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The purpose of this paper is to study a one-dimensional polymer penalized by its range and placed in a random environment ω. The law of the simple symmetric random walk up to time n is modied by the exponential of the sum of βω z -h sitting on its range, with h and β positive parameters. It is known that, at rst order, the polymer folds itself to a segment of optimal size c h n 1/3 with c h = π 2/3 h -1/3 . Here we study how disorder inuences ner quantities. If the random variables ω z are i.i.d. with a nite second moment, we prove that the left-most point of the range is located near -u * n 1/3 , where u * ∈ [0, c h ] is a constant that only depends on the disorder. This contrast with the homogeneous model (i.e. when β = 0), where the left-most point has a random location between -c h n 1/3 and 0. With an additional moment assumption, we are able to show that the left-most point of the range is at distance Un 2/9 from -u * n 1/3 and the right-most point at distance Vn 2/9 from (c h -u * )n 1/3 . Here again, U and V are constants that depend only on ω.

Introduction

We study a simple symmetric random walk (S k ) k≥0 on Z, starting from 0, with law P. Let ω = (ω z ) z∈Z be a collection of i.i.d. random variables with law P, independent from the random walk S, which we will call environment or eld. We also assume that E[ω 0 ] = 0 and E[ω 2 0 ] = 1. For h > 0, β > 0 and a given realization of the eld ω, we dene the following Gibbs transformation of P, called the (quenched) polymer measure: is the partition function, such that P ω,β n,h is a (random) probability measure on the space of trajectories of length n. In other words, the polymer measure P ω,β n,h penalizes trajectories by their range and rewards visits to sites where the eld ω takes greater values.

dP ω,β n,h ( 
In this setting, the disorder term z∈Rn ω z is typically of order |R n | 1/2 : one can prove that a β z∈Rn ω z -h|R n | ∼ -h|R n | for P-almost all ω, see [START_REF] Berger | One-dimensional polymers in random environments: stretching vs. folding[END_REF]. Thus, disorder does not suciently impact the behavior of the polymer on a rst approximation, which is seen in Theorem 1.1 below. We introduce the following notation:

ξ n P ω,β n,h
---→ n→∞ ξ ⇐⇒ ∀ε > 0, lim n→∞ P ω,β n,h (|ξ n -ξ| > ε) = 0 .

We will say that ξ n converges in P ω,β n,h -probability even if P ω,β n,h depends on n.

Theorem 1.1 [START_REF] Berger | One-dimensional polymers in random environments: stretching vs. folding[END_REF]Theorem 3.7]). For all h > 0, dene c h := (π 2 h -1 ) 1/3 . Then, for any h, β > 0, P-almost surely we have the following convergence

lim n→∞ 1 n 1/3 log Z ω,β n,h = - 3 2 (πh) 2/3 , n -1/3 |R n | P ω,β n,h ---→ n→∞ c h .
(1.1)

The main goal of this paper is to extract further information on the polymer, notably on the location of the segment where the random walk is folded or on how |R n | uctuates at lower scales than n 1/3 .

About the homogeneous setting

Since we are working in dimension one, we make use of the fact that the range is entirely determined by the position of its edges, meaning that R n is exactly the segment M - n , M + n , where M - n := min 0≤k≤n S k and M + n := max 0≤k≤n S k .

We will also adopt the following notation:

T n := M + n -M - n = |R n | -1 , T * n := nπ 2 h 1/3 = c h n 1/3 , ∆ n := T n -T * n . (1.2)
Hence, T n is the size of the range and T * n is the optimal size of the range at scale n 1/3 that appears in (1.1).

In the homogeneous setting, that is when β = 0, it is proven in [START_REF] Bouchot | Scaling limits for the penalized random walk in dimension 1[END_REF] that the location of the left-most point is random (on the scale n 1/3 ) with a density proportional to sin(πu/c h ). As far as the size of the range T * n is concerned, it is shown to have Gaussian uctuations.

In fact, [START_REF] Bouchot | Scaling limits for the penalized random walk in dimension 1[END_REF] treats the case of a parameter h = h n that may depend on the length of the polymer: in this case, uctuations vanish when the penalty strength h n is too high. We state the full result for the sake of completeness. Theorem 1.2 ([7, Theorem 1.1]). Recall the notations of (1.2) and replace h by h n in the denition of T * n . Then for β = 0, we have the following results:

Assume that h n ≥ n -1/2 (log n) 3/2 and lim n→∞ n -1/4 h n = 0. Let a n := 1 √ 3

nπ 2 h 4 n 1/6
, which is such that lim n→∞ a n = +∞. Then for any r < s and any 0 ≤ a < b ≤ 1,

lim n→∞ P ω,0 n,hn r ≤ ∆ n a n ≤ s ; a ≤ |M - n | T * n ≤ b = √ π 2 √
2 ˆs r e -u 2 2 du ˆb a sin(πv) dv .

a In the rest of the paper we shall use the standard Landau notation: as x → a, we write g(x) ∼ f (x)

if lim x→a g(x) f (x) = 1, g(x) = ō(f (x)) if lim x→a g(x)
f (x) = 0,g(x) = Ō(f (x)) if lim sup x→a g(x)

f (x) < +∞ and f ≍ g if g(x) = Ō(f (x)) and f (x) = Ō(g(x)). 

|M - n | T * n ∈ B = π 2
ˆB sin(πv) dv.

