + n2)q

satisfies the same properties.

It is simply because for |x|, |y| < 1 we have the identity

g(x, y) =
2q

Γ(q)2

∫ 1

0

∫ 1

0

| ln t|q−1| ln s|q−1tsf(t1+is1−ix, t1−is1+iy)dtds

that extends continuously g to (1, 1) (by dominated convergence).
Since q > 0 and d ≥ 0, this lemma allows us to just do the case q + d = 0

where the double series can be factorized. We just have to show∑
n≥1

xn−1(−1)n−1function(n)

absolutely converges for |x| < 1 and can be continuously extended to 1. If the
function is implicit, function (k) = μ(k)/k2, it is true by dominated convergence.
If the function is explicit, function (k) = ka, it is the proposition 2.

Our proof works because gn and jn have a very regular growth. They can
be asymptotically expanded at any order, with only sequences kn such that
((−1)nkn) are Abel summable. We have also used the convergence of jn/n

2.

4.4. Complements for double series formulas

Theorem 6. If ϕ a bounded measurable function then∫ 1

0

∫ ∞

0

ϕ(z, u)× 2Cν

z3+δ
fα1

( u

z2

)
fα2

(
1− u

z2

)
dzdu −→

α1→1−

α2→1−

E[ϕ(M,ρ)].
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In particular, the Abel summation in (10) and (11) commutes with the integra-
tion when we compute the expected value of a bounded function of M or ρ.

Proof. We want to show

∫ 1

0

∫ ∞

0

ϕ(u, x)× fα(xu)fα(x(1− u))x
δ
2 dxdu

−→
α1→1−

α2→1−

∫ 1

0

∫ ∞

0

ϕ(u, x)× f(xu)f(x(1− u))x
δ
2 dxdu.

Thanks to the uniform convergence of fα on any segment of (0,∞) (see (13)), we

just have to dominate the behavior of |fα1(xu)fα2(x(1− u))x
δ
2 | at the bound-

aries of (0, 1)× (0,∞). On (0, 1)× [R,∞), we write∫ 1

0

∫ ∞

R

|fα1(xu)fα2(x(1− u))x
δ
2 |dxdu

= 2

∫ 1
2

0

∫ ∞

R

|fα1(xu)fα2(x(1− u))x
δ
2 |dxdu

≤ 2

∫ 1
2

0

∫ ∞

R

x
δ
2 e−

j20
4 xdxdu for big R

≤ ε for bigger R, by dominated convergence.

On [0, 1]× [0, r], we write∫ 1

0

∫ r

0

|fα1(xu)fα2(x(1− u))x
δ
2 |dxdu ≤ r

δ
2

∫ 1

0

C2√
u(1− u)

du ≤ ε for small r.

We fix r > 0 small enough and R > r big enough. Thanks to the inequality
||fα||∞,[r/2,∞) ≤ c < ∞ for all 0 < α ≤ 1 given by (12), for a small η > 0, we
can conclude.

On [0, η]× [r,R], we write∫ η

0

∫ R

r

|fα1(xu)fα2(x(1− u))x
δ
2 |dxdu

≤
∫ R

r

x
δ
2

∫ η

0

|fα1(xu)fα2(x(1− u))|dudx

≤ √
ηcC

∫ R

r

x
δ−1
2 dx

≤ ε for small η.

Conjecture 1. ∀n ∈ N∗, ∀δ > 0,

δ

4

jν−1
ν,n

Jν+1(jν,n)
=

∑
m≥1
m �=n

1

j2ν,n − j2ν,m
×

jν+1
ν,m

Jν+1(jν,m)
(A). (20)
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Remark. This statement was proven in [33] for −1 < ν ≤ −1/2 with absolute
convergence. Pitman and Yor have also remarked it becomes true for ν = 1/2 if∑

n≥0(−1)2 = 1/2, that is the case with the Abel’s summation. We would like
to adapt their method for the Abel summation.

Recall Pitman and Yor have derived in [33] another expression for the density
of M called the Gikhman-Kiefer formula, (19).

P(Mδ ∈ dz)

dz
=

2

Cνzδ

∑
n≥1

j2νν,n
J2
ν+1(jν,n)

(
j2ν,n
z3

− δ

z

)
e−

j2ν,n

2z2

Combining this with (10), and after a change of variable t = 1/z2 we obtain
that for all t > 0,

−δ

2

∑
n≥1

j2νν,n
J2
ν+1(jν,n)

e−
j2ν,n

2 t =
∑

m,n≥1
m �=n

jν+1
ν,m

Jν+1(jν,m)

jν+1
ν,n

Jν+1(jν,n)

e−
j2ν,n

2 t − e−
j2ν,m

2 t

j2ν,m − j2ν,n
(A).

