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Localization of a one-dimensional polymer in a

repulsive i.i.d. environment

Nicolas Bouchot

July 10, 2023

Abstract

The purpose of this paper is to study a one-dimensional polymer penalized by its

range and placed in a random environment ω. The law of the simple symmetric

random walk up to time n is modi�ed by the exponential of the sum of βωz − h
sitting on its range, with h and β positive parameters. It is known that, at �rst order,

the polymer folds itself to a segment of optimal size chn
1/3 with ch = π2/3h−1/3.

Here we study how disorder in�uences �ner quantities. If the random variables ωz

are i.i.d. with a �nite second moment, we prove that the left-most point of the range

is located near −u∗n
1/3, where u∗ ∈ [0, ch] is a constant that only depends on the

disorder. This contrast with the homogeneous model (i.e. when β = 0), where the

left-most point has a random location between −chn
1/3 and 0. With an additional

moment assumption, we are able to show that the left-most point of the range is

at distance Un2/9 from −u∗n
1/3 and the right-most point at distance Vn2/9 from

(ch − u∗)n
1/3. Here again, U and V are constants that depend only on ω.

Keywords: random walk, polymer, random media, localization

2020 Mathematics subject classification: 82B44, 60G50, 60G51

1 Introduction

We study a simple symmetric random walk (Sk)k≥0 on Z, starting from 0, with law P. Let
ω = (ωz)z∈Z be a collection of i.i.d. random variables with law P, independent from the
random walk S, which we will call environment or �eld. We also assume that E[ω0] = 0
and E[ω2

0] = 1. For h > 0, β > 0 and a given realization of the �eld ω, we de�ne the
following Gibbs transformation of P, called the (quenched) polymer measure:

dPω,β
n,h(S) :=

1

Zω,β
n,h

exp
( ∑

z∈Rn

(
βωz − h

))
dP(S),

where Rn = Rn(S) :=
{
S0, . . . , Sn

}
is the range of the random walk up to time n, and

Zω,β
n,h := E

[
exp

( ∑
z∈Rn

(
βωz − h

))]
= E

[
exp

(
β
∑
z∈Rn

ωz − h|Rn|
)]

is the partition function, such that Pω,β
n,h is a (random) probability measure on the space of

trajectories of length n. In other words, the polymer measure Pω,β
n,h penalizes trajectories

by their range and rewards visits to sites where the �eld ω takes greater values.
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In this setting, the disorder term
∑

z∈Rn
ωz is typically of order |Rn|1/2: one can prove

thata β
∑

z∈Rn
ωz − h|Rn| ∼ −h|Rn| for P-almost all ω, see [5]. Thus, disorder does not

su�ciently impact the behavior of the polymer on a �rst approximation, which is seen in
Theorem 1.1 below. We introduce the following notation:

ξn
Pω,β

n,h−−−→
n→∞

ξ ⇐⇒ ∀ε > 0, lim
n→∞

Pω,β
n,h (|ξn − ξ| > ε) = 0 .

We will say that �ξn converges in Pω,β
n,h -probability� even if Pω,β

n,h depends on n.

Theorem 1.1 ([5, Theorem 3.7]). For all h > 0, de�ne ch := (π2h−1)1/3. Then, for any
h, β > 0, P-almost surely we have the following convergence

lim
n→∞

1

n1/3
logZω,β

n,h = −3

2
(πh)2/3, n−1/3|Rn|

Pω,β
n,h−−−→

n→∞
ch . (1.1)

The main goal of this paper is to extract further information on the polymer, notably
on the location of the segment where the random walk is folded or on how |Rn| �uctuates
at lower scales than n1/3.

1.1 About the homogeneous setting

Since we are working in dimension one, we make use of the fact that the range is en-
tirely determined by the position of its edges, meaning that Rn is exactly the segment
JM−

n ,M
+
n K, where M−

n := min0≤k≤n Sk and M+
n := max0≤k≤n Sk.

We will also adopt the following notation:

Tn :=M+
n −M−

n = |Rn| − 1 , T ∗
n :=

(
nπ2

h

)1/3

= chn
1/3 , ∆n := Tn − T ∗

n . (1.2)

Hence, Tn is the size of the range and T ∗
n is the optimal size of the range at scale n1/3

that appears in (1.1).
In the homogeneous setting, that is when β = 0, it is proven in [7] that the location of

the left-most point is random (on the scale n1/3) with a density proportional to sin(πu/ch).
As far as the size of the range T ∗

n is concerned, it is shown to have Gaussian �uctuations.
In fact, [7] treats the case of a parameter h = hn that may depend on the length of the
polymer: in this case, �uctuations vanish when the penalty strength hn is too high. We
state the full result for the sake of completeness.

Theorem 1.2 ([7, Theorem 1.1]). Recall the notations of (1.2) and replace h by hn in
the de�nition of T ∗

n . Then for β = 0, we have the following results:

� Assume that hn ≥ n−1/2(log n)3/2 and lim
n→∞

n−1/4hn = 0. Let an := 1√
3

(
nπ2

h4
n

)1/6
,

which is such that limn→∞ an = +∞. Then for any r < s and any 0 ≤ a < b ≤ 1,

lim
n→∞

Pω,0
n,hn

(
r ≤ ∆n

an
≤ s ; a ≤ |M−

n |
T ∗
n

≤ b

)
=

√
π

2
√
2

ˆ s

r

e−
u2

2 du

ˆ b

a

sin(πv) dv .

aIn the rest of the paper we shall use the standard Landau notation: as x → a, we write g(x) ∼ f(x)

if limx→a
g(x)
f(x) = 1, g(x) = ō(f(x)) if limx→a

g(x)
f(x) = 0,g(x) = Ō(f(x)) if lim supx→a

∣∣ g(x)
f(x)

∣∣ < +∞ and

f ≍ g if g(x) = Ō(f(x)) and f(x) = Ō(g(x)).
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� Assume that lim
n→∞

n−1/4hn = +∞ and lim
n→∞

n−1hn = 0. Denote by ton the decimal

part of T ∗
n and τ on := 1

2
− π2

18T ∗
n
. De�ne An as {0} if ton < τ on, {1} if ton > τ on and {0, 1}

if ton = τ on. Then we have for any Borel set B ⊆ [0, 1]

lim
n→∞

Pω,0
n,hn

(
Tn − ⌊T ∗

n − 2⌋ ̸∈ An

)
= 0, lim

n→∞
Pω,0

n,hn

( |M−
n |

T ∗
n

∈ B
)
=
π

2

ˆ
B

sin(πv) dv.

We will see that the disordered model displays a very di�erent behavior: the location
of the left-most and right-most points are P-deterministic, in the sense that they are
completely determined by the disorder �eld ω (at least for the �rst few orders).

1.2 A rewriting of the partition function

In the disordered setting, we can write Zω,β
n,h as

Zω,β
n,h =

+∞∑
x,y=0

exp
(
− h(x+ y + 1) + β

y∑
z=−x

ωz

)
P
(
Rn = J−x, yK

)
. (1.3)

Gambler's ruin formulae derived from [15, Chap. XIV] can be used to compute sharp
asymptotics forP

(
Rn = J−x, yK

)
, see [7, Theorem 1.4]. In particular, as n, x+y → ∞, one

gets logP
(
Rn = J−x, yK

)
∼ − nπ2

2(x+y)2
when x + y ≪ n, the exact asymptotics depending

on the ratio n/(x+y)3. The optimal range size T ∗
n = chn

1/3 appearing in (1.1) is found as
the minimizer of ϕn(T ) := hT + nπ2

2T 2 . Letting ψh := 8
π
eh [coshh− 1], the sharp estimates

of P
(
Rn = J−x, yK

)
from [7, Theorem 1.4] give as n→ +∞

Zω,β
n,h = (1 + ō(1))ψhe

−ϕn(T ∗
n)

+∞∑
x,y=0

sin

(
xπ

x+ y

)
exp

(
β

y∑
z=−x

ωz + ϕn(T
∗
n)− ϕn(x+ y)

)
,

where the ō(1) is deterministic. Note that Theorem 1.1 implies that there exists a van-
ishing sequence (εn)n≥1 such that limn→∞Pω,β

n,h(|∆n| > εnn
1/3) = 0,P-a.s. In particular,

we can restrict the partition function to trajectories such that |∆n| ≤ εnn
1/3. Then, as in

[7, Lemma 2.1], we can use the Taylor expansion of ϕn around T ∗
n to obtain the following:

writing ∆x,y
n := x+ y − chn

1/3, we have

Zω,β
n,h ∼ e−

3
2
hT ∗

nψh

∑
x,y≥0

|∆x,y
n |≤εnn1/3

sin

(
xπ

x+ y

)
exp

(
β

y∑
z=−x

ωz −
3π2(∆x,y

n )2

2c4hn
1/3

(1 + ō(1))

)
,

(1.4)
where the ō(1) is deterministic, uniform in x, y, and stems from the Taylor expansion.
Equation (1.4) will be the starting point of the proofs of our results.

1.3 First convergence result

Akin to [5], we de�ne the following quantities: for any j ≥ 0 for which the sum is not
empty,

Σ+
j (ω) :=

j∑
z=0

ωz , Σ−
j (ω) :=

j∑
z=1

ω−z .
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Using Skorokhod's embedding theorem (see [24, Chapter 7.2] and Theorem 4.1 below) we
can de�ne on the same probability space a coupling ω̂ = ω̂(n) of ω and two independent
standard Brownian motions X(1) and X(2) such that for each n, ω̂(n) has the same law as
the environment ω and(

1

n1/6
Σ−

un1/3(ω̂)

)
u≥0

a.s.−−−→
n→∞

(
X(1)

u (ω̂)
)
u≥0

,

(
1

n1/6
Σ+

vn1/3(ω̂)

)
v≥0

a.s.−−−→
n→∞

(
X(2)

v (ω̂)
)
v≥0

in the Skorokhod metric on the space of all càdlàg real functions. With an abuse of
notation, we will still denote by ω this coupling, while keeping in mind that the �eld now
depends on n.

Our �rst result improves estimates on the asymptotic behavior of Zω,β
n,h and (M−

n ,M
+
n ).

Theorem 1.3. For any h, β > 0, we have the following P-a.s. convergence

lim
n→∞

1

βn1/6

(
logZω,β

n,h +
3

2
hchn

1/3

)
= sup

0≤u≤ch

{
X(1)

u +X
(2)
ch−u

}
, (1.5)

where X(1) and X(2) are the two independent standard Brownian motions de�ned above.

Furthermore, u∗ := argmaxu∈[0,ch]

{
X

(1)
u +X

(2)
ch−u

}
is P-a.s. well-de�ned and

1

n1/3
(M−

n ,M
+
n )

Pω,β
n,h−−−→

n→∞
(−u∗, ch − u∗) P-a.s. (1.6)

In other words, n−1/3Rn converges in Pω,β
n,h-probability to the segment J−u∗, ch−u∗K, P-a.s.

Figure 1: A typical trajectory under the polymer measure for a given u∗ and large n

Comment. Theorem 1.3 still holds if (ωz) are i.i.d and in the domain of attraction of an
α-stable law with α ∈ (1, 2), only replacing the Brownian motions X(i) by Lévy processes
as in [5] and n1/6 by n1/3α: we refer to Theorem A.1 and its proof in Appendix A. As
most of the work in this paper requires stronger assumptions on the �eld ω we will not
dwell further on this possibility and focus on the case where E [ω2

0] = 1.

Heuristic. Intuitively, the result of Theorem 1.3 is a consequence of the following rea-
soning: if we assume that the optimal size is T ∗

n (at a �rst approximation), the location
of the polymer should be around the points (xn, yn) ∈ N2 such that xn + yn ≈ T ∗

n and
Σ−

xn
+ Σ+

yn is maximized. Translating in terms of the processes X(1), X(2), we want to

maximize n−1/6(Σ−
xn
+Σ+

yn), which is �close� to X
(1)

xnn−1/3 +X
(2)

ynn−1/3 . Since xn+yn ∼ T ∗
n we

have ynn
−1/3 ∼ ch−xnn

−1/3 and we want to pick xnn
−1/3 to maximize u 7→ X

(1)
u +X

(2)
ch−u.
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1.4 Second order convergence result

To ease the notation we will denote Xu := X
(1)
u +X

(2)
ch−u. Note that X has the distribution

of
√
2W +X

(2)
ch , where W is a standard Brownian motion. Hence, the supremum on [0, ch]

of Xu is almost surely positive and �nite, attained at a unique u∗ which follows the arcsine
law on [0, ch].

In order to extract more information on the typical behavior of the polymer, we need
to go deeper into the expansion of logZω,β

n,h . To do so, we factorize Zω,β
n,h by eβn

1/6Xu∗ and

we study the behavior of logZω,β
n,h + 3

2
hchn

1/3−βn1/6Xu∗ , which is related to the behavior
of X near u∗. Studying Wiener processes near their maximum leads to study both the
three-dimensional Bessel process and the Brownian meander, as outlined by the following
classical result.

Proposition 1.4 ([17, Theorem 5]). Let W be a Brownian motion on [0, 1] and let σ be
the time at which W reaches its maximum on [0, 1]. On the event {σ = u}, the processes
(Wu+s − Wu, 0 ≤ s ≤ 1 − u) and (Wu−s − Wu, 0 ≤ s ≤ u) are Brownian meanders of
respective duration 1− u and u.

Some other technical results about the meander are presented in Appendix B. We also
de�ne the following process, which we call two-sided three-dimensional Bessel (BES3)
process.

De�nition 1.1. We call two-sided three-dimensional Bessel process B the concatenate
of two three-dimensional Bessel processes B− and B+. Namely, for all s ∈ R, Bs =
B−

−s1R−(s) +B+
s 1R+(s).

Additionally, we will use the following coupling between (X
(1)
u +X

(2)
ch−u, X

(1)
u −X

(2)
ch−u)

seen from u∗ and a two-sided BES3 process and a Brownian motion. This will allow us
to obtain P-almost sure results instead of convergences in distribution; in particular we
obtain trajectorial results that depend on the realization of the environment. The proof is
postponed to Appendix C and relies on the path decomposition of usual Brownian-related
processes.

Proposition 1.5. Let

Xu = X(1)
u +X

(2)
ch−u , Yu := X(1)

u −X
(2)
ch−u .

Then, conditionally on u∗, one can construct a coupling of (X(1), X(2)) and B a two-
sided BES3, Y a two-sided standard Brownian motion such that: almost surely, there is
a δ0 = δ0(ω) > 0 for which on a δ0-neighborhood of 0,

1√
2

(
Xu∗ −Xu∗+u

)
u
=
(
χBu

)
u
,

1√
2

(
Yu∗+u − Yu∗

)
u
= (Yu)u ,

where we have set χ = χ(u, ω) :=
(√

ch − u∗1{u≥0} +
√
u∗1{u<0}

)−1
.

Comment. It should be noted that χ actually only depends on the sign of u, which means
that the process χB has the Brownian scaling invariance property. This will be used in
Section 1.5 to get a suitable coupling.
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Theorem 1.6. Suppose E [|ω0|3+η] < ∞ for some η > 0. With the coupling of Proposi-
tion 1.5, we have the P-a.s. convergence

lim
n→∞

√
2

βn1/9

(
logZω,β

n,h +
3

2
hchn

1/3 − βn1/6Xu∗

)
= sup

u,v

{
Yu,v −

3π2

βc4h
√
2

(
u+ v

)2}
, (1.7)

where Yu,v := Yu −Y−v − χ
[
Bu +Bv

]
.

Moreover, (U ,V) := argmaxu,v{Yu,v − 3π2

βc4h
√
2
(u+ v)2} is P-a.s. well-de�ned and we have(

M−
n + u∗n

1/3

n2/9
,
M+

n − (ch − u∗)n
1/3

n2/9

)
Pω,β

n,h−−−→
n→∞

(U ,V) P-a.s. (1.8)

In particular, we have
Tn − chn

1/3

n2/9

Pω,β
n,h−−−→

n→∞
U + V P-a.s.

Comment. We should be able to obtain a statement assuming only that E [|ω0|2+η] < ∞
for some positive η. The statement is a bit more involved: we need to use a di�erent
coupling between ω and X(1), X(2), to get the following convergence:

lim
n→∞

√
2

βn1/9

logZω,β
n,h +

3

2
hchn

1/3 − β

(ch−u∗)n1/3∑
z=−u∗n1/3

ωz

 = sup
u,v

{
Yu,v −

3π2

βc4h
√
2
(u+ v)2

}
.

(1.9)
We refer to Section 4.2 for further details and a partial proof of (1.9), adapting the proof
of Theorem 1.6.

1.5 Coupling and construction

Observe that we combine two di�erent couplings that have di�erent uses to prove our
results:

� A coupling for a given size n between the environment ω and two Brownian motions
X(1) and X(2). This coupling allows for the almost sure convergence in Theorem
1.3, and the assumption E

[
ω3+η
0

]
< +∞ is used to have a good enough control on

the coupling.

� A coupling between (X(1), X(2), u∗) and (B,Y) to study the behavior of the Brown-
ian motions X(1) and X(2) near u∗. This allows us to get the almost sure convergence
of Theorem 1.6, in addition to easier proofs when excluding non typical con�gura-
tions for the polymer.

