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Localization of a one-dimensional polymer in a
repulsive i.1.d. environment

Nicolas Bouchot

July 10, 2023

Abstract

The purpose of this paper is to study a one-dimensional polymer penalized by its
range and placed in a random environment w. The law of the simple symmetric
random walk up to time n is modified by the exponential of the sum of fw, — h
sitting on its range, with h and 8 positive parameters. It is known that, at first order,
the polymer folds itself to a segment of optimal size cpnt/3 with ¢, = w2/3h~1/3,
Here we study how disorder influences finer quantities. If the random variables w,
are i.i.d. with a finite second moment, we prove that the left-most point of the range
is located near —u*n1/3, where u, € [0, ¢p] is a constant that only depends on the
disorder. This contrast with the homogeneous model (i.e. when 8 = 0), where the
left-most point has a random location between —c¢;n!/? and 0. With an additional
moment assumption, we are able to show that the left-most point of the range is
at distance Un?/? from —u,n'/? and the right-most point at distance Yn2/9 from
(ch, — uy)n'/3. Here again, U and V are constants that depend only on w.

KEYWORDS: random walk, polymer, random media, localization
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1 Introduction

We study a simple symmetric random walk (Sk)r>0 on Z, starting from 0, with law P. Let
w = (w,).ez be a collection of i.i.d. random variables with law P, independent from the
random walk S, which we will call environment or field. We also assume that E[wy] = 0
and E[w?] = 1. For b > 0, 8 > 0 and a given realization of the field w, we define the
following Gibbs transformation of P, called the (quenched) polymer measure:

AP (5) = Zi’ﬁ exp (Y (B — 1) )AP(S),

nvh ZGRTL

where R,, = R,(S) = {SU, e Sn} is the range of the random walk up to time n, and

Z::,’f = E[exp ( Z (Bw, — h))] = E[exp (6 Z Wy — h\Rn|)]

ZeRn

w?/B

n,h

is the partition function, such that P is a (random) probability measure on the space of

trajectories of length n. In other words, the polymer measure P‘;f penalizes trajectories
by their range and rewards visits to sites where the field w takes greater values.



In this setting, the disorder term ) _, w, is typically of order |R,|"/?: one can prove
tha B .er, W2 — MRyl ~ —h|R,| for P-almost all w, see [5]. Thus, disorder does not
sufficiently impact the behavior of the polymer on a first approximation, which is seen in
Theorem below. We introduce the following notation:

wﬂ
b —25 6 — V€>Ohme’ﬁ(\§n—£]>€):O.

n—oo
We will say that “£, converges in Pﬁ’f—probability” even if Pj;f depends on n.

Theorem 1.1 ([5, Theorem 3.7]). For all h > 0, define ¢, := (72h=1)Y/3. Then, for any
h, B > 0, P-almost surely we have the following convergence

1 3 Py
wpB _ 2 2/3 1/3
nh_)IIolo mYE log Z,3, = 2(7Th) , IR —> Ch - (1.1)
The main goal of this paper is to extract further information on the polymer, notably
on the location of the segment where the random walk is folded or on how |R,| fluctuates
at lower scales than n'/3.

1.1 About the homogeneous setting

Since we are working in dimension one, we make use of the fact that the range is en-
tirely determined by the position of its edges, meaning that R, is exactly the segment
[M, , M,[], where M, := ming<i<, Sy and M, := maxo<r<n Sk

We will also adopt the following notation:

2\ 1/3
T, =MI—M =R, -1, T = (n%) = cpnt/?, A, =T,-T; (1.2)
Hence, T, is the size of the range and T is the optimal size of the range at scale nl/3
that appears in ((1.1)).

In the homogeneous setting, that is when § = 0, it is proven in [7] that the location of
the left-most point is random (on the scale n'/3) with a density proportional to sin(7u/cy,).
As far as the size of the range T} is concerned, it is shown to have Gaussian fluctuations.
In fact, |7] treats the case of a parameter h = h,, that may depend on the length of the
polymer: in this case, fluctuations vanish when the penalty strength h, is too high. We
state the full result for the sake of completeness.

Theorem 1.2 (|7, Theorem 1.1]). Recall the notations of (1.2) and replace h by h, in
the definition of T;. Then for =0, we have the following results:

o Assume that h, > n~"?(logn)’? and lim n~Y4h, = 0. Let a, = ( 4> ,

which is such that lim,,_,. a, = +00. Then foranyr <sandany 0<a<b<1

A, M- 52 b
lim PZ?L (r_ <s;a< M| gb):ﬁ/ e2du/ sin(mov) dv .
n—00 (079 T; 2\/§ r a

2In the rest of the paper we shall use the standard Landau notation: as ¢ — a, we write g(x) ~ f(z)
if limg ., fgig =1, g(z) = o(f(x)) ifilimm_m % = 0,9(x) = O(f(z)) if limsup,_,, ;7@;“ < +oo and
f=gif glx) = O(f(z)) and f(x) = O(g()).

3|~




e Assume that lim n~'/*h, = 400 and lim n='h, = 0. Denote by t° the decimal
n—00 n—00

part of Ty and 78 := 5 — 1gT*. Define A,, as {0} if to < 72, {1} if t2 > 72 and {0, 1}
if t2 = 1°. Then we have for any Borel set B C 0,1]

M,
JEEOPL’;?‘ (T, — |T; — 2] ¢ A,) =0, nhj{.lopnh <| T | € B) g/Bsin(wv) dv.

We will see that the disordered model displays a very different behavior: the location
of the left-most and right-most points are P-deterministic, in the sense that they are
completely determined by the disorder field w (at least for the first few orders).

1.2 A rewriting of the partition function

In the disordered setting, we can write Z,° ,f as

400 Y
Zo =" exp ( —hzt+y+1)+B8 ) wz)P(Rn = [~a,9]). (1.3)
z,y=0 F=-T

Gambler’s ruin formulae derived from [15, Chap. XIV| can be used to compute sharp
asymptotics for P(R,, = [~z y]]) see |7, Theorem 1.4]. In particular, as n, z+y — oo, one

gets logP(R,, = [—z,y]) ~ Hy)Q when = + y < n, the exact asymptotics depending
on the ratio n/(z+y)3. The optlmal range size T = chn 1/3 appearing in (T.1)) is found as

the minimizer of ¢,(T) := hT + 2%;. Letting 1, := 2" [cosh h — 1], the sharp estimates
of P(R, = [~z,y]) from [7, Theorem 1.4] give as n RN

Z::,f = (14 6(1))pe 9T Z sin ( ) exp <5 Z Wy + On (1)) — du(z + y)) :

z,y=0 z=—x

where the 6(1) is deterministic. Note that Theorem [L.1] implies that there exists a van-
ishing sequence (g,)n>1 such that lim,_ . PP (|A,| > £,n'/3) = 0,P-a.s. In particular,
we can restrict the partition function to traJectorles such that |A,| < g,n'/%. Then, as in
|7, Lemma 2.1], we can use the Taylor expansion of ¢,, around T;* to obtain the following:
writing AZY := 2 +y — ¢;,n'/3, we have

_ 3 Aﬂ»‘y
Z:f 2P "y Z sin ( ) CeXp (5 Z Wz — 2 4 1/3) (1 +0(1))> )

z,y>0 Z=—x
|A7I1,y‘sgnnl/

(1.4)
where the o(1) is deterministic, uniform in x,y, and stems from the Taylor expansion.
Equation (1.4)) will be the starting point of the proofs of our results.

1.3 First convergence result

Akin to [5], we define the following quantities: for any j > 0 for which the sum is not

empty, '
j
:sz, ¥ (w) ::Zw,z.
z=0



Using Skorokhod’s embedding theorem (see |24, Chapter 7.2] and Theorem |4.1|{ below) we
can define on the same probability space a coupling @ = & of w and two independent
standard Brownian motions X and X® such that for each n, @™ has the same law as
the environment w and

1 1
_ ~ a.s. (1)~ + N a.s. (2) (~
(_nwzml/g(w))uzo s (X)) 1y (—nl/ﬁzwm)vzo s (x0@)

in the Skorokhod metric on the space of all cadlag real functions. With an abuse of
notation, we will still denote by w this coupling, while keeping in mind that the field now
depends on n.

Our first result improves estimates on the asymptotic behavior of Z:f and (M, , M;").

Theorem 1.3. For any h, 3 > 0, we have the following P-a.s. convergence

n—o0 Bnl/6 0<u<er,

1 3
Hm —— (log Zo0 + 5hchnl/3> = sup {Xff) +X§f)_u} , (1.5)

where XM and X@ are the two independent standard Brownian motions defined above.

Furthermore, u, ‘= argmax, o] {X}}’ +x% } is P-a.s. well-defined and

cp—u
1 P
—— (M, M) — (=, cp, — us) P-a.s. (1.6)

nl/3 n—00

In other words, n='/3R,, converges in PZ’f—probability to the segment [—u., cp, —uy], P-a.s.

1 N

1/3

(en — w)n

n

o

- ’lL*’VL]/3

Figure 1: A typical trajectory under the polymer measure for a given u, and large n

Comment. Theorem still holds if (w,) are i.i.d and in the domain of attraction of an
a-stable law with o € (1,2), only replacing the Brownian motions X @) by Lévy processes
as in [5] and n'/® by n'/3*: we refer to Theorem and its proof in Appendix [A] As
most of the work in this paper requires stronger assumptions on the field w we will not
dwell further on this possibility and focus on the case where E [w?] = 1.

Heuristic. Intuitively, the result of Theorem is a consequence of the following rea-
soning: if we assume that the optimal size is T)F (at a first approximation), the location
of the polymer should be around the points (z,,y,) € N? such that x, + vy, ~ T and
., + X, is maximized. Translating in terms of the processes XM, X we want to

maximize n~ /(37 + X1 ), which is “close” to Xil)n,l/:,, +X352)Tfl/3' Since x, +y, ~ T we
~1/3

and we want to pick ,n~"/3 to maximize u — X" + X

-1/3
have y,n I3~ ey —xm on
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1.4 Second order convergence result

Note that X has the distribution

of \/§W+X(gf), where W is a standard Brownian motion. Hence, the supremum on [0, ¢
of X, is almost surely positive and finite, attained at a unique u, which follows the arcsine
law on [0, cp].

In order to extract more information on the typical behavior of the polymer, we need
to go deeper into the expansion of log Z:f To do so, we factorize Z:f by B Xu. and
we study the behavior of log Z:,f + 3hepnt/3 — pnt/ X, , which is related to the behavior
of X near u,. Studying Wiener processes near their maximum leads to study both the
three-dimensional Bessel process and the Brownian meander, as outlined by the following
classical result.

To ease the notation we will denote X, := W +Xc(f)_u.

Proposition 1.4 ([17, Theorem 5|). Let W be a Brownian motion on [0,1] and let o be
the time at which W reaches its mazimum on [0,1]. On the event {o = u}, the processes
(Wass = Wi, 0 < s < 1—u) and (Wy—s — W,,0 < s < u) are Brownian meanders of
respective duration 1 — u and u.

Some other technical results about the meander are presented in Appendix [Bl We also
define the following process, which we call two-sided three-dimensional Bessel (BES3)
process.

Definition 1.1. We call two-sided three-dimensional Bessel process B the concatenate
of two three-dimensional Bessel processes B~ and BT. Namely, for all s € R, B, =
BZ k- (s) + B 1g+(s).

Additionally, we will use the following coupling between (Xftl) + X(Ei),u, XM Xc(z),u)
seen from u, and a two-sided BES3; process and a Brownian motion. This will allow us
to obtain P-almost sure results instead of convergences in distribution; in particular we
obtain trajectorial results that depend on the realization of the environment. The proof is
postponed to Appendix [C]and relies on the path decomposition of usual Brownian-related
processes.

Proposition 1.5. Let

_ vy 2 — v 2
X,=XP+Xx2,, Y, =xP-X72 .
Then, conditionally on u,, one can construct a coupling of (XM, X®) and B a two-
stded BES3, Y a two-sided standard Brownian motion such that: almost surely, there is
a g = do(w) > 0 for which on a §g-neighborhood of 0,

1 1
= Xu _Xu u = Bu s = Yu* u_Yu* = Yu U
where we have set x = x(u,w) := (\/ch — UL {y>0) + \/u_*]l{Ko})*l.

Comment. It should be noted that y actually only depends on the sign of u, which means
that the process xYB has the Brownian scaling invariance property. This will be used in
Section [I.5] to get a suitable coupling.



Theorem 1.6. Suppose E [|wo|>"] < oo for some n > 0. With the coupling of Proposi-
tion we have the P-a.s. convergence

V2 wp | 3 1/3 1/6 3 2
JLIEIO W <10g th + ihchn /3 _ ﬁn / Xu*) = S;i})) {yu’v - W(U + ’U) } N (17)

where Yy =Y, —Y_, — X[Bu + Bv] .
Moreover, (U,V) := argmax, ,{Vu, — 534#\2/5(“ + )%} is P-a.s. well-defined and we have
h

My +uen!® MF — (cp —u)n!/® P
< n2/9 ’ n2/9 R Uu,v) P-as. (1.8)
Tn _ 1/3 Pz B
In particular, we have Cht "sU+V P-a.s.
n2/9 n—r00

Comment. We should be able to obtain a statement assuming only that E [|wo|**7] < oo
for some positive 1. The statement is a bit more involved: we need to use a different
coupling between w and XM, X@ to get the following convergence:

(ch—ux)nt/3
32

\/§ w,B 2
JLHQOW loanh + hchn —p Z w, | = 85111)3 {J}u,v — W(u—i—v) } .
(1.9)
We refer to Section for further details and a partial proof of (1.9), adapting the proof

of Theorem [L.6]

z=—uxnl/3

1.5 Coupling and construction

Observe that we combine two different couplings that have different uses to prove our
results:

e A coupling for a given size n between the environment w and two Brownian motions
X® and X®. This coupling allows for the almost sure convergence in Theorem
, and the assumption E [ ‘H"] < +o0 is used to have a good enough control on
the coupling.

e A coupling between (XM X 4,) and (B,Y) to study the behavior of the Brown-
ian motions X and X® near u,. This allows us to get the almost sure convergence
of Theorem [[.6] in addition to easier proofs when excluding non typical configura-
tions for the polymer.