Moreover, we can use the Fubini theorem on the RHS to find

∑
m,n≥1
m �=n

αm+n
jν+1
ν,m

Jν+1(jν,m)

jν+1
ν,n

Jν+1(jν,n)

e−
j2ν,n

2 t − e−
j2ν,m

2 t

j2ν,m − j2ν,n

= −2
∑
n≥1

αn
jν+1
ν,n

Jν+1(jν,n)
e−

j2ν,n
2 t

∑
m≥1
m �=n

αm

j2ν,n − j2ν,m

jν+1
ν,m

Jν+1(jν,m)
.

We would like to identify the coefficients of e−
j2ν,n

2 t but we lack a stronger
convergence to do this. We can also say that Pitman and Yor showed how (20)
can be deduced from the Mittag-Leffler expansion below (true when −1 < ν <
−1/2).

xν

Jν(x)
= 2

∑
m≥1

1

j2ν,m − x2
×

jν+1
ν,m

Jν+1(jν,m)

4.5. A key point of the proof: the series expansion of f

Our proof of (10) and (11) lies on 3 (4 for ρ) key points: the agreement for-
mula, the series expansion of f , and the lemma 1 (and the scaling property
for ρ). The agreement formula was already presented in Section 2, and the proof
of the lemma only depends on the coefficients of the series expansion of f and
their regularity. Let us see where does this expansion come from, and if it could
exist for other processes than Bessel processes.

In [15], Kent applied Sturm-Liouville theory of second order differential equa-
tions and complex analysis to study the distribution of diffusion hitting times.



28 R. Khanfir

For a regular diffusion on [r0, r1], the differential generator A of the diffusion
is a generalized second order linear differential operator. If r0 < a < b < r1,
λ > 0, there is a unique solution v(x) up to a multiplicative constant of Av = λv
together with a boundary condition at r0 (depending on the boundary behavior
of the scale function and the speed measure). Moreover, there is the relation
Ea(exp(−λTb)) = v(a)/v(b).

If r0 is not a natural boundary (the diffusion cannot start at r0 nor reach r0
in finite time with positive probability, for example r0 = −∞), we even have a
unique joint solution u(x, λ) satisfying some initial and boundary conditions at
r0, and we know this solution is entire in λ. Plus, its zeros correspond to the
eigenvalues of a Sturm-Liouville problem defined by A. Thanks to the Sturm-
Liouville theory, Kent concluded the zeros −λx,n are negative, simple and go
to −∞ fast enough. So, he could apply Hadamard’s factorization theorem to
express Ea(exp(−λTb)) as a infinite product indexed by the zeros, which could
be view as a formal infinite partial expansion.

Then, Kent showed that under some mild regularity conditions, and again if
r0 is not a natural boundary and if r0 ≤ a < b < r1, Ea(exp(−λTb)) could be
inverted to give the Pa density of Tb as a series of the form

fab(t) =
∑

dke
−λk,bt where dk = −u(a, λk,b)/u

′(b, λk,b),

and ∀ε > 0, dk = O(eλk,bε) and
∑

λ−1
k,b < ∞.

Bessel processes satisfy all those hypotheses and (9) comes from this method.
It was even the example chosen [15] by Kent to illustrate its method, and so (9) is
explicitly written there. However, it is not the case for many diffusion processes.
For example, r0 = −∞ for skew Brownian motions or the Ornstein-Uhlenbeck
process. While such series expansion exists for the Ornstein-Uhlenbeck process
anyway (see [1] for a complete study), it is impossible to find one for skew
Brownian motions. A simple way to see it is to recall that Ea(Tb) = ∞ for skew
Brownian motions, while such formula necessarily implies Ea(Tb) < ∞.

Ea(Tb) ≤ 1 + Ea(Tb1[Tb > 1]) ≤ 1 +
4

λ1,k

∑ dk
λk,b

e−λk,b/2 < ∞

More essentially, the distribution of a diffusion hitting time is intimately con-
nected with the spectral measure of the differential generator. In particular, the
existence of a series expansion for its density is closely related with the discrete
nature of the spectrum of the differential generator of the killed diffusion. For a
precise discussion about these deep links, the reader could check another paper
of Kent, [16].

4.6. How could we generalize those formulas?

We consider a continuous stochastic process defined on [0, U ]. Let us suppose
the 3 key points of our proof: the agreement formula of course, but also the
series expansion of f and the lemma 1. We verify which complementary
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hypothesis we need to make our proof work. More precisely, we suppose ∃C > 0
such that ∀z > 0, u ∈ [0, U ], t > 0, i = 1 or 2, we have

P(M ∈ dz, ρ ∈ du) = cφ1(z, u)φ2(z, U − u)s(dz)du, (21)

φi(z, t) =
∑
n≥1

di,n(z)e
−λi,n(z)t, (22)

C ≥ ||φα
1 (z, .)||L2(R+) + ||φα

2 (z, .)||L2(R+), (23)

where φα
i (z, t) =

∑
n≥1

αndi,n(z)e
−λi,n(z)t.