We will see that the disordered model displays a very dierent behavior: the location of the left-most and right-most points are P-deterministic, in the sense that they are completely determined by the disorder eld ω (at least for the rst few orders).

A rewriting of the partition function

In the disordered setting, we can write Z ω,β n,h as

Z ω,β n,h = +∞ x,y=0
exp -h(x + y + 1) + β y z=-x ω z P R n = -x, y .

(

Gambler's ruin formulae derived from [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF]Chap. XIV] can be used to compute sharp asymptotics for P R n = -x, y , see [START_REF] Bouchot | Scaling limits for the penalized random walk in dimension 1[END_REF]Theorem 1.4]. In particular, as n, x+y → ∞, one gets log P R n = -x, y ∼ -nπ 2 2(x+y) 2 when x + y ≪ n, the exact asymptotics depending on the ratio n/(x + y) 3 . The optimal range size T * n = c h n 1/3 appearing in (1.1) is found as the minimizer of ϕ n (T ) := hT + nπ 2 2T 2 . Letting ψ h := 8 π e h [cosh h -1], the sharp estimates of P R n = -x, y from [START_REF] Bouchot | Scaling limits for the penalized random walk in dimension 1[END_REF]Theorem 1.4] give as n → +∞ where the ō(1) is deterministic. Note that Theorem 1.1 implies that there exists a vanishing sequence (ε n ) n≥1 such that lim n→∞ P ω,β n,h (|∆ n | > ε n n 1/3 ) = 0, P-a.s. In particular, we can restrict the partition function to trajectories such that |∆ n | ≤ ε n n 1/3 . Then, as in [START_REF] Bouchot | Scaling limits for the penalized random walk in dimension 1[END_REF]Lemma 2.1], we can use the Taylor expansion of ϕ n around T * n to obtain the following: writing ∆ x,y n := x + y -c h n 1/3 , we have

Z ω,β n,h ∼ e -3 2 hT * n ψ h x,y≥0 |∆ x,y n |≤εnn 1/3 sin xπ x + y exp β y z=-x ω z - 3π 2 (∆ x,y n ) 2 2c 4 h n 1/3 (1 + ō(1)) , (1.4) 
where the ō(1) is deterministic, uniform in x, y, and stems from the Taylor expansion.

Equation (1.4) will be the starting point of the proofs of our results.

First convergence result

Akin to [START_REF] Berger | One-dimensional polymers in random environments: stretching vs. folding[END_REF], we dene the following quantities: for any j ≥ 0 for which the sum is not empty,

Σ + j (ω) := j z=0 ω z , Σ - j (ω) := j z=1 ω -z .
Using Skorokhod's embedding theorem (see [START_REF] Skorokhod | Studies in the theory of random processes[END_REF]Chapter 7.2] and Theorem 4.1 below) we can dene on the same probability space a coupling ω = ω(n) of ω and two independent standard Brownian motions X (1) and X (2) such that for each n, ω(n) has the same law as the environment ω and 1 n 1/6 Σ - un 1/3 (ω) u≥0 a.s.

---→ n→∞ X (1) u (ω) u≥0 , 1 n 1/6 Σ + vn 1/3 (ω) v≥0 a.s.

---→ n→∞ X (2) v (ω) v≥0 in the Skorokhod metric on the space of all càdlàg real functions. With an abuse of notation, we will still denote by ω this coupling, while keeping in mind that the eld now depends on n.

Our rst result improves estimates on the asymptotic behavior of Z ω,β n,h and (M - n , M + n ).

Theorem 1.3. For any h, β > 0, we have the following P-a.s. convergence

lim n→∞ 1 βn 1/6 log Z ω,β n,h + 3 2 hc h n 1/3 = sup 0≤u≤c h X (1) u + X (2) c h -u , (1.5) 
where X (1) and X (2) are the two independent standard Brownian motions dened above. Furthermore, u * := arg max u∈[0,c h ] X (1) u + X

(2) c h -u is P-a.s. well-dened and

1 n 1/3 (M - n , M + n ) P ω,β n,h ---→ n→∞ (-u * , c h -u * )
P-a.s.