Here we explain how these two coupling combine to yield all the desired results. We
start by picking u∗ according to the arcsine law on [0, ch] and by considering a three-
dimensional two-sided Bessel process B as well as an independent two-sided Brownian
motionY, both de�ned on R. Since the process (Xu∗−Xu∗+u)/

√
2 is a two-sided Brownian

meander (with left interval [0, u∗] and right interval [0, ch−u∗]), using Proposition 1.5 we
can �nd a δ0(ω) such that if |u| ≤ δ0, we have Xu∗ −Xu∗+u = Buχ

√
2.

We are interested in a coupling that will be such that n1/18(Xu∗ −Xu∗+
u

n1/9
) = Buχ

√
2

for all n large enough and for any un−1/9 su�ciently close to 0. To do so, for each n
we construct from B a suitable Xn, with the same law as X, that satis�es the desired
equality.
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Consider only the pair (δ0,B) that was previously de�ned, and let n0 be such that
εn0 ≤ δ0. Then, for any n ≥ n0, we paste the trajectory of n−1/18

√
2χBun1/9 , which is

still a two-sided three-dimensional Bessel process multiplied by
√
2 (note that χ is scale-

invariant), until |u| = δ0. By construction, we have Xn
u∗ − Xn

u∗+u = n−1/18
√
2χBun1/9

for |u| ≤ δ0. Next, we consider two independent Brownian meanders ML,n,δ0 ,MR,n,δ0 of
duration u∗ (resp. ch − u∗) conditioned on ML,n,δ0

δ0
= n−1/18

√
2χB−δ0n1/9 (resp. M

R,n,δ0
δ0

=

n−1/18
√
2χBδ0n1/9), and we plug their trajectory to complete the process Xn. The full

de�nition of Xn is thus given by

1√
2
(Xn

u∗ −Xn
u ) = n−1/18χBun1/91{|u−u∗|<δ0} +ML,n,δ0

u∗−u 1{u∈[0,u∗−δ0]} +MR,n,δ0
u−u∗ 1{u∈[u∗+δ0,ch]}

We can similarly de�ne Y n
u∗+u − Y n

u∗
:= n−1/18

√
2Yun1/9 where no particular coupling is

needed. From Xn and Y n, we can recover our new Brownian motions X(1),n, X(2),n.
After this coupling of the processes, we construct the environment ω = ωn from

(X(1),n, X(2),n) using Skorokhod's embedding theorem (see Theorems 4.1,4.2). Thus, all
of our processes are de�ned to have almost sure convergences, and when n is large enough
(how large only depends on δ0) and |un−1/9| ≤ εn ≤ δ0, we have

n1/18(Xn
u∗ −Xn

u∗+
u

n−1/9
) =

√
2χBu , n1/18(Y n

u∗ − Y n
u∗+

u

n−1/9
) =

√
2Yu . (1.10)

1.6 Comments on the results, outline of the paper

Expansion of the log-partition function. One may think about our results as an
expansion of logZβ,ω

n,h up to several orders, gaining each time some information on the
location of the endpoints of the range. A way to formulate such result is, for some real
numbers α1 > · · · > αp ≥ 0, to de�ne the following sequence of free energies which we
may call k-th order free energy, at scale αk:

f (1)
ω (h, β) = lim

n→∞
n−α1 logZβ,ω

n,h

f (k+1)
ω (h, β) = lim

n→∞
n−αk+1

(
logZβ,ω

n,h −
k∑

i=1

nαif (i)
ω (h, β)

)
,

(1.11)

when these quantities exist and are in R \ {0}.
Theorems 1.1, 1.3 and 1.6 can be summarized in the following statement: assuming

that E
[
ω3+η
0

]
< ∞ for some positive η, then letting αk = 1

3k
for k ∈ {1, 2, 3}, we have

P-a.s.

f (1)
ω (h, β) = lim

n→∞

1

n1/3
logZω,β

n,h = −3

2
(πh)2/3 ,

f (2)
ω (h, β) = lim

n→∞

1

n1/6

(
logZω,β

n,h +
3

2
hchn

1/3

)
= β sup

0≤u≤ch

{
X(1)

u +X
(2)
ch−u

}
= βXu∗ ,

f (3)
ω (h, β) =

β√
2
sup
u,v

{
Yu,v −

3π2

βc4h
√
2

(
u+ v

)2}
.

In particular, we prove in this paper that

logZω,β
n,h = −3

2
hchn

1/3 + β

(ch−u∗)n1/3∑
z=−u∗n1/3

ωz +
β√
2

(
YU ,V − 3π2

βc4h
√
2

(
U + V

)2)
n1/9(1 + ō(1))
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holds P-a.s. with the ō(1) going to 0 in Pβ,ω
n,h -probability. Note that the �rst two orders

of logZω,β
n,h , meaning f

(1)
ω and f

(2)
ω , are respectively called the free energy and the surface

energy.

In Section 5 we study a simpli�ed model where the random walk is constrained to be
non-negative. By restricting it so, the processes involved are less complex as they depend
on only one variable (which represents the upper edge of the polymer), which simpli�es
the calculations. The idea is to give some insights on what happens when studying
logZω,β

n,h −
∑3

i=1 n
αif (i)(h, β), especially on the scale of the = 4-th order free energy. The

environment is taken to be Gaussian in order to get the coupling of n−1/6Σ±
zn1/3 with

no coupling error (otherwise the result could change). We give in Section 5 a detailed
justi�cation for the following conjecture.

Conjecture 1.7. If ω0 is Gaussian, there is a positive process W = {Wa,b, (a, b) ∈ R2}
and a sequence (un, vn)n with values in [0, 1]2 such that

lim
n→∞

∣∣∣∣∣Zω,β
n,h exp

(
−

3∑
i=1

nαif (i)(h, β)
)
−
∑
i,j∈Z

e−Wi+un,j+vn

∣∣∣∣∣ = 0 P-a.s. (1.12)

In particular, for any couple of integers (i, j), we have P-a.s.

Pω,β
n,h

(
M−

n − ⌊−u∗n1/3 + Un2/9⌋ = i,M+
n − ⌊(ch − u∗)n

1/3 + Vn2/9⌋ = j
)
∼ e−Wi+un,j+vn

θω(n)
,

(1.13)
with θω(n) :=

∑
i,j∈Z e

−Wi+un,j+vn a normalizing constant.

The case of varying parameters β, h. As mentioned above, the present model has
previously been studied in [5], with the di�erence that the parameters β, h were allowed
to depend on n, the size of the polymer. More precisely, the polymer measure considered
was given by

dPω,β
n,h(S) =

1

Zω,β
n,h

exp
( ∑

z∈Rn(S)

(
βnωz − hn

))
dP(S), with hn = ĥn−ζ , βn = β̂n−γ .

The authors in [5] obtained P-almost sure convergences of n−λ logZω,βn

n,hn
for some suit-

able λ ∈ R, which corresponds to a �rst order development of the log-partition function.
Afterwards, asymptotics for EEω,βn

n,hn
[|Rn|] as well as scaling limits for (M−

n ,M
+
n ) were

established and displayed a wide variety of phases. In addition, the authors also inves-
tigated the case where (ωz) are i.i.d and in the domain of attraction of an α-stable law
with α ∈ (0, 1) ∪ (1, 2) to unveil an even richer phase diagram.

Theorems 1.3 and 1.6 con�rm the conjecture of Comment 4 of [5] that for a typical
con�guration ω, the �uctuations of the log-partition function and n−1/3(M−

n ,M
+
n ) are not

P-random for �xed h, β > 0. With our methods, it should be possible to extend our
results to account for size-dependent h = hn, β = βn, with similar results for �reasonable�
hn, βn (meaning with su�ciently slow growth/decay).

Link with the random walk among Bernoulli obstacles. Take a Bernoulli site
percolation with parameter p, meaning a collection O =

{
z ∈ Zd, ηz = 1

}
where ηz are

i.i.d. Bernoulli variables with parameter p, and write P = B(p)⊗Z its law on Z. Consider
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the random walk starting at 0 and let τ denote the time it �rst encounters O (called the
set of obstacles): one is interested in the asymptotic behavior of the survival probability
P(τ > n) as n → ∞ and of the behavior of the random walk conditionally on having
τ > n, see for example [13] and references therein. The annealed survival probability
EPP(τ > n) is given by

EP ⊗ E
[
1{Rn∩O=∅}

]
= E [P [∀z ∈ Rn, ηz = 0]] = E

[
(1− p)|Rn|

]
= E

[
e|Rn| log(1−p)

]
,

and we observe that this is exactly Zω,0
n,hp

with hp = − log(1 − p). Thus, for β = 0, our
model can be seen as an annealed version of the random walk among Bernoulli obstacles
with common parameter p = 1− e−h.

If we push the analogy a bit further and assume βωz − h ≤ 0 for all z ∈ Z, we
can see Zω,β

n,h as the annealed survival probability of the random walk among obstacles

Oω =
{
z ∈ Zd, ηωz = 1

}
where ηωz are i.i.d. Bernoulli variables with random parameter

pωz = 1 − eβωz−h. The averaging is done on the random walk (with law P) and the
Bernoulli variables (with law Pω =

⊗
z∈Z B(pωz )), while the parameters pωz = 1 − eβωz−h

(with law P) are quenched.

Link with the directed polymer model. Another famous model is given by consid-
ering a doubly indexed �eld (ωi,z)(i,z)∈N×Z and the polymer measure

dPω,β
n,h(S) =

1

Zω,β
n,h

exp
( n∑

i=0

(
βωi,Si

− λ(β)
))

dP(S) , λ(β) = logE
[
eβω
]
.

This is known as the directed polymer model (in contrast with our non-directed model) and
has been the object of an intense activity over the past decades, see [10] for an overview.
Let us simply mention that the partition function somehow solves a discretized version of
Stochastic Heat Equation (SHE) with multiplicative space-time noise ∂tu = ∆u+ βξ · u.
Hence, the convergence of the partition function under a proper scaling β = β(n), dubbed
intermediate disorder scaling, has raised particular interest in recent years: see [1, 8] for
the case of dimension 1 and [9] for the case of dimension 2, where this approach enabled the
authors to give a notion of solution to the SHE; see also [4] for the case of a heavy-tailed
noise.

The main di�erence with our model is how the disorder ω plays into the polymer
measure. Here, the polymer gets a new reward/penalty ωi,z at each step it takes, whereas
in our model such event only happens when reaching a new site of Z, in some sense
�consuming� ωz when landing on z for the �rst time.

Outline of the paper. This paper can be split into three parts. The �rst part in
Section 2 consists in the proof of Theorem 1.3, the second part and main part focuses on
the proof of Theorem 1.6. This proof is split into Section 3 where ω is assumed to be
Gaussian and Section 4 where we explain how to get the general statement thanks to a
coupling. A third part, in Section 5, studies the simpli�ed model where the random walk
is constrained to be non-negative. Precise results under some technical assumption help
us formulate the conjectures in (1.12) and (1.13).

Finally, we prove in Appendix A the generalization of Theorem 1.3 to the case when ω
does not have a �nite second moment, as announced. We also state some useful properties
of the Brownian meander that we use in our proofs in Appendix B. In Appendix C we
detail a way to couple Brownian meanders with a two-sided three-dimensional Bessel
process so that they are equal near 0 (i.e. we prove Proposition 1.5).
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2 Second order expansion and optimal position

We extensively use the following notation: For a given event A (which may depend on ω),
we write the partition function restricted to A as

Zω,β
n,h (A) := E

[
exp

( ∑
z∈Rn(S)

(
βωz − h

))
1A

]
, so that Pω,β

n,h(A) =
1

Zω,β
n,h

Zω,β
n,h (A).

This section consists in the proof of Theorem 1.3 and is divided into two steps:

� We �rst make use of a coarse-graining approach with a size δn1/3 to prove the
convergence of the rescaled logZω,β

n,h − 3
2
hT ∗

n . At the same time, we locate the main

contribution as coming from trajectories whose left-most point is around −u∗n1/3,
proving (1.5).

� We then prove that P-a.s., n−1/3M−
n converges in Pω,β

n,h -probability to −u∗, using the
previously step and the fact that Pω,β

n,h(A) = Zω,β
n,h (A)/Zω,β

n,h . Since we also have the
result of (1.1), we deduce (1.6) thanks to Slutsky's lemma as M−

n ,M
+
n and Tn are

de�ned on the same probability space.

2.1 Convergence of the log partition function

In order to lighten notation, we always omit integer parts in the following.

Proof of Theorem 1.3-(1.5). Recall (1.4), choose some δ > 0 and split the sum over x, y
depending on k1δn

1/3 ≤ x < (k1 + 1)δn1/3 and k2δn
1/3 ≤ y < (k2 + 1)δn1/3. By (1.4), we

can only consider the pairs (x, y) that satisfy |∆x,y
n | = |x + y − chn

1/3| ≤ εnn
1/3 < δn1/3

for n su�ciently large; note that this implies that (k1 + k2)δ ∈ {ch − δ, ch}.
We can now rewrite (1.4) as

logZω,β
n,h +

3

2
hchn

1/3 = ō(1) + logψh + log Λω,β
n,h(δ) , (2.1)

in which we de�ned

Λω,β
n,h(δ) :=

ch/δ∑
k1=0

ch
δ
−k1∑

k2=
ch
δ
−k1−1

Zω,β
n,h (k1, k2, δ) , (2.2)

with

Zω,β
n,h (k1, k2, δ) :=

∑
k1δn1/3≤x<(k1+1)δn1/3

k2δn1/3≤y<(k2+1)δn1/3

sin

(
xπ

x+ y

)
exp

(
β

y∑
z=−x

ωz −
3π2(∆x,y

n )2

2c4hn
1/3

(1 + ō(1))

)
.

(2.3)
Then let us de�ne

W±(u, v, δ) := X(1)
u +X(2)

v ± sup
u≤u′≤u+δ

∣∣X(1)
u′ −X(1)

u

∣∣± sup
v≤v′≤v+δ

∣∣X(2)
v′ −X(2)

v

∣∣. (2.4)

Theorem 1.3-(1.5) essentially derives from the following lemma.

10



Lemma 2.1. For any integers k1, k2 and any δ > 0, we have P-almost surely

W−(k1δ, k2δ, δ) ≤ lim
n→∞

logZω,β
n,h (k1, k2, δ)

βn1/6
≤ lim

n→∞

logZω,β
n,h (k1, k2, δ)

βn1/6
≤ W+(k1δ, k2δ, δ) .

Let us use this lemma to conclude the proof of the convergence (1.5). Since the sum
in (2.2) has 2ch

δ
terms, we easily get that

0 ≤ log Λω,β
n,h(δ)− max

0≤k1,k2≤ch/δ
(k1+k2)δ∈{ch−δ,ch}

logZω,β
n,h (k1, k2, δ) ≤ log

2ch
δ
.

Dividing by βn1/6 and taking the limit n→ ∞, Lemma 2.1 yields

lim
n→∞

1

βn1/6
log Λω,β

n,h(δ) ≤ max
0≤k1,k2≤ch/δ

(k1+k2)δ∈{ch−δ,ch}

W+(k1δ, k2δ, δ).

We write u = k1δ and v = k2δ, belonging to the �nite set Uδ de�ned as

Uδ :=
{
(u, v) ∈ (R+)

2 : u ∈
{
δ, 2δ, . . . , ⌊ch

δ
⌋δ
}
, u+ v ∈ {ch, ch − δ}

}
, (2.5)

so

lim
δ→0

lim
n→∞

log Λω,β
n,h(δ)

βn1/6
≤ lim

δ→0
max

0≤u,v≤ch
u+v∈{ch−δ,ch}

W+(u, v, δ) = sup
0≤u,v≤ch
u+v=ch

{
X(1)

u +X(2)
v

}
P-a.s. ,

where for the last identity, we have used the continuity of X(1) and X(2).
The same goes for lim inf

n→∞
n−1/6Λω,β

n,h(δ), with the lower bound W−(u, v, δ), which con-

cludes the proof.

Proof of Lemma 2.1. The proof is inspired by the proof of Lemma 5.1 in [5]. Recall the
de�nition (2.3) of Zω,β

n,h (k1, k2, δ) and write for the disorder term:

(
Σ+

k2δn1/3 + Σ−
k1δn1/3

)
−Rδ

n(k1δ, k2δ) ≤
y∑

z=−x

ωz ≤
(
Σ+

k2δn1/3 + Σ−
k1δn1/3

)
+Rδ

n(k1δ, k2δ)

(2.6)
where the error term Rδ

n is de�ned for u, v ≥ 0 by

Rδ
n(u, v) := max

un1/3+1≤j≤(u+δ)n1/3−1

∣∣Σ−
j − Σ−

un1/3

∣∣+ max
vn1/3+1≤j≤(v+δ)n1/3−1

∣∣Σ+
j − Σ+

vn1/3

∣∣ .
Using the coupling ω̂ and Lemma A.5 of [5] (for Lévy processes), P-a.s., for all ε > 0, for
all n large enough (how large depends on ε, δ, ω),

1

n1/6
Rδ

n(u, v) ≤ ε+ sup
u≤u′≤u+ε+δ

∣∣X(1)
u′ −X(1)

u

∣∣+ sup
v≤v′≤v+ε+δ

∣∣X(2)
v′ −X(2)

v

∣∣
(∣∣∣ 1

n1/6
Σ+

vn1/3 −X(2)
v

∣∣∣ ∨ ∣∣∣ 1

n1/6
Σ−

un1/3 −X(1)
u

∣∣∣) ≤ ε ,
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uniformly in u and v, since Uδ is a �nite set. Thus, letting n→ ∞ then ε→ 0 we obtain
that P-almost surely,

lim
n→∞

1

βn1/6
logZω,β

n,h (k1, k2, δ) ≤ sup
k1δn1/3≤x<(k1+1)δn1/3

k2δn1/3≤y<(k2+1)δn1/3

lim
n→∞

1

n1/6

y∑
z=−x

ωz ≤ W+(u, v, δ) .

in which we recall the de�nition (2.4) of W±(u, v, δ).