In the case of a diffusion bridge, φ1(z, u) = fxz(u) and φ2(z, u) = fyz(u)
where x and y are some fixed points. To have an expression of the form of (10)
for P(M ∈ dz), without asking for the uniform convergence, our reader can
remark that we used that for any z > 0 and i = 1 or 2,

0 < λi,n(z) −→
n→∞

+∞,∑
n≥1

|di,n(z)|ne−λi,n(z)t < ∞,

∑
m,n≥1

αm+n|d1,m(z)d2,n(z)|e−λ1,m(z)∧λ2,n(z)U

≤
∑

m,n≥1

αm+n|d1,m(z)d2,n(z)| < ∞.

The conditions only depend on the coefficients dn and λn, and we do not
need any assumptions on s or the Brownian scaling, because we integrate the
agreement formula with respect to u. They are satisfied for example when for
any z > 0 and i = 1 or 2,

0 <
λi,n(z)

n
−→
n→∞

+∞ and ∀ε > 0, di,n(z) = O(eεn),

that is the case for the Bessel bridges.
Then, we can use the same proof as the Section 4.2 to derive

P(M ∈ dz)

s(dz)
= c

∑
m,n≥1

d1,m(z)d2,n(z)
e−λ2,n(z)U − e−λ1,m(z)U

λ1,m(z)− λ2,n(z)
(A)

with the convention
e−λ2,n(z)U − e−λ1,m(z)U

λ1,m(z)− λ2,n(z)
= Ue−λ2,n(z)U if λ1,m(z) = λ2,n(z).

It seems rather easy to derive such expressions for more processes. If you
have the agreement formula, and could apply Kent’s theory to obtain some
series expansions, you just have to study the asymptotic behavior of dn and λn

to prove the lemma 1 and the above conditions. Even if it does not work well,
another possibility of generalization is to replace αn by an other regularizing
sequence in the definition of φα. For example, if we take e−λnε, φε(t) = φ(t+ε).
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However, to derive an expression of the form of (11) for P(ρ ∈ du), our proof
also asks to have a scaling property such that the agreement formula could
be written, for all z > 0 and u ∈ [0, U ],

P(M ∈ dz, ρ ∈ du) = cφ1

(
u

w−1(z)

)
φ2

(
U − u

w−1(z)

)
s(dz)

w−1(z)2
du

where w is a continuous strictly increasing function on [0,∞) such that w(0) = 0
and w(∞) = ∞ (with the Brownian scaling w(z) =

√
z). It is necessary because

we want to integrate with respect to z and so to remove the dependance in
z of dn(z) and λn(z). In the beginning of this paper, such simplification was
possible because we were in the case of a diffusion bridge from 0 to 0, with
a self-similarity property. More precisely, φ1(z, t) = φ2(z, t) = f0z(t) and

(Xat)t≥0
d
= (w(a)Xt)t≥0, so f0z(t) = f01(t/w

−1(z))/w−1(z). Note this does not
work for other bridges from x to y, when x �= 0 or y �= 0. We precise the
definition of a self-similar process.

Definition. A stochastic process (Xt)t≥0, continuous in probability with X0 =
0, is self-similar (or semi-stable) when there is a function w on (0,∞) such that

∀a > 0, (Xat)t≥0
d
= (w(a)Xt)t≥0.

It is easy to see that if X has a non-degenerate distribution then w(a) = aq

for some q ≥ 0. We call q the order of X.

Remark. Bessel processes and skew Brownian motions are self-similar of order
1/2.

In [18], Lamperti classified the self-similar Markov processes and in particular,
the self-similar diffusion processes. His results imply any non-degenerate semi-
stable diffusion on [0,∞) such that 0 is not absorbing (with other words P0(T1 <
∞) > 0) is of the form

X = cR2q with c > 0 and R
d
= BES(δ) for some δ > 0. (24)

Moreover, the left boundary of a self-similar diffusion can only be −∞ or
0, so the series expansion theorem of Kent (see previous section) could only
be applied if the diffusion is on [0,∞). In fact, if X is also regular on R, it is
possible to show E0(T1) = ∞ thanks to the above description. So, we cannot
hope for a series expansion like (9) if the left boundary is −∞.

In short, to be able to reproduce the exact same proof to find an expression
of the density of the argmax like (11) for an X-bridge from x to y, we need X
to be a self-similar diffusion on [0,∞), and x = y = 0. But, in this case, the
density of ρ can simply be deduced from (11) and (24). Thus, our method to
prove the formula (11) can not be generalized to essentially different diffusion
bridges without being modified.

Nevertheless, one has to be aware they are the conditions we used in our
proof and not necessary conditions. Some expressions like (11) may be found
for other processes by using different series expansions or other simplifications
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of the agreement formula. It is what happens for the next example of skew
Brownian bridges.