(1.6)

In other words, n -1/3 R n converges in P ω,β n,h -probability to the segment -u * , c h -u * , P-a.s. α-stable law with α ∈ (1, 2), only replacing the Brownian motions X (i) by Lévy processes as in [START_REF] Berger | One-dimensional polymers in random environments: stretching vs. folding[END_REF] and n 1/6 by n 1/3α : we refer to Theorem A.1 and its proof in Appendix A. As most of the work in this paper requires stronger assumptions on the eld ω we will not dwell further on this possibility and focus on the case where E [ω 2 0 ] = 1.

Heuristic. Intuitively, the result of Theorem 1.3 is a consequence of the following reasoning: if we assume that the optimal size is T * n (at a rst approximation), the location of the polymer should be around the points (x n , y n ) ∈ N 2 such that x n + y n ≈ T * n and Σ - xn + Σ + yn is maximized. Translating in terms of the processes X (1) , X (2) , we want to maximize n -1/6 (Σ - xn + Σ + yn ), which is close to X

(1)

xnn -1/3 + X (2) ynn -1/3 . Since x n + y n ∼ T * n we have y n n -1/3 ∼ c h -x n n -1/3
and we want to pick x n n -1/3 to maximize u → X

(1)

u + X (2) c h -u .

Second order convergence result

To ease the notation we will denote X u := X

(1)

u + X (2) c h -u . Note that X has the distribution of √ 2W + X (2)
c h , where W is a standard Brownian motion. Hence, the supremum on [0, c h ] of X u is almost surely positive and nite, attained at a unique u * which follows the arcsine law on [0, c h ].

In order to extract more information on the typical behavior of the polymer, we need to go deeper into the expansion of log Z ω,β n,h . To do so, we factorize Z ω,β n,h by e βn 1/6 Xu * and we study the behavior of log Z ω,β n,h + 3 2 hc h n 1/3 -βn 1/6 X u * , which is related to the behavior of X near u * . Studying Wiener processes near their maximum leads to study both the three-dimensional Bessel process and the Brownian meander, as outlined by the following classical result. Proposition 1.4 ([17,Theorem 5]). Let W be a Brownian motion on [0, 1] and let σ be the time at which W reaches its maximum on [0, 1]. On the event {σ = u}, the processes

(W u+s -W u , 0 ≤ s ≤ 1 -u) and (W u-s -W u , 0 ≤ s ≤ u)
are Brownian meanders of respective duration 1 -u and u.

Some other technical results about the meander are presented in Appendix B. We also dene the following process, which we call two-sided three-dimensional Bessel (BES 3 ) process.

Denition 1.1. We call two-sided three-dimensional Bessel process B the concatenate of two three-dimensional Bessel processes B -and B + . Namely, for all s ∈ R,

B s = B - -s 1 R -(s) + B + s 1 R + (s).
Additionally, we will use the following coupling between (X

u + X

(2)

c h -u , X (1) 
u -X

c h -u ) seen from u * and a two-sided BES 3 process and a Brownian motion. This will allow us to obtain P-almost sure results instead of convergences in distribution; in particular we obtain trajectorial results that depend on the realization of the environment. The proof is postponed to Appendix C and relies on the path decomposition of usual Brownian-related processes.

Proposition 1.5. Let X u = X (1) u + X

(2)

c h -u , Y u := X (1) u -X (2) c h -u .
Then, conditionally on u * , one can construct a coupling of (X (1) , X (2) ) and B a twosided BES 3 , Y a two-sided standard Brownian motion such that: almost surely, there is a δ 0 = δ 0 (ω) > 0 for which on a δ 0 -neighborhood of 0,

1 √ 2 X u * -X u * +u u = χB u u , 1 √ 2 Y u * +u -Y u * u = (Y u ) u ,
where we have set χ = χ(u, ω)

:= √ c h -u * 1 {u≥0} + √ u * 1 {u<0} -1 .
Comment. It should be noted that χ actually only depends on the sign of u, which means that the process χB has the Brownian scaling invariance property. This will be used in Section 1.5 to get a suitable coupling.