Here we explain how these two coupling combine to yield all the desired results. We
start by picking w, according to the arcsine law on [0, ¢;] and by considering a three-
dimensional two-sided Bessel process B as well as an independent two-sided Brownian
motion Y, both defined on R. Since the process (X, — Xy, 14)/v/2 is a two-sided Brownian
meander (with left interval [0, .| and right interval [0, ¢, — u.]), using Proposition [1.5] we
can find a dy(w) such that if |u| < &, we have X, — X, 1u = BuxVv2.

We are interested in a coupling that will be such that n'/'8(X,, — X, . B.xV?2
for all n large enough and for any un~'/? sufficiently close to 0. To do so, for each n
we construct from B a suitable X", with the same law as X, that satisfies the desired
equality.

) =




Consider only the pair (dg, B) that was previously defined, and let ng be such that
€ny < 0. Then, for any n > ng, we paste the trajectory of n=/18y/2xB,,.1/s, which is
still a two-sided three-dimensional Bessel process multiplied by v/2 (note that y is scale-
invariant), until |u| = . By construction, we have X — X" . = n~Y5/2xB, 1/
for |u| < 8. Next, we consider two independent Brownian meanders Mm% Mo of
duration u, (resp. ¢, —w,) conditioned on M;"™% = n~Y18\/2xB_g 10 (resp. M™% =
n=18/2xB;, 1), and we plug their trajectory to complete the process X™. The full
definition of X™ is thus given by

1 n n - L,n,0 R,n,5
E<X“* —Xy)=n l/lngunl/gﬂ{lu—U*K%} + Mu*’;uo]l{ue[oau*—%]} + Muiu’*oﬂ{ue[w-ﬁ-éo,w&}
We can similarly define Y, — V" := n~V/18/2Y 1,0 where no particular coupling is

needed. From X™ and Y™, we can recover our new Brownian motions X 1) X @,
After this coupling of the processes, we construct the environment w = w" from
(XMm X)) using Skorokhod’s embedding theorem (see Theorems [4.1]4.2). Thus, all
of our processes are defined to have almost sure convergences, and when n is large enough
(how large only depends on &) and |un~'/?| < e, < &, we have
(X - XP L ) =V2xB,, 2YBYr -V, . ) =V2Y,. (1.10)

—1/9 n—1/9

n

1.6 Comments on the results, outline of the paper

Expansion of the log-partition function. One may think about our results as an
expansion of log Zf,‘j up to several orders, gaining each time some information on the
location of the endpoints of the range. A way to formulate such result is, for some real
numbers a3 > --- > , > 0, to define the following sequence of free energies which we
may call k-th order free energy, at scale ay:

f (R, B) = lim n= log Z1’

w n—00
& . (1.11)
fED (R, B) = lim n~ <10g Zg;; - Znaifu(f)(haﬁ)) ’
1=1

n—oo

when these quantities exist and are in R \ {0}.

Theorems and can be summarized in the following statement: assuming
that E [wé*ﬂ < oo for some positive 7, then letting oy = i for k € {1,2,3}, we have
P-a.s.

1 3
P (h,B) = lim — (1og s §hchn1/3) =8 swp {x0+x,} = B,

0<u<cp

2
fu()?))(hvﬁ) = —= Sup {yu,v - %(U"‘U)Q} .

In particular, we prove in this paper that

(Ch—u*)”1/3 2
3 f 3
log Z:f = —§hchnl/‘3 + Z w, + % (yu,v - 504—”\/5(1/{ + V)z) n9(1 4+ 5(1))
h

z=—usnl/3



holds P-a.s. with the o(1) going to 0 in Pg:“,j—probability. Note that the first two orders

of log Z:,? , meaning ff,l) and ff), are respectively called the free energy and the surface
enerqy.

In Section |5| we study a simplified model where the random walk is constrained to be
non-negative. By restricting it so, the processes involved are less complex as they depend
on only one variable (which represents the upper edge of the polymer), which simplifies
the calculations. The idea is to give some insights on what happens when studying
log Z;’,? — Z?:1 n® f@(h, B), especially on the scale of the = 4-th order free energy. The
environment is taken to be Gaussian in order to get the coupling of n="/ GZzinl /5 with
no coupling error (otherwise the result could change). We give in Section [5| a detailed
justification for the following conjecture.

Conjecture 1.7. If wy is Gaussian, there is a positive process W = {Way, (a,b) € R?}
and a sequence (U, vy)n with values in [0,1)° such that

3
Zzlexp (= 3on O B) = 3 e
i=1

1,JEZL

lim
n—oo

=0 P-a.s. (1.12)

In particular, for any couple of integers (i,j), we have P-a.s.

e~ "Witun,jtun

0.,(n) ’
(1.13)

P::ﬁ (Mn_ — L—u*nl/3 —|—L{n2/9J =i, M} —|(cn — u*)nl/?’ + Vng/gj = j) ~
with 0,(n) =3, iy e Wituniton g normalizing constant.

The case of varying parameters (§,h. As mentioned above, the present model has
previously been studied in |5, with the difference that the parameters 3, h were allowed
to depend on n, the size of the polymer. More precisely, the polymer measure considered
was given by

. 1 , . .
AP (S) = 77 exp( z:( )(@sz - hn))dp(s), with h, = hn <, B, = fn7 .
n, 2ERR(S

The authors in |5| obtained P-almost sure convergences of n~=*log Z:,f" for some suit-
able A € R, which corresponds to a first order development of the log-partition function.
Afterwards, asymptotics for EEz,f:HRnH as well as scaling limits for (M, , M,") were
established and displayed a wide variety of phases. In addition, the authors also inves-
tigated the case where (w,) are i.i.d and in the domain of attraction of an a-stable law
with a € (0,1) U (1,2) to unveil an even richer phase diagram.

Theorems [1.3] and [1.6] confirm the conjecture of Comment 4 of [5] that for a typical
configuration w, the fluctuations of the log-partition function and n='/3(M_, M) are not
P-random for fixed h,5 > 0. With our methods, it should be possible to extend our
results to account for size-dependent h = h,,, 5 = [3,, with similar results for “reasonable”
P, Br (meaning with sufficiently slow growth/decay).

Link with the random walk among Bernoulli obstacles. Take a Bernoulli site
percolation with parameter p, meaning a collection O = {z € Zn, = 1} where 7, are
i.i.d. Bernoulli variables with parameter p, and write P = B(p)®Z its law on Z. Consider

8



the random walk starting at 0 and let 7 denote the time it first encounters O (called the
set of obstacles): one is interested in the asymptotic behavior of the survival probability
P(r > n) as n — oo and of the behavior of the random walk conditionally on having
7 > n, see for example [13] and references therein. The annealed survival probability
EPP(7 > n) is given by

E” ® E [L{r,n0=0}] = E[P[Vz € Ry, m. = 0]] = E[(1 — p)/*rl] = E [elRnllesC=p)]

and we observe that this is exactly Z;’}?p with h, = —log(l — p). Thus, for g = 0, our
model can be seen as an annealed version of the random walk among Bernoulli obstacles
with common parameter p =1 — e™".

If we push the analogy a bit further and assume fw, — h < 0 for all z € Z, we
can see Z;”f as the annealed survival probability of the random walk among obstacles
oY = {z € 74w = 1} where 7Y are i.i.d. Bernoulli variables with random parameter
p¥ = 1 — eP=~h  The averaging is done on the random walk (with law P) and the
Bernoulli variables (with law P¥ = @ __, B(p%)). while the parameters p? = 1 — efv=—"
(with law P) are quenched.

Link with the directed polymer model. Another famous model is given by consid-
ering a doubly indexed field (w;.)(i-)enxz and the polymer measure

n
aP(8) = —sexp (3 (Buns, — M) )dP(S).  A(5) = logE [¢*]
7 Znih i=0

This is known as the directed polymer model (in contrast with our non-directed model) and
has been the object of an intense activity over the past decades, see [L0] for an overview.
Let us simply mention that the partition function somehow solves a discretized version of
Stochastic Heat Equation (SHE) with multiplicative space-time noise dyu = Au + 5§ - u.
Hence, the convergence of the partition function under a proper scaling 5 = (n), dubbed
intermediate disorder scaling, has raised particular interest in recent years: see |1, 8| for
the case of dimension 1 and [9] for the case of dimension 2, where this approach enabled the
authors to give a notion of solution to the SHE; see also [4] for the case of a heavy-tailed
noise.

The main difference with our model is how the disorder w plays into the polymer
measure. Here, the polymer gets a new reward/penalty w; . at each step it takes, whereas
in our model such event only happens when reaching a new site of Z, in some sense
“consuming” w, when landing on z for the first time.

Outline of the paper. This paper can be split into three parts. The first part in
Section [2| consists in the proof of Theorem the second part and main part focuses on
the proof of Theorem [I.6] This proof is split into Section [3| where w is assumed to be
Gaussian and Section [4) where we explain how to get the general statement thanks to a
coupling. A third part, in Section [5] studies the simplified model where the random walk
is constrained to be non-negative. Precise results under some technical assumption help
us formulate the conjectures in and (1.13).

Finally, we prove in Appendix [A] the generalization of Theorem [I.3|to the case when w
does not have a finite second moment, as announced. We also state some useful properties
of the Brownian meander that we use in our proofs in Appendix [Bl In Appendix [C] we
detail a way to couple Brownian meanders with a two-sided three-dimensional Bessel
process so that they are equal near 0 (7.e. we prove Proposition |1.5]).

9



2 Second order expansion and optimal position

We extensively use the following notation: For a given event A (which may depend on w),
we write the partition function restricted to A as

228 =Blep (Y (B~ 1)1 so that PQQ(A):ﬁquf(A).

2ERR(S) n,h

This section consists in the proof of Theorem and is divided into two steps:

e We first make use of a coarse-graining approach with a size dn'/? to prove the

convergence of the rescaled log Z;‘:;f — %hT;:. At the same time, we locate the main

contribution as coming from trajectories whose left-most point is around —u,n'/3,

proving (1.5).

e We then prove that P-a.s., n='/3 M~ converges in P7 nn-probability to —u,, using the

previously step and the fact that P27 (A) = Z:f( )/Z:jf Since we also have the

result of (L.1)), we deduce (L.6) thanks to Slutsky’s lemma as M, M} and T, are
defined on the same probability space.

2.1 Convergence of the log partition function

In order to lighten notation, we always omit integer parts in the following.

Proof of Theorem[1.3-(L.5). Recall (1.4), choose some 6 > 0 and split the sum over z,y
depending on k1dn'/? < a < (k1 4+ 1)0n'/? and kedn'/? <y < (ko + 1)on'/3. By (1.4), we
can only consider the pairs (x,y) that satisfy |AZY| = |z +y — ¢un'/?| < g,n'/3 < dn!/3
for n sufficiently large; note that this implies that (k1 + k2)d € {cp — 0, ¢cr}.

We can now rewrite (1.4) as

3
log Z::f + §h0hn1/3 = 0(1) + log ¢y, + log A‘;:,f(d) , (2.1)

in which we defined
ch/d P~k

AP0 =" Y Z(ky ks, 0), (2.2)

k1=0 gy="2 —f; -1

with

Z:f(kl,kg,d) = Z sin (x n ) exp ( Z ws — = 4Aj/1;> (1+ 0(1))) -

k16n1/3§1’<(k1+1)5n1/3 z=—=x
k2dn'/3<y<(ka+1)dn'/3
(2.3)
Then let us define
WE(u,0,8) = XP + XP+ sup  [XP - X+ sup |[XP - XP (2.4)

u v i v
u<u'<u+4d v<v’'<v+4§

Theorem [L.3}(L.5) essentially derives from the following lemma.
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Lemma 2.1. For any integers ki, ks and any 6 > 0, we have P-almost surely

_ log Z2) (ky ke, 0)  —— log Z2y) (ky, ka, 6)
Wik k0.0 S I T S BT

< WH (K16, ka9, 6) .

Let us use this lemma to conclude the proof of the convergence (|1.5). Since the sum
in (2:2) has %+ terms, we easily get that

w w 2c
0 < log Anf(é) — 0<k1n}1§§%/6 log an(kl, ks, d) < log Th )
(k1+7€2)(;6{zh—(5,(}h}

Dividing by An'/® and taking the limit n — oo, Lemma [2.1] yields

— 1

i log A“2(8) < (k0. k .

o Bnl/6 og A, (0) = nglr,rllc?%{ch/d W7 k10, k29, 9)
(k1+k2)0€{ch—d,cn}

We write u = k10 and v = ko0, belonging to the finite set Us defined as

Us i= {(u,v) €(R.)?:ue {52 .., L%hjé},u—i-ve {ch,ch—5}} . (25)

—_ logA®P(5)
lim lim log A,,,(9) <lm max W' (u,v,0)= sip {XP+XP} Pas.,
§—0n—oo ﬂnl/ﬁ 0—0  0<u,v<cp 0<u,v<ey,

utve{cy,—d,cp} utv=cp,

where for the last identity, we have used the continuity of XM and X®.