5. Marginal densities for skew Brownian bridges

Recently, in [2], Appuhamillage and Sheldon derived a series expansion for fβ ,
the density of T for the case of a skew Brownian motion such that P (X1 > 0) =
β ∈ (0, 1).

fβ(t) =
2β√
2πt3

∑
n≥1

(1− 2β)n−1(2n− 1) exp

(
− (2n− 1)2

2t

)
(25)

Notice this expression is different from the one for the Bessel processes. Al-
though (9) comes from the Sturm-Liouville theory and the method of Kent (see
Section 4.5 and [15]), (25) comes from conditioning on the signs of the excursions
away from 0 of the skew Brownian motion (details in [2]). The two methods are
essentially different and can not be applied to the other family of processes.
However, it is possible to use (25) instead of (9) with the agreement formula to
derive an expression for the density of ρ looking like (11).

We also recall the agreement formula (8) for a (standard) skew Brownian
bridge: for z > 0 and 0 < u < 1,

P(M ∈ dz, ρ ∈ du) =

√
2π

βz4
fβ

( u

z2

)
fβ

(
1− u

z2

)
dzdu.

Theorem 7. The density of the argmax of a standard skew Brownian bridge is
equal to

P(ρ ∈ du)

du
= 2β

∑
m,n≥1

(1− 2β)m+n−2 (2m− 1)(2n− 1)

[(2n− 1)2u+ (2m− 1)2(1− u)]3/2
. (26)

Proof. The following equalities are justified by absolute convergence because
|1− 2β| < 1.

P(ρ ∈ du)

du

=

√
2π

β
× (2β)2

2π

∫ ∞

0

1

z4
× z6

[u(1− u)]3/2

∑
m,n≥1

(1− 2β)m+n−2(2m− 1)(2n− 1)

× exp

(
− (2n− 1)2u+ (2m− 1)2(1− u)

2u(1− u)
z2
)
dz

=
4β√
2π

× [u(1− u)]−3/2
∑

m,n≥1

(1− 2β)m+n−2(2m− 1)(2n− 1)

×
∫ ∞

0

z2 exp

(
− (2n− 1)2u+ (2m− 1)2(1− u)

2u(1− u)
z2
)
dz
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=
4β√
2π

× [u(1− u)]−3/2
∑

m,n≥1

(1− 2β)m+n−2(2m− 1)(2n− 1)

×
[

2u(1− u)

(2n− 1)2u+ (2m− 1)2(1− u)

]3/2 ∫ ∞

0

z2e−z2

dz

=
2β√
π
×

√
π × 4

4

∑
m,n≥1

(1− 2β)m+n−2 (2m− 1)(2n− 1)

[(2n− 1)2u+ (2m− 1)2(1− u)]3/2
.

For β = 1/2, the case of the (non-reflected) Brownian bridge, (25) and (26)
simply become the classical formulas

f1/2(t) =
1√
2πt3

exp

(
− 1

2t

)
, and

P(ρ ∈ du)

du
= 1.

If we denote α = 2β − 1 < 1, α −→ 1 when β −→ 1, or in other words
when skew Brownian motion(β) converges in law to the reflected Brownian
motion, which is also the Bessel process of dimension δ = 1. Remarkably, the
convergence α −→ 1 in (26) is exactly the convergence in the definition of
the Abel summation used in (18) when α1 = α2 = α. (18) is almost a direct
consequence of (26).

It shows the strong links between (26) and (11), even if there is not any
obvious connections between (25) and (9). It is very interesting and strange,
mainly because the same thing does not happen for M .

Theorem 8. The density of the max of a standard skew Brownian bridge is
equal to

P(M ∈ dz)

dz
= 8βz

∑
k≥1

(1− 2β)k−1k2e−2k2z2

(27)

Proof. First, we recall an integral equality for a, b > 0, which comes from the
stability of the laws of Levy.

∫ 1

0

√
a

2π

e−
a
2u

u3/2
×

√
b

2π

e−
b

2(1−u)

(1− u)3/2
du =

√
a+

√
b√

2π
e−

(
√

a+
√

b)2

2

By absolute convergence,

P(M ∈ dz)

dz

=

√
2π

βz4

∑
m,n≥1

(2β)2

2π
(1− 2β)m+n−2(2m− 1)(2n− 1)z6

×
∫ 1

0

1

[u(1− u)]3/2
exp

(
− (2n− 1)2z2

2u
− (2m− 1)2z2

2(1− u)

)
du
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=
4β√
2π

z2
∑

m,n≥1

(1− 2β)m+n−2(2m− 1)(2n− 1)

×
√
2π

z

(2m− 1) + (2n− 1)

(2m− 1)(2n− 1)
exp

(
− ((2m− 1) + (2n− 1))2

2
z2
)

= 8βz
∑

m,n≥1

(1− 2β)m+n−2(m+ n− 1)e−2(m+n−1)2z2

= 8βz
∑
k≥1

(1− 2β)k−1k2e−2k2z2

.