On the other hand, since Zω,β
n,h (k1, k2, δ) is a sum of non-negative terms, we get a simple

lower bound by restricting to con�gurations with almost no �uctuation around T ∗
n :

logZω,β
n,h (k1, k2, δ)

n1/6
≥ sup

|∆x,y
n |≤1

{
β

n1/6

y∑
z=−x

ωz −
3π2

2c4h

(∆x,y
n )2

n1/2

}
− ō(1)

=
β

n1/6
sup

|∆x,y
n |≤1

y∑
z=−x

ωz −
3π2

2c4h
√
n
− ō(1),

in which the supremum is taken on the (x, y) that satisfy the criteria of Zω,β
n,h (k1, k2, δ),

see (2.3). In the above, the ō(1) is deterministic and comes from the contribution of
n−1/6 log sin( xπ

x+y
); in the case where k1 = 0, we restrict the supremum to additionally

having x ̸= 0, so that we always have sin( xπ
x+y

) ≥ c
x+y

∼ c
n1/3 .

After the exact same calculations as above, we get the lower bound

lim inf
n→∞

1

βn1/6
logZω,β

n,h (k1, k2, δ) ≥ W−(u, v, δ).

Lemma 2.2. The quantity supu+v=ch

{
X

(1)
v +X

(2)
u

}
= supu∈[0,ch]Xu is almost surely pos-

itive and �nite, and attained at a unique point u∗ of [0, ch].

Proof. Recall that X has the same law as
√
2W + X

(2)
ch where Wu = 1√

2
(X

(1)
u + X

(2)
u ) is

a standard Brownian motion independent from X
(2)
ch . Thus it is a classical result, see for

example [20, Lemma 2.6].

2.2 Path properties under the polymer measure

Proof of Theorem 1.3-(1.6). The proof essentially reduces to the following lemma.

Lemma 2.3. For any h, β > 0, recall u∗ := argmaxu∈[0,ch]
{
X

(1)
u +X

(2)
ch−u

}
. Then, P-a.s.

1

n1/3
M−

n

Pω,β
n,h−−−→

n→∞
−u∗ .

By Slutsky's Lemma (for a �xed ω in the set of ω's for which both convergences are
true), Lemma 2.3 combined with (1.1) readily implies that P-a.s. n−1/3M+

n converges to
ch − u∗ in Pω,β

n,h -probability. Note that Slutsky's lemma can be used on M+
n ,M

−
n , Tn since

they are all de�ned on the same probability space.

Proof of Lemma 2.3. The proof is analogous to what is done in [5]. De�ne the following
set

U ε,ε′ :=

{
u ∈ [0, ch] : sup

s,|s−u|<ε

{
X(1)

s +X
(2)
ch−s

}
≥ Xu∗ − ε′ > 0

}
.
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We shall prove that for almost all ω, we have Pω,β
n,h

(
1

n1/3 |M−
n | ̸∈ U ε,ε′

)
→ 0. For this, we

denote by Aε,ε′
n the event

{
1

n1/3 |M−
n | ̸∈ U ε,ε′

}
. As

logPω,β
n,h

(
Aε,ε′

n

)
= logZω,β

n,h (A
ε,ε′

n )− logZω,β
n,h

=

(
logZω,β

n,h (A
ε,ε′

n ) +
3

2
hchn

1/3

)
−
(
logZω,β

n,h +
3

2
hchn

1/3

)
,

we only need to prove that lim
n→∞

1
βn1/6

[
logZω,β

n,h (Aε,ε′
n ) + 3

2
hchn

1/3
]
< Xu∗ . Indeed, using

the convergence (1.5) in Theorem 1.3, we then get that lim
n→∞

1
βn1/6 logP

ω,β
n,h

(
Aε,ε′

n

)
< 0.

We apply the same decomposition we used in the proof of Theorem 1.3 over indices k1
such that −[k1, k1 + 1)δn1/3 ̸⊂ U ε,ε′ . Thus,

lim
δ↓0

lim
n→∞

1

βn1/6

[
logZω,β

n,h (A
ε,ε′

n ) +
3

2
hT ∗

n

]
≤ sup

u̸∈Uε,ε′

{
X(1)

u +X
(2)
ch−u

}
≤ Xu∗ − ε′ ,

so we indeed have Pω,β
n,h(Aε,ε′

n ) → 0. Using that
⋂

ε′>0 U ε,ε′ ⊂ B2ε(u∗) by unicity of the

supremum, we have thus proved that, P-a.s., n−1/3M−
n → −u∗ in Pω,β

n,h -probability.

3 Proof of Theorem 1.6 for a Gaussian environment

In this section we prove Theorem 1.6 under the assumption that ω0 has a Gaussian
distribution. We take full advantage of the fact that in this case, the coupling with the
Brownian motions X(1), X(2), is just an identity: it will thus not create any coupling error
and allows us to work directly on these processes. The proof still requires some heavy
calculations as we must �rst �nd what are the relevant trajectories in the factorized log-
partition function.

Going forward, we take the following setting: random variables ωz are i.i.d. with
normal distribution N (0, 1) and X(1), X(2) are standard Brownian motions such that

1

n1/6

x∑
z=1

ω−z = X
(1)

xn−1/3 ,
1

n1/6

y∑
z=0

ωz = X
(2)

yn−1/3 . (3.1)

We will adapt the following proof to a general environment in Section 4 by controlling
the error term due to the coupling.

We de�ne

Z̄ω,β
n,h := Zω,β

n,h e
3
2
hT ∗

n−βn1/6Xu∗ , Z̄ω,β
n,h (A) := Zω,β

n,h (A) e
3
2
hT ∗

n−βn1/6Xu∗ ,

so that (1.7) can be rewritten as a statement regarding the convergence of n−1/9 log Z̄ω,β
n,h .

Here are the four steps of the proof:

� We �rst rewrite Z̄ω,β
n,h to make Xxn−1/3 −Xu∗ appear. Having this negative quantity

makes it easier to �nd the relevant trajectories since when |X|M−
n |n−1/3 − Xu∗ | is

too large for a given trajectory, the relative contribution of this trajectory to the
partition function goes exponentially to 0, meaning it has a low Pω,β

n,h -probability.
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� We prove the P-almost sure convergence of n−1/9 log Z̄ω,β
n,h restricted to the event

AK,L
n,ω =

{
|∆n| ≤ Kn2/9, |M−

n + u∗n
1/3| ≤ Ln2/9

}
towards a positive value. It con-

sists again of a coarse-graining approach where each component Z̄ω,β
n,h (u, v) converges

to Yu,v − ch,β(u+ v)2. This leads to de�ning (U ,V) via a variational problem.

� We prove that n−1/9 log Z̄ω,β
n,h restricted to (AK,L

n,ω )
c is almost surely negative as n→

∞ as soon as K or L is su�ciently large. Coupled with the previous convergence
towards a positive limit, we prove that all of these trajectories have a negligible
contribution.

� Afterwards, the convergences in Pω,β
n,h -probability are derived in the same way as for

Theorem 1.3.

Corollary 3.1 (of Lemma 2.3). There exists a vanishing sequence (εn)n≥1 such that

Zω,β
n,h = (1 + ō(1))Zω,β

n,h

(
|M−

n n
−1/3 + u∗| ≤ εn

)
P-a.s. as n→ ∞ .

Going forward, we will work conditionally on u∗. Recall that 1√
2
(X − X

(2)
ch ) has the

law of a standard Brownian motion, thus according to Proposition 1.4, the processes
(Xu∗ −Xu∗−t, t ≥ 0) and (Xu∗ −Xu∗+t, t ≥ 0) are two Brownian meanders, respectively
on [0, u∗] and [0, ch − u∗]. Recall that since u∗ follows the arcsine law on [0, ch], these
intervals are P-almost surely nonempty.

3.1 Rewriting the partition function

Thanks to (1.4) and Theorem 1.3, we have shown that

Z̄ω,β
n,h = (1 + ō(1))ψh sin

(
u∗π

ch

) ∑
|x−u∗n1/3|≤εnn1/3

|y−(ch−u∗)n1/3|≤εnn1/3

exp

(
βn1/6Ωx,y

n − 3π2(∆x,y
n )2

2c4hn
1/3

(1 + ō(1))

)
,

(3.2)
with

Ωx,y
n :=

1

n1/6

x∑
z=1

ω−z +
1

n1/6

y∑
z=0

ωz −Xu∗ = X
(1)

xn−1/3 +X
(2)

yn−1/3 −Xu∗ , (3.3)

where for the last identity we have used the relation (3.1) between X and ω. Both ō(1)
are deterministic and the �rst one includes a term in εn.

Note that Xu∗ − (X
(1)

xn−1/3 +X
(2)

yn−1/3

)
is not necessarily positive since the supremum in

(1.5) is taken over non negative u and v such that u+ v = ch, whereas x+ y ̸= chn
1/3 in

the general case. However we can write(
X

(1)

xn−1/3 +X
(2)

yn−1/3

)
=
(
X

(1)

xn−1/3 +X
(2)

ch−xn−1/3

)
+
(
X

(2)

yn−1/3 −X
(2)

ch−xn−1/3

)
,

so that Ωx,y
n can be rewritten as

Ωx,y
n := − (Xu∗ −Xxn−1/3) +X

(2)

yn−1/3 −X
(2)

ch−xn−1/3 . (3.4)

Note that it is not problematic that ch − xn−1/3 can be negative if y is small enough,
since X(2) can be de�ned on the real line. Although (3.4) may seem more complex to
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study than (3.3), having a term that is always non-positive is useful to isolate the main
contributions to the partition function.

Recall that Xu∗ −Xxn−1/3 can be expressed in terms of Brownian meanders depending
on the sign of u∗ − xn−1/3, see Proposition 3.7. More precisely, there exist M+,M− two
independent Brownian meanders on [0, 1] such that

Xu∗ −Xxn−1/3 =
√
u∗M−

u∗−xn−1/3

u∗

1{u∗≥xn−1/3} +
√
ch − u∗M−

xn−1/3−u∗
ch−u∗

1{u∗<xn−1/3} . (3.5)

Heuristic. In (3.2) and in view of (3.4), the term inside the exponential can be split
into three parts. The �rst part is −βn1/6 (Xu∗ −Xxn−1/3), which is negative and of order

n1/6|u∗ − xn−1/3|1/2. The second term is βn1/6(X
(2)

yn−1/3 −X
(2)

ch−xn−1/3), which is of order at

most (∆n)
1/2. The last term is −c̃h(∆n)

2n−1/3. We thus can easily compare the second
term to the last one: dominant terms in (1.4) are all negative when (∆n)

2n−1/3 ≫ (∆n)
1/2

or in other words if ∆n ≫ n2/9. Thus we will show that the corresponding trajectories
have a negligible contribution to Zω,β

n,h , and that we can restrict the partition function

to trajectories such that ∆n = Ō(n2/9). We can apply the same reasoning to the �rst

term, which must verify n1/6(X
(2)

yn−1/3 −X
(2)

ch−xn−1/3) = Ō(n1/9), from which we will deduce

|M−
n n

−1/3 + u∗| = Ō(n−1/9).

3.2 Restricting the trajectories

Our goal is now to characterize the main contribution to the partition function directly
in terms ofM−

n andM+
n or equivalent quantities, and not in terms of the processes. With

this goal in mind, we de�ne, for K,L ≥ 0:

Z̄>
n,ω(K,L) := Z̄ω,β

n,h

(
|∆n| ≥ Ln2/9, Kn2/9 ≤ |M−

n + u∗n
1/3| ≤ εnn

1/3
)

and
Z̄≤

n,ω(K,L) := Z̄ω,β
n,h

(
|∆n| ≤ Ln2/9, |M−

n + u∗n
1/3| ≤ Kn2/9 ≤ εnn

1/3
)
.

In the next section, we will prove in particular that P-a.s., limn→∞ n−1/9 log Z̄≤
n,ω(K,L) >

0, see Proposition 3.6 and Lemma 3.9.
The following proposition shows that limn→∞ n−1/9 log Z̄>

n,ω(K,L) < 0 P-a.s. for K or
L large enough, meaning that trajectories in Z̄>

n,ω(K,L) have a negligible contribution.

Proposition 3.2. Uniformly in n ≥ 1 such that εn <
1
2
, we have

lim
K→∞

P
(

1

n1/9
log Z̄>

n,ω(K, 0) ≥ −1

)
= lim

L→∞
P
(

1

n1/9
log Z̄>

n,ω(0, L) ≥ −1

)
= 0 .

The proof boils down to upper bounds on both probabilities, uniform in n, and a
use of monotone convergence theorem. We �rst explain a small argument that we will
use repetitively throughout the paper when we don't need to have exact values for the
constants. Take an interval I and real numbers α, λ > 0. In the following Lemmas we
will need to compute probabilities such as

P
(

inf
|u|∈λI

{Xu∗ −Xu∗+u} ≤ α
)
≤ 2 max

σ∈{−1,+1}
P
(
inf
u∈λI

{Xu∗ −Xu∗+u} ≤ α
)
.
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Recall that for both values of σ we can express Xu∗ −Xu∗+u as a Brownian meander
Mσ on [0, 1] by using the scaling given in (3.5). Taking for example σ = +1, we have

P
(
inf
u∈λI

{Xu∗ −Xu∗+u} ≤ α
)
= P

(
inf

u∈ λ
ch−u∗

I

√
ch − u∗M+

u ≤ α
)
.

Now, if λ and α can be multiplied by some positive number (typically when we don't
need to have exact values), we can freely replace them by λ(ch − u∗) and α

√
ch − u∗ in

order to ease the notation.

Lemma 3.3. There is a positive constant C = C(h, β), uniform in L, n ≥ 1 such that

P
(

1

n1/9
log Z̄>

n,ω(0, L) ≥ −1

)
≤ e−CL3 −−−→

L→∞
0 . (3.6)

Proof. We can write Z̄>
n,ω(0, L) =

∑
k,l≥0 Z̄

>
n,ω(0, L)k,l with

Z̄>
n,ω(0, L)k,l = Z̄ω,β

n,h

(
|∆n| ∈ 2l[1, 2)Ln2/9 , ||M−

n |n−1/3 − u∗| ∈ [k, k + 1)2lLn−1/9
)
.

Using (3.2), we have

Z̄>
n,ω(0, L)k,l ≤ Ch(εnn

1/3)2 exp

(
βn1/6(X (2)

k,l −Mn
k,l)−

3π2

2c4h
(2lLn2/9)2n−1/3

)
,

where we have set

Mn
k,l := inf

|u−u∗|∈[k,k+1)2lLn−1/9
Xu∗ −Xu , X (2)

k,l := sup
|∆x,y

n |∈2l[1,2)Ln2/9

|u−u∗|∈[k,k+1)2lLn−1/9

|X(2)
v −X

(2)
ch−u|

with u = xn−1/3 and v = yn−1/3. Thus, a union bound yields

P
(
Z̄>

n,ω(0, L) ≥ e−n1/9
)
≤

+∞∑
k,l=0

P

(
Ch(εnn

1/3)2eβn
1/6(X (2)

k,l −Mn
k,l)e

− 3π2

2c4
h

(2lL)2n1/9

≥ e−n1/9

2l+1

)

≤
+∞∑
k,l=0

P
(
βn1/6(X (2)

k,l −Mn
k,l) ≥ c′hn

1/922lL2
)
,

where we have used that for n large enough (how large depends only on h)

n1/9(
3π2

2c4h
22lL2 − 1)− (l + 1) log 2− 2 log(εnn

1/3)− logCh ≥ c′hn
1/922lL2

for some constant c′h, uniformly in L ≥ c2h/π and l ≥ 0. We now work out an upper bound

on P
(
X (2)

k,l −Mn
k,l ≥ c′hn

−1/1822lL2/β
)
, we �rst observe that writing uk = u∗+2lkLn−1/9,

we have |ch − uk − v| ≤ |ch − u − v| + |u − uk| ≤ 2l+1Ln−1/9 on the intervals where the

supremum are taken in X (2)
k,l . Thus, we have the upper bound

X (2)
k,l ≤ sup

|ch−uk−v|≤2 2lL

n1/9

|X(2)
v −X

(2)
ch−uk

|+ sup
|u−uk|≤ 2lL

n1/9

|X(2)
ch−uk

−X
(2)
ch−u| . (3.7)
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Write X (2),v
k,l and X (2),u

k,l for the �rst and the second term of the right-hand side of (3.7)

respectively, as well as αl := c′hn
−1/1822lL2/β. We �rst need to control the term k = 0, in

which we know that Mn
0,l = 0, then we are left to bound

+∞∑
l=0

P
(
βn1/6X (2)

0,l ≥ c′hn
1/922lL2

)
≤

+∞∑
l=0

[
P
(
X (2),v

0,l ≥ αl

2

)
+ P

(
X (2),u

0,l ≥ αl

2

)]
.