The same goes for lim inf n="/6A%?(§), with the lower bound W~ (u, v, §), which con-
n—o0 ’

cludes the proof. O

Proof of Lemma[2.1. The proof is inspired by the proof of Lemma 5.1 in [5]. Recall the
definition ([2.3)) of Z:;,’f(kl, ks, 0) and write for the disorder term:

y
<E—/:25n1/3 + 2;15711/3) - Ri(k157 k25) < Z ws < (El—:zénl/i” + 21215711/3) + Rib(klé? k26)
) (2.6)
where the error term RfL is defined for u,v > 0 by
RS (u,v) = max 157 =5 ] + max =5 =% -

unl/3+1<5<(u+6)nt/3 -1 wnl/341<5<(v+8)nt/3 -1

Using the coupling @ and Lemma A.5 of [5| (for Lévy processes), P-a.s., for all ¢ > 0, for
all n large enough (how large depends on ¢, §, w),

1
I—/GR‘;(U, v) <e+  sup ’Xﬁ) — X&l)} +  sup |X£?) - X®
n u<u' <u+e+d v<v’'<v+e+d

(st - )<

| . 1
7’L1/6 onl/3 v b 1/3_X7S)

nl/6 " un

d

11



uniformly in v and v, since Uy is a finite set. Thus, letting n — co then ¢ — 0 we obtain
that P-almost surely,

lim lo Z k1, ko, o su lim w, <WH(u, v,
. 5n1/6 g 20 (i, ka, 0) < k15n1/3S$<(II:1+1)5n1/3 n=r00 nl/ﬁ ZZI ( )

kaonl/3<y<(ko+1)ont/3

in which we recall the definition (2.4) of W*(u,v, ).

On the other hand, since Z;’f(k;l, ks, ) is a sum of non-negative terms, we get a simple
lower bound by restricting to configurations with almost no fluctuation around 7;;:

log ZF (ky, ka, 6) A%y) B
nl/6 = sup nl/G Z nl/2 _0(1)

@,y
ALY <1 o1

= 1_/6 sup Z Wy — 2Ch\/— 6(1)7

[ARYI<1 ,Z

in which the supremum is taken on the (z,y) that satisfy the criteria of Z* ’B(kl, ks, 9),
see (2.3). In the above, the o(1) is deterministic and comes from the contrlbutlon of
n~1/6log sin( +7); in the case where k; = 0, we restrict the supremum to additionally
havmg z # 0, so that we always have sin( %) > 25 ~ 7.

After the exact same calculations as above, we get the lower bound

lim inf 5n1/6

loanh(k:l,k:g,é) > W (u,v,0). O

Lemma 2.2. The quantity sup, ,—., {Xél) + Xﬁg)} = SUDyc(0,c,] Xu 18 almost surely pos-
itive and finite, and attained at a unique point u, of [0, cp).

Proof. Recall that X has the same law as v/2W + Xc(,?) where W, = \%(X&l) + X&Z)) is

a standard Brownian motion independent from XC(Z). Thus it is a classical result, see for
example [20, Lemma 2.6]. O

2.2 Path properties under the polymer measure
Proof of Theorem 1) The proof essentially reduces to the following lemma.

Lemma 2.3. For any h, 8 > 0, recall u, = argmax,¢p, {Xﬁl) } Then, P-a.s.

chu

8
N

> — Uy .
n1/3 " n—00 *

By Slutsky’s Lemma (for a fixed w in the set of w’s for which both convergences are
true), Lemma combined with (T.1)) readily implies that P-a.s. n='/2M, converges to
Chp — Uy 1N P;’h probability. Note that Slutsky’s lemma can be used on M;[ M., T, since
they are all defined on the same probability space. O]

Proof of Lemma[2.3. The proof is analogous to what is done in [5|. Define the following
set

ChL—S

U = {u €[0,cy] : sup {X( )+ x?

s,|s—ul<e

P> X, —¢ >O}

12



We shall prove that for almost all w, we have P;‘Zf (n1—1/3,|Mn‘| ¢ L{e’el) — 0. For this, we
denote by A5° the event {=5IM, | & U=}, As
log P (A7) = log 27 (A5 — log 2
/ 3 3
= (log Zi’f(AfL’E )+ éhchn1/3> — (1og Z:,f + §hchn1/3> :

we only need to prove that m +/6[log Z;”,f(A“/) §hchn1/3} < X,,. Indeed, using
the convergence in Theorem we then get that hm 1/6 log Pw’ﬁ (.Aff/) <0

We apply the same decomposmon we used in the proof of Theorem - over indices k;
such that —[ky, k1 + 1)dn'/3 ¢ U=*'. Thus,

1
lim lim {log Z:jf(A‘g8 )+ = ;

640 ﬁ 1/6 hT*:| < sup {X(1)+X(2
n—oo DN,

Ch u} SX’U,* _6/7
u@le e’
so we indeed have P:j;,f(.Aff’) — 0. Using that ()., U*" C Ba.(u,) by unicity of the

supremum, we have thus proved that, P-a.s., n™Y/3M~ — —u, in P -probability. O

3 Proof of Theorem [1.6 for a Gaussian environment

In this section we prove Theorem under the assumption that wg has a Gaussian
distribution. We take full advantage of the fact that in this case, the coupling with the
Brownian motions XM, X is just an identity: it will thus not create any coupling error
and allows us to work directly on these processes. The proof still requires some heavy
calculations as we must first find what are the relevant trajectories in the factorized log-
partition function.

Going forward, we take the following setting: random variables w, are i.i.d. with
normal distribution A(0,1) and X, X are standard Brownian motions such that

Iy M
n1/6 Zw—z = Xxn_1/3 ) 1/6 sz i yn_1/3 . (3.1)
z=1

We will adapt the following proof to a general environment in Section [4] by controlling
the error term due to the coupling.

We define
Fw, ShTx—Bnl/6X,, Zw, . , ShT*—pBnl/6X,,
Zoy = 20 et in L ZON(A) = Z2)(A) e T :

so that (T.7) can be rewritten as a statement regarding the convergence of n=/9log Z:f
Here are the four steps of the proof:

e We first rewrite ijf to make X, 15 — X,, appear. Having this negative quantity
makes it easier to find the relevant trajectories since when |X|M;|n_1/3 — X, | is
too large for a given trajectory, the relative contribution of this trajectory to the
partition function goes exponentially to 0, meaning it has a low P:j”f—probability.

13



e We prove the P-almost sure convergence of n=/?log Z:f restricted to the event
AEL = {|A,| < Kn® |M; 4+ un'/?| < Ln*°} towards a positive value. It con-
. . .. Sw,B
sists again of a coarse-graining approach where each component Z.'(u, v) converges
t0 Vuw — cnp(u +v)2. This leads to defining (U, V) via a variational problem.

e We prove that n=/?log Z::f restricted to (AX;7)¢ is almost surely negative as n —
oo as soon as K or L is sufficiently large. Coupled with the previous convergence
towards a positive limit, we prove that all of these trajectories have a negligible
contribution.

e Afterwards, the convergences in P;”,ﬁl—probability are derived in the same way as for
Theorem

Corollary 3.1 (of Lemma [2.3). There exists a vanishing sequence (€,),>1 such that
Znh =(1+ o(l))Z;”5(|Mgn_l/3 + u.] < &) P-a.s. as n — 00.

Going forward, we will work conditionally on wu,. Recall that f(X X8 )) has the
law of a standard Brownian motion, thus according to Proposition [I.4] the processes
(Xu, — Xy, —t,t > 0) and (X,, — Xy, 44, t > 0) are two Brownian meanders, respectively
on [0,u,] and [0, cp, — us]. Recall that since u, follows the arcsine law on [0, ¢p], these
intervals are P-almost surely nonempty.

3.1 Rewriting the partition function
Thanks to (1.4) and Theorem we have shown that

2 z,y\2
Fw,B - . UsT 1/6(yz, 3 (ALY) _
Z20 = (1+0(1))¢y sin ( - ) Z exp (gn /60y “gipis (1 o(1) ).
‘xfu*n1/3|§€nn1/3
|y7(ch7u*)n1/3‘§5nnl/3
(3.2)
with

. 1 T 1 Y (U
QY= d wo.+ 7 dow— X =X+ Xyn_w — X, (3.3)
z=1 z=0

where for the last identity we have used the relation (3.1)) between X and w. Both o(1)
are deterministic and the first one includes a term in ¢,,.

Note that X, — (X(l) st X(Q)_m,) is not necessarily positive since the supremum in
(1.5)) is taken over non negative u and v such that u + v = ¢, whereas x + y # ¢;n'/® in
the general case. However we can write

1) 2 2
(Xg(m—l/3 + XZSTL)—I/3) (X( “1ys Tt Xc(h gm—l/?)) + (X:,n)—l/s Xc(h)—zn—1/3) )
so that Q7Y can be rewritten as
QY= — (X, — X,-18) + Xg,(/i)*l/i” — Xc(:)f:cnfl/i” . (3.4)

Note that it is not problematic that ¢, — 2n~'/3 can be negative if y is small enough,

since X can be defined on the real line. Although (3.4) may seem more complex to
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study than , having a term that is always non-positive is useful to isolate the main
contributions to the partition function.

Recall that X, — X,,-1/s can be expressed in terms of Brownian meanders depending
on the sign of u, —xn~/3, see Proposition . More precisely, there exist M™*, M~ two
independent Brownian meanders on [0, 1] such that

X, = Xgp-1/8 = VUM s —1/3 ﬂ{u >mn—1/d} +ven — U*M an—1/3_u, {u*<mn_1/3}' (35)
Ch Ux

Heuristic. In (3.2) and in view of (3.4), the term inside the exponential can be split

into three parts. The first part is —3n'/% (X,, — X,,,-1/3), which is negative and of order

n/%u, —xn~'/3|'/2, The second term is ﬁn1/6(X§i),l/3 - XC(}Q)_M,US), which is of order at

most (A,)2. The last term is —&,(A,)?n~"3. We thus can easily compare the second
term to the last one: dominant terms in are all negative when (A,,)%n=13 > (A,)Y/?
or in other words if A,, > n?/". Thus we will show that the corresponding trajectories
have a negligible contribution to Z.3 , and that we can restrict the partition function
to trajectories such that A, = (’)(n2/9). We can apply the same reasoning to the first
term, which must verify n1/6(X;i),1/3 — nglmn*1/3) = O(n'/?), from which we will deduce
|M—n=Y3 4 u*| = O(n~19). |

3.2 Restricting the trajectories

Our goal is now to characterize the main contribution to the partition function directly
in terms of M, and M, or equivalent quantities, and not in terms of the processes. With
this goal in mind, we define, for K, L > 0:

Z7 (K, L) o= Z27 (1A > L, Kn?® < |M,; + un'/?| < e,n'/?)

and
Zﬁw(K, L):= Z:j;f(]An] < Ln?"”, |M, + u*nl/g\ < Kn*° < gnnl/S).

In the next section, we will prove in particular that P-a.s., lim, ,  n~'?log Z5 (K,L) >
0, see Proposition [3.6) and Lemma o )

The following proposition shows that lim,, n~9log Z7 (K, L) <0 P-as. for K or
L large enough, meaning that trajectories in Z (K, L) have a negligible contribution.
we have

Proposition 3.2. Uniformly in n > 1 such that €, < %,

K—oo L—oo

lim P (n1/9 log Z,, ,(K,0) > —1) = lim P (n1/9 log Z;,(0,L) > —1) =0.

The proof boils down to upper bounds on both probabilities, uniform in n, and a
use of monotone convergence theorem. We first explain a small argument that we will
use repetitively throughout the paper when we don’t need to have exact values for the
constants. Take an interval I and real numbers o, A > 0. In the following Lemmas we
will need to compute probabilities such as

( inf {X,, — Xu,1u} < a) <2 max IP’( inf {X,, — Xu,1u} < a).

|uleAl oe{—1,+1} ueN
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Recall that for both values of o we can express X,, — Xy, 1. as a Brownian meander
M7 on [0,1] by using the scaling given in (3.5). Taking for example 0 = +1, we have

inAf Vep —uMp < a).
I

ue -

IP’( inf { Xy, — Xusu) < a) - P(
u€eA

Now, if A and « can be multiplied by some positive number (typically when we don’t
need to have exact values), we can freely replace them by A(c, — u,) and av/c, — u, in
order to ease the notation.