For β = 1/2, the case of the (non-reflected) Brownian bridge, (27) is again a
classical formula.

P(M ∈ dz)

dz
= 4ze−2z2

For β = 1, the absolute convergence also holds and (27) becomes the well known
formula used for the Kolmogorov-Smirnov test, already mentioned at the end
of Section 4.2.

P(M ∈ dz)

dz
= 8z

∑
k≥1

(−1)k−1k2e−2k2z2

This expression belongs to the family of the Gikhman-Kiefer formulas (19) for
all Bessel bridges of dimension δ > 0. More precisely, it is the case δ = 1,
after using a functional relation for a Jacobi’s theta function (see [33] for more
details). The essential links between this formula and (27) with (17) and (10)
are not obvious to us at all.

6. Marginal densities for generalized Bessel meanders

In Section 4.6, we discussed the importance of enjoying a scaling property to
find a double series expression for the density of ρ with the method of Section
4.2. For a bridge where the end point is fixed, this one can only be 0. However,
if the end point has a continuous distribution, we can obtain different processes
for which the agreement formula can be simplified by scaling.

For k = 2(μ + 1) > 0 and δ = 2(ν + 1) > 0, the k-generalized Bessel
meander of dimension δ is a continuous stochastic process X on [0, 1] such that

P(X1 ∈ dy) =
2

2k/2Γ(k/2)
yk−1e−

y2

2 1y>0dy, i.e.X1 follows the chi distribution of

parameter k, and conditionally given X1 = y, X is a Bessel bridge of dimension
δ, from 0 to y, and of length 1.

The k-generalized Bessel meander of dimension δ gives a generalization of
several processes. When k = 2, it is the classical Bessel meander of dimension δ.
When δ = 3, it is the k-generalized Brownian meander (seen in Section 3.3 when
k is an integer). When k = 2 and δ = 3, it is the classical Brownian meander.
When k = δ, it is the Bessel process of dimension δ on [0, 1]. See [26] for details,
background, and properties about this class of processes.
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We fix k and δ and use the notations of Sections 3.1 and 4.2: Cν = 2νΓ(ν+1),
fx1 the density of the first hitting time of 1 for the Bessel process of dimension
δ started at x ∈ [0, 1], and f = f01. As mentioned in Section 4.5, the method
of Kent developed in [15] provides series expression for fx1 when x ∈ [0, 1]. In
fact, the case of the Bessel processes was done explicitly in [15].

f(t) =
1

Cν

∑
n≥1

jν+1
ν,n

Jν+1(jν,n)
e−

j2ν,n
2 t =

1

Cν

∑
n≥1

(−1)n−1gν,ne
−

j2ν,n
2 t

fx1(t) =
∑
n≥1

(−1)n−1gν,n
Jν(xjν,n)

(xjν,n)ν
e−

j2ν,n
2 t for 0 < x < 1

We could and would forget the indexes ν of jν,n and gν,n. In this case, the
agreement formula becomes

P(M ∈ dz, ρ ∈ du) =
2Cν

kCμ
× 1

z3+(δ−k)
f
( u

z2

)
φk

(
1− u

z2

)
dzdu, (28)

where φk(t) =

∫ 1

0

kxk−1fx1(t)dx ≥ 0.

Remark that φk is the density of some random time Sk ≥ 0 because we have∫ ∞

0

φk(t)dt = 1. The chi distribution of X1 allows us to simplify the agreement

formula thanks to the scaling
By making a change of variable in the integral with respect to y, we find

fyz(u) = f y
z 1
(u/z2)/z2, which makes appear φk. Then, the series expansion of

fx1, x ∈ (0, 1), induces a series expansion for φk.

φk(t) =
∑
n≥1

(−1)n−1

(∫ 1

0

kxk−1 Jν(xjn)

(xjn)ν
dx

)
gne

− j2n
2 t (29)

For the particular cases of the classical Bessel meander, the generalized Brow-
nian meander, and the Bessel process, the formula (29) can be reduced by using
classical identities for Jν and jν,n. Once again, we advise to check [8] if one is
not familiar with Bessel functions.