Theorem 1.6. Suppose E [|ω 0 | 3+η ] < ∞ for some η > 0. With the coupling of Proposition 1.5, we have the P-a.s. convergence

lim n→∞ √ 2 βn 1/9 log Z ω,β n,h + 3 2 hc h n 1/3 -βn 1/6 X u * = sup u,v Y u,v - 3π 2 βc 4 h √ 2 u + v 2 , (1.7) 
where

Y u,v := Y u -Y -v -χ B u + B v . Moreover, (U, V) := arg max u,v {Y u,v -3π 2 βc 4 h √ 2 (u + v) 2 } is P-a.s.
well-dened and we have

M - n + u * n 1/3 n 2/9 , M + n -(c h -u * )n 1/3 n 2/9 P ω,β n,h ---→ n→∞ (U, V) P-a.s. (1.8)
In particular, we have

T n -c h n 1/3 n 2/9 P ω,β n,h ---→ n→∞ U + V P-a.s.
Comment. We should be able to obtain a statement assuming only that

E [|ω 0 | 2+η ] < ∞
for some positive η. The statement is a bit more involved: we need to use a dierent coupling between ω and X (1) , X (2) , to get the following convergence:

lim n→∞ √ 2 βn 1/9   log Z ω,β n,h + 3 2 hc h n 1/3 -β (c h -u * )n 1/3 z=-u * n 1/3 ω z   = sup u,v Y u,v - 3π 2 βc 4 h √ 2 (u + v) 2 .
(1.9)

We refer to Section 4.2 for further details and a partial proof of (1.9), adapting the proof of Theorem 1.6.

Coupling and construction

Observe that we combine two dierent couplings that have dierent uses to prove our results:

A coupling for a given size n between the environment ω and two Brownian motions X (1) and X (2) . This coupling allows for the almost sure convergence in Theorem 1.3, and the assumption E ω 3+η 0 < +∞ is used to have a good enough control on the coupling.

A coupling between (X (1) , X (2) , u * ) and (B, Y) to study the behavior of the Brownian motions X (1) and X (2) near u * . This allows us to get the almost sure convergence of Theorem 1.6, in addition to easier proofs when excluding non typical congurations for the polymer.

Here we explain how these two coupling combine to yield all the desired results. We start by picking u * according to the arcsine law on [0, c h ] and by considering a threedimensional two-sided Bessel process B as well as an independent two-sided Brownian motion Y, both dened on R. Since the process (X u * -X u * +u )/ √ 2 is a two-sided Brownian meander (with left interval [0, u * ] and right interval [0, c h -u * ]), using Proposition 1.5 we can nd a δ 0 (ω) such that if |u| ≤ δ 0 , we have X u * -X u * +u = B u χ √ 2. We are interested in a coupling that will be such that n

1/18 (X u * -X u * + u n 1/9 ) = B u χ √ 2
for all n large enough and for any un -1/9 suciently close to 0. To do so, for each n we construct from B a suitable X n , with the same law as X, that satises the desired equality.

Consider only the pair (δ 0 , B) that was previously dened, and let n 0 be such that ε n 0 ≤ δ 0 . Then, for any n ≥ n 0 , we paste the trajectory of n -1/18 √ 2χB un 1/9 , which is still a two-sided three-dimensional Bessel process multiplied by √ 2 (note that χ is scaleinvariant), until |u| = δ 0 . By construction, we have X n u * -X n u * +u = n -1/18 √ 2χB un 1/9 for |u| ≤ δ 0 . Next, we consider two independent Brownian meanders M L,n,δ 0 , M R,n,δ 0 of duration u * (resp. c h -u * ) conditioned on M L,n,δ 0

δ 0 = n -1/18 √ 2χB -δ 0 n 1/9 (resp. M R,n,δ 0 δ 0 = n -1/18 √ 2χB δ 0 n 1/9
), and we plug their trajectory to complete the process X n . The full denition of X n is thus given by

1 √ 2 (X n u * -X n u ) = n -1/18 χB un 1/9 1 {|u-u * |<δ 0 } + M L,n,δ 0 u * -u 1 {u∈[0,u * -δ 0 ]} + M R,n,δ 0 u-u * 1 {u∈[u * +δ 0 ,c h ]} We can similarly dene Y n u * +u -Y n u * := n -1/18 √ 2Y un 1/9
where no particular coupling is needed. From X n and Y n , we can recover our new Brownian motions X (1),n , X (2),n .

After this coupling of the processes, we construct the environment ω = ω n from (X (1),n , X (2),n ) using Skorokhod's embedding theorem (see Theorems 4.1,4.2). Thus, all of our processes are dened to have almost sure convergences, and when n is large enough (how large only depends on δ 0 ) and |un -1/9 | ≤ ε n ≤ δ 0 , we have

n 1/18 (X n u * -X n u * + u n -1/9 ) = √ 2χB u , n 1/18 (Y n u * -Y n u * + u n -1/9 ) = √ 2Y u .
(1.10)

1.6 Comments on the results, outline of the paper Expansion of the log-partition function. One may think about our results as an expansion of log Z β,ω n,h up to several orders, gaining each time some information on the location of the endpoints of the range. A way to formulate such result is, for some real numbers α 1 > • • • > α p ≥ 0, to dene the following sequence of free energies which we may call k-th order free energy, at scale α k :

f (1) ω (h, β) = lim n→∞ n -α 1 log Z β,ω n,h f (k+1) ω (h, β) = lim n→∞ n -α k+1 log Z β,ω n,h - k i=1 n α i f (i) ω (h, β) , (1.11) 
when these quantities exist and are in R \ {0}.