By the re�ection principle for Brownian motion, both of these variables are the modulus
of a Gaussian of variance 2 2lL

n1/9 and 2lL
n1/9 respectively. Thus, we have the upper bound

+∞∑
l=0

P
(
βn1/6X (2)

0,l ≥ c′hn
1/922lL2

)
≤

+∞∑
l=0

c0

[
e−c123lL3

+ e−c223lL3
]
≤ (cst.)

+∞∑
l=0

e−c23lL3

.

for some constants c0, c1, c2, c > 0.
We now focus on k ≥ 1 and decompose on whether Mn

k,l is less or greater than

k1/8(2lL)1/2n−1/18. On
{
Mn

k,l ≤ k1/8(2lL)1/2n−1/18
}
, we use Hölder inequality for p > 1:

P

(
Mn

k,l ≤ k1/8
√
2lL

n1/18
,X (2)

k,l −Mn
k,l ≥ αl

)
≤ P

(
Mn

k,l ≤ k1/8
√
2lL

n1/18

)1/p

P
(
X (2)

k,l ≥ αl

)1− 1
p
.

Since k can we taken arbitrarily, in the de�nition of Mn
k,l we can replace Xu∗ −Xu∗+u

by Mu for M a Brownian meander on [0, 1]. Thus, with the help of Corollary B.2 with
λ = 2 and the previous argument (L and k can be taken up to a positive multiplicative
constant), we compute

P
(
Mn

k,l ≤ k1/8
√
2lLn−1/18

)
≤ 16k1/8√

πk

(
1 ∧ (2k1/8)2

2k

)
+ (cst.)k5/4

e−2k1/4

1− e−8k1/4

≤ (cst.)k−9/8 + (cst.)k1/4
e−2k5/4

1− e−8k1/4
≤ (cst.)k−9/8 .

And for the other probability, we use

P
(
X (2)

k,l ≥ αl

)
= P

(
X (2)

0,l ≥ αl

)
≤ (cst.)e−c23lL3

.

Therefore,

P
(
Mn

k,l ≤ k1/8
√
2lLn−1/18,X (2)

k,l −Mn
k,l ≥ αl

)
≤ (cst.)k−9/8pe−c(1− 1

p
)23lL3

which has a �nite sum in k ≥ 1 and l ≥ 0 that goes to 0 when L → +∞ when p is
su�enciently close to 1.

On the other hand,

P
(
Mn

k,l ≥ k1/8
√
2lLn−1/18,X (2)

k,l −Mn
k,l ≥ αl

)
≤ P

(
X (2)

k,l ≥ αl + k1/8
√
2lLn−1/18

)
,

and again by (3.7) and the Brownian re�ection principle,

P
(
X (2)

k,l ≥ αl + k1/8
√
2lLn−1/18

)
≤ Ce

−c
(αl+k1/8

√
2lLn−1/18)2

2lLn−1/9 ≤ (cst.)e−c123lL3

e−c2k1/4 ,

which is again summable in k, l, with a sum that goes to 0 when L→ +∞. In conclusion,

we proved that P
(
Z̄>

n,ω(0, L) ≥ e−n1/9
)
is bounded by ce−CL3

, uniformly in n large enough,

thus proving the lemma.
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Lemma 3.4. There is a positive C such that for any n ≥ 1 such that εn <
1
2
, any K ≥ 1

P
(

1

n1/9
log Z̄>

n,ω(K, 0) ≥ −1

)
≤ C

K1/12
−−−→
K→∞

0 . (3.8)

Proof. We will use the same strategy as for Lemma 3.3, meaning controlling both M−
n +

u∗n
1/3 and ∆n, instead of only M−

n + u∗n
1/3. Thus, we consider

Z̄>
n,ω(K, 0)k,l = Z̄ω,β

n,h

(
|M−

n + u∗n
1/3| ∈ 2k[1, 2)Kn2/9, |∆n| ∈ [l, l + 1)n2/9

)
,

and when summing on l ≥ 0 we get Z̄>
n,ω(K, 0)k = Z̄ω,β

n,h

(
|M−

n + u∗n
1/3| ∈ 2k[1, 2)Kn2/9

)
similar to the notation in Lemma 3.3. Let us introduce

ξk,l := − inf
|u|∈2k[1,2)Kn−1/9

{Xu∗ −Xu∗+u}+ sup
|∆n|∈[l,l+1)Ln2/9

|X(2)
v −X

(2)
ch−u| .

With the same considerations as before, we have by a union bound

P
(
Z̄>

n,ω(K, 0) ≥ e−n1/9
)
≤

+∞∑
k,l=0

2kK≤εnn1/9

P

(
Ch(εnn

1/3)2eβn
1/6ξk,le

− 3π2

2c4
h

l2n1/9

≥ e−n1/9

2k+l+1

)
.

(3.9)
Observe that each probability in the sum is equal to

P
(
βn1/6ξk,l ≥

(3π2

2c4h
l2 − 1

)
n1/9 − (k + l + 1) log 2− 2 log(εnn

1/3)− logCh

)
.

Since we have the restriction 2kKn−1/9 ≤ εn, assuming K ≥ 1 we have k log 2 ≤
log(εnn

1/9), thus there is a constant c > 0 such that for n large enough (how large
depends only on h),(3π2

2c4h
l2 − 1

)
n1/9 − (k + l + 1) log 2− 2 log(εnn

1/3) ≥
(
cl2 − 2

)
n1/9 ,

uniformly in k,K, l. Therefore, we get that

P
(
Z̄>

n,ω(K, 0) ≥ e−n1/9
)
≤

+∞∑
k,l=0

2kK≤εnn1/9

P
(
βn1/18ξk,l ≥ cl2 − 2

)
.

Let us de�ne Cn,l := sup|∆x,y
n |∈[l,l+1)n2/9 |X(2)

v −X
(2)
ch−u|−β−1n−1/18 (cl2 − 2), with again

u = xn−1/3 and v = yn−1/3. Recalling the de�nition of ξk,l above we have

P
(
βn1/18ξk,l ≥ cl2 − 2

)
= P

(
inf

|u|∈2k[1,2)Kn−1/9
{Xu∗ −Xu∗+u} ≤ Cn,l

)
.

Let us now decompose over the values of Cn,l. Since Xu∗ − Xu ≥ 0, when Cn,l < 0 the
probability equals 0, so we can intersect with Cn,l ≥ 0. We have

P
(
βn1/18ξk,l ≥ cl2 − 2

)
≤

+∞∑
j=1

P
(

inf
|u|∈2k[1,2)Kn−1/9

Xu∗ −Xu∗+u ≤ jn−1/18, Cn,l ∈ [j − 1, j)n−1/18

)

≤
+∞∑
j=1

P
(

inf
|u|∈2k[1,2)Kn−1/9

Xu∗ −Xu∗+u ≤ jn−1/18
)1/2

P
(
Cn,l ∈ [j − 1, j)n−1/18

)1/2
,
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where we have used Cauchy-Schwartz inequality.
First, let us treat the last probability: using the Brownian scaling, we have

P
(
Cn,l ∈ [j − 1, j)n−1/18

)
= P

(
sup

r∈[l,l+1)

|X(2)
r | − β−1(cl2 − 2) ∈ [j − 1, j)

)
≤ P

(
sup

r∈[l,l+1)

|X(2)
r | ≥ j − 1 + β−1(cl2 − 2)

)
.

We can get a bound on this probability using usual Gaussian bounds and the re�ection
principle:

P
(

sup
r∈[l,l+1)

|X(2)
r | ≥ α

)
≤ P

(
sup

r∈[0,l+1)

|X(2)
r | ≥ α

)
≤ 2e−

α2

2(l+1) .

Then, we substitute α with j − 1 + β−1(cl2 − 2) to get the upper bound

P
(
Cn,l ∈ [j − 1, j)n−1/18

)
≤ 2e−c l4

l+1 e−
(j−c′)2
2(l+1) e−c l2

l+1
(j−c′) ,

for some constants c, c′ (that depend only on h, β).
For the other probability, with the argument explained previously (since K and j can

again be taken up to a positive multiplicative constant), we only need to get a bound on

P
(

inf
u∈2k[1,2)Kn−1/9

M+
u ≤ jn−1/18

)
. (3.10)

For σ = −1 we can do the same reasoning, thus we only need to get a bound for (3.10).
We use Corollary B.2: for any λ > 0, we have

P
(

inf
u∈[s,t]

M+
u ≤ a

)
≤ 8λa√

πs

(
1 ∧ (λa)2

2s

)
+ (cst.)

a
√
t

t− s

e−
2

t−s
a2(λ−1)2

1− e−
2

t−s
a2λ2

,

which translates for λ = (2kK)1/3 to

P
(

inf
u∈2k[1,2)Kn−1/9

M+
u ≤ jn−1/18

)
≤ 8j(2kK)1/3√

π2kK
+
j
√
2kK

2kK

(cst.)

1− e−2(2kK)2/3 j2

2kK

≤ 16j√
π(2kK)1/6

+ (cst.)
j

2kK
(2kK)5/6 ≤ (cst.)

j

(2kK)1/6

where we used that 1
x(1−e−α/x)

is bounded for x ≥ 1, uniformly in α ≥ 1 (note that j ≥ 1).

Together with the above, this yields the following upper bound for 2kKn−1/9 ≤ εn <
1
2
:

P
(
βn1/6ξk,l ≥ n1/9

(
cl2 − 2

))
≤ (cst.)

(2kK)1/12
e−cl3

+∞∑
j=1

je−
(j−c′)2
2(l+1) e−cl(j−c′) . (3.11)

The sum on j ≥ 1 is bounded from above by c′′(l + 1)3 (where the constant c′′ does
not depend on l ≥ 0), so we �nally get

P
(
Z̄>

n,ω(K, 0) ≥ e−n1/9
)
≤

+∞∑
k,l=0

P
(
βn1/18ξk,l ≥ cl2 − 2

)
≤ (cst.)

K1/12

+∞∑
k,l=0

1

2k/6
(l + 1)3e−cl3 .

The lemma follows since the last sum is �nite.
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Corollary 3.5. We have the following convergence

lim
K→∞

P
(
lim
n→∞

1

n1/9
log Z̄>

n,ω(K, 0) ≥ −1

)
= lim

L→∞
P
(
lim
n→∞

1

n1/9
log Z̄>

n,ω(0, L) ≥ −1

)
= 0 .

Moreover, P-a.s., there exists K0 = K0(ω) and L0 = L0(ω) such that, for all K ≥ K0 and
L ≥ L0, Z̄

ω,β
n,h = (1 + ō(1))Z̄ω,β

n,h

(
|∆n| ≤ Ln2/9 ; |M−

n + u∗n
−1/3| ≤ Kn−1/9

)
.

Proof. Using Proposition 1.5 and Section 1.5, we can redo the proof of Proposition 3.2
using the processes B and Y for n ≥ n0(ω). Indeed, take such n ≥ n0(ω) such that
εn < δ(ω) (recall its de�nition from Proposition 1.5), then using the same notation as in
the proofs of Lemmas 3.4,3.3, we have

− inf
|u|∈2k[1,2)K

n1/18{Xu∗ −Xu∗+un−1/9} = − inf
|u|∈2k[1,2)K

Bu .

On the other hand,

X(2)
v −X

(2)
ch−u =

1

2
(Ych−v −Xch−v + Yu −Xu)

since ch − v = ∆x,y
n n−1/3 + u and u = u∗ + s with s ≤ εn ≤ δ0(ω), this is equal to

1
2
(Ych−v −Xch−v +Yu −Xu), which means that

n1/18 sup
ch−u−v∈n−1/9

|X(2)
v −X

(2)
ch−u| =

1

2
sup

r∈[l,l+1),s≤δ

(Yr+s −Br+s +Ys −Bs) .

Thus, we see that the random quantities ξk,l and X (2)
l do not depend on n when n is large

enough (meaning n ≥ n0), thus

lim
n→∞

1

n1/9
log Z̄>

n,ω(K, 0) =
1

n1/9
log Z̄>

n,ω(K, 0) ,

the same being true for Z̄>
n,ω(0, L), which proves the announced convergences.

The existence of K0 and L0 follows from Borel-Cantelli lemma and the monotony of
Z̄>

n,ω(K,L) in both of its arguments, coupled with the fact that we prove next section that

lim inf
n→∞

n−1/9 log Z̄≤
n,ω(K,L) > 0.

3.3 Convergence of the log partition function

In this section we study the convergence of n−1/9 log Z̄≤
n,ω(K,L) for �xed K and L (large),

in which we recall that Z̄≤
n,ω(K,L) := Z̄ω,β

n,h

(
|∆n| ≤ Ln2/9, |M−

n + u∗n
1/3| ≤ Kn2/9

)
. It is a

bit more convenient to transform the condition |∆n| ≤ L into the condition |M+
n − (ch −

u∗)n
1/3| ≤ Ln2/9, which restricts to the same trajectories after adjusting the value of L.

Finally, since we plan to take the limit for K,L→ ∞ it is enough to treat the case where
K = L. Thus, we de�ne

Z̄≤K
n,ω := Z̄ω,β

n,h

(
|M−

n + u∗n
1/3| ≤ Kn2/9, |M+

n − (ch − u∗)n
1/3| ≤ Kn2/9

)
.

As explained in the beginning of this section, as K → ∞, Z̄≤K
n,ω contains all the relevant

trajectories giving the main contribution to the partition function.
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Proposition 3.6. For any h, β > 0 and any K > 1, P-almost surely,

lim
n→∞

√
2

βn1/9
log Z̄≤K

n,ω = sup
−K≤u,v≤K

{
Yu,v −

3π2

βc4h
√
2

(
u+ v

)2}
,

with Yu,v := Yu −Y−v − χ(Bu +Bv) and (B,Y) as in Proposition 1.5.

Proof of Proposition 3.6. For any δ > 0, we de�ne the following subsets of N

C −
n,δ(k1) :=

{
x :

⌊
x− u∗n

1/3

δn2/9

⌋
= k1

}
, C +

n,δ(k2) :=

{
y :

⌊
y − (ch − u∗)n

1/3

δn2/9

⌋
= k2

}
(3.12)

as well as Cn,δ(k1, k2) := C −
n,δ(k1)× C +

n,δ(k2). Recall (3.2) and the notation

Ωn(x, y) = Ωx,y
n = − (Xu∗ −Xxn−1/3) +X

(2)

yn−1/3 −X
(2)

ch−xn−1/3 .

Similarly to the proof of Theorem 1.3, we de�ne

Λ̄ω,β
n,h(K, δ) :=

K/δ∑
k1=−K/δ

K/δ∑
k2=−K/δ

Z̄ω,β
n,h (k1, k2, δ) ,

where

Z̄ω,β
n,h (k1, k2, δ) :=

∑
(x,y)∈Cn,δ(k1,k2)

exp

(
−βn1/6Ωx,y

n − ĉh
(∆x,y

n )2

n1/3
(1 + ō(1))

)
. (3.13)

with ĉh = 3π2

2c4h
. Then, we can write

log Z̄≤K
n,ω = log

(
1 + ō(1)

)
ψh sin

(
πu∗
ch

)
+ log Λ̄ω,β

n,h(K, δ) .

Note that both ō(1) → 0 are the deterministic quantities mentioned in Section 1.2. Again,
we only have to get bounds on the maximum of Z̄ω,β

n,h (k1, k2, δ), as

0 ≤ log Λ̄ω,β
n,h(K, δ)− max

−K
δ
≤k1,k2≤K

δ

log Z̄ω,β
n,h (k1, k2, δ) ≤ 2 log

4K

δ
, (3.14)

and n−1/92 log 4K
δ

goes to 0 as n→ ∞.

Now, if we factorize Z̄ω,β
n,h (k1, k2, δ) by the contribution of x = x̂k1 := u∗n

1/3 + k1δn
2/9

and y = ŷk2 := (ch − u∗)n
1/3 + k2δn

2/9 respectively, we have

Z̄ω,β
n,h (k1, k2, δ) = eΞ(k1,k2,δ)

∑
(x,y)∈Cn,δ(k1,k2)

e
−βn1/6ζ

k1,k2
n,δ ( x

n1/3
, y

n1/3
)+

ĉh

n1/3 ((k1+k2)2δ2n4/9−(∆x,y
n )2)

where we have de�ned

Ξ(k1, k2, δ) := βn1/6Ωn(x̂k1 , ŷk2)− n1/9ĉh
(
k1δ + k2δ

)2
(3.15)

and

ζk1,k2n,δ (u, v) := Ωn(un
1/3, vn1/3)− Ωn(x̂k1 , ŷk2)

= Xu −X
u∗+

k1δ

n1/9
−X

(2)
ch−u +X

(2)

ch−u∗− k1δ

n1/9

+X(2)
v −X

(2)

ch−u∗+
k2δ

n1/9

.
(3.16)
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Finally, de�ne

R̄n(k1, k2, δ) := sup
(x,y)∈Cn,δ(k1,k2)

{
βn1/6

∣∣∣ζk1,k2n,δ (
x

n1/3
,
y

n1/3
)
∣∣∣+ ĉh

n1/3

∣∣(k1 + k2)
2δ2n4/9 − (∆x,y

n )2
∣∣} ,

then we have∣∣∣log Z̄ω,β
n,h (k1, k2, δ)− Ξ(k1, k2, δ)

∣∣∣ ≤ R̄n(k1, k2, δ) + log |Cn,δ(k1, k2)|. (3.17)

Since n−1/9 log |Cn,δ(k1, k2)| → 0 as n → ∞, in the rest of the proof we have to control
n−1/9R̄n(k1, k2, δ) and then prove the convergence of n−1/9Ξ(k1, k2, δ). Afterwards we will
plug those convergences in (3.14) and (3.17) to prove Proposition 3.6.