Lemma 3.3. There is a positive constant C = C'(h, 3), uniform in L,n > 1 such that

L—o0

1 _ _or
P (W log Z, (0, L) > —1) <e 9 ——0. (3.6)

Proof. We can write Zi (0,L)=>", l>0 (0 L)i; with
27,00, D = Z237(180] € 2'[1,2)Ln®® | || M7 ™% = | € [k b+ 1)2' Ln1?).
Using (3.2), we have

7 n 32 -
ZL@J%JSGﬁmN%em(wwwéﬁ— &»—ag@mmmw1”>,

where we have set

. 2 2
M, = inf Xu, — Xu, ng,l) = sup X — Xc(h,)_u
|u—us|E[k,k+1)2 Ln—1/9 |AZY|e2l[1,2) Ln2/9
|u—us|€[k,k+1)2  Ln—1/9

1/3

with v = 2n~1/3 and v = yn~'/3. Thus, a union bound yields

P(Z> (0.1)>e ™" PlC 1/3 5"1/6()(;521) M 20 72 (9 [)2p1/9 . o n/°
( n,w( ) ) Z € > Z h(€ n ) >
k=0

—+o00
< P (B - M) = 2 L)
k=0

where we have used that for n large enough (how large depends only on h)

32

1/9
" (2ch

212 — 1) — (14 1)log2 — 2log(g,n'/?) —log C}, > ¢,n'/*2% L2

for some constant ¢}, uniformly in L > ¢ /7 and [ > 0. We now work out an upper bound
on P (Xk(?l) - M, > c%n_1/18221L2/5>, we first observe that writing u;, = u, +2'kLn="/?,

~1/9

we have |c;, —up — v| < |ep —u —v| + |u — up| < 2 Ln on the intervals where the

supremum are taken in Xk(l Thus, we have the upper bound

< sup XP-x2 1+ sup X2, - X

Ch— Uk Chp—ul *
' 2lr oly, (3-7)

W1/9 /9

lch —up—v|<2 |lu—ug|<
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Write Xk(?l)’v and X,Ei)’" for the first and the second term of the right-hand side of (3.7)

respectively, as well as o := ¢,n~ /1822 [2 /3. We first need to control the term k = 0, in
which we know that Mg, = 0, then we are left to bound

+oo +o00
SR (') > o) < SO [B (x5 = T+ (10 = )]
=0 =0

By the reflection principle for Brownian motion, both of these variables are the modulus

. . 1 ! .
of a Gaussian of variance 2 21% and 21/L9 respectively. Thus, we have the upper bound
n n

+oo +oo

“+o0o
Z]P’ (5n1/6)((§3) > c;lnl/922lL2) < Zco [676123%3 + 676223%3] < (cst.) Ze’cwﬁ .
=0

=0 =0

for some constants cg, ¢q, co, ¢ > 0.
We now focus on k& > 1 and decompose on whether Mj; is less or greater than
KYS(2'L) 218 On { My, < KMYS(2'L)Y2n =18} we use Holder inequality for p > 1:

1/p
V2L V2LL -3
P ( Z,z <KV ch(?l) - Z,l = O‘l) <P ( Z,z < kP ) P (ch(?l) 2 Oél) '

nl/18” nl/18

Since k can we taken arbitrarily, in the definition of M} ; we can replace X,, — Xy, 14
by M, for M a Brownian meander on [0, 1]. Thus, with the help of Corollary with
A = 2 and the previous argument (L and k can be taken up to a positive multiplicative
constant), we compute

16k1/3 <2k1/8)2 e—2k1/4
]P’( o< B8O *1/18> <2 (1 TR L
kil = n = \/% 2]{7 + (CS ) 1 . 6_8k1/4
—2k5/4
S (CSt.)kig/g + (CSt.)kl/le_ew S (CSt.)kig/B .

And for the other probability, we use
P <X,€(3) > al> =P <Xé3) > al> < (cst.)e_CQ?’lL3 )
Therefore,
P (M;;l < EVAV2Ln VS x5 — My, > oq) < (cst.)k B2

which has a finite sum in £ > 1 and [ > 0 that goes to 0 when L — 400 when p is
suffienciently close to 1.
On the other hand,

P (Mg, > KVILn 8 X0 - M > o) <P (25 > 0+ KVSV2In )

and again by (3.7) and the Brownian reflection principle,

,C(aﬁkl/s A Ln—1/18)2

P (X,f} > oy + kY32 Ln~Y 18) < Ce T 17 < (est.)em 12 ekt

Y

which is again summable in k, [, with a sum that goes to 0 when L — +o0o. In conclusion,
we proved that P <Ziw(0, L) > 6%1/9) is bounded by ce~CE*, uniformly in n large enough,
thus proving the lemma. O]
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Lemma 3.4. There is a positive C' such that for any n > 1 such that €, < %, any K > 1
P ! log 2> (K ¢
m og TL,UJ( , O) —1 K1/12 m 0. (38)

Proof. We will use the same strategy as for Lemma meaning controlling both M, +
u,n'/? and A, instead of only M + u,n'/3. Thus, we consider

27K Oy = 233 (1M + wn®) € 241, 2) K, A, € [1,1+ 1n*).

and when summing on [ > 0 we get Z (K,0);, = Z:f(]Mn_ + u,n'/3| € 2k[1, 2) Kn?/?)
similar to the notation in Lemma [3.3] Let us introduce

Eky 1= — inf {Xu, — Xuu} + sup X — X(Eh u
|u|€2F[1,2) Kn=1/9 |An|€[l,14+1) Ln2/9

With the same considerations as before, we have by a union bound

_ 170 176 : 12 1/9 e—nl/g
P(Z;w(K,O) > e ) < Z P (Ch(s /32t o6 2 S|

k,l=0
Qngennl/g

(3.9)
Observe that each probability in the sum is equal to

P <6n1/6§k,z > (?2)%? 1) V9 _ (k+141)log2 — 2log(e,n?) — log Ch> :
h

Since we have the restriction 2°Kn='/% < ¢, assuming K > 1 we have klog2 <

log(g,n'/?), thus there is a constant ¢ > 0 such that for n large enough (how large
depends only on h),

3 2
<%12 — 1>n1/9 — (k+1+1)log2 — 2log(e,n'/?) > (cl® — 2)n'/?,
h

uniformly in k, K,[. Therefore, we get that

—+00

P (Zi,w(K ,0) > e‘””g) < 3 PG> d?-2) .

k,1=0
2k K<epnl/?

Let us define Cy,; := SUp|azv|cs1yn2/0 X — X(Q) Wl = BTV (cl? — 2), with again

~1/3

u=an and v = yn~'/3. Recalling the definition of &k above we have

P (Bn"/"8¢, > cl? — 2) = IP’( inf  {Xy. — Xusu) < cn7l> .

lul€2*[1,2) Kn—1/9

Let us now decompose over the values of C,,;. Since X,,, — X, > 0, when C,,; < 0 the
probability equals 0, so we can intersect with C,,; > 0. We have

P (Bn'18¢, > cl* - 2)

+oo
= P( of XW—X¢MSjn”@0meU—Lﬁnlm)
|u|e2k]

j=1 1,2)Kn—1/9

+o00 y )
< P inf Xo. — Xugu < jn*1/18) P(Cn,l elj— Lj)n*l/lB) 7

=1 lu|€2¥[1,2) Kn—1/9
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where we have used Cauchy-Schwartz inequality.
First, let us treat the last probability: using the Brownian scaling, we have

P(Cog€li—1,7)n ) =P sup |XP| - (> ~2) € [j - 1,5))
rell,l+1)

S]P’( sup [ XP|>j— 1+6*1(c12—2)>.

rell+1)

We can get a bound on this probability using usual Gaussian bounds and the reflection
principle:

042
IP( sup | XP| > a) < JP’( sup | X2 > a) < Qe 204D |
re[l,l+1) re[0,l+1)

Then, we substitute o with j — 1 + 871(cl> — 2) to get the upper bound

(i=cH? 2

4 .,
P (Cpy € [j—1,5)n V18) < 2e~CTrre™ 2050 ¢ Crer =)

for some constants ¢, ¢ (that depend only on h, 3).
For the other probability, with the argument explained previously (since K and j can
again be taken up to a positive multiplicative constant), we only need to get a bound on

]P’( inf M’ < jn—1/18> . (3.10)
u€2k[1,2)Kn=1/9
For 0 = —1 we can do the same reasoning, thus we only need to get a bound for (3.10)).

We use Corollary for any A > 0, we have

8 Aa)? { e et
IP( inf M} < )g—a 1/\(a) +(cst.)a ¢ }
u€ls,t] VTS 2s t—s 1 —e =

which translates for A = (2°K)'/3 to

]P’( inf M <jnV 18) < SIE)P  JVRRK (cst.)
ue2k| v

1,2)Kn—1/9 T VTR K AIK 1 _ _Q(QkK)Q/S%
165 k\5/6 < J
< TR R + (cst. )ZkK(Q K)?® < (cst.) —= R

where we used that m is bounded for > 1, uniformly in o > 1 (note that 7 > 1).

Together with the above, this yields the following upper bound for 28Kn=1% < ¢, < %:

t
P (0% = 0l (e~ 2)) < 0o clszje 0 (31

The sum on j > 1 is bounded from above by ¢”’(I + 1)? (where the constant ¢’ does
not depend on [ > 0), so we finally get

“+o00

- (cst.) 1 e
P (Z;w(K, 0)> e > Z P (605 > cl? —2) < L S 4 1
k,1=0 k,1=0
The lemma follows since the last sum is finite. O
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Corollary 3.5. We have the following convergence

- — 1
lim P lim —

K—o0 (n%oo nt/9 L—oc0 n—oo n1/9

_ I — 1 _
log Z,; ,(K,0) > —1) = lim P (lim —logZ; (0,L) > —1) =0.

Moreover,_ P-a.s., there exists Ko = Ko(w) and Ly = Lo(w) such that, for all K > K, and
L > Ly, Z;:f = (1 + 5(1))Z:;’5(|An| < Ln2/9; |M7: + u*nfl/?)l < Kn71/9)_

Proof. Using Proposition and Section we can redo the proof of Proposition
using the processes B and Y for n > ng(w). Indeed, take such n > ng(w) such that
en < 0(w) (recall its definition from Proposition [L.5)), then using the same notation as in
the proofs of Lemmas [3.4]3.3] we have

— inf 'YX, — X, e} =— inf B,.
|ul€2*[1,2) K lul€2*[1,2) K
On the other hand,
1
X x? 5 (Yormo = Xopmo + Y — X))

since ¢, —v = ATYn"3 4y and u = u, + s with s < g, < §y(w), this is equal to
2 (Y0 — X, + Y, —X,), which means that

2

1
n1/18 sup ‘X’L()Q) - Xc(:)—u’ = 5 sup (YT-I-S - Br+s + Ys - Bs) :
cp—u—ven—1/9 re(ll+1),s<8

Thus, we see that the random quantities & ; and Xl@) do not depend on n when n is large
enough (meaning n > ng), thus

1
n1/9

1 _
lim —-log Z, (K,0) =

n—oco /9

log Ziw(K, 0),

the same being true for Ziw(O, L), which proves the announced convergences.
~ The existence of Ky and Lo follows from Borel-Cantelli lemma and the monotony of
Ziw(K, L) in both of its arguments, coupled with the fact that we prove next section that

liminf n=%log Z5, (K, L) > 0. O

n—oo

3.3 Convergence of the log partition function

In this section we study the convergence of n=/%log Z=, (K, L) for fixed K and L (large),
in which we recall that Z5 (K, L) := Zf:,f(]An] < Ln*? M, +u.n'3| < Kn??). It is a
bit more convenient to transform the condition |A,| < L into the condition |M;" — (¢, —
u,)n'/3| < Ln?", which restricts to the same trajectories after adjusting the value of L.

Finally, since we plan to take the limit for K, L — oo it is enough to treat the case where
K = L. Thus, we define

ZEK = 290 (1M + wan'B| < K, | M — (e, — u)n| < Kn®l?)

As explained in the beginning of this section, as K — oo, Z_',%ff contains all the relevant
trajectories giving the main contribution to the partition function.
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Proposition 3.6. For any h,5 > 0 and any K > 1, P-almost surely,

V2 32 2
lim log Z=K = gu { o — ———=I(u +v },
0g Z5., p 1V Bcﬁi\/?( )

n—00 5”1/9 —K<u,w<K
with Yy =Y, —Y_, — x(B, +B,) and (B,Y) as in Proposition .
Proof of Proposition[3.6. For any 6 > 0, we define the following subsets of N

N x — unt/3 y — (cn — w3
an,a(kl) = {35 : le = kl} ; %ﬁjﬂs(kz) = {y : { ( gn2/9 ) J = k:z}

(3.12)
as well as €, 5(k1, ka) == €, 5(k1) x €, 5(k2). Recall (3.2) and the notation
Q(2,y) = ¥ = = (X, = X)) + X2 = X2
Similarly to the proof of Theorem [1.3] we define
K/6  K/S
AP 6) = > Y Z8 kK, 0)
k1 =—K/0 ky=—K/3
where
~w, 3 1/6 Oz ~ (Arxfy)2 —
Zyy (ke ks, 6) = > exp | —fn' PR — &ty (1+0(1)) ) . (3.13)

(2,y)ECn, s (k1,k2)

. ~ 2 .
with ¢, = 3% Then, we can write
h

log Z:5 =log (14 o6(1)) ¢y sin <%) + log ]XZ:Q(K, J).