• For the classical Bessel meander, k = 2, we compute∫ jn

0

x1−νJν(x)dx = [−x1−νJν−1(x)]
jn
0

=
1

2ν−1Γ(ν − 1 + 1)
− j1−ν

n Jν−1(jn)

=
1

Cν−1
+ j1−ν

n Jν+1(jn),

then deduce

φ2(t) = 2
∑
n≥1

e−
j2n
2 t +

2

Cν−1

∑
n≥1

jν−1
n

Jν+1(jn)
e−

j2n
2 t. (30)
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• For the generalized Brownian meander, δ = 3, we compute

g 1
2 ,n

∫ 1

0

kxk−1
J 1

2
(xj 1

2 ,n
)√

xj 1
2 ,n

dx =

√
π

2
π2n2k

√
2

π

1

πn

∫ 1

0

xk−2 sin(xπn)dx

= πkn

∫ 1

0

xk−2 sin(xπn)dx,

then deduce

φk(t) = πk
∑
n≥1

(−1)n−1n

(∫ 1

0

xk−2 sin(xπn)dx

)
e−

π2n2

2 t. (31)

• For the classical Brownian meander, δ = 3 and k = 2, we directly find

φ2(t) = 2
∑
n≥1

(1 + (−1)n−1)e−
π2n2

2 t = 4
∑
n≥0

e−
π2(2n+1)2

2 t. (32)

• For the Bessel process, k = δ, we compute∫ jn

0

x1+νJν(x)dx = [x1+νJν+1(x)]
jn
0

= j1+ν
n Jν+1(jn),

then deduce

φδ(t) = δ
∑
n≥1

e−
j2n
2 t. (33)

We can observe ||φδ||L2(R+) = ∞, which means the φk do not satisfy the
lemma 1 in general, so we will need to slightly adapt the proof of the Section
4.1 to prove the following theorem.

Theorem 9. If 0 < k < 1 + δ, then

• The density of the max of the k-generalized Bessel meander is equal to

P(M ∈ dz)

dz

=
2

kCμz3+δ−k

∑
n≥1

(
jν+1
ν,n

Jν+1(jν,n)

)2 (∫ 1

0

kxk−1 Jν(xjν,n)

(xjν,n)ν
dx

)
e−

j2ν,n

2z2

+
4

kCμz1+δ−k

∑
m,n≥1
m �=n

jν+1
ν,m

Jν+1(jν,m)

jν+1
ν,n

Jν+1(jν,n)

×
(∫ 1

0

kxk−1 Jν(xjν,n)

(xjν,n)ν
dx

)
e−

j2ν,n

2z2 − e−
j2ν,m

2z2

j2ν,m − j2ν,n
(A). (34)

The convergence in (α1, α2) → (1−, 1−) is uniform on every segment of
(0,∞).
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• The density of the argmax of the k-generalized Bessel meander is equal to

P(ρ ∈ du)

du
=

2Cν−μ

kCμ

∑
m,n≥1

jν+1
ν,m

Jν+1(jν,m)

jν+1
ν,n

Jν+1(jν,n)

×
(∫ 1

0

kxk−1 Jν(xjν,n)

(xjν,n)ν
dx

)
1

[j2ν,nu+ j2ν,m(1− u)]ν−μ+1
(A). (35)

The convergence in (α1, α2) → (1−, 1−) is uniform on every segment of
(0, 1).

Proof. As for the proof of Section 4.2, we will compute those densities using
(28) and the series expansions of f , (9), and of φk, (29). We want to show that
for any 0 < r < R and 0 < U < 1/2,

1

z3+δ−k

∫ 1

0

fα1

( u

z2

)
φα2

k

(
1− u

z2

)
du −→

α1→1−

α2→1−

1

z3+δ−k

∫ 1

0

f
( u

z2

)
φk

(
1− u

z2

)
du

∫ ∞

0

fα1(xu)φα2

k (x(1− u))x
δ−k
2 dx −→

α1→1−

α2→1−

∫ ∞

0

f(xu)φk(x(1− u))x
δ−k
2 dx

uniformly respectively for z ∈ [r,R] and for u ∈ [U, 1− U ].
Since ∫ 1

0

xk−1 Jν(xjn)

(xjn)ν
dx =

1

jkn

∫ jn

0

xk−1 Jν(x)

xν
dx = O(1),

the function φk satisfies the inequalities (12) and (13). We study the asymptotic
behavior of this integral by an integration by parts.∫ jn

1

xk−1 Jν(x)

xν
dx =

[
−xk−2 Jν−1(x)

xν−1

]jn
1

+ (k − 2)

∫ jn

1

xk−3 Jν−1(x)

xν−1
dx

After such successive integrations by parts, we have a finite linear combination

of terms of the form

[
−xk−2i Jν−i(x)

xν−i

]jn
1

where i ≥ 1, plus the following integral

with some multiplicative constant:∫ jn

1

xk−ν−�k�−3Jν−�k�−2(x)dx

=

∫ ∞

1

xk−ν−�k�−3Jν−�k�−2(x)dx−
∫ ∞

jn

xk−ν−�k�−3Jν−�k�−2(x)dx

=

∫ ∞

1

xk−ν−�k�−3Jν−�k�−2(x)dx+O
(
nk−ν−�k�−2

)
because k− ν−�k�− 3 < −1 and Jν−�k�−2 is bounded on (1,∞). Moreover, for
i ≥ 1, we know

jk−i−ν
n Jν−i(jn) = O(nk−(ν+1+1/2)) and

gn
jkn

= O(nν+1+1/2−k).
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So, (∫ jn

0

kxk−1 Jν(x)

xν
dx

)
gn
jkn

= constant× gn
jkn

+O(1).