Control of R̄n(k1, k2, δ). We now seek a bound on R̄n(k1, k2, δ). First we have∣∣∣∣n1/9
(
k1δ + k2δ

)2 − (∆x,y
n )2

n1/3

∣∣∣∣ ≤ 2
k1δ + k2δ

n1/9

∣∣x+ y − chn
1/3 − k1δn

2/9 − k2δn
2/9
∣∣

≤ 4|k1 + k2|δ2n1/9 ≤ 4Kδn1/9 .

To control the random part ζk1,k2n,δ (xn−1/3, yn−1/3), we use the following proposition,
that we prove afterwards.

Proposition 3.7. Let δj = 2−j, j ∈ N, then, P-almost surely, there exists a positive Cω

such that for any n and j large enough, any k1, k2 ∈ J−K
δj
, K
δj

K, we have

n1/6 sup
(x,y)∈Cn,δj

(k1,k2)

∣∣∣ζk1,k2n,δ (xn−1/3, yn−1/3)
∣∣∣ ≤ Cωδ

1/4
j n1/9 .

We will still denote this parameter by δ while keeping in mind that δ → 0 along a
speci�c sequence. Assembling these results, we see that

1

n1/9

∣∣R̄n(k1, k2, δ)
∣∣ ≤ βCωδ

1/4 + 4ĉhKδ =: ε(ω, δ) . (3.18)

Thus, n−1/9
∣∣R̄n(k1, k2, δ)

∣∣ is bounded by a function ε(ω, δ) that goes to 0 as δ ↓ 0 uniformly
in −K

δ
≤ k1, k2 ≤ K

δ
, for almost all ω.

Convergence of n−1/9Ξ(k1, k2, δ). As in the proof of Theorem 1.3 we write u = k1δ and
v = k2δ in (3.15): recalling the de�nition (3.3) of Ω, this leads to

Ξ(k1, k2, δ)

βn1/9
= −n1/18

(
Xu∗ −Xu∗+

u

n1/9

)
− ch,β

(
u+ v

)2
+ n1/18

(
X

(2)
ch−u∗+

v

n1/9
−X

(2)
ch−u∗− u

n1/9

)
,

(3.19)
with ch,β = β−1ĉh.

Recall Proposition 1.5 and its notation. Set

Xu = X(1)
u +X

(2)
ch−u , Yu = X(1)

u −X
(2)
ch−u,

and denote by B a two-sided three-dimensional Bessel process and by Y a standard
Brownian motion, independent from B. Then for any n ≥ n0(ω),

n1/18
(
Xu∗ −Xu∗+

u

n1/9

)
=

√
2χBu ,
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with χ = χ(ω, u) =
(√

ch − u∗1{u≥0} +
√
u∗1{u<0}

)−1
, and

n1/18
(
X

(2)
ch−u∗+

v

n1/9
−X

(2)
ch−u∗− u

n1/9

)
=
n1/18

2

(
Xu∗− v

n1/9
− Yu∗− v

n1/9
−Xu∗+

u

n1/9
+ Yu∗+

u

n1/9

)
=

1√
2

(
χ(Bu −Bv) +Yu −Y−v

)
.

Assembling those results with (3.19), we established the following convergence (which is
an identity for n ≥ n0(ω)):

Ξ(k1, k2, δ)

βn1/9

P−a.s.−−−→
n→∞

1√
2
(−χ(Bu +Bv) +Yu −Y−v)− ch,β

(
u+ v

)2
. (3.20)

Conclusion of the proof. If we de�ne Yu,v := Yu −Y−v −χ(Bu +Bv), combining (3.18)
and (3.20) with (3.17) proves

lim
n→∞

∣∣∣∣ 1

βn1/9
log Z̄ω,β

n,h (k1, k2, δ)− Yk1δ,k2δ + ch,β(k1δ + k2δ)
2

∣∣∣∣ ≤ ε(ω, δ). (3.21)

Then, (3.14) and (3.21) lead to

lim
n→∞

log Z̄≤K
n,ω

βn1/9
≤ sup

−K≤u,v≤K

{
1√
2
Yu,v −

3π2

2βc4h

(
u+ v

)2
+ ε(δ, ω)

}
P-a.s. ,

and, using the uniform continuity of Yu,v and of (u+ v)2 on [−K,K]2, we have

lim
n→∞

log Z̄≤K
n,ω

βn1/9
≥ sup

−K≤u,v≤K

{
1√
2
Yu,v −

3π2

2βc4h

(
u+ v

)2 − ε′(δ, ω)

}
P-a.s.

Finally, letting δ go to 0 proves the convergence of n−1/9 log Z̄≤K
n,ω .

Proof of Proposition 3.7. Recall the de�nition (3.12) of C −
n,δ(k1) and C +

n,δ(k2) as well as

Cn,δ(k1, k2) = C −
n,δ(k1)×C +

n,δ(k2) The proof essentially boils down to the following lemma
and a use of Borel-Cantelli lemma.

Lemma 3.8. There exists some positive constants λ, µ such that for any δ ∈ (0, 1) and
any C ≥ 1,

sup
n≥1

sup
−K

δ
≤k1,k2≤K

δ

P

(
sup

(x,y)∈Cn,δ(k1,k2)

∣∣∣ζk1,k2n,δ (xn−1/3, yn−1/3)
∣∣∣ ≥ C

δ1/4

n1/18

)
≤ µe

−λ C

δ1/4 .

Using Lemma 3.8 and a union bound immediately yields

sup
n≥1

P

(
sup

−K
δ
≤k1,k2≤K

δ

sup
(x,y)∈Cn,δ(k1,k2)

∣∣∣ζk1,k2n,δ (u, v)
∣∣∣ ≥ C

δ1/4

n1/18

)
≤
(
K

δ

)2

µe
−λ C

δ1/4 .

Summing over δj = 2−j gives a bound which is summable in C: this allows us to use a
Borel-Cantelli lemma. This means that with P-probability 1, there is a positive Cω such
that for all j ≥ 0, for all −K2j ≤ k1, k2 ≤ K2j, for all (x, y) ∈ Cn,δ(k1, k2), we have

ζk1,k2n,δ

(
x

n1/3 ,
y

n1/3

)
≤ Cωδ

1/4n−1/18, thus proving the proposition.
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Proof of Lemma 3.8. Recall the de�nition (3.16)

ζk1,k2n,δ (u, v) = Xu −X
u∗+

k1δ

n1/9
−X

(2)
ch−u +X

(2)

ch−u∗− k1δ

n1/9

+X(2)
v −X

(2)

ch−u∗+
k2δ

n1/9

and that 2X
(2)
ch−t = Xt − Yt. Then we can rewrite ζk1,k2n,δ (u, v) as

ζk1,k2n,δ (u, v) = Xu −X
u∗+

k1δ

n1/9
− Xu − Yu

2
+
Xch−v − Ych−v

2

+
X

u∗+
k1δ

n1/9
− Y

u∗+
k1δ

n1/9

2
−
X

u∗− k2δ

n1/9
− Y

u∗− k2δ

n1/9

2
,

which simpli�es to

2ζk1,k2n,δ (u, v) = Xu + Yu − (X
u∗+

k1δ

n1/9
+ Y

u∗+
k1δ

n1/9
) +Xch−v − Ych−v − (X

u∗− k2δ

n1/9
− Y

u∗− k2δ

n1/9
)

= Xu −X
u∗+

k1δ

n1/9
+Xch−v −X

u∗− k2δ

n1/9
+ Yu − Y

u∗+
k1δ

n1/9
+ Y

u∗− k2δ

n1/9
− Ych−v .

We split ζk1,k2n,δ (u, v) into four parts corresponding to the terms in X and those in Y :

� Xu−Xu∗+
k1δ

n1/9
and Xch−v−Xu∗− k2δ

n1/9
which we call �meander parts� because of (3.5)

� |Yu − Y
u∗+

k1δ

n1/9
| and |Y

u∗− k2δ

n1/9
− Ych−v| which we call �Brownian parts�.

We use a union bound to separately control the probability for each increment to be
greater than Cδ1/4

8n1/18 .

Control of the Brownian parts. First, recall that Y and u∗ are independent (since u∗ is
X-measurable). Thus, the Brownian re�ection principle yields

sup
un1/3∈C−

n,δ(k1)

∣∣∣Yu − Y
u∗+

k1δ

n1/9

∣∣∣ (d)= sup
vn1/3∈C+

n,δ(k2)

∣∣∣Yu∗− k2δ

n1/9
− Ych−v

∣∣∣ (d)= |W δ

n1/9
| ,

where W is a standard Brownian motion. This leads us to

P

(
sup

(u,v)n1/3∈Cn,δ(k1,k2)

∣∣∣Yu − Y
u∗+

k1δ

n1/9

∣∣∣ ≥ Cδ1/4

8n1/18

)
≤ P

(
|W δ

n1/9
| ≥ Cδ1/4

8n1/18

)
≤ e

− C2

128
√
δ ,

and similarly for |Y
u∗− k2δ

n1/9
− Ych−v|.

Control of the meander parts. We have to bound the following:

P

(
sup

un1/3∈C−
n,δ(k1)

|Xu −X
u∗+

k1δ

n1/9
| ≥ Cδ1/4

8n1/18

)
(3.22)

and similarly for |Xch−v − X
u∗− k2δ

n1/9
|; we will focus on bounding (3.22) since the other

bound follows from itb. Recall (3.5) to get

sup
un1/3∈C−

n,δ(k1)

|Xu −X
u∗+

k1δ

n1/9
| = sup

un1/3∈C−
n,δ(k1)

χ

∣∣∣∣Mu−u∗
χ2

−M k1δn
−1/9

χ2

∣∣∣∣ .
bObserve that if vn1/3 ∈ C+

n,δ(k2), writing ṽ := ch − v and assuming v ̸= ch − u∗ + k2δ
n1/9 , we have⌊

ṽn1/3−u∗n
1/3

δn2/9

⌋
=
⌊
− vn1/3−(ch−u∗)n

1/3

δn2/9

⌋
= −1− k2, thus (ch − v)n1/3 ∈ C+

n,δ(−1− k2).
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Observe that χ = χ(u, ω) is a constant that only depends on the sign of k1 and that
since K and C are arbitrary chosen, we only need to get a bound on the probability of
supun1/3∈C−

n,δ(k1)
|Mu−u∗ −M k1δ

n1/9
| being greater than Cδ1/4

8n1/18 .

Without any loss of generality we can suppose that k1 ≥ 0: to get the case where
k1 ≤ 0 we only need to do the same proof with |k1 + 1| instead. Use Lemma B.1 and
Markov's inequality to get

P

(
sup

un1/3∈C−
n,δ(k1)

∣∣∣∣Mu−u∗ −M k1δ

n1/9

∣∣∣∣ ≥ C
δ1/4

8n1/18

)
≤ 4P

(
M (k1+1)δ

n1/9

−M k1δ

n1/9
≥ Cδ1/4

8n1/18

)

≤ 4E

[
e

n1/18
√
δ

(M (k1+1)δ

n1/9

−M k1δ

n1/9

)
]
e−

C
8
δ
1
4 .

We show below that there is a constant c = c(K) > 0 such that, for n large enough

E

[
e

n1/18
√
δ

(M (k1+1)δ

n1/9

−M k1δ

n1/9

)
]
≤ c (3.23)

uniformly in k1 ∈ {0, 1, . . . , K/δ} and 0 < δ < 1, thus proving Lemma 3.8.

Proof of (3.23). We want to get an upper bound on quantities E
[
eα(Mv−Mu)

]
for speci�c

u < v, α > 0. In order to do so, we �rst condition on the value of Mu and use the
transition probabilities of the Brownian meander to get an upper bound, which we then
integrate with respect to the law of Mu. Let us set κ

n
δ := k1δn

−1/9 with k1 ̸= 0 (we treat
the case k1 = 0 at the end) and α := n1/18/

√
δ.

Step 1: Meander increment conditioned on Mκn
δ
=: x. We write φt(x) :=

1√
2πt
e−

x2

2t

and Φt(y) :=
´ y
0
φt(x)dx. Using (B.1), the density of an increment between time κnδ ̸= 0

and a time u = (k1 + 1)δn−1/9 = κnδ + α−2, when starting at Mκn
δ
= x, is given by[

φu−κn
δ
(m)− φu−κn

δ
(m+ 2x)

] Φ1−u(m+ x)

Φ1−κn
δ
(x)

1{m≥−x} .

Then we use that (recall that u− κnδ = α−2)

φu−κn
δ
(m)− φu−κn

δ
(m+ 2x) =

1√
2π(u− κnδ )

(
e
− m2

2(u−κn
δ
) − e

− (m+2x)2

2(u−κn
δ
)

)
≤ α√

2π
e−

α2m2

2 ,

and since u is taken close to u∗ (recall |u− u∗| ≤ εn),

Φ1−u(m+ x)

Φ1−κn
δ
(x)

≤ x+m

x
e

x2

2(1−κn
δ
)

√
1− κnδ
1− u

≤ (cst.)
(
1 +

m

x

)
e

x2

2(1−κn
δ
) .

Thus we have to bound

E
[
exp

(
α(M (k1+1)δ

n1/9

−Mκn
δ
)
) ∣∣∣Mκn

δ
= x

]
≤ (cst.)

α√
2π
e

x2

2(1−κn
δ
)

ˆ ∞

−x

(
1+

m

x

)
eαme−

α2m2

2 dm.

Now, settingΨ(m) := e−
(αm)2

2
+αm, after integrating by parts (writingmΨ(m) = (me−

(αm)2

2 )×
eαm) we can rewrite the above as

(cst.)
αe

x2

2(1−κn
δ
)

√
2π

[ˆ ∞

−x

Ψ(m) dm+
2

xα2

(
Ψ(−x) + α

ˆ ∞

−x

Ψ(m) dm

)]
.
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Usual bounds for Gaussian integrals (notice that Ψ(m) = e1/2e−
1
2
(αm−1)2) then yield the

upper bound conditioned to x = Mκn
δ

E
[
exp

(
α(M (k1+1)δ

n1/9

− x)

) ∣∣∣Mκn
δ
= x

]
≤ αe

x2

2(1−κn
δ
)

√
2π

[(
1 +

2

αx

)√
2π

1

α
e1/2 +

2Ψ(−x)
xα2

]
,

which we simplify (using that Ψ(m) ≤ e1/2 for all m) as

E
[
exp

(
α(M (k1+1)δ

n1/9

− x)

) ∣∣∣Mκn
δ
= x

]
≤ (cst.)e

x2

2(1−κn
δ
)

[
1 +

1

xα

]
. (3.24)

Step 2: Averaging on x = Mk1δn−1/9. In order to take the expectation in (3.24), we

use the following bounds, given in (B.3) (using that
√
2π ≥ 2): for 0 < a < r/2,

E
[
eaM

2
r

]
≤ (1− 2ar)−3/2 , E

[
(Mr)

−1eaM
2
r

]
≤

√
2π√

r(1− r)
(1− 2ra)−1 . (3.25)

Recalling that κnδ = k1δn
−1/9 ≤ εn → 0, we can use the above to get that for n

su�ciently large, there is a C > 0 such that

E
[
e

1
2(1−κn

δ
)
M2

κn
δ

(
1 +

1

αMκn
δ

)]
≤
(
1− κnδ

1− κnδ

)−3/2

+
2
√
π

α
√
κnδ

(
1− κnδ

1− κnδ

)−1

≤ C ,

recalling that α
√
κnδ =

√
k1 ≥ 1. This proves the bound (3.23) in the case k1 > 0.

Case k1 = 0. When k1 = 0 we have

E
[
exp

(
α
(
M (k1+1)δ

n1/9

−M k1δ

n1/9

))]
= E

[
exp

(
αM δ

n1/9

)]
≤ 4

(
1− 2

α

)−3/2

where we used the previous bound and the fact that δn−1/9 = 1/α2. Since
√
δn−1/18 =

ō(1), this gives the bound (3.23) when k1 = 0.

Combining Proposition 3.2 with the fact that the right-hand side quantity in Proposi-
tion 3.6 increases with K and thus converges almost surely as K → ∞ yields Theorem 1.6
in the case of a Gaussian environment. We only need to see that the convergence is towards
a non trivial quantity, which is the object of the following lemma.

Lemma 3.9. P-almost surely, there exists a unique (U ,V) such that

W2 := sup
u,v

{
Yu,v −

3π2

βc4h
√
2

(
u+ v

)2}
= YU ,V − 3π2

βc4h
√
2

(
U + V

)2 ∈ (0,+∞) . (3.26)

Proof. Choose v = 0 to get W2 ≥ supu

{
Yu − Bu − ch,β

√
2u2
}
. We get a positive lower

bound since almost surely, there are real numbers (uk) ↓ 0 such that Yuk
≥ 2

√
uk and

Buk
≤ √

uk. This leads to W2 ≥ supk

{√
uk − ch,β

√
2u2k
}
> 0 almost surely.