Theorems 1.1, 1.3 and 1.6 can be summarized in the following statement: assuming that E ω 3+η 0 < ∞ for some positive η, then letting α k = 1 3k for k ∈ {1, 2, 3}, we have P-a.s.

f (1) ω (h, β) = lim n→∞ 1 n 1/3 log Z ω,β n,h = - 3 2 (πh) 2/3 , f (2) ω (h, β) = lim n→∞ 1 n 1/6 log Z ω,β n,h + 3 2 hc h n 1/3 = β sup 0≤u≤c h X (1) u + X (2) c h -u = βX u * , f (3) ω (h, β) = β √ 2 sup u,v Y u,v - 3π 2 βc 4 h √ 2 u + v 2 .
In particular, we prove in this paper that log Z ω,β n,h = -

3 2 hc h n 1/3 + β (c h -u * )n 1/3 z=-u * n 1/3 ω z + β √ 2 Y U ,V - 3π 2 βc 4 h √ 2 U + V 2 n 1/9 (1 + ō(1))
holds P-a.s. with the ō(1) going to 0 in P β,ω n,h -probability. Note that the rst two orders of log Z ω,β n,h , meaning f

ω and f

ω , are respectively called the free energy and the surface energy.

In Section 5 we study a simplied model where the random walk is constrained to be non-negative. By restricting it so, the processes involved are less complex as they depend on only one variable (which represents the upper edge of the polymer), which simplies the calculations. The idea is to give some insights on what happens when studying log Z ω,β n,h -3 i=1 n α i f (i) (h, β), especially on the scale of the = 4-th order free energy. The environment is taken to be Gaussian in order to get the coupling of n -1/6 Σ ± zn 1/3 with no coupling error (otherwise the result could change). We give in Section 5 a detailed justication for the following conjecture.

Conjecture 1.7. If ω 0 is Gaussian, there is a positive process

W = {W a,b , (a, b) ∈ R 2 } and a sequence (u n , v n ) n with values in [0, 1] 2 such that lim n→∞ Z ω,β n,h exp - 3 i=1 n α i f (i) (h, β) - i,j∈Z
e -W i+un,j+vn = 0 P-a.s.

(1.12)

In particular, for any couple of integers (i, j), we have P-a.s.

P ω,β n,h M - n -⌊-u * n 1/3 + Un 2/9 ⌋ = i, M + n -⌊(c h -u * )n 1/3 + Vn 2/9 ⌋ = j ∼ e -W i+un,j+vn θ ω (n) , (1.13) 
with θ ω (n) := i,j∈Z e -W i+un,j+vn a normalizing constant.

The case of varying parameters β, h. As mentioned above, the present model has previously been studied in [START_REF] Berger | One-dimensional polymers in random environments: stretching vs. folding[END_REF], with the dierence that the parameters β, h were allowed to depend on n, the size of the polymer. More precisely, the polymer measure considered was given by

dP ω,β n,h (S) = 1 Z ω,β n,h exp z∈Rn(S) β n ω z -h n dP(S), with h n = ĥn -ζ , β n = βn -γ .
The authors in [START_REF] Berger | One-dimensional polymers in random environments: stretching vs. folding[END_REF] obtained P-almost sure convergences of n -λ log Z ω,βn n,hn for some suit- able λ ∈ R, which corresponds to a rst order development of the log-partition function. Afterwards, asymptotics for EE ω,βn n,hn [|R n |] as well as scaling limits for (M - n , M + n ) were established and displayed a wide variety of phases. In addition, the authors also investigated the case where (ω z ) are i.i.d and in the domain of attraction of an α-stable law with α ∈ (0, 1) ∪ (1, 2) to unveil an even richer phase diagram.

Theorems 1.3 and 1.6 conrm the conjecture of Comment 4 of [START_REF] Berger | One-dimensional polymers in random environments: stretching vs. folding[END_REF] that for a typical conguration ω, the uctuations of the log-partition function and n -1/3 (M - n , M + n ) are not P-random for xed h, β > 0. With our methods, it should be possible to extend our results to account for size-dependent h = h n , β = β n , with similar results for reasonable h n , β n (meaning with suciently slow growth/decay).