Ch

Note that both o6(1) — 0 are the deterministic quantltles mentioned in Section[1.2] Again,
we only have to get bounds on the maximum of Z:h (k1,k2,0), as

- 4K
0 <logA?(K,6) — max log Z,"" (K, ks, 0) < 2log — (3.14)
’ K <y o< K d
and n=1/921og 2 goes to 0 as n — .
Now, if we factorlze 720 (ky, ks, 0) by the contribution of & = &y, := u,n'/3 4 kyon?/?
and y = Jg, := (¢ — us)n 1/3 + ko0n?/? respectively, we have

Zw’f(kl, kg, 5) _ ea(khkz,a) Z e_ﬁnl/Gcs,lékQ(nf/ii’n1y/3)+n61’}3 ((k1+k2)252n4/9_(A;‘,y)2)
(%,Y)ECn,5(k1,k2)
where we have defined
— PN . 2
Z(ky, ko, 0) i= B0, (Zhy s y) — 006 (k'15 + kgé) (3.15)
and
G (w,v) = QP o0 %) = Qu (@, i)
=Xy~ X, ks — XD +X?P 4+ XD x®

4 cp—u
*T 179
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Finally, define

kiko, L Y
Cn,15 2<n1/3’ n1/3)’ n1/3

Rn(kl, ko, d) == sup {Bnl/G
k1,k2)

((ky + k28200 — <Af;y>2\} |
(zvy)ec(apn,zﬁ( s

then we have

log 227 (ky, ks, 5) — E(k:l,k:Q,é)’gRn(kl,kQ,é)+log|‘€n75(k:1,k:2)\. (3.17)

Since 21_1/9 log |€,5(k1,k2)] — 0 as n — oo, in the rest of the proof we have to control
n~°R,(k1, ks, §) and then prove the convergence of n='/°Z(ky, ko, 8). Afterwards we will

plug those convergences in (3.14) and ([3.17) to prove Proposition
Control of R, (k1,k2,0). We now seek a bound on R, (ky, ko, d). First we have

(A2 JoyS + kol
nl/3 <2 nl/9

< 4)ky + ko|6*nY® < 4K 600

nl/g (k1(5 + k25)2 —

‘ +y— Chn k15n2/9 k2(5n2/9’

k1, kQ(

To control the random part () n=1/3 yn=1/3), we use the following proposition,

that we prove afterwards.

Proposition 3.7. Let 6; = 277,j € N, then, P-almost surely, there exists a positive C,
such that for any n and j large enough, any ki, ky € [—£ 505 K1, we have

nl/6 CngkQ(xn_l/?’,yn_l/?’) < Cwé;/4n1/9.

sup
(2,y)ECn, 5 (k1,k2)

We will still denote this parameter by ¢ while keeping in mind that 6 — 0 along a
specific sequence. Assembling these results, we see that

1 _
—7% | Ry (ki k2, 6)| < BCLEY* + 46, K6 =: £(w, 5). (3.18)

Thus, n='/? | Ry, (k1, k2, 6) | is bounded by a function (w, §) that goes to 0 as § | 0 uniformly
in —& < ki ky < £, for almost all w

Convergence of n~ 1/9 =(k1,ke,0).  Asin the proof of Theorem we write u = k10 and
v = k90 in (3.15)): recalling the definition (3.3]) of €, this leads to

(k1 k2, 0) 1/18 1/18 ( 1 (2) 2)
Gaio - " (X = Xusr—5) —cnp (ut0)*+n (X st s XCh—u*—nl“/g)’
(3.19)

with Chp = ﬁ_léh-
Recall Proposition [I.5] and its notation. Set

X, =XV +x2 Y, =x0 - x®

Ch— u Chp—u)’

and denote by B a two-sided three-dimensional Bessel process and by Y a standard
Brownian motion, independent from B. Then for any n > ng(w),

) = \/§XBU7

1/18
n / (XU* - U*+n1u/9
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-1

with y = x(w,u) = (\/ch — Us >0y + \/U*ﬂ{u<0}> , and
nl/18 (X(2) _x® ) - n'/t? X v —Y, - +Y, u
Ch—tst—75 ch—us——75) T 9 Ux——77g Ux— 775 Ust—r5 uxt 175

= % (X(Bu -B,)+Y, - Y_v> :

Assembling those results with (3.19)), we established the following convergence (which is
an identity for n > ng(w)):
E(kl,kQ,(s) P— as ].
ﬁnl/g n—oo \/_

(—x(Bu+By) + Y, = Y_,) —crp(u+v)’. (3.20)

Conclusion of the proof.  If we define Y, , := Y, — Y_, — x(By, + B,), combining (3.18)

and (3.20)) with (3.17) proves

1
nh_)rrolo Fnllo log Z,7" (K1, kg, 0) — Viyoikas + Chp(k16 + k20)?| < e(w, 6). (3.21)
Then, (3.14) and (3.21)) lead to
— log Z=K 1 32 2
lim ——* < su — Vo — ——(u+v) +e(d,w P-a.s.,

and, using the uniform continuity of Y, , and of (u +v)? on [—K, K]?, we have

log Z=K 1 32 2
lim —* >  su — Vo — — (u+v —5’(5,0.)} P-a.s.
n—00 ﬁnl/g - ngu,Ing { \/Ey ' Qﬁci( ) ( )

Finally, letting § go to 0 proves the convergence of n=/%log Z=K. O

Proof of Proposition[3.7. Recall the definition of €, 5(k1) and €, 5(k2) as well as
Gns(k1, k) = €, 5(k1) x € 5(ka) The proof essentlally boils down to the following lemma
and a use of Borel-Cantelli lemma.

Lemma 3.8. There exists some positive constants A, u such that for any § € (0,1) and

any C' > 1,

1/4
k16k2( 8 1/3)‘ > ¢ J ) < ﬂe—/\(ﬂ%.

sup sup P ((m ; sup 1T

n>1 *%Sh,l@ﬁ% Y)EGn,5(k1,k2)

Using Lemma and a union bound immediately yields

g1/ K\? i<
sup P sup sup CSS“(U,U)‘ > CW < (?> pe A
n>1 B <y ko <K (2,9)€Cn 5 (1 ,k2) n

Summing over ¢; = 277 gives a bound which is summable in C: this allows us to use a
Borel-Cantelli lemma. This means that with P-probability 1, there is a positive C,, such
that for all j > 0, for all —K2/ < ki, ky < K27, for all (x,y) € €,s5(k1, k), we have
Cfb}éb (s, 25) < C,0Y/*n =118, thus proving the proposition. O
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Proof of Lemma[3.8 Recall the definition (3.16])

55715"32 (u’ ’U) = Xu - X k16— X(2) + X(Q) kq6 + X1(;2) - X(Q)f k26

*+ 179 Ch—uU Chp—Usx—

and that QXS),t = X; — Y;. Then we can rewrite Ckl’kz (u,v) as

Xu_Yu Xc—v_Y::—v
Cklékz (u7v) — Xu - X + h h

n, Us+ 1/9 2 2
X ke =Y ks X ks =Y ks
H—ﬁ u*+n11/9 u*—nf/g u*—nf/g
" 2 B 2 ’

which simplifies to

ki,k
2¢ 10 =Xy +Y,— (X ks +Y ks )+ Xy =Yoo — (X ks =Y ks
C (v, v) “ w wet T7g “+ﬁ) ot en-v w17 “**nfw)
=Xy —X kw5 +Xo 0 —X ks +Y, Y ks +Y ks =Y.
u U*+n119 Ch—V u*_ﬁ u U*+n11/9 U*_n12/9 Ch—V

We split Ckl’kQ(u, v) into four parts corresponding to the terms in X and those in Y:

o X,—X, ,ms and X, — X _ s which we call “meander parts” because of (3.5)
*T /9 *T 179

M 44 : 2
o |V, =Y, . k11/§9| and Y, _ GV Y., —»| which we call “Brownian parts”.
n n

We use a union bound to separately control the probability for each increment to be

1/4
greater than = 51/18

Control of the Brownian parts.  First, recall that Y and w, are independent (since u, is
X-measurable). Thus, the Brownian reflection principle yields

(d) (d)
sup k18 | = sup Y, ks =Yy = W . |
Un1/3€‘57:6(k1) nl/9 Un1/3€%n+5(k2) nl/9 n

where W is a standard Brownian motion. This leads us to

051/4 051/4 __c%
P sup > §P<|W5 )Se S
(u,0)nt/3€%,, 5(k1,k2) i

Yy — Y — 8nl/18 — 8nl/18
and similarly for |Yu*_ koo — Yo, o

1 9

1/9
Control of the meander parts. We have to bound the following:
P X, — X e 3.22
su w — : > — .
un1/3€r€§6(k1) | “*+:11/59 |2 8nl/18 ( )

and similarly for |X,,_, — X gt |; we will focus on bounding (3.22)) since the other

Ux —

bound follows from itP] Recall ( . ) to get

sup [ Xu— X,
unl/3€€, (k1) nl/9 un1/3€%’7:5(k1)

ks | = sup X ‘Mu—;* - M, 510
. kyon—1/9

2

X

)

PObserve that if vn'/3 € €F;(ko), writing ¥ := ¢, — v and assuming v # ¢, — u, + %, we have

~ : E /3 _ (e — /
|t | = | o Ela | 1y, thus (e, — 0)n/® € G5 (—1— k).

6n2/9
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Observe that y = x(u,w) is a constant that only depends on the sign of k; and that
since K and C are arbitrary chosen, we only need to get a bound on the probability of
1/4
SUD 1 /36— (ky) [Mu—u. — M st | being greater than S5 .
Without any loss of generahty we can suppose that k; > 0: to get the case where
ki < 0 we only need to do the same proof with |k; + 1| instead. Use Lemma and

Markov’s inequality to get
P C & 4P | M j\/l ot
>(C—— | < — >
and 5y = s | = ( ral 8n1/18)

n1/18

5 Mk 418 =M ks )]

U—Us M k16
nl/9

n1/9 179

<4E |e

We show below that there is a constant ¢ = ¢(K) > 0 such that, for n large enough

n1/18 M M )
(k1 41)8 k16
Ele”  am  ain ] <c (3.23)
uniformly in k; € {0,1,..., K/§} and 0 < § < 1, thus proving Lemma [3.8| O

Proof of (3.23). We want to get an upper bound on quantities E [e*»=Mw)] for specific
u < v, > 0. In order to do so, we first condition on the value of M, and use the
transition probabilities of the Brownian meander to get an upper bound, which we then
integrate with respect to the law of M,,. Let us set K} := kion=9 with k; # 0 (we treat
the case k; = 0 at the end) and a := n'/18/1/5.

22
Step 1: Meander increment conditioned on M» =:x.  We write p4(r) := \/21—6_5

and ®,(y) := [} ¢i(x)dz. Using (B.1)), the density of an increment between time £} # 0
and a tlme u = (ky +1)dn~Y? = k7 + a2, when starting at M, wn = T, is given by

[Punp (M) = Pupn (m + 2z)] %ﬂ{mZ—m} :
Then we use that (recall that u — k? = a™?)
1 __m? _ (mt20)2 QO o?m?
g0%%( m) — Py o n(m+2x) = m (e 2u—rY) _ o 2(u—»€5>) < \/ﬁe 2,

and since u is taken close to u, (recall |u — u.| < &,),

2 22
(I)lfu(m + l’) < T+ m62(1 <) 1—- 5 (CSt.) <1 + T>62(1—ng) _
Dy pn () x 1—u x

Thus we have to bound

z2 o0 2,,2
E [exp (a(M (k14105 — M@;)) ‘Mn:; = 93] < (cst-)\/i—e’?“”?) / (H%)eme_a > dm.

n1/9 2w T

_ ((,wn)2 _ (a'm)2

Now, setting U(m) := e~ 2 T*" after integrating by parts (writing m¥(m) = (me~ 2 )X
e*™) we can rewrite the above as

22

(cst.)&\/;_:n) U_jxp(m) dm+% (\IJ(—a:)+a/_j ¥ (m) dm)] |
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Usual bounds for Gaussian integrals (notice that U(m) = e!/2e¢~2(@m=D?) then yield the
upper bound conditioned to x = /\/l,{g

22

et =rs) 2 1 4 2¥(—2)
E [exp (Oz(./\/l (k1+1)§ — l’)) ‘./\/l,{g = :L‘} S W {(1 + £> ‘/271'&6 / + W ,

which we simplify (using that ¥(m) < e'/? for all m) as

n

2 1
E {exp (a(/\/l (k1415 — x)) ‘/\/l,fgz = x} < (est.)e?0=r5) [1 + —} : (3.24)
179

ey

Step 2: Averaging on x = M, 5,-19. In order to take the expectation in (3.24)), we
use the following bounds, given in (B.3)) (using that /27 > 2): for 0 < a < r/2,

V2m
Vvr(l—r)

Recalling that xj = kion~Y9 < e, — 0, we can use the above to get that for n
sufficiently large, there is a C' > 0 such that

1 n -3/2 n -1
]E e2(1—ﬁ;’;)Mig’ (1 + 1 > < 1— /ﬂ:é + 2ﬁ 1— K;é < 07
aMn/ |~ 1 — kY /Ky 1 —rK§ -

recalling that a/k¥ = v/k; > 1. This proves the bound (3.23) in the case k; > 0.
Case k; = 0. When k; = 0 we have

s =

where we used the previous bound and the fact that én~"? = 1/a? Since Von /18 =
o(1), this gives the bound (3.23)) when k; = 0. O

Combining Proposition with the fact that the right-hand side quantity in Proposi-
tion increases with K and thus converges almost surely as K — oo yields Theorem
in the case of a Gaussian environment. We only need to see that the convergence is towards
a non trivial quantity, which is the object of the following lemma.

E [eaM%] <(1-2ar)?*, E [(MT)—leaMﬂ < (1-2ra)"".  (3.25)

E [exp (a (./\/l (k171)5 - M
2179

Lemma 3.9. P-almost surely, there exists a unique (U,V) such that

R 2 32

W {y vz } Yr = 5o
Proof. Choose v = 0 to get W, > sup,, {Yu -B, — chﬁ\/Quz}. We get a positive lower
bound since almost surely, there are real numbers (uz) | 0 such that Y,, > 2,/u; and
B,, < \/ux. This leads to W, > sup, {\/u_k — chﬁ\/ﬁui} > (0 almost surely.