Observe that φk(t) is the sum of two terms. The first one is

φ̃k(t) =
∑
n≥1

(−1)n−1 gn
jkn

e−
j2n
2 t

up to a multiplicative constant and the second one is dominated by φδ(t). Be-

cause ∀N ∈ N
∗,

(πn)k

jkn
= 1 +

N−1∑
i=1

constant(i)× n−i +O(n−N ), the proof of the

Section 4.3 directly shows that φ̃k verifies the lemma 1. We let the reader check
that we can reuse the proof of Section 4.2 for φ̃k because δ − k > 0. Thus,
to deduce the desired convergences, we only have to control the integrals of

1

z3+(δ−k)
f
( u

z2

)
φδ

(
1− u

z2

)
near the boundaries. Let ε > 0.

Note that if q > 0,

||φδ||L2(R+,tqdt) ≤ δ
√

2q+1Γ(q + 1)
∑
n≥1

1

j1+q
n

< ∞.

Let 0 < r < R. For any small η > 0, z ∈ [r,R], and 0 < α1, α2 ≤ 1, we have

∣∣∣∣
∫ η

0

fα1

( u

z2

)
φα2

δ

(
1− u

z2

)
du

∣∣∣∣ ≤
√∫ η

0

fα1

( u

z2

)2

du

√∫ η

0

φα2

δ

(
1− u

z2

)2

du

≤ z||fα1 ||L2(R+) × ||φδ||∞,[1/2R2,∞)
√
η

≤ RC||φδ||∞,[1/2R2,∞)
√
η

≤ ε for small η.,

and∣∣∣∣
∫ η

0

fα1

(
1− u

z2

)
φα2

δ

( u

z2

)
du

∣∣∣
≤

√∫ η

0

φα2

δ

( u

z2

)2 √
udu

√∫ η

0

fα1

(
1− u

z2

)2
1√
u
du

≤ z3/2||φδ||L2(R+,
√
tdt) × ||fα1 ||∞,[1/2R2,∞)

8
√
η

√∫ 1

0

du

u3/4

≤ 2R3/2||φδ||L2(R+,
√
tdt) sup

0<α≤1
||fα||∞,[1/2R2,∞) × 8

√
η

≤ ε for small η.
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Let 0 < U < 1/2. For any small r > 0 and big R > 0, u ∈ [U, 1 − U ], and
0 < α1, α2,≤ 1, we have∣∣∣∣

∫ ∞

R

fα1(xu)φα2

δ (x(1− u))x
δ
2 dx

∣∣∣∣ ≤
∫ ∞

R

|fα1(xu)||φδ(x(1− u))|x δ
2 dx

≤
∫ ∞

R

x
δ
2 e−

j20
4 xdx

≤ ε for big R, by dominated convergence,

and∣∣∣∣
∫ r

0

fα1(xu) φα2

δ (x(1− u))x
δ−k
2 dx

∣∣∣
≤ r

1+δ−k
8

∫ r

0

|fα1(xu)|x δ−k−1
4 × |φα2

δ (x(1− u))|x 1+δ−k
8 dx

≤ r
1+δ−k

8

√∫ r

0

fα1(xu)2x
δ−k−1

2 dx

√∫ r

0

φδ(x(1− u))2x
1+δ−k

4 dx

≤ r
1+δ−k

8

u
1+δ−k

4 (1− u)1+
1+δ−k

8

C

(
1 + δ − k

2

)√∫ ∞

0

φδ(x)2x
1+δ−k

4 dx

≤
C((1 + δ − k)/2)× ||φδ||

L2(R+,t
1+δ−k

4 dt)

[U(1− U)]1+
1+δ−k

4

× r
1+δ−k

8

≤ ε for small r because 1 + δ − k > 0.

Eventually, we simplify the expressions (34) and (35) for some particular
cases.