Link with the random walk among Bernoulli obstacles. Take a Bernoulli site percolation with parameter p, meaning a collection O = z ∈ Z d , η z = 1 where η z are i.i.d. Bernoulli variables with parameter p, and write P = B(p) ⊗Z its law on Z. Consider the random walk starting at 0 and let τ denote the time it rst encounters O (called the set of obstacles): one is interested in the asymptotic behavior of the survival probability P(τ > n) as n → ∞ and of the behavior of the random walk conditionally on having τ > n, see for example [START_REF] Ding | Poly-logarithmic localization for random walks among random obstacles[END_REF] and references therein. The annealed survival probability E P P(τ > n) is given by

E P ⊗ E 1 {Rn∩O=∅} = E [P [∀z ∈ R n , η z = 0]] = E (1 -p) |Rn| = E e |Rn| log(1-p) ,
and we observe that this is exactly Z ω,0 n,hp with h p = -log(1 -p). Thus, for β = 0, our model can be seen as an annealed version of the random walk among Bernoulli obstacles with common parameter p = 1 -e -h . If we push the analogy a bit further and assume βω z -h ≤ 0 for all z ∈ Z, we can see Z ω,β n,h as the annealed survival probability of the random walk among obstacles O ω = z ∈ Z d , η ω z = 1 where η ω z are i.i.d. Bernoulli variables with random parameter p ω z = 1 -e βωz-h . The averaging is done on the random walk (with law P) and the Bernoulli variables (with law P ω = z∈Z B(p ω z )), while the parameters p ω z = 1 -e βωz-h (with law P) are quenched.

Link with the directed polymer model. Another famous model is given by considering a doubly indexed eld (ω i,z ) (i,z)∈N×Z and the polymer measure

dP ω,β n,h (S) = 1 Z ω,β n,h exp n i=0 βω i,S i -λ(β) dP(S) , λ(β) = log E e βω .
This is known as the directed polymer model (in contrast with our non-directed model) and has been the object of an intense activity over the past decades, see [START_REF] Comets | Directed polymers in random environments[END_REF] for an overview.

Let us simply mention that the partition function somehow solves a discretized version of Stochastic Heat Equation (SHE) with multiplicative space-time noise ∂ t u = ∆u + βξ • u.

Hence, the convergence of the partition function under a proper scaling β = β(n), dubbed intermediate disorder scaling, has raised particular interest in recent years: see [START_REF] Alberts | The intermediate disorder regime for directed polymers in dimension 1 + 1[END_REF][START_REF] Caravenna | Polynomial chaos and scaling limits of disordered systems[END_REF] for the case of dimension 1 and [START_REF] Caravenna | The critical 2d stochastic heat ow[END_REF] for the case of dimension 2, where this approach enabled the authors to give a notion of solution to the SHE; see also [START_REF] Berger | The stochastic heat equation with multiplicative Lévy noise: Existence, moments, and intermittency[END_REF] for the case of a heavy-tailed noise.

The main dierence with our model is how the disorder ω plays into the polymer measure. Here, the polymer gets a new reward/penalty ω i,z at each step it takes, whereas in our model such event only happens when reaching a new site of Z, in some sense consuming ω z when landing on z for the rst time.

Outline of the paper. This paper can be split into three parts. The rst part in Section 2 consists in the proof of Theorem 1.3, the second part and main part focuses on the proof of Theorem 1.6. This proof is split into Section 3 where ω is assumed to be Gaussian and Section 4 where we explain how to get the general statement thanks to a coupling. A third part, in Section 5, studies the simplied model where the random walk is constrained to be non-negative. Precise results under some technical assumption help us formulate the conjectures in (1.12) and (1.13).

Finally, we prove in Appendix A the generalization of Theorem 1.3 to the case when ω does not have a nite second moment, as announced. We also state some useful properties of the Brownian meander that we use in our proofs in Appendix B. In Appendix C we detail a way to couple Brownian meanders with a two-sided three-dimensional Bessel process so that they are equal near 0 (i.e. we prove Proposition 1.5).

Second order expansion and optimal position

We extensively use the following notation: For a given event A (which may depend on ω), we write the partition function restricted to A as

Z ω,β n,h (A) := E exp z∈Rn(S) βω z -h 1 A , so that P ω,β n,h (A) = 1 Z ω,β n,h Z ω,β n,h (A).
This section consists in the proof of Theorem 1.3 and is divided into two steps:

We rst make use of a coarse-graining approach with a size δn 1/3 to prove the convergence of the rescaled log Z ω,β n,h -3 2 hT * n . At the same time, we locate the main contribution as coming from trajectories whose left-most point is around -u * n 1/3 , proving (1.5).