In order to show that W, is almost surely finite, see B, as the modulus of a 3-
dimensional standard Brownian motion qug) and consider a one dimensional Wiener
process W. We use the fact that ¢~ (|W,¥)|+W,) — 0 almost surely to get Vuw/|lut+v] =0
as |u+v| — oo. Thus, Vyo — crsV2(u+v)? < 0 P-a.s. when |u + v| is large enough,
meaning that the supremum of this continuous process is almost surely taken on a compact
set, thus it is finite. The existence of (U,)) is also a consequence of the continuity of
Vuw — chpV2(u + v)? and of the fact that the supremum is P-a.s. taken on a compact
set. The uniqueness of the maximum follows from standard methods for Brownian motion
with parabolic drift (see [5, Appendix A.3|). O

(U+V)* € (0,400).  (3.26)

26



Comment. We could have taken another form of Z;ff(krl, ks, d) given by 1) without
using the process X that was only useful to reject trajectories whose minimum is too far
from —u,n'/3. This would have led us to the alternative form

W = sup {X}Ll) + X —eppu+ 0)2} =W,

u,v

where )_(q(f) are Brownian-related processes provided by a suitable coupling. However, these
limit processes are not independent and their distribution may not be known processes,
making W less exploitable.

3.4 Path properties at second order
Proof of Theorem[1.6}(L.8). The proof of (1.8) is a repeat of the proof of Lemma [2.3] this

time writing
(s,t)EBs(um)

UE = {(u,v) eR?:  sup {ys,t —can(s+ t)z} > Wy —¢' > 0} ;

with B.(u,v) the Euclidean ball of radius € centered at (u,v). Define the event

5 = {(Mn‘ +un'? My = (e~ u*>n”3) 7 ug} ,

n2/9 n2/9

then / /
log P/ (A35,) = log 277/ (A37,) —log 2771

Afterwards, using the definition of U5 we prove as above that

\/§ ’ 37T2
lim sup —— log 27 (A55) = sup {ys,t - (s + t)2} <W,—¢,
nsoo (3N1/0 g ( ) ) (uw) s /BC;LL\/E

and thus lim supn~='?log P:,f( ‘;f:) < 0, proving (L.8) since () U C Boo((U,V)). O

n—00 e'>0

4 Generalizing with the Skorokhod embedding

4.1 Proof of Theorem [1.6] case of a finite (3 + 7)th moment

For now, Theorem has only been established for a Gaussian environment w, meaning
that the variables (w,) are i.i.d with a normal distribution. In the following, we will
explain how we can generalize those results to any random ¢.i.d. field with sufficient
moment conditions after doing the work in Section [3

We first expand on the coupling between the random field w and the Brownian motions
X® j =1,2. Our starting point is the following statement from [24, Chapter 7.2].

Theorem 4.1 (Skorokhod). Let &,...,&, be i.i.d. centered variables with finite second
moment. For a Brownian motion W, there exists independent positive variables T, ..., T
such that

(51’ o ’gm) 4 (W(Tl),W(Tl + 1) — W(m),.. ,W(Z ;) — W( ,_ )) )

=1 i=1

A
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Moreover, for all k < m, we have
E[m] =E [5,3] and Vp>1,3C, > 0,E[(7)?] < C,E [(gk)Qp} .
The following theorem gives us asymptotic estimates for the error of this coupling.

Theorem 4.2 (|11, Theorem 2.2.4]). Let (0;) be i.i.d. centered variables, and assume
that E[|01]P] < oo for a real number p € (2,4). Then, if the underlying probability space
1s rich enough, there is a Brownian motion W such that

‘ ZGi - Wm‘ = 6(m1/p(logm)1/2) a.s. as m — o0.

We can easily adapt this statement and choose the Wiener processes X and X
be independent Brownian motions such that, as n — oo,

unl/3 nl/3
‘ 2: w_ 1/6X(1
z=1

as long as E[|lw.|’] < +o0 for some p € (2,4). Since in the partition function we can
restrict to trajectories with = and y are taken between 0 and (¢ + £,)n'/3 (recall (T.4)),
we can obtain a uniform bound over every u,v we consider, meaning that P-a.s. there is
some constant C'(w) such that for all n > 1,

1/GX )‘ ((u\/v)l/p(nl/3)l/p(logn)1/2)

T Y
‘ Zw_z - nl/GXq(Ll)‘ Y ‘ sz - n1/6X52)‘ < C(w) n**P(logn)'/?, (4.1)
z=1 z=0

uniformly for |z|, |y| < 2c,n'/3. Let us also recall the notation Zf;: wa eshTy—Bn'/0Xu,

Proof of Theorem with E[Jwe|>T"] < co. We now repeat the proof for a Gaussian field,
but with the introduction of an error term given by Theorem Recall (3.3): with a

. . _ 1 2 .
Gaussian environment, we had X = Xin)_1/3 and Z; =X Now, we must introduce

yn—1/3"
an error term E,(z,y) := X, — Xi;),l/g +3f - X;i)fl/gz the equation (3.2) becomes

2( AT,Y)2
_w7ﬁ . u*ﬂ- _x7 37]_ (An ) )
Znjy ™ PhEID (c_h) Z exXp (5Qny + En(2,y) — W(l +0(1)) |,
\x—u*n1/3|§5nn1/3
ly—(cn—u*|n?/3|<enn/3

(4.2)
with 6(1) deterministic and uniform in x,y, and
y
QY = pl/o <X(1) » JFX;H)_I/3 _ Xu*> L Bz =Y w0

Take p = 3 +n with n € (0,1), and assume that E [|wo[’] < +00. Then, using (4.1,
we have |E,(z,y)| < C(w)n/O*+3 (logn)/? for all summed (z,y). Therefore, combining
with (4.2), we get that P-a.s.

2 x,y\2
S, Ay ST (ARY)
log Z,, — log E exp <BQfLy - 204—7;/3
le—u*nl/3|<e,nl/3 h
|y7(ch7u*)n1/3|§€nn1/3

< C(w)nﬁ (logn)¥/2.

Since 5 (logn)'/2 = 6(n'/?), we can restrict our study to (exactly) the same sum that

appeared in the Gaussian case, see (3.2)). Then, (1.8) follows identically from the same
proof as in Section O
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4.2 Adaptation to the case of a finite (2 + n)th moment

We now explain how we can infer (1.9), i.e. a version of Theorem where we only
assume that E [|wo|*™] < oo for some positive 7, from adapting the proofs of Section [3}
We are able to prove that the relevant trajectories converge to the suspected limit for
Z;" 5 , however some technicalities prevent us from getting the full theorem.

Ch—Ux )N
uxnl/3

Bn'/6X, from log Z“F + 3hepn'/3, we precisely cancel out the (w.) present in both
€ L h y
2\3\4 ‘ + 2++ and X, st E(C /s This leaves us with a smaller sample of the
variables (wz), with size |M + u.n'/3| + | M} — (¢ — u.)n'/3| which is at most 2¢,n'/3
(see (3.2)), and of order n?/® when restricting to trajectories giving the main contribution
.. w UJ C, Ux )T /
(see Proposition } We thus write Z* ’ﬁ = 7 exp(3heyn'’® — ﬁzz_’lu nms w,), and

for 0_ (z) := sgn(z — a), we define

The key observation is the following: when subtracting S Z g w, instead of

(ch—us)nt/3
U
Oz, y) E Wy — E W,
z=—x —uxnl/3
" zVu.nt/ y yV(cn—us)nt/?
_ s> § > §
_6u*(n1/3> W—Z+6Ch u*( 1/3) Wz,
z=xAusnl/3 2=yA(cp—us)nt/3

to have

2 z,y)\2
Zw,B : U T Us 37 (An ) —~
Ziesin (BT) S e () - TR o)) (09
|z—u*nl/3|<ennl/?
|y—(ch—u*)n1/3\§8nn1/3

The goal is now to rewrite (2, (x,y) as Q¥ in (3.4 with an additional error term that
is a 0(n'/?). Since we are interested in the case where (|M |, M) is close to (u.,cy, — us),
we see that we only need to have a good coupling between the environment and (X1, X(2))
near (u.,c, — u,) instead of a global coupling like the one we used in Section [4.1]

An application of Theorem yields the following coupling:

Proposition 4.3. Assume E[Wh] < +oo for some p € (2,4). Then, conditionally on
uy, there is a coupling of (XM, X@)) and the environment w such that P-a.s. there is a
constant C(w) such that

Qay) =0t (X0 + XE ), = X )| < C@) (gn(a.y) 7 (logn) /2

where gn(x,y) = [un'® — x|V (|(ch — u)n'? —y| A lean'® — (z +y)]).

In order to prove , we would need to adapt the proof of Proposition (the
convergence of the partition function restricted to the good set of trajectories) and of
Proposition (the control of other trajectories). While the former can be done without
any difficulties, the latter poses problems as it consists of proving a control of trajectories
with larger coupling errors.

Proof of Proposition with E [|Jwe|**] < +o00. Introduce the notation (analogous to that
of Proposition [3.6):
<K . wp - 1/3 ¥ 1/3 2/9Y  Shenn/3—g 30" u*)?/lgs ws
Zes =20 (|M;, + wn' PV M — (¢ — w)n'?| < Kn??)e? a=—un :
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which we formulate as
Sy - - (ulm e (Apv)? _
Zo, = (140(1)) Z 1y, sin (c_) exp <Qn’h(x, y) — Beng Ve (1+0(1))

h
|z—uxnl/3|<Kn2/9
ly—(cn—ux)nt/3|<Kn2/9

where o(1) is deterministic, uniform in (x,y). Afterwards, using Proposition with
p =2+ n leads to

log Z:5 —log Z exp (Bﬁijy — < C(w)(Kn?°)Y?(logn)/?.

|e—uxnl/3|<Kn2/9
ly—(ch—us)nt/3|<Kn?/°

32 (ARY)?
2cin1/3

Since we have (Kn%?)Y/?P(logn)Y/? = 6(n'/?), this shows that Proposition [3.6| still holds
(the sum that remains to control is exactly the one treated in Proposition [3.6). O

Thus, we proved that

V2 - { RV 2
lim lim log Z=K = gu Vi — ———=(u+v },
n—-+00 N—00 ﬁn1/9 & W —KSUESK ’ ﬁciﬁ( )

what remains is to show that n=/%log Z>5 has a non-positive limsup as K,n — +oo in
the same spirit as Proposition [3.2]

In Lemma ,M, we used union bounds to prove that P (n™/?log ZX > —1) — 0
as K — oo. If we repeat the same steps, for Lemma [3.3] we would need to compute
probabilities such as (recall the notations in the proof)

P (3K M)+ B > )
with

n o .__ . U 1/6 (1)
Ek,l T sup Qn,h(xa y) -n / (Xgm—l/:s
cp—u—v€21,2)Ln=1/9

|u—u| €[k, k+1)2! Ln—1/9]

yn—1/3

+ X —Xu*)‘.

Note that assuming a moment 2 + 7, we have E; < C(w)(k2'Ln*?)"/2*" for some

0 < n' < n. However, Xk(?l) and My, are of order (k2'Ln?*)'? which means that E}!,
should somewhat be negligible. In fact, we can prove with the exact same calculations as
in Lemma [3.3] that there is a N € N such that

T sup P (00O — M) + B > P2 1) < 0.

However, with this method, the convergence rate is not fast enough, thus the union bound
fails to conclude the proof. To do so, we would need another way of proving the result
which is beyond the scope of this paper.
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5 Simplified model : range with a fixed bottom

In this section we shall focus on a somewhat simpler model in which one of the range’s
edges is fixed at 0. The polymer is modeled by a non-negative random walk and the
polymer measure is given by

M+
~ 1 n
PUE(S) = 5o ( —hMF 4B wi> Lpvkenses0rP(S).

n,h i=0

For now, we will keep studying the case where the field w is composed of i.i.d. Gaussian
variables. We once again take a Brownian motion X such that # ZzT:o w, = Xp,-1/3.
The partition function is given by

+00
Z;"f Z e T+ icr “P(R,=[0,T]) = Z gbn(T)e—thingT wi—g(T)n
Tf

T=1

with g(T') = n2/2T? (see [7], this is analogous to what is done in Section [1.2)).
It is not difficult to see that our results up to Section 3 still hold, meaning

Sw,3 P—a.s. 3 1 Sw,B 3 1/3 P—a.s.
n1/3 log th n—>—oo> —§hCh R W <log Zn,h + §hchn m} Xch .

Factorizing by eBn'/*Xe, yields the following exponential term

3n2(T — T)?