Theorem 10. If 1 < δ, then for the classical Bessel meander, i.e. k = 2, we
have

P(M ∈ dz)

dz
=

2

zδ+1

∑
n≥1

(
jν+1
ν,n

Jν+1(jν,n)

)(
1 +

1

Cν−1

jν−1
ν,n

Jν+1(jν,n)

)
e−

j2ν,n

2z2

+
4

zδ−1

∑
m,n≥1
m �=n

jν+1
ν,m

Jν+1(jν,m)

(
1 +

1

Cν−1

jν−1
ν,n

Jν+1(jν,n)

)
e−

j2ν,n

2z2 − e−
j2ν,m

2z2

j2ν,m − j2ν,n
(A), (36)

and

P(ρ ∈ du)

du
= 2Cν

∑
m,n≥1

jν+1
ν,m

Jν+1(jν,m)

(
1 +

1

Cν−1

jν−1
ν,n

Jν+1(jν,n)

)

× 1

[j2ν,nu+ j2ν,m(1− u)]ν+1
(A). (37)
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Theorem 11. If 0 < k < 4, then for the k-generalized Brownian meander, i.e.
δ = 3, we have

P(M ∈ dz)

dz
=

π3
√
2π

Cμz6−k

∑
n≥1

n3

(∫ 1

0

xk−2 sin(xπn)dx

)
e−

n2π2

2z2

+
2π

√
2π

Cμz4−k

∑
m,n≥1
m �=n

(−1)m+nm2n

(∫ 1

0

xk−2 sin(xπn)dx

)
e−

n2π2

2z2 − e−
m2π2

2z2

m2 − n2
(A),

(38)

and

P(ρ ∈ du)

du
=

πk−2
√
2πC1/2−μ

Cμ

∑
m,n≥1

(−1)m+nm2n

(∫ 1

0

xk−2 sin(xπn)dx

)

× 1

[n2u+m2(1− u)]3/2−μ
(A). (39)

Theorem 12. For the classical Brownian meander, i.e. k = 2 and δ = 3, we
have

P(M ∈ dz)

dz
=

π2
√
2π

z4

∑
n≥1

(1− (−1)n)m2e−
n2π2

2z2

+
2
√
2π

z2

∑
m,n≥1
m �=n

((−1)m+n − (−1)m)×m2 e
−n2π2

2z2 − e−
m2π2

2z2

m2 − n2
(A), (40)

and

P(ρ ∈ du)

du
= 2

∑
m,n≥1

(−1)m−1 m2

[(2n− 1)2u+m2(1− u)]3/2
(A). (41)

Theorem 13. For the Bessel process on [0, 1], i.e. 0 < k = δ, we have

P(M ∈ dz)

dz
=

2

Cνz3

∑
n≥1

(
jν+1
ν,n

Jν+1(jν,n)

)
e−

j2ν,n

2z2

+
4

Cνz

∑
m,n≥1
m �=n

jν+1
ν,m

Jν+1(jν,m)

e−
j2ν,n

2z2 − e−
j2ν,m

2z2

j2ν,m − j2ν,n
(A), (42)

and
P(ρ ∈ du)

du
=

2

Cν

∑
m,n≥1

jν+1
ν,m

Jν+1(jν,m)

1

j2ν,nu+ j2ν,m(1− u)
(A). (43)
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Remark. The formulas (40) and (41) have been found in [25] after some non-
rigorous manipulations. The formula (42) has been discussed in [33]. But for
the case of the maximum of a Bessel process, we can compute the density much
more simply. Indeed,

P(M ≤ z) = P(Tz ≥ 1) = P

(
T ≥ 1

z2

)
,

hence, P(M ∈ dz) =
2

z3
f

(
1

z2

)
dz.

7. Conclusion and perspectives

Thanks to the decomposition at the maximum, it is possible to give the densities
of M and ρ for Bessel bridges and skew Brownian bridges as double Abel sum-
mation. While the law of M has often been studied (in [33] for Bessel bridges
for example), much less is known about the law of ρ. More details such as its
moments or its Mellin transform could be examined thanks to the provided den-
sity. As discussed at the end of Section 4.2, our formulas seem promising to find
some interesting identities or to facilitate some numerical approximations of the
law of M or ρ.

For the bridges, the decomposition at the maximum is very satisfying because
it makes appear two independent parts with almost the same law of the path.
In particular, the lengths of the two parts are i.i.d and are almost explicit in the
decomposition. Their law is just a first hitting time of 1, up to a scaling of the
total length.

The case of the classical Brownian meander is quite appealing because it
shows how things are worse when the end point is not fixed. The two parts of
the decomposition are again independent but obviously not of the same law.
More disturbing, the second part can be viewed as if its starting point is chosen
before running it. So the length of this part is not explicit and its density is an
integral of densities corresponding to the possible starting points.

However, in the case of the meander, the law of S is surprisingly not too
exotic. In fact, 4S has the same law as the last zero of a Brownian motion
before hitting 1 or −1. We do not know if it is only a pretty coincidence, or
if it comes from something deeper. Reformulating the question, could we find
another decomposition for a class of processes making the end point or the time
between the end of the path and the time of the maximum explicit?

A further interest could be finding different ways to deduce the joint density
of (M,ρ) from decomposition at the maximum. For example, the articles [25]
and [36] present how the path-integral method and the real space renormaliza-
tion group lead to that density, even if they lack some technical arguments. A
stronger approach may be used to unify the methods used for Bessel bridges
and for skew Brownian bridges in our work, and even to generalize those results
to other processes.
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