In order to show that W2 is almost surely �nite, see Bu as the modulus of a 3-
dimensional standard Brownian motion W

(3)
u and consider a one dimensional Wiener

processW . We use the fact that t−1(|W (3)
t |+Wt) → 0 almost surely to get Yu,v/|u+v| → 0

as |u + v| → ∞. Thus, Yu,v − ch,β
√
2(u + v)2 ≤ 0 P-a.s. when |u + v| is large enough,

meaning that the supremum of this continuous process is almost surely taken on a compact
set, thus it is �nite. The existence of (U ,V) is also a consequence of the continuity of
Yu,v − ch,β

√
2(u + v)2 and of the fact that the supremum is P-a.s. taken on a compact

set. The uniqueness of the maximum follows from standard methods for Brownian motion
with parabolic drift (see [5, Appendix A.3]).
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Comment. We could have taken another form of Zω,β
n,h (k1, k2, δ) given by (3.3), without

using the process X that was only useful to reject trajectories whose minimum is too far
from −u∗n1/3. This would have led us to the alternative form

W ′
2 := sup

u,v

{
X̄(1)

u + X̄(2)
v − ch,β

(
u+ v

)2}
= W2

where X̄
(i)
u are Brownian-related processes provided by a suitable coupling. However, these

limit processes are not independent and their distribution may not be known processes,
making W ′

2 less exploitable.

3.4 Path properties at second order

Proof of Theorem 1.6-(1.8). The proof of (1.8) is a repeat of the proof of Lemma 2.3, this
time writing

U ε,ε′

2 :=

{
(u, v) ∈ R2 : sup

(s,t)∈Bε(u,v)

{
Ys,t − cβ,h(s+ t)2

}
≥ W2 − ε′ > 0

}
,

with Bε(u, v) the Euclidean ball of radius ε centered at (u, v). De�ne the event

Aε,ε′

2,n :=

{(
M−

n + u∗n
1/3

n2/9
,
M+

n − (ch − u∗)n
1/3

n2/9

)
̸∈ U ε,ε′

2

}
,

then
logPω,β

n,h

(
Aε,ε′

2,n

)
= logZω,β

n,h

(
Aε,ε′

2,n

)
− logZω,β

n,h .

Afterwards, using the de�nition of U ε,ε′

2 we prove as above that

lim sup
n→∞

√
2

βn1/9
logZω,β

n,h

(
Aε,ε′

2,n

)
= sup

(u,v) ̸∈Uε,ε′
2

{
Ys,t −

3π2

βc4h
√
2
(s+ t)2

}
<W2 − ε′ ,

and thus lim sup
n→∞

n−1/9 logPω,β
n,h

(
Aε,ε′

2,n

)
< 0, proving (1.8) since

⋂
ε′>0

U ε,ε′

2 ⊂ B2ε((U ,V)).

4 Generalizing with the Skorokhod embedding

4.1 Proof of Theorem 1.6, case of a �nite (3 + η)th moment

For now, Theorem 1.6 has only been established for a Gaussian environment ω, meaning
that the variables (ωz) are i.i.d with a normal distribution. In the following, we will
explain how we can generalize those results to any random i.i.d. �eld with su�cient
moment conditions after doing the work in Section 3.

We �rst expand on the coupling between the random �eld ω and the Brownian motions
X(i), i = 1, 2. Our starting point is the following statement from [24, Chapter 7.2].

Theorem 4.1 (Skorokhod). Let ξ1, . . . , ξm be i.i.d. centered variables with �nite second
moment. For a Brownian motion W , there exists independent positive variables τ1, . . . , τm
such that(

ξ1, . . . , ξm
) d
=

(
W (τ1),W (τ1 + τ2)−W (τ1), . . . ,W (

m∑
i=1

τi)−W (
m−1∑
i=1

τi)

)
.
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Moreover, for all k ≤ m, we have

E [τk] = E
[
ξ2k
]

and ∀p > 1,∃Cp > 0,E [(τk)
p] ≤ CpE

[
(ξk)

2p
]
.

The following theorem gives us asymptotic estimates for the error of this coupling.

Theorem 4.2 ([11, Theorem 2.2.4]). Let (θi) be i.i.d. centered variables, and assume
that E [|θ1|p] < ∞ for a real number p ∈ (2, 4). Then, if the underlying probability space
is rich enough, there is a Brownian motion W such that∣∣∣ m∑

i=1

θi −Wm

∣∣∣ = ō
(
m1/p(logm)1/2

)
a.s. as m→ ∞ .

We can easily adapt this statement and choose the Wiener processes X(1) and X(2) to
be independent Brownian motions such that, as n→ ∞,∣∣∣ un1/3∑

z=1

ω−z − n1/6X(1)
u

∣∣∣ ∨ ∣∣∣ vn1/3∑
z=0

ωz − n1/6X(2)
v

∣∣∣ = ō
(
(u ∨ v)1/p(n1/3)1/p(log n)1/2

)
as long as E[|ωz|p] < +∞ for some p ∈ (2, 4). Since in the partition function we can
restrict to trajectories with x and y are taken between 0 and (ch + εn)n

1/3 (recall (1.4)),
we can obtain a uniform bound over every u, v we consider, meaning that P-a.s. there is
some constant C(ω) such that for all n ≥ 1,∣∣∣ x∑

z=1

ω−z − n1/6X(1)
u

∣∣∣ ∨ ∣∣∣ y∑
z=0

ωz − n1/6X(2)
v

∣∣∣ ≤ C(ω) n1/3p(log n)1/2 , (4.1)

uniformly for |x|, |y| ≤ 2chn
1/3. Let us also recall the notation Z̄ω,β

n,h = Zω,β
n,h e

3
2
hT ∗

n−βn1/6Xu∗ .

Proof of Theorem 1.6 with E [|ω0|3+η] <∞. We now repeat the proof for a Gaussian �eld,
but with the introduction of an error term given by Theorem 4.2. Recall (3.3): with a

Gaussian environment, we had Σ−
x = X

(1)

xn−1/3 and Σ+
y = X

(2)

yn−1/3 . Now, we must introduce

an error term En(x, y) := Σ−
x −X

(1)

xn−1/3 + Σ+
y −X

(2)

yn−1/3 : the equation (3.2) becomes

Z̄ω,β
n,h ∼ ψh sin

(
u∗π

ch

) ∑
|x−u∗n1/3|≤εnn1/3

|y−(ch−u∗|n1/3|≤εnn1/3

exp

(
βΩ̄x,y

n + En(x, y)−
3π2(∆x,y

n )2

2c4hn
1/3

(1 + ō(1))

)
,

(4.2)
with ō(1) deterministic and uniform in x, y, and

Ω̄x,y
n := n1/6

(
X

(1)

xn−1/3 +X
(2)

yn−1/3 −Xu∗

)
, En(x, y) :=

y∑
z=−x

ωz − Ω̄x,y
n .

Take p = 3 + η with η ∈ (0, 1), and assume that E [|ω0|p] < +∞. Then, using (4.1),
we have |En(x, y)| ≤ C(ω)n1/(9+3η)(log n)1/2 for all summed (x, y). Therefore, combining
with (4.2), we get that P-a.s.∣∣∣∣∣ log Z̄ω,β

n,h − log
∑

|x−u∗n1/3|≤εnn1/3

|y−(ch−u∗)n1/3|≤εnn1/3

exp

(
βΩ̄x,y

n − 3π2(∆x,y
n )2

2c4hn
1/3

) ∣∣∣∣∣ ≤ C(ω)n
1

9+3η (log n)1/2 .

Since n
1

9+3η (log n)1/2 = ō(n1/9), we can restrict our study to (exactly) the same sum that
appeared in the Gaussian case, see (3.2). Then, (1.8) follows identically from the same
proof as in Section 3.4.
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4.2 Adaptation to the case of a �nite (2 + η)th moment

We now explain how we can infer (1.9), i.e. a version of Theorem 1.6 where we only
assume that E [|ω0|2+η] < ∞ for some positive η, from adapting the proofs of Section 3.
We are able to prove that the relevant trajectories converge to the suspected limit for
Zω,β

n,h , however some technicalities prevent us from getting the full theorem.

The key observation is the following: when subtracting β
∑(ch−u∗)n1/3

u∗n1/3 ωz instead of

βn1/6Xu∗ from logZω,β
n,h + 3

2
hchn

1/3, we precisely cancel out the (ωz) present in both

Σ−
|M−

n | + Σ+

M+
n

and Σ−
u∗n1/3 + Σ+

(ch−u∗)n1/3 . This leaves us with a smaller sample of the

variables (ωz), with size |M−
n + u∗n

1/3| + |M+
n − (ch − u∗)n

1/3| which is at most 2εnn
1/3

(see (3.2)), and of order n2/9 when restricting to trajectories giving the main contribution

(see Proposition 3.2). We thus write Z̃ω,β
n,h := Zω,β

n,h exp(3
2
hchn

1/3 − β
∑(ch−u∗)n1/3

z=−u∗n1/3 ωz), and

for δ>a (x) := sgn(x− a), we de�ne

Ωu∗
n,h(x, y) :=

y∑
z=−x

ωz −
(ch−u∗)n1/3∑
−u∗n1/3

ωz

= δ>u∗(
x

n1/3
)

x∨u∗n1/3∑
z=x∧u∗n1/3

ω−z + δ>ch−u∗(
y

n1/3
)

y∨(ch−u∗)n1/3∑
z=y∧(ch−u∗)n1/3

ωz,

to have

Z̃ω,β
n,h ∼ ψh sin

(
u∗π

ch

) ∑
|x−u∗n1/3|≤εnn1/3

|y−(ch−u∗)n1/3|≤εnn1/3

exp

(
βΩu∗

n,h(x, y)−
3π2(∆x,y

n )2

2c4hn
1/3

(1 + ō(1))

)
, (4.3)

The goal is now to rewrite Ωu∗
n,h(x, y) as Ω

x,y
n in (3.4) with an additional error term that

is a ō(n1/9). Since we are interested in the case where (|M−
n |,M+

n ) is close to (u∗, ch−u∗),
we see that we only need to have a good coupling between the environment and (X(1), X(2))
near (u∗, ch − u∗) instead of a global coupling like the one we used in Section 4.1.

An application of Theorem 4.2 yields the following coupling:

Proposition 4.3. Assume E [ωp
0] < +∞ for some p ∈ (2, 4). Then, conditionally on

u∗, there is a coupling of (X(1), X(2)) and the environment ω such that P-a.s. there is a
constant C(ω) such that∣∣∣Ωu∗

n,h(x, y)− n1/6
(
X

(1)

xn−1/3 +X
(2)

yn−1/3 −Xu∗

)∣∣∣ ≤ C(ω) (gn(x, y))
1/p(log n)1/2

where gn(x, y) = |u∗n1/3 − x| ∨ (|(ch − u∗)n
1/3 − y| ∧ |chn1/3 − (x+ y)|).

In order to prove (1.9), we would need to adapt the proof of Proposition 3.6 (the
convergence of the partition function restricted to the good set of trajectories) and of
Proposition 3.2 (the control of other trajectories). While the former can be done without
any di�culties, the latter poses problems as it consists of proving a control of trajectories
with larger coupling errors.

Proof of Proposition 3.6 with E [|ω0|2+η] < +∞. Introduce the notation (analogous to that
of Proposition 3.6):

Z̄≤K
n,ω := Zω,β

n,h

(
|M−

n + u∗n
1/3| ∨ |M+

n − (ch − u∗)n
1/3| ≤ Kn2/9

)
e

3
2
hchn

1/3−β
∑(ch−u∗)n1/3

z=−u∗n1/3
ωz
,
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which we formulate as

Z̄≤K
n,ω = (1+ō(1))

∑
|x−u∗n1/3|≤Kn2/9

|y−(ch−u∗)n1/3|≤Kn2/9

ψh sin

(
u∗π

ch

)
exp

(
Ωu∗

n,h(x, y)− βch,β
(∆x,y

n )2

n1/3
(1 + ō(1))

)

where ō(1) is deterministic, uniform in (x, y). Afterwards, using Proposition 4.3 with
p = 2 + η leads to∣∣∣∣∣ log Z̄≤K

n,ω − log
∑

|x−u∗n1/3|≤Kn2/9

|y−(ch−u∗)n1/3|≤Kn2/9

exp

(
βΩ̄x,y

n − 3π2(∆x,y
n )2

2c4hn
1/3

) ∣∣∣∣∣ ≤ C(ω)(Kn2/9)1/p(log n)1/2 .

Since we have (Kn2/9)1/p(log n)1/2 = ō(n1/9), this shows that Proposition 3.6 still holds
(the sum that remains to control is exactly the one treated in Proposition 3.6).

Thus, we proved that

lim
n→+∞

lim
n→∞

√
2

βn1/9
log Z̄≤K

n,ω = sup
−K≤u,v≤K

{
Yu,v −

3π2

βc4h
√
2

(
u+ v

)2}
,

what remains is to show that n−1/9 log Z̄>K
n,ω has a non-positive limsup as K,n → +∞ in

the same spirit as Proposition 3.2.
In Lemma 3.3,3.4, we used union bounds to prove that P

(
n−1/9 log Z̄>K

n,ω ≥ −1
)
→ 0

as K → ∞. If we repeat the same steps, for Lemma 3.3 we would need to compute
probabilities such as (recall the notations in the proof)

P
(
βn1/6(X (2)

k,l −Mn
k,l) + En

k,l ≥ c′hn
1/922lL2

)
with

En
k,l := sup

ch−u−v∈2l[1,2)Ln−1/9

|u−u∗|∈[k,k+1)2lLn−1/9]

∣∣∣Ωu∗
n,h(x, y)− n1/6

(
X

(1)

xn−1/3 +X
(2)

yn−1/3 −Xu∗

)∣∣∣ .
Note that assuming a moment 2 + η, we have En

k,l ≤ C(ω)(k2lLn2/9)1/2+η′ for some

0 < η′ < η. However, X (2)
k,l and Mn

k,l are of order (k2lLn2/9)1/2 which means that En
k,l

should somewhat be negligible. In fact, we can prove with the exact same calculations as
in Lemma 3.3 that there is a N ∈ N such that

lim
k,l→+∞

sup
n≥N

P
(
βn1/6(X (2)

k,l −Mn
k,l) + En

k,l ≥ c′hn
1/922lL2

)
= 0 .

However, with this method, the convergence rate is not fast enough, thus the union bound
fails to conclude the proof. To do so, we would need another way of proving the result
which is beyond the scope of this paper.
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5 Simpli�ed model : range with a �xed bottom

In this section we shall focus on a somewhat simpler model in which one of the range's
edges is �xed at 0. The polymer is modeled by a non-negative random walk and the
polymer measure is given by

P̃ω,β
n,h(S) :=

1

Z̃ω,β
n,h

exp
(
− hM+

n + β

M+
n∑

i=0

ωi

)
1{∀k≤n,Sk≥0}P(S).

For now, we will keep studying the case where the �eld ω is composed of i.i.d. Gaussian
variables. We once again take a Brownian motion X such that 1

n1/6

∑T
z=0 ωz = XTn−1/3 .

The partition function is given by

Z̃ω,β
n,h =

+∞∑
T=1

e−hT+
∑

i≤T ωiP(Rn = J0, T K) =
+∞∑
T=1

ϕn(T )e
−hT+

∑
i≤T ωi−g(T )n

with g(T ) = π2/2T 2 (see [7], this is analogous to what is done in Section 1.2).
It is not di�cult to see that our results up to Section 3 still hold, meaning

1

n1/3
log Z̃ω,β

n,h

P−a.s.−−−→
n→∞

−3

2
hch ,

1

βn1/6

(
log Z̃ω,β

n,h +
3

2
hchn

1/3

)
P−a.s.−−−→
n→∞

Xch .

Factorizing by eβn
1/6Xch yields the following exponential term

β
T∑

z=0

ωz − βn1/6Xch −
3π2(T − T ∗

n)
2

2c4hn
1/3

= −βn1/6
(
Xch −XTn−1/3

)
− 3π2(T − T ∗

n)
2

2c4hn
1/3

.

Proposition 5.1. For any h, β > 0 there is a standard Brownian motion W such that
P-a.s.,

lim
n→∞

1

βn1/9

(
log Z̃ω,β

n,h +
3

2
hchn

1/3 − βn1/6Xch

)
= sup

s∈R

{
Ws −

3π2

2βc4h
s2
}
. (5.1)

Proof scheme. Since |Xch − XTn−1/3| ≤ Cn−1/6
√
|T ∗

n − T | with probability at least

1 − e−C2
, we can repeat the proof of Proposition 3.2 and restrict the trajectories. This

leads to studying Z̃ω,β
n,h (|T ∗

n − T | ≤ Kn2/9) which contains all the main contributions for

K large. Split over kδn2/9 ≤ T ∗
n − T ≤ (k + 1)δn2/9 and the main contribution will be

given by the supremum over k of

−βn1/6
(
Xch −X

ch+
kδn2/9

n1/3

)
− 3π2(kδn2/9)2

2c4hn
1/3

= −βn1/6
(
Xch −Xch+

s

n1/9

)
− 3π2s2

2c4h
n1/9 ,

where we wrote s = kδ. We can conclude similarly to the proof of Theorem 1.6 by changing
the limit process Yu,v to B which is the limit of the processes B(n) = n1/18

(
Xch−Xch+

u

n1/9

)
u

and is a standard Brownian motion. Once again, we can couple the Brownian motion
X = X(n) so that the processes B(n) are equal to B when n is large, in the same fashion
as Proposition 1.5. We can prove that the right-hand side of (5.1) is P-a.s. positive and
�nite, attained at a unique point s∗.