We then prove that P-a.s., n -1/3 M - n converges in P ω,β n,h -probability to -u * , using the previously step and the fact that

P ω,β n,h (A) = Z ω,β n,h (A)/Z ω,β
n,h . Since we also have the result of (1.1), we deduce (1.6) thanks to Slutsky's lemma as M - n , M + n and T n are dened on the same probability space.

Convergence of the log partition function

In order to lighten notation, we always omit integer parts in the following.

Proof of Theorem 1.3-(1.5). Recall (1.4), choose some δ > 0 and split the sum over x, y 

depending on k 1 δn 1/3 ≤ x < (k 1 + 1)δn 1/3 and k 2 δn 1/3 ≤ y < (k 2 + 1)δn
| = |x + y -c h n 1/3 | ≤ ε n n 1/3 < δn 1/3 for n suciently large; note that this implies that (k 1 + k 2 )δ ∈ {c h -δ, c h }.
We can now rewrite (1.4) as

log Z ω,β n,h + 3 2 hc h n 1/3 = ō(1) + log ψ h + log Λ ω,β n,h (δ) , (2.1) 
in which we dened

Λ ω,β n,h (δ) := c h /δ k 1 =0 c h δ -k 1 k 2 = c h δ -k 1 -1 Z ω,β n,h (k 1 , k 2 , δ) , (2.2) 
with

Z ω,β n,h (k 1 , k 2 , δ) := k 1 δn 1/3 ≤x<(k 1 +1)δn 1/3 k 2 δn 1/3 ≤y<(k 2 +1)δn 1/3 sin xπ x + y exp β y z=-x ω z - 3π 2 (∆ x,y n ) 2 2c 4 h n 1/3 (1 + ō(1)) . (2.3)
Then let us dene

W ± (u, v, δ) := X (1) u + X (2) v ± sup u≤u ′ ≤u+δ X (1) u ′ -X (1) u ± sup v≤v ′ ≤v+δ X (2) v ′ -X (2) v .
(2.4) Theorem 1.3-(1.5) essentially derives from the following lemma.

Lemma 2.1. For any integers k 1 , k 2 and any δ > 0, we have P-almost surely

W -(k 1 δ, k 2 δ, δ) ≤ lim n→∞ log Z ω,β n,h (k 1 , k 2 , δ) βn 1/6 ≤ lim n→∞ log Z ω,β n,h (k 1 , k 2 , δ) βn 1/6 ≤ W + (k 1 δ, k 2 δ, δ) .
Let us use this lemma to conclude the proof of the convergence (1.5). Since the sum in (2.2) has 2c h δ terms, we easily get that

0 ≤ log Λ ω,β n,h (δ) - max 0≤k 1 ,k 2 ≤c h /δ (k 1 +k 2 )δ∈{c h -δ,c h } log Z ω,β n,h (k 1 , k 2 , δ) ≤ log 2c h δ .
Dividing by βn 1/6 and taking the limit n → ∞, Lemma 2.1 yields

lim n→∞ 1 βn 1/6 log Λ ω,β n,h (δ) ≤ max 0≤k 1 ,k 2 ≤c h /δ (k 1 +k 2 )δ∈{c h -δ,c h } W + (k 1 δ, k 2 δ, δ).
We write u = k 1 δ and v = k 2 δ, belonging to the nite set U δ dened as

U δ := (u, v) ∈ (R + ) 2 : u ∈ δ, 2δ, . . . , ⌊ c h δ ⌋δ , u + v ∈ {c h , c h -δ} , (2.5) so lim δ→0 lim n→∞ log Λ ω,β n,h (δ) βn 1/6 ≤ lim δ→0 max 0≤u,v≤c h u+v∈{c h -δ,c h } W + (u, v, δ) = sup 0≤u,v≤c h u+v=c h X (1) u + X (2) v P-a.s. ,
where for the last identity, we have used the continuity of X (1) and X (2) . The same goes for lim inf n→∞ n -1/6 Λ ω,β n,h (δ), with the lower bound W -(u, v, δ), which concludes the proof.

Proof of Lemma 2.1. The proof is inspired by the proof of Lemma 5.1 in [START_REF] Berger | One-dimensional polymers in random environments: stretching vs. folding[END_REF]. Recall the denition (2.3) of Z ω,β n,h (k 1 , k 2 , δ) and write for the disorder term:

Σ + k 2 δn 1/3 + Σ - k 1 δn 1/3 -R δ n (k 1 δ, k 2 δ) ≤ y z=-x ω z ≤ Σ + k 2 δn 1/3 + Σ - k 1 δn 1/3 + R δ n (k 1 δ, k 2 δ) (2.6)
where the error term