T
- 3m2(T — T;)2
52002 — Bn'%X,, — W = —ﬁnl/G(Xch — XTn—l/S) -
z=0

2cint/3

Proposition 5.1. For any h, 5 > 0 there is a standard Brownian motion W such that
P-a.s.,

1 3 3
Sw,B 1/6 _ 2
nlggo Gnils (log Zyn + 5 hchn — Bn/SX, ) = Sslelﬂlg {Ws - 250%8 } (5.1)

Proof scheme.  Since |X,, — Xp,-1s] < Cn~Y6\/|T* — T| with probability at least
1— 6*02, we can repeat the proof of Proposition and restrict the trajectories. This
leads to studying Z::,f(|T;{ — T| € Kn?") which contains all the main contributions for

K large. Split over kdn?? < T* — T < (k + 1)6n*? and the main contribution will be
given by the supremum over k of

2 2/912
Sy _ 3 (kon”7)”
Bn (Xch X +k57f§é9) 20;11711/3 —

) - 3m2s? /9

1/6
—ﬁn / (Xch - Xch-i- QC%L

= )
1/9

where we wrote s = kd. We can conclude similarly to the proof of Theorem|[L.6]by changing
the limit process Y, ,, to B which is the limit of the processes BM™ = n!/18(X,, — X, | 1/9)

and is a standard Brownian motion. Once again, we can couple the Brownian motion
X = X 50 that the processes B™ are equal to B when n is large, in the same fashion
as Proposition We can prove that the right-hand side of is P-a.s. positive and
finite, attained at a unique point s,. L]

To sum up the results of this simplified model, we write the following statement
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Theorem 5.2. Recall the notation of (1.11)), this time with Z::f Then P-almost surely,

00 B) = =5, FEV 0 B) = X, F ) = sup {B. - el

S
seR 260%

Recall the following notation of (|1.2)):

TL7T2 1/3

Corollary 5.3. There is a vanishing sequence (g,,) such that

lim sup f’:f (JA, = s.0*?| > e,m*?) = 0.
n—oo
Our goal is now to find out whether factorizing the partition function by this quantity
leads to a bounded logarithm or not; in other words, we are looking for the 4th order free
energy, in the spirit of Section [I.11} We develop here some heuristic to justify that the
4th order free energy is at scale ay = 0.
Going forward we work conditionally to s,.. We define

37T24 u2}> S(T) L. (5.2)

cof 5 3
2= 27 exp (éhchnl/g’ — An'°X,, — pn'/? sup {Wu ~ 35
u h

We first rewrite the factorized partition function 2:5 . If we write T, = cpn'/® + A,
and we recall that thanks to the coupling, for u in a neighborhood of 0, we have W, =

1/18 - -
nt/ (Xcthﬁ — Xch) for sufficiently large n, we can rewrite

ﬂnl/() (XTnn*1/3 - XC}L) = 6”1/6 (XCh+Ann71/3 - Xch) = 5nl/gBAnn72/9 :

Then, we have

2

é:}’f ~ Z exp (5”1/9 |:(Wkn2/9 — Ch»ﬁlz_/g) — sup {Ws — Ch7582}:|) .
k—s2n2/9|<enn2/9 n s€R
(5.3)
We define the process Y := B, — ch,gs2 which is a Brownian motion with quadratic drift,
and s, the point at which it attains its maximum on R. can thus be rewritten as

20 N exp (B (Ve — Ya)) (5.4)

|[k—s5.n2/9|<e,n2/9

The exponential term is non-positive, which means that the typical trajectories for the
polymer are those that minimize the difference in (5.3)).

Comment. Previous works studied with some extent the laws of s, and Y5, (see [19]). In
particular s, follows the so-called Chernov distribution, which is symmetric. Writing Ai
for the Airy function, [19, Theorem 1.1] states that

E = ’ d VpeN, E|s¥ .
[s2] G /RAi(iy) <00 an peN, E[s] < +o0
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In all the following, we use the fact that the distribution of s, is symmetric to reduce
to the case s, > 0. We will also work conditionally on the value of s,, meaning on the
location of the maximum of Y. We write o = 2¢;, gs., then observe that for any s > 0,

Y,, = Y 4s=DBs, — B, +s T as — chﬂsQ < B, + as =: Rf )

Thus we have eﬁnl/g(ykn*Q/WYS*) < eﬁnl/g(Rkn*Q/*”Rs*) which means that we can get an
upper bound on the contribution of a given trajectory just by studying the processes R*
conditioned to be positive, provided the existence of a coupling between these processes
and Y. Moreover, since we are interested in the setting s — 0, we should have a lower
bound that reads Y;, —Y,,+, > (1+0(1))RE as s — 0. This motivates our first conjecture,

which is an analog of Proposition We will write R = R 1p- + RT1p+.

Conjecture 5.4. One can do a coupling of (R,Y) and a two-sided BES; B such that
almost surely, there exists 61 > 0 and ny € N for which ¥Yn > ny, for all |u| <

07 Ryao = 0 (Ys, = Y4 p) = Bu (5.5)

The fact that the three-dimensional Bessel process appears is mainly due to the fol-
lowing result from San Martin and Ramirez [21].

Theorem 5.5. Define X;* := v+ W,—at, with a,x > 0. Then the process X conditioned
to stay positive on [0,T] converges in distribution to the Bessel process as T — oc.

Our second conjecture is a description of the simplified model and the idea should
follow along the steps of Section [3] excluding trajectories and using Conjecture to get
an almost-sure convergence of Zﬁf .

Conjecture 5.6. There exist B (given by (5.5)) a two-sided three-dimensional Bessel
process such that for n large enough, writing s = s,n*° — | s,n*°] we have

P;’f (M: = ' + 5.0 + k) ~ etk with  0,(n) = Ze*’gws?“(“) .

kEZ

0.(n)

Heuristic. To minimize n'/(Y,, — Y., ) = n'/°R,, since R, < /s — as < v/s with high
probability when s — 0 (we are close to s,) we roughly need to have s = O(n~%?). In
the definition of Z:ﬁ we take s + s, = An~?/?, thus we should be able to prove that

2;’5(|An — 5,n?*°| > K)/é:f — 0 when K — oo and n is large enough. On the other
hand, for ZN:;’;?(]AH —5,n*?) < K), when n is large enough, we have Y, —2/s —Y,, = By, for
any |k| < K. Thus, we should be able to prove that when n — 400, we have \ZN’;,*?(]AH -
5,n?°| < K) — D lkl<k e~#Br| — 0 in similar fashion to the proof of Proposition

Comment. It should be possible to obtain an analog of Conjecture in the general
model for a Gaussian environment w, which supports Conjecture [L.7, This would require

a coupling of Vi y — V. (recall the definitions in Theorem [1.6]) with some suitable process
on a small neighborhood of (U, V).
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A Disorder in a domain of attraction of a Lévy process

In this section we will extend the Theorem to the case where (w,).cz is in the domain
of attraction of an a-stable law, with a € (1,2); we refer to [5] where the case v < 1 is
shown to have a different behavior. More precisely, we assume that the field w is such
that E [wy] = 0 and that there exists a € (1,2) such that

P(wg>1t) ~pt™™ | Plwy<—t)~qt " ast— oo withp+qg=1. (A.1)

This ensures that 1&% Z];:O w, converges in law to an a-stable Lévy process, a € (0,2).
Note that we treat the case of a pure power tail in , i.e. the normal domain of
attraction to an a-stable law, only for simplicity, to avoid dealing with slowly varying
corrections in the tail behavior.

As in the case where E [w3] = 1, one can define a coupling @ = ©™ such that

1 1
_ ~ a.s. 1)/~ + ~ a.s. (2) [~
(@) | (@) g (aShe®) S (K@),

where X, X®) are two independent a-stable Lévy processes, see |5, §1.2].

If the range is of size of order n*, then we have that Y, w. is of order n*/*, which
is negligible compared to n® since o > 1. Hence the disorder should be negligible at first
order, and this is what is proven in [5, Thm. 1.2]: we have

1
3 w75
rLll—I>Ic>lo nl/3 log Z, ) =

3
S, ve>0,p4 (‘n—1/3|7an| — e

>5>—>0.

n—00

Our result here is to obtain the second order asymptotic for the convergence of log Z fj ;
we deduce a result on the position of the range under Pﬁfj .

Theorem A.1l. Suppose that (w,).cz verifies (A.1)). Then, for any h, 3 > 0, we have the
following P-a.s. convergence

1 3
lim ——— (10g Z;”f + §hchn1/3) = sup {Xl(tl) —i—Xc(i)_u} ,

n—oo ﬁnl/&) 0<u<ey,

where XM and X are two independent a-stable Lévy processes.

Furthermore, u, := argmax, (g, {X&l) + x? } exists P-almost surely and

Ch—U

1
Ve > O,P::f ( W(M;7Mn+) — (—Us, Chp — Us)

> 5) — 0 P-a.s.

n—oo

Proof. The proof is essentially the same as the one of Theorem As in (2.1)), we can
write

cn/d %7’61

3
log Z:2 + §hchn1/3 =log (L+o(1)yn+log Y Y Z% (ki ky,0),

k1=0 ko= —f, -1
with Z:;’,f(kl, ks, d) defined as in (2.3)). Once again we have

‘ 3w - (z;;énl/g + z,;lénl/3> ( < R (K10, k»9) (A.2)
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where the error remainer RS is defined for u,v > 0 by

Z1)—~_n1/3| :

RS (u,v) = max

unl/34+1<j<(u+8)nt/3 -1

-

un1/3} max

DI T
wnl/341< < (v+8)nl/3—1

Using the coupling @ and Lemma A.5 of [5], we have P — a.s. Ve > 0, Ing = ng(e, ,w)
such that Vn > ny,

1

73 Ro(u,v) <e+  sup ‘qu}) ~ X+ sup ‘Xé?) - xP,
n-/o u<u'<u+e+d v<v'<v+e+d

< )=

uniformly in u,v € Us as U; is a finite set (recall the definition (2.5) of Us). Letting
N — o0 then € — 0 we obtain that P-almost surely,

1
nl/3a vnl/

X(2) X(l)

nl/3c Eunl/?’

1 3
lim sup ———~ Y <10g Z;’,f + = hchn 1/3 ) < sup WH(u,v,9),
n—o00 u,veUs

utve{cy,cp—0}

i 5

3
(log Z:;,f + §hchn1/3> > su% W™ (u,v,0)
u,ve
u+v€{ch,ci—5}

in which we wrote

WE(u,v,0) = XV + X+ sup }XS) - Xq(f)‘ + sup ‘X( ) X2 ‘

u<u'<u+éd v<v’ <v+§

Using the cadlag structure of Lévy processes X and X® we push § to 0 and get the
desired convergence.

Afterwards, we can use [3, Theorem 2.1| and |22, Section 3] to prove that the varia-
tional problem is positive and finite (in the sense that supy<,., {Xl(tl) +Xc(,2),u} is almost
surely positive and finite), which relies on the same reasoning as Lemma Then, [5,
Proposition 3.1] proves the existence and unicity of the maximizer u,. The proof of the

second part of Theorem is exactly the proof of Lemma [2.3 O

B Technical results for the Brownian meander

Let W be a standard Brownian motion on [0, 1] and denote 7 := sup {t € [0,1] : W; = 0}.
The Brownian meander on [0, 1] is defined as the rescaled trajectory of W between 7 and 1.
More precisely it is the process M defined on [0, 1] by

M; = WT+t(1—T)| .

1
V1-— 7'|
Note that we could define the meander to be on any interval [0,7] by changing how
we rescale the trajectory, leading to define a Brownian meander of duration 7' as the

22
rescaled process (- Al on [0,T]. Recall the notation ¢;(r) = \/;e*'?t and

-7 |
fo ¢¢(x)dzx. The Brownian meander on [0, 1] is a continuous, non-homogeneous
Markov process startlng at 0, with transition kernel given by

P (M, € dy| My =) =p*(s,x,t,y)dy = [pr—s(r — y) — pr—s(x + y)] i)ll_tg)) dy (B.1)
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Figure 2: Reflection of the trajectory b — (0, b] with respect to the horizontal line at b

and
y2
P (M, € dy) = p*(0,0,t,y)dy = 2yt~ 5 d,_,(y)dy . (B.2)

For the proofs of these facts, we refer to [14] and its references. Using P (M, € dy) <

9
2yt~—32e~ % dy and ®,_,(y) < y/+/27(1 —t), we have the following estimates: for any
a<r/2,

_1-2ar 2

E [eaMTQ] < x Vdy = (1- 27“&)73/2 ,

2 x
S e
r3/24/ 27 /0 Y

E [(MT)—leaMi] <

The asymmetry of the meander can be used to prove the following “reflection principle”.

Lemma B.1 (Reflection principle for the meander). Let M be a Brownian meander, then
forallb>0and all 0 < s <t <1,

P( sup M, Zb) < 2P (M, > b) P( sup | M, — M,| Zb) < 4P (M, — M, > b) .

0<r<t s<r<t

Proof. 1f we denote by T, the hitting time of b, we have

¢ ¢ ¢
P(Sup Mst>:/]P’(Tbeds):/IP’(TbEds,Mt<b)+/P(Tbeds,Mth).
0 0 0

0<s<t

Now, write L; the lime of last visit to b before time ¢, on [Ly,t] the process M, — b is a
Brownian bridge conditioned to be above —b. We only need to see that any trajectory
of M from b to (0, b] which stays above 0 can thus be transformed into a trajectory from
b to [b,2b) that stays above 0 by reflecting the trajectory between the last visit L to b
and t (see Figure [2)).

Since these two Brownian bridges have the same probability and [b,2b) C [b, +00) it
shows that this operation is injective and thus P (7}, € ds, M; < b) < P (T}, € ds, M; > b)
for all s <t (note that this is a consequence of the Brownian reflection principle). There-
fore, we proved

t
P(Sup MSZb> §2/ P(T, € ds, M; > b) =2P (T, <t,M; > b) =2P (M, > b) .
0

0<s<t
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If we study the supremum of an increment M, — M, s < r <t we only need to repeat
the proof for a starting point My = x and integrate over all the positions x. Since the
meander is a Markov process, we get P(sup,c,«;, M, — M, > b) < 2P (M, — M, >b).
Afterwards, we only need to see that again using the asymmetry of M, we have that

]P’( sup |M, — M| Zb) §2P< sup M, — M, Zb),

s<r<t s<r<t
hence the result. [

Corollary B.2. For any A >1,a >0 and 0 < s <t < 1, we have

27
dar/2t e =@ O

t_S 1 _e_%GQ/\Q Y

IP’( inf M, §a> <P (M, < Xa) +P (M, < \a) +

s<r<t

as well asP(MtSa)Sj—%(l/\g—D.