To sum up the results of this simpli�ed model, we write the following statement
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Theorem 5.2. Recall the notation of (1.11), this time with Z̃ω,β
n,h . Then P-almost surely,

f̃
(1, 1

3
)

ω (h, β) = −3

2
(πh)2/3 , f̃

(2, 1
6
)

ω (h, β) = βXch ,
1

β
f̃
(3, 1

9
)

ω (h, β) = sup
s∈R

{
Bs −

3π2

2βc4h
s2
}
.

Recall the following notation of (1.2):

Tn :=M+
n −M−

n = |Rn| − 1 , T ∗
n :=

(
nπ2

h

)1/3

= chn
1/3 , ∆n := Tn − T ∗

n .

Corollary 5.3. There is a vanishing sequence (εn) such that

lim sup
n→∞

P̃ω,β
n,h

(
|∆n − s∗n

2/9| ≥ εnn
2/9
)
= 0 .

Our goal is now to �nd out whether factorizing the partition function by this quantity
leads to a bounded logarithm or not; in other words, we are looking for the 4th order free
energy, in the spirit of Section 1.11. We develop here some heuristic to justify that the
4th order free energy is at scale α4 = 0.

Going forward we work conditionally to s∗. We de�ne

Z̃ω,β
n,h := Z̃ω,β

n,h exp

(
3

2
hchn

1/3 − βn1/6Xch − βn1/9 sup
u

{
Wu −

3π2

2βc4h
u2
})

ϕ(T ∗
n)

−1 . (5.2)

We �rst rewrite the factorized partition function Z̃ω,β
n,h . If we write Tn = chn

1/3 + ∆n

and we recall that thanks to the coupling, for u in a neighborhood of 0, we have Wu =

n1/18
(
Xch+

u

n1/9
−Xch

)
for su�ciently large n, we can rewrite

βn1/6
(
XTnn−1/3 −Xch

)
= βn1/6

(
Xch+∆nn−1/3 −Xch

)
= βn1/9B∆nn−2/9 .

Then, we have

Z̃ω,β
n,h ∼

∑
|k−s∗n2/9|≤εnn2/9

exp

(
βn1/9

[(
Wkn−2/9 − ch,β

k2

n4/9

)
− sup

s∈R

{
Ws − ch,βs

2
}])

.

(5.3)
We de�ne the process Ys := Bs − ch,βs

2 which is a Brownian motion with quadratic drift,
and s∗ the point at which it attains its maximum on R. (5.3) can thus be rewritten as

Z̃ω,β
n,h ∼

∑
|k−s∗n2/9|≤εnn2/9

exp
(
βn1/9 (Ykn−2/9 − Ys∗)

)
. (5.4)

The exponential term is non-positive, which means that the typical trajectories for the
polymer are those that minimize the di�erence in (5.3).

Comment. Previous works studied with some extent the laws of s∗ and Ys∗ (see [19]). In
particular s∗ follows the so-called Chernov distribution, which is symmetric. Writing Ai
for the Airy function, [19, Theorem 1.1] states that

E
[
s2∗
]
=

2−2/3c
−4/3
h,β

6iπ

ˆ
R

y dy

Ai(iy)
<∞ and ∀p ∈ N, E [sp∗] < +∞ .
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In all the following, we use the fact that the distribution of s∗ is symmetric to reduce
to the case s∗ > 0. We will also work conditionally on the value of s∗, meaning on the
location of the maximum of Y . We write α = 2ch,βs∗, then observe that for any s > 0,

Ys∗ − Ys∗±s = Bs∗ −Bs∗±s ± αs− ch,βs
2 ≤ Bs ± αs =: R±

s .

Thus we have eβn
1/9(Y

kn−2/9−Ys∗ ) ≤ eβn
1/9(R

kn−2/9−Rs∗ ) which means that we can get an
upper bound on the contribution of a given trajectory just by studying the processes R±

conditioned to be positive, provided the existence of a coupling between these processes
and Y . Moreover, since we are interested in the setting s → 0, we should have a lower
bound that reads Ys∗−Ys∗±s ≥ (1+o(1))R±

s as s→ 0. This motivates our �rst conjecture,
which is an analog of Proposition 1.5. We will write R = R−

1R− +R+
1R+ .

Conjecture 5.4. One can do a coupling of (R, Y ) and a two-sided BES3 B̃ such that
almost surely, there exists δ1 > 0 and n1 ∈ N for which ∀n ≥ n1, for all |u| < δ1

n1/9Run−2/9 = n1/9(Ys∗ − Ys∗+ u

n2/9
) = B̃u. (5.5)

The fact that the three-dimensional Bessel process appears is mainly due to the fol-
lowing result from San Martin and Ramirez [21].

Theorem 5.5. De�ne Xα
t := x+Wt−αt, with α, x > 0. Then the process Xα conditioned

to stay positive on [0, T ] converges in distribution to the Bessel process as T → ∞.

Our second conjecture is a description of the simpli�ed model and the idea should
follow along the steps of Section 3, excluding trajectories and using Conjecture 5.4 to get
an almost-sure convergence of Z̃ω,β

n,h .

Conjecture 5.6. There exist B̃ (given by (5.5)) a two-sided three-dimensional Bessel
process such that for n large enough, writing sn∗ := s∗n

2/9 − ⌊s∗n2/9⌋ we have

Pω,β
n,h

(
M+

n = chn
1/3 + ⌊s∗n2/9⌋+ k

)
∼ 1

θω(n)
e−βWsn∗+k , with θω(n) :=

∑
k∈Z

e−βWsn∗+k(ω) .

Heuristic. To minimize n1/9(Ys∗ − Ys∗+s) = n1/9Rs, since Rs ≍
√
s−αs ≍

√
s with high

probability when s → 0 (we are close to s∗) we roughly need to have s = Ō(n−2/9). In
the de�nition of Z̃ω,β

n,h , we take s + s∗ = ∆n−2/9, thus we should be able to prove that

Z̃ω,β
n,h (|∆n − s∗n

2/9| > K)/Z̃ω,β
n,h → 0 when K → ∞ and n is large enough. On the other

hand, for Z̃ω,β
n,h (|∆n−s∗n2/9| ≤ K), when n is large enough, we have Ykn−2/9 −Ys∗ = B̃k for

any |k| ≤ K. Thus, we should be able to prove that when n→ +∞, we have |Z̃ω,β
n,h (|∆n−

s∗n
2/9| ≤ K)−

∑
|k|≤K e

−βB̃k | → 0 in similar fashion to the proof of Proposition 3.6.

Comment. It should be possible to obtain an analog of Conjecture 5.6 in the general
model for a Gaussian environment ω, which supports Conjecture 1.7. This would require
a coupling of YU ,V−Yu,v (recall the de�nitions in Theorem 1.6) with some suitable process
on a small neighborhood of (U ,V).
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A Disorder in a domain of attraction of a Lévy process

In this section we will extend the Theorem 1.3 to the case where (ωz)z∈Z is in the domain
of attraction of an α-stable law, with α ∈ (1, 2); we refer to [5] where the case α < 1 is
shown to have a di�erent behavior. More precisely, we assume that the �eld ω is such
that E [ω0] = 0 and that there exists α ∈ (1, 2) such that

P (ω0 > t) ∼ pt−α , P (ω0 < −t) ∼ qt−α as t→ ∞ with p+ q = 1. (A.1)

This ensures that 1
k1/α

∑k
z=0 ωz converges in law to an α-stable Lévy process, α ∈ (0, 2).

Note that we treat the case of a pure power tail in (A.1), i.e. the normal domain of
attraction to an α-stable law, only for simplicity, to avoid dealing with slowly varying
corrections in the tail behavior.

As in the case where E [ω2
0] = 1, one can de�ne a coupling ω̂ = ω̂(n) such that(

1

n1/3α
Σ−

un1/3(ω̂)

)
u≥0

a.s.−−−→
n→∞

(
X(1)

u (ω̂)
)
u≥0

,

(
1

n1/3α
Σ+

vn1/3(ω̂)

)
v≥0

a.s.−−−→
n→∞

(
X(2)

v (ω̂)
)
v≥0

,

where X(1), X(2) are two independent α-stable Lévy processes, see [5, �1.2].

If the range is of size of order nξ, then we have that
∑

z∈Rn
ωz is of order n

ξ/α, which
is negligible compared to nξ since α > 1. Hence the disorder should be negligible at �rst
order, and this is what is proven in [5, Thm. 1.2]: we have

lim
n→∞

1

n1/3
logZω,β

n,h = −3

2
(πh)2/3, ∀ε > 0,Pω,β

n,h

(∣∣∣n−1/3|Rn| − ch

∣∣∣ > ε
)
−−−→
n→∞

0 .

Our result here is to obtain the second order asymptotic for the convergence of logZω,β
n,h ;

we deduce a result on the position of the range under Pω,β
n,h .

Theorem A.1. Suppose that (ωz)z∈Z veri�es (A.1). Then, for any h, β > 0, we have the
following P-a.s. convergence

lim
n→∞

1

βn1/3α

(
logZω,β

n,h +
3

2
hchn

1/3

)
= sup

0≤u≤ch

{
X(1)

u +X
(2)
ch−u

}
,

where X(1) and X(2) are two independent α-stable Lévy processes.

Furthermore, u∗ := argmaxu∈[0,ch]

{
X

(1)
u +X

(2)
ch−u

}
exists P-almost surely and

∀ε > 0,Pω,β
n,h

(∣∣∣ 1

n1/3
(M−

n ,M
+
n )− (−u∗, ch − u∗)

∣∣∣ > ε

)
−−−→
n→∞

0 P-a.s.

Proof. The proof is essentially the same as the one of Theorem 1.3. As in (2.1), we can
write

logZω,β
n,h +

3

2
hchn

1/3 = log
(
1 + ō(1)

)
ψh + log

ch/δ∑
k1=0

ch
δ
−k1∑

k2=
ch
δ
−k1−1

Zω,β
n,h (k1, k2, δ) ,

with Zω,β
n,h (k1, k2, δ) de�ned as in (2.3). Once again we have∣∣∣ y∑

z=−x

ωz −
(
Σ+

k2δn1/3 + Σ−
k1δn1/3

) ∣∣∣ ≤ Rδ
n(k1δ, k2δ) , (A.2)
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where the error remainer Rδ
n is de�ned for u, v ≥ 0 by

Rδ
n(u, v) := max

un1/3+1≤j≤(u+δ)n1/3−1

∣∣Σ−
j − Σ−

un1/3

∣∣+ max
vn1/3+1≤j≤(v+δ)n1/3−1

∣∣Σ+
j − Σ+

vn1/3

∣∣ .
Using the coupling ω̂ and Lemma A.5 of [5], we have P − a.s. ∀ε > 0, ∃n0 = n0(ε, δ, ω)
such that ∀n ≥ n0,

1

n1/3α
Rδ

n(u, v) ≤ ε+ sup
u≤u′≤u+ε+δ

∣∣X(1)
u′ −X(1)

u

∣∣+ sup
v≤v′≤v+ε+δ

∣∣X(2)
v′ −X(2)

v

∣∣ ,(∣∣∣∣ 1

n1/3α
Σ+

vn1/3 −X(2)
v

∣∣∣∣ ∨ ∣∣∣∣ 1

n1/3α
Σ−

un1/3 −X(1)
u

∣∣∣∣) ≤ ε ,

uniformly in u, v ∈ Uδ as Uδ is a �nite set (recall the de�nition (2.5) of Uδ). Letting
N → ∞ then ε→ 0 we obtain that P-almost surely,

lim sup
n→∞

1

βn1/6

(
logZω,β

n,h +
3

2
hchn

1/3

)
≤ sup

u,v∈Uδ
u+v∈{ch,ch−δ}

W+(u, v, δ) ,

lim inf
n→∞

1

βn1/6

(
logZω,β

n,h +
3

2
hchn

1/3

)
≥ sup

u,v∈Uδ
u+v∈{ch,ch−δ}

W−(u, v, δ)

in which we wrote

W±(u, v, δ) = X(1)
u +X(2)

v ± sup
u≤u′≤u+δ

∣∣X(1)
u′ −X(1)

u

∣∣± sup
v≤v′≤v+δ

∣∣X(2)
v′ −X(2)

v

∣∣ .
Using the càdlàg structure of Lévy processes X(1) and X(2) we push δ to 0 and get the
desired convergence.

Afterwards, we can use [3, Theorem 2.1] and [22, Section 3] to prove that the varia-

tional problem is positive and �nite (in the sense that sup0≤u≤ch

{
X

(1)
u +X

(2)
ch−u

}
is almost

surely positive and �nite), which relies on the same reasoning as Lemma 2.2. Then, [5,
Proposition 3.1] proves the existence and unicity of the maximizer u∗. The proof of the
second part of Theorem A.1 is exactly the proof of Lemma 2.3.

B Technical results for the Brownian meander

LetW be a standard Brownian motion on [0, 1] and denote τ := sup {t ∈ [0, 1] : Wt = 0}.
The Brownian meander on [0, 1] is de�ned as the rescaled trajectory ofW between τ and 1.
More precisely it is the process M de�ned on [0, 1] by

Mt :=
1√
1− τ

|Wτ+t(1−τ)| .

Note that we could de�ne the meander to be on any interval [0, T ] by changing how
we rescale the trajectory, leading to de�ne a Brownian meander of duration T as the

rescaled process
√

T
1−τ

|Wτ+ t
T
(1−τ)| on [0, T ]. Recall the notation φt(x) :=

1√
2πt
e−

x2

2t and

Φt(y) :=
´ y
0
φt(x)dx. The Brownian meander on [0, 1] is a continuous, non-homogeneous

Markov process starting at 0, with transition kernel given by

P (Mt ∈ dy |Ms = x) = p+(s, x, t, y)dy = [φt−s(x− y)− φt−s(x+ y)]
Φ1−t(y)

Φ1−s(x)
dy (B.1)
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Figure 2: Re�ection of the trajectory b→ (0, b] with respect to the horizontal line at b

and

P (Mt ∈ dy) = p+(0, 0, t, y)dy = 2yt−3/2e−
y2

2t Φ1−t(y)dy . (B.2)

For the proofs of these facts, we refer to [14] and its references. Using P (Mt ∈ dy) ≤
2yt−3/2e−

y2

2t dy and Φ1−t(y) ≤ y/
√
2π(1− t), we have the following estimates: for any

a < r/2,

E
[
eaM

2
r

]
≤ 2

r3/2
√
2π

ˆ ∞

0

ye−
1−2ar

2r
y2 dy = (1− 2ra)−3/2 ,

E
[
(Mr)

−1eaM
2
r

]
≤ 1

r3/2π
√

(1− r)

ˆ ∞

0

ye−
1−2ar

2r
y2 dy =

√
2π√

r(1− r)
(1− 2ra)−1 ,

(B.3)

The asymmetry of the meander can be used to prove the following �re�ection principle�.

Lemma B.1 (Re�ection principle for the meander). Let M be a Brownian meander, then
for all b > 0 and all 0 ≤ s < t ≤ 1,

P
(

sup
0≤r≤t

Mr ≥ b
)
≤ 2P (Mt ≥ b) , P

(
sup
s≤r≤t

|Mr −Ms| ≥ b
)
≤ 4P (Mt −Ms ≥ b) .

Proof. If we denote by Tb the hitting time of b, we have

P
(

sup
0≤s≤t

Ms ≥ b

)
=

ˆ t

0

P (Tb ∈ ds) =

ˆ t

0

P (Tb ∈ ds,Mt < b) +

ˆ t

0

P (Tb ∈ ds,Mt ≥ b) .

Now, write Lb the lime of last visit to b before time t, on [Lb, t] the process Mr − b is a
Brownian bridge conditioned to be above −b. We only need to see that any trajectory
of M from b to (0, b] which stays above 0 can thus be transformed into a trajectory from
b to [b, 2b) that stays above 0 by re�ecting the trajectory between the last visit Lb to b
and t (see Figure 2).

Since these two Brownian bridges have the same probability and [b, 2b) ⊂ [b,+∞) it
shows that this operation is injective and thus P (Tb ∈ ds,Mt < b) ≤ P (Tb ∈ ds,Mt ≥ b)
for all s ≤ t (note that this is a consequence of the Brownian re�ection principle). There-
fore, we proved

P
(

sup
0≤s≤t

Ms ≥ b

)
≤ 2

ˆ t

0

P (Tb ∈ ds,Mt ≥ b) = 2P (Tb ≤ t,Mt ≥ b) = 2P (Mt ≥ b) .
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If we study the supremum of an increment Mr −Ms, s ≤ r ≤ t we only need to repeat
the proof for a starting point Ms = x and integrate over all the positions x. Since the
meander is a Markov process, we get P

(
sups≤r≤tMr − Ms ≥ b

)
≤ 2P (Mt −Ms ≥ b) .

Afterwards, we only need to see that again using the asymmetry of M , we have that

P
(

sup
s≤r≤t

|Mr −Ms| ≥ b
)
≤ 2P

(
sup
s≤r≤t

Mr −Ms ≥ b
)
,

hence the result.

Corollary B.2. For any λ > 1, a > 0 and 0 ≤ s < t < 1
2
, we have

P
(

inf
s≤r≤t

Mr ≤ a
)
≤ P (Ms ≤ λa) + P (Mt ≤ λa) +

4a
√
2t

t− s

e−
2

t−s
a2(λ−1)2

1− e−
2

t−s
a2λ2

,

as well as P (Mt ≤ a) ≤ 4a√
πt

(
1 ∧ a2

2t

)
.

Proof. We decompose the probability on whether Ms,Mt ≤ λa, meaning we only have to
consider P

(
infs≤r≤tMr ≤ a,Ms > λa,Mt > λa

)
. For this, we �rst use Brownian bridge

estimates: see that for any z, w, T > 0, we have

Pz

(
WT ∈ dw, inf

t∈[0,T ]
Wt > 0

)
=

1√
2πT

(
e−

1
2T

(z−w)2 − e−
1
2T

(z+w)2
)
dw

Pz (WT ∈ dw) =
1√
2πT

e−
1
2T

(z−w)2dw

thus we have

P
(

inf
t∈[0,T ]

W z→w
t > 0

)
= 1− e

1
2T

(z−w)2− 1
2T

(z+w)2 = 1− e−
2
T
zw . (B.4)

For any α > 0 and z, w > α, we de�ne

Pα
T (z, w) := P

(
inf

t∈[0,T ]
W z→w

t ≤ α | inf
t∈[0,T ]

W z→w
t > 0

)
= 1−

P
(
inft∈[0,T ]W

z→w
t > α

)
P
(
inft∈[0,T ]W z→w

t > 0
) .

Then, using (B.4) with z, w, z − α,w − α > 0, we can deduce

Pα
T (z, w) = 1− 1− e−

2
T
(z−α)(w−α)

1− e−
2
T
zw

=
e−

2
T
(z−α)(w−α) − e−

2
T
zw

1− e−
2
T
zw

. (B.5)

Consider the mapping fT : (x, y) 7→ e−
2
T
xy. Using the mean value theorem, there is a

c ∈ [0, 1] such that

fT (z, w)− fT (z − α,w − α) = ∇fT
(
(1− c)

(
z
w

)
+ c

(
z − α
w − α

))
·
((z

w

)
−
(
z − α
w − α

))
= −2α

T
(z + w − 2cα)e−

2
T
(z−cα)(w−cα) .

(B.6)

Injecting in (B.5), this yields

Pα
T (z, w) =

2α

T
(z + w − 2cα)

e−
2
T
(z−cα)(w−cα)

1− e−
2
T
zw

≤ 2α

T
(z + w)

e−
2
T
(z−cα)(w−cα)

1− e−
2
T
zw

. (B.7)
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In particular, if we assume z, w ≥ λα for some λ > 1, then fT (z, w) ≤ fT (λa, λa) and we
obtain

Pα
T (z, w) ≤

2α

T
(z + w)

e−
2
T
α2(λ−c)2

1− e−
2
T
α2λ2

.

Therefore, for any λ > 1 and a > 0,

P
(

inf
s≤r≤t

Mr ≤ a,Ms > λa,Mt > λa

)
= E

[
P a
t−s(Ms,Mt)1{Ms,Mt≥λa}

]
≤ 2a

t− s

e−
2

t−s
a2(λ−c)2

1− e−
2

t−s
a2λ2

E [Ms +Mt] ,

(B.8)

and we compute E [Mt] ≤ 2
√
2

π

√
t ≤

√
2t for t < 1/2 to get the desired result.

On the other hand, using (B.2), we write for 0 < t < 1
2

P (Mt ≤ a) =
2

t3/2

ˆ a

0

ye−
y2

2t

ˆ y

0

e−
u2

2(1−t)du√
2π(1− t)

dy ≤ 2

t3/2

ˆ a

0

ye−
y2

2t

ˆ y

0

du√
2π(1− t)

dy

≤ 2at−3/2√
2π(1− t)

ˆ a

0

ye−
y2

2t dy =
4a(1− e−

a2

2t )√
2πt(1− t)

≤ 4a√
πt

(
1 ∧ a2

2t

)
.

Let us mention that a process related to the meander is the 3-dimensional Bessel
process B. It can be de�ned as the solution of the SDE dBt = dWt + B−1

t dt, or as the
sum Bt = |Wt| + Lt where L is the local time of W at 0; it is a homogeneous Markov

process that has the Brownian scaling property (Bαt)t
d
= (

√
αBt)t. We refer to [23] for

those results. The link between the Bessel process and the meander is given by the
following result.

Proposition B.3. The law P+,T of the Brownian meander on [0, T ] has a density with
respect to PB the law of the three-dimensional process: if X is the canonical process, we
have

P+,T (A,XT ∈ dx) =
1

x

√
πT

2
PB(A,XT ∈ dx) .

In particular, ∀α > 0,∀s ≤ T,P+,αT (Xαs ∈ dx) = P+,T (
√
αXs ∈ dx).

Proof. The formula for the density can be found in [17, Section 4]. Afterwards, for any
positive measurable function f and any α > 0, we have

E+,αT

[
f
(Xαs√

α

)]
= EB

[
1

XαT

√
παT

2
f
(Xαs√

α

)]
=

√
π

2
EB

[√
T

XT

f(Xs)

]
= E+,T [f(Xs)] .

C Coupling of Brownian meander, a three-dimensional

Bessel process and a Brownian excursion

In this section we will expand on the way we can construct our di�erent processes to
have the almost sure results of Theorems 1.3 and 1.6. In particular we want the following
result:

1

n1/6

vn1/3∑
−un1/3

ωz
a.s.−−−→

n→∞
X(1)

u +X(2)
v and n1/18(Xu∗+

u

n1/9
−Xu∗)

a.s.−−−→
n→∞

Bu .
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Skorokhod's embedding theorem (Theorem 4.1) allows us to sample the Brownian
motions X(i), i = 1, 2 to get a new environment ω̂(n) to obtain the �rst convergence. Thus
we must �nd how we can couple both processes X(i) to the processes B,Y in Theorem
1.6, that is we need to prove Proposition 1.5. This is based on two intermediate results,
Lemmas C.1 and C.2 below, which couple a meander, resp. a Bessel-3 process, to a
Brownian excursion.

Lemma C.1 ([6, Theorem 2.3]). Let e be a standard Brownian excursion and U a uniform
variable on [0, 1]. Then, the process Mt = et1{t≤U} + (eU + e1−(t−U))1{t>U} is a Brownian
meander on [0, 1]. In particular, there exists a coupling of the Brownian meander M and
the Brownian excursion e on [0, 1] such that Mt = et if t ≤ U .

Lemma C.2. For any T ∈ [0, 1], There exists a coupling of the Brownian excursion e
on [0, 1] and the three-dimensional Bessel process B such that there is a positive ε(ω) for
which we have Bt = et for any t ∈ [0, ε(ω)].

Proof. It is known (see for example [18, p79]) that the Brownian excursion can be decom-
posed into two Bessel bridges of duration 1

2
joining at a point V whose law has density

16√
2π
v2e−2v2 . Thus we only need to de�ne a coupling between a 3d-Bessel process B and a

3d-Bessel bridge B′ with duration 1
2
and endpoint V . We use the fact that both processes

can be realized by the modulus of a three-dimensional Brownian motion.

Consider two independent, three-dimensional Brownian bridges X and Y of duration
1/2, such that X0 = x ∈ R3 (resp. Y0 = y ∈ R3) and X 1

2
= Y 1

2
= 0. Denote τ :=

inf
{
0 ≤ t ≤ 1

2
: |Xt| = |Yt|

}
the �rst time X and Y have the same modulus. We have

the following result.

Lemma C.3. Almost surely, there exists ε(ω) > 0 such that τ ≤ 1
2
− ε(ω).

Using this lemma, we can conclude the construction of the coupling. After time τ , we
de�ne a coupling by taking the trajectory of X between τ and 1

2
and plugging it at Yτ

after a rotation:

write Xt = |Xt|eiθ
X
t , Yt = |Yt|eiθ

Y
t and de�ne Ŷt =

{
Yt if t ≤ τ ,

|Xt|eiθ
X
t +i(θYτ −θXτ ) if τ < t ≤ 1

2
.

The new process Ŷ is such that for every t ∈ [τ, 1
2
], we have |Xt| = |Ŷt|. Recall that the

Brownian bridge is a di�usion process (as the solution to an SDE), thus is Markovian,
and τ is a stopping time for both processes X and Y . It follows that Ŷ is a Brownian
bridge between y and 0.

To create the coupling between the two Bessel processes B and B′, we choose the
starting points x and y so that they respectively correspond toW 1

2
(withW a 3d-Brownian

motion) and a uniform variable on the sphere centered at 0 of radius V . Then the processes
Bt = |X 1

2
−t| and B′

t = |Ŷ 1
2
−t| are Bessel processes starting at 0 that coincide on [0, 1

2
− τ ]

and such that B′
1
2

= V . In particular, the Bessel process B and the Brownian excursion

e coincide on [0, 1
2
− τ ].

Proof of Lemma C.3. On [0, 1
2
], consider B a 3-dimensional Bessel process starting at

0 and e the Brownian excursion, which is a Bessel bridge of duration 1
2
starting at 0

and ending at V . We de�ne Is,t := {∀r ∈ (s, t), er ̸= Br} the event on which e and B
never intersect between 0 and t (with the exception of 0). From [17, (3.1)], we have
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Px (A,Bt ∈ dz) = z
x
Px (A,Wt ∈ dz,H0 > t), where W is a Brownian motion and H0 its

�rst hitting time of 0. Then for any ε > 0, conditioning on the values of (eε,Bε) and
(V,Bt), we can write

P (I0,t) ≤ E [P (Iε,t | eε,Bε)] ≤ E
[
etBt

eεBε

P
(
I Bε→Bt

eε→et (t− ε)
)]

,

where we have de�ned

I a→b
x→y (T ) :=

{
∀r ∈ (0, T ),W x→y

T (r) > 0,W a→b
T (r) > 0,W x→y

T (r) ̸= W a→b
T (r)

}
,

in which W a→b
T is a Brownian bridge a → b of duration T (resp. for x → y). We are

interested in taking t = 1/2, but this result could be used for any �xed t > 0, in the sense
that the Bessel process and the Brownian excursion almost surely cross each-other on
]0, t] for any �xed t. Take a positive C > 0 to be chosen later (we will choose C = ε−1/8).
Then, we �rst get a bound using Cauchy-Schwartz inequality twice:

E
[
|etBt|
eεBε

P
(
I Bε→Bt

eε→V (t− ε)
)
1{Bt∨V >C}

]
≤ E

[
1

(eεBε)2

] 1
2

E
[
(etBt)

4
] 1

4 P (Bt ∨ V > C)
1
4 .

Since ε < t and e,B are independent, we have E [(etBt)
4] ≤ c(t) and

E
[

1

(eεBε)2

]
≤ 2√

π
Γ(

3

2
)(1− ε)−

3
2 ε−3

ˆ
R2
+

e−
x2

2ε e−
y2

2ε(1−ε)dxdy ≤ (1− ε)−1ε−2 ,

where we used the transition probabilities for the Bessel process [23, VI �3 Prop. 3.1],
the Brownian excursion [18, Section 2.9 (3a)] and Γ(3

2
) =

√
π/2. Finally we compute

P (Bt ∨ V > C) ≤ e−C2/t1/6 to get

E
[
|etBt|
eεBε

P
(
I Bε→Bt

eε→V (t− ε)
)
1{Bt∨et>C}

]
≤ ct(1− ε)−

1
2 ε−2e

− C2

t1/6 . (C.1)

On the other hand,

E
[
|etBt|
eεBε

P
(
I Bε→Bt

eε→et (t− ε)
)
1{Bt∨et≤C}

]
≤ E

[
C2

eεBε

P
(
I Bε→Bt

eε→et (t− ε)
)]

. (C.2)

We will use the following lemma to get a bound on P
(
I Bε→Bt

eε→et (t− ε)
)
.

Lemma C.4. For any T > 0, there is a CT > 0 such that for any x, y, a, b > 0,

P
(
I a→b

x→y (T )
)
≤ CT (x

2 + a2)2(y2 + b2)2 . (C.3)

Thus, using Lemma C.4 in (C.2), we have the upper bound

E
[
|etBt|
eεBε

P
(
I Bε→Bt

eε→et (t− ε)
)
1{Bt∨et≤C}

]
≤ C6Ct,εE

[
1

eεBε

(
(eε)

2 + (Bε)
2
)2]

,

and we compute

E


(
(eε)

2 + (Bε)
2
)2

eεBε

 =
2√
π
Γ(

3

2
)(1− ε)−

3
2 ε−3

ˆ
R2
+

(x2 + y2)2xye−
x2

2ε e−
y2

2ε(1−ε)dxdy

≤ (cst.)ε−3

ˆ
R2
+

ε2(u2 + v2)2uvεe−
u2

2 e−
v2

2 εdudv ≤ (cst.)ε .
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to get

E
[
|etBt|
eεBε

P
(
I Bε→Bt

eε→et (t− ε)
)
1{Bt∨et≤C}

]
≤ C6Ctε . (C.4)

Thus, assembling (C.1) and (C.4) while taking C = ε−1/8, for any t > 0 we then have

P (I0,t) ≤ Ct

(
ε−1e

− C2

4(t−ε)1/6 + C6ε

)
≤ Ct

(
ε−1 exp

(
− ε−1/4

2

)
+ ε1/4

)
−−→
ε→0

0 .

This means that P (I0,t) = 0 and in particular, taking t = 1
2
, one can almost-surely �nd a

positive ε such that Lemma C.3 is true.

Proof of Lemma C.4. We can assume 0 < x < a and 0 < y < b (otherwise the probability
is zero), then we have

P
(
I a→b

x→y (T )
)
= P

(
∀r ∈ [0, T ], 0 < W x→y

T (r) < W a→b
T (r)

)
. (C.5)

Observe that (C.5) is exactly the probability for the Brownian bridge W x→y,a→b
T :=

(W x→y
T ,W a→b

T ) to stay in the cone C := {(x, y) ∈ R2 : 0 ≤ x ≤ y} for a time T , meaning

P
(
I a→b

x→y (T )
)
= P

(
∀t ∈ [0, T ],W x→y,a→b

T (t) ∈ C
)
.

The isotropy of Brownian motion allows us to consider instead Ĉ :=
{
reiθ, 0 ≤ θ ≤ π

4

}
.

Lemma C.5. Let W z→z′ be a two dimensional Brownian bridge from z to z′. Then, there
is a positive CT such that uniformly as |z| → 0 we have

P
(
∀t ∈ [0, T ],W z→z′

t ∈ Ĉ
)
= (1 + ō(1))CT |z|4|z′|4 sin (4 arg z) sin (4 arg z′) .

Proof. Recall that we identify R2 with C, by writing W for a standard two-dimensional
Brownian motion, we have

P
(
∀t ∈ [0, T ],W z→z′

t ∈ Ĉ
)
= lim

η→0

Px

(
∀t ∈ [0, T ],Wt ∈ Ĉ ,WT ∈ B(z′, η)

)
Pz (WT ∈ B(z′, η))

= lim
η→0

(
C(T )η2e−|z′|2/2T

)−1
ˆ
B(z′,η)

K Ĉ
T (z, w)dw ,

where K Ĉ
T (z, w) is the heat kernel killed on exiting Ĉ and B(z, r) is the ball of radius r

centered at z.
The key ingredient is the following statement, which is a consequence of [12, Lemma

18 - (32)]: as δ → 0, uniformly in |z| ≤ δ
√
T , |w| ≤

√
T/δ, we have

K Ĉ
T (z, w) ∼

χ0

T 5
e−|w|2/2Tu(w)u(z) for some χ0 > 0.

where u(reiθ) := r4 sin(4θ) (this expression is given in [12, (3)]). This result is also stated
in [2, Corollary 1]. In particular, as |z| → 0,

P
(
∀t ∈ [0, T ],W z→z′

t ∈ Ĉ
)
∼ lim

η→0

(
C(T )η2e−|z′|2/2T

)−1
ˆ
B(z′,η)

χ0

T 5
e−|w|2/2Tu(w)u(z)dw

= lim
η→0

e|z
′|2/2T χ0

T 5
e−|z′|2/2Tu(z′)u(z)

Vol(B(z′, η))

C(T )η2
(1 + h(η)) ,

with h(η) → 0 and Vol(B(z′, η)) = πη2, leading us to the formula of Lemma C.5.
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Comment. We could also use the fact that Ĉ is the Weyl chamber B2, thus we can use
results from [16, �5.3] after a time scaling by ε to have that the probability in (C.2) is of
order (ε/t)2, which is ultimately what we proved.

Thus, we proved Lemma C.4 by injecting z = (x, a) and z′ = (y, b).

Assembling Lemmas C.1 and C.2 yields that one can do a coupling of the Brownian
meander M and the three-dimensional Bessel process B such that almost surely, there is
a positive time σ for which Mt = Bt on [0, σ], thus proving Proposition 1.5 using (3.5).
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