Proof. We decompose the probability on whether M, M, < Aa, meaning we only have to
consider ]P)(infsgrgt M, < a, My > \a, M; > )\a). For this, we first use Brownian bridge
estimates: see that for any z,w,T > 0, we have

. 1 A e
]P)Z (WT - dw7t€1[%7fT] Wt > 0) = 27TT (6 21T( )2 —e QlT( + )2) dw
1 \ 2
P, (Wr € dw) = e~ 2 =)y
(Wr € dw) VorT

thus we have
P ( inf W77 > 0) =1 — W gr(te)® —q _ omfaw (B.4)
t€[0,T]

For any a > 0 and z,w > «a, we define

a = 3 zZ—w < : Z—w
Pr(z,w) P(tel[%,f;r]wt _a|t61[r&fT]Wt >0

) _,_P (infrefor WF™ > a)
P (infte[O,T] Wfﬁw > 0) '

Then, using (B.4) with z,w, z — a,w — a > 0, we can deduce

2 2 2
1 — —=(z—a)(w—a) —Z(z—a)(w—a) _ —Fzw
Pezuw)=1—-—"" S . (B.5)
1 —e %% 1—e T7%

Consider the mapping fr : (z,y) — e~72¥. Using the mean value theorem, there is a
¢ € [0, 1] such that

o) = fre - o= =vh(a-a (D) +e (220))((2) - (522))

2a

= —?(z +w — 2004)6’%(2’00‘)(‘“*“) .
(B.6)
Injecting in (B.5)), this yields
200 67%(zfca)(wfca) 20 67%(27004)(1070(1)
Pr(z,w) = —(z+w — 2ca < —(z+w B.7
2 (2 w) = e < erw (B.7)



In particular, if we assume z,w > Aa for some A > 1, then fr(z,w) < fr(Aa, Aa) and we

obtain 2Oa?
2 —7CY C
P (z,w) < ?a(z + w) ¢

_2.,2)2 °
o

Therefore, for any A > 1 and a > 0,

]P( inf M, < a, M, > )\CL M, > )\CL) =FE [Ptcis(MsuMt)ﬂ{]V[s,J\/]tZ)\a}]

s<r<t
e B9
_t—51_€7%a2)‘2 s t]
and we compute E [M,] < %ix/f < /2t for t < 1/2 to get the desired result.
On the other hand, using (B.2)), we write for 0 < ¢ < 1
2 [C 2 [V e ondy
P(M; <a)= —/ e 2t < / /
M < 0) =G 0! o /2r(l—1) W= «/27?1—t
2at—>/? @2 4a(l — e~ 2t) 4a a?
< ——— | ye 2dy = < A — O
V2r(1—=1t) Jo V2rt(l—t) = vt 2t

Let us mention that a process related to the meander is the 3-dimensional Bessel
process B. It can be defined as the solution of the SDE dB, = dW, + B; 'dt, or as the
sum B; = |W;| + L; where L is the local time of W at 0; it is a homogeneous Markov

process that has the Brownian scaling property (Bat): < (vaBy);. We refer to [23] for
those results. The link between the Bessel process and the meander is given by the
following result.

Proposition B.3. The law P™T of the Brownian meander on [0,T] has a density with
respect to PP the law of the three-dimensional process: if X is the canonical process, we

have

1 [T
PtT(A, Xy € dz) = ~ ”2

In particular, Vo > 0,Vs < T, PT°T(X,, € dz) = P*T(\/aX, € dz).

Proof. The formula for the density can be found in |17, Section 4|. Afterwards, for any
positive measurable function f and any a > 0, we have

) - [ SR -

PE(A, X7 € dx).

VT

=EST [f(X0)] .

C Coupling of Brownian meander, a three-dimensional
Bessel process and a Brownian excursion

In this section we will expand on the Way we can construct our different processes to
have the almost sure results of Theorems [1.3]and [T.6] In particular we want the following
result:

nl/3

nl/G Z n%oo 1) + Xl(’g) and nl/ls(Xu*-ﬁ-nl% - Xu*) nii)o B, .
—unl/3
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Skorokhod’s embedding theorem (Theorem [4.1) allows us to sample the Brownian
motions X i = 1,2 to get a new environment & to obtain the first convergence. Thus
we must find how we can couple both processes X to the processes B,Y in Theorem
[1.6] that is we need to prove Proposition [I.5] This is based on two intermediate results,
Lemmas and below, which couple a meander, resp. a Bessel-3 process, to a
Brownian excursion.

Lemma C.1 (|6, Theorem 2.3|). Let e be a standard Brownian excursion and U a uniform
variable on [0,1]. Then, the process M; = ely<yy + (ev +e1—q—v)) Lpsuvy @5 a Brownian
meander on [0,1]. In particular, there exists a coupling of the Brownian meander M and
the Brownian excursion e on [0, 1] such that M, = e, if t <U.

Lemma C.2. For any T € [0,1], There ezists a coupling of the Brownian ercursion e
on [0,1] and the three-dimensional Bessel process B such that there is a positive e(w) for
which we have By = e; for any t € [0,e(w)].

Proof. Tt is known (see for example |18, p79]) that the Brownian excursion can be decom-
posed into two Bessel bridges of duration % joining at a point V' whose law has density
\/1767@26_2”2. Thus we only need to define a coupling between a 3d-Bessel process B and a
3d-Bessel bridge B’ with duration % and endpoint V. We use the fact that both processes
can be realized by the modulus of a three-dimensional Brownian motion.

Consider two independent, three-dimensional Brownian bridges X and Y of duration
1/2, such that Xo = z € R® (resp. ¥p = y € R?) and X1 = Y1 = 0. Denote 7 :=
inf {0 <t <1:[X,|=1Y} the first time X and Y have the same modulus. We have
the following result.

Lemma C.3. Almost surely, there ezists £(w) > 0 such that 7 < 3 — e(w).

Using this lemma, we can conclude the construction of the coupling. After time 7, we
define a coupling by taking the trajectory of X between 7 and % and plugging it at Y,
after a rotation:

Y, if t<7,

ite X, = | X,[e? .Y, = |V;]e® and define Y, = o
WIIte Ay ’ t|e )y 4t |15|6 and delne ry |Xt’6wtx+z(9z_0§) if T<t<

N =

The new process Y is such that for every ¢t € [r, 1], we have |X,| = |Y;]. Recall that the
Brownian bridge is a diffusion process (as the solution to an SDE), thus is Markovian,
and 7 is a stopping time for both processes X and Y. It follows that Y is a Brownian
bridge between y and 0.

To create the coupling between the two Bessel processes B and B’, we choose the
starting points x and y so that they respectively correspond to Wé (with W a 3d-Brownian
motion) and a uniform variable on the sphere centered at 0 of radius V. Then the processes
B; = |X%_t| and B} = |Y%_t| are Bessel processes starting at 0 that coincide on [0, 3 — 7]
and such that B; = V. In particular, the Bessel process B and the Brownian excursion

e coincide on [0, 3 — 7]. O
Proof of Lemma[C-3 On [0, 1], consider B a 3-dimensional Bessel process starting at
1

0 and e the Brownian excursion, which is a Bessel bridge of duration 3 starting at 0

and ending at V. We define I;; := {Vr € (s,t),e, # B, } the event on which e and B
never intersect between 0 and t (with the exception of 0). From [17, (3.1)], we have
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P, (A,B; € dz) = 2P, (A, W, € dz, Hy > t), where W is a Brownian motion and Hj its
first hitting time of 0. Then for any € > 0, conditioning on the values of (e.,B.) and
(V,By;), we can write

e B,
eEB&‘

P(ly;) <E[P(I.;|e.,B.)] <E P(s25P(t—e))| .

€e:—€e

where we have defined

FOTNT) = {¥r e (0,T7), Wz 7(r) > 0, Wb (r) > 0, Wi™¥(r) # Wj‘f_”’(r)} ,

T—Y

in which W4~? is a Brownian bridge a — b of duration T (resp. for z — y). We are
interested in taking ¢t = 1/2, but this result could be used for any fixed ¢ > 0, in the sense
that the Bessel process and the Brownian excursion almost surely cross each-other on
10, ] for any fixed t. Take a positive C' > 0 to be chosen later (we will choose C' = e1/8).
Then, we first get a bound using Cauchy-Schwartz inequality twice:

N

NI
S

B 1
B {|et t|P (ﬂe?:_‘)/Bt(t . 8)) I]-{BtVV>C}:| <E [(e B )2:| E [(etBt)ﬂ P(Bt vV > C)

esBa

Since € < t and e, B are independent, we have E [(e;B;)*] < ¢(¢) and

2

1 2 3 3 2 __y
E {—} < —=I'(=)(1 - 5)253/ e e 20adrdy < (1 —e) te?
2 — — Y

(esB5> ﬁ 2 Ri

where we used the transition probabilities for the Bessel process [23, VI §3 Prop. 3.1,
the Brownian excursion [18, Section 2.9 (3a)] and I'(3) = /7/2. Finally we compute

P(B,VV >C) < e M o get

e, B 1 -
E PG:B?P (‘ﬂe]?s—;\)/Bt(t — 6)) :H-{Bt\/et>c}:| < Ct(l — 5) 2g7 % /0 (Ql)
On the other hand,
B %
E [|:tBt|P (fe?i_é?t (t — 5)) ]L{Bt\/etsc}l <E {e P (Je?;—ft (t — 5)) . (C.2)

We will use the following lemma to get a bound on P (B 2B (¢ — ¢)).

€e:—€et

Lemma C.4. For any T > 0, there is a Cp > 0 such that for any x,y,a,b > 0,

P (250T)) < Cr(a® 4 a®)*(y° + 0°)2. (C.3)
Thus, using Lemma in (C.2)), we have the upper bound
]etBt] . . 1 2
B |1 BE (25280~ 9) Limacer] < 0B | - (10 + B22)]
and we compute
2
()P +B2)| o 3 P
£ e.B. = A0 g) "2 /Ri (¢® +y*) wye” % e =09 dudy
u2 'U2
< (cst.)€_3/ e2(u® + v*)?uvee” 2 e~ 2 edudv < (cst.)e .
RQ

+
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to get

E {|etBt|]P’ (ﬂBE_)Bt (t— 6)) 1{BtVEt§C}:| < C%Che . (C.4)

eeBg €:—€

Thus, assembling (C.1) and (C.4) while taking C' = £~ /%, for any ¢ > 0 we then have

2 e—0

_ c2 8_1/4
P (Ios) < Cy (e_le ae—e)t/6 CG€> < (5‘1 exp ( — ) + 61/4) — 0.
This means that P (Ip;) = 0 and in particular, taking ¢ = %, one can almost-surely find a
positive ¢ such that Lemma is true. ]

Proof of Lemma[C.4. We can assume 0 < < a and 0 < y < b (otherwise the probability
is zero), then we have

P (F252T)) =P (vr € [0,T],0 < Wi (r) < Wi(r)). (C.5)

T—Y

Observe that (C.3) is exactly the probability for the Brownian bridge Wi %70 =
(W% Wa=b) to stay in the cone € := {(x,y) € R? : 0 <z <y} for a time T, meaning

P (S°7H(T)) = P <Vt e [0,T], Wb (1) e %) .

T—Y

The isotropy of Brownian motion allows us to consider instead 6 = {Tew, 0<0< %}

Lemma C.5. Let W*™% be a two dimensional Brownian bridge from z to z'. Then, there
is a positive Cp such that uniformly as |z| — 0 we have

P <Vt e [0,T],W=* ¢ Cf) = (14 06(1))Cr|z|*7'|* sin (4 arg 2) sin (4 arg 2') .

Proof. Recall that we identify R? with C, by writing W for a standard two-dimensional
Brownian motion, we have

P, (w €0, T|,W, € €, Wr B(zﬁn))

P (w e [0,T], W% e zf) — lim

7—0 P, (Wr € B(2',n))
2 -1 2
= lim (C(T)?fe"z' /2T) / K% (z,w)dw,
=0 B(2' )

where K% (z,w) is the heat kernel killed on exiting € and B(z,r) is the ball of radius r
centered at z.
The key ingredient is the following statement, which is a consequence of |12, Lemma

18 - (32)]: as & — 0, uniformly in |z| < 0v/T, |w| < \/T/, we have
Kf(z’, w) ~ %e"wwﬂu(w)u(z) for some yo > 0.

where u(re) := r4sin(46) (this expression is given in [12, (3)]). This result is also stated
in |2, Corollary 1]. In particular, as |z| — 0,

/ ) / -1
P (Vt €0, T],W* € %) ~ lim (C’(T)n%‘lz |2/2T) / X—ge“wPﬂTU(w)u(z)dw
40 Bty T

. 212727 X0 __|2/12/2T Vol(B(2',n))
:7171_I)I[1)6| %/ ﬁe |22/ U(Z/)U(Z)W

with h(n) — 0 and Vol(B(2',n)) = m?, leading us to the formula of Lemma O

(1+h(n)),
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Comment. We could also use the fact that € is the Weyl chamber B, thus we can use
results from [16] §5.3] after a time scaling by & to have that the probability in (C.2) is of
order (£/t)?, which is ultimately what we proved.

Thus, we proved Lemma [C.4] by injecting z = (z,a) and 2’ = (y,b). ]

Assembling Lemmas and vields that one can do a coupling of the Brownian
meander M and the three-dimensional Bessel process B such that almost surely, there is
a positive time o for which M; = B, on [0, o], thus proving Proposition [1.5| using (3.5)).
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