R δ n is dened for u, v ≥ 0 by R δ n (u, v) := max un 1/3 +1≤j≤(u+δ)n 1/3 -1 Σ - j -Σ - un 1/3 + max vn 1/3 +1≤j≤(v+δ)n 1/3 -1 Σ + j -Σ + vn 1/3 .
Using the coupling ω and Lemma A.5 of [START_REF] Berger | One-dimensional polymers in random environments: stretching vs. folding[END_REF] (for Lévy processes), P-a.s., for all ε > 0, for all n large enough (how large depends on ε, δ, ω),

1 n 1/6 R δ n (u, v) ≤ ε + sup u≤u ′ ≤u+ε+δ X (1) u ′ -X (1) u + sup v≤v ′ ≤v+ε+δ X (2) v ′ -X (2) v 1 n 1/6 Σ + vn 1/3 -X (2) v ∨ 1 n 1/6 Σ - un 1/3 -X (1) u ≤ ε ,
uniformly in u and v, since U δ is a nite set. Thus, letting n → ∞ then ε → 0 we obtain that P-almost surely,

lim n→∞ 1 βn 1/6 log Z ω,β n,h (k 1 , k 2 , δ) ≤ sup k 1 δn 1/3 ≤x<(k 1 +1)δn 1/3 k 2 δn 1/3 ≤y<(k 2 +1)δn 1/3 lim n→∞ 1 n 1/6 y z=-x ω z ≤ W + (u, v, δ) .
in which we recall the denition (2.4) of W ± (u, v, δ).

On the other hand, since Z ω,β n,h (k 1 , k 2 , δ) is a sum of non-negative terms, we get a simple lower bound by restricting to congurations with almost no uctuation around T * n :

log Z ω,β n,h (k 1 , k 2 , δ) n 1/6 ≥ sup |∆ x,y n |≤1 β n 1/6 y z=-x ω z - 3π 2 2c 4 h (∆ x,y n ) 2 n 1/2 -ō(1) = β n 1/6 sup |∆ x,y n |≤1 y z=-x ω z - 3π 2 2c 4 h √ n -ō(1),
in which the supremum is taken on the (x, y) that satisfy the criteria of Z ω,β n,h (k 1 , k 2 , δ), see (2.3). In the above, the ō( 1) is deterministic and comes from the contribution of n -1/6 log sin( xπ x+y ); in the case where k 1 = 0, we restrict the supremum to additionally having x ̸ = 0, so that we always have sin( xπ x+y ) ≥ c x+y ∼ c n 1/3 . After the exact same calculations as above, we get the lower bound

lim inf n→∞ 1 βn 1/6 log Z ω,β n,h (k 1 , k 2 , δ) ≥ W -(u, v, δ).
Lemma 2.2. The quantity sup u+v=c h X (1) v + X Proof. Recall that X has the same law as

√ 2W + X (2) 
c h where W u = 1 √ 2 (X (1) 
u + X

u ) is a standard Brownian motion independent from X (2) c h . Thus it is a classical result, see for example [START_REF] Kim | Cube root asymptotics[END_REF]Lemma 2.6].

Path properties under the polymer measure

Proof of Theorem 1.3-(1.6). The proof essentially reduces to the following lemma.

Lemma 2.3. For any

h, β > 0, recall u * := arg max u∈[0,c h ] X (1) u + X (2) c h -u . Then, P-a.s. 1 n 1/3 M - n P ω,β n,h ---→ n→∞ -u * .
By Slutsky's Lemma (for a xed ω in the set of ω's for which both convergences are true), Lemma 2.3 combined with (1.1) readily implies that P-a.s.

n -1/3 M + n converges to c h -u * in P ω,β
n,h -probability. Note that Slutsky's lemma can be used on M + n , M - n , T n since they are all dened on the same probability space.

Proof of Lemma 2.3. The proof is analogous to what is done in [START_REF] Berger | One-dimensional polymers in random environments: stretching vs. folding[END_REF]. Dene the following set

U ε,ε ′ := u ∈ [0, c h ] : sup s,|s-u|<ε X (1) s + X (2) c h -s ≥ X u * -ε ′ > 0 .
We shall prove that for almost all ω, we have P ω,β n,h

1 n 1/3 |M - n | ̸ ∈ U ε,ε ′ → 0. For this, we denote by A ε,ε ′ n the event 1 n 1/3 |M - n | ̸ ∈ U ε,ε ′ . As log P ω,β n,h A ε,ε ′ n = log Z ω,β n,h (A ε,ε ′ n ) -log Z ω,β n,h = log Z ω,β n,h (A ε,ε ′ n ) + 3 2 hc h n 1/3 -log Z ω,β n,h + 3 2 hc h n 1/3 ,
we only need to prove that lim n→∞ 1

βn 1/6 log Z ω,β n,h (A ε,ε ′ n ) + 3 2 hc h n 1/3 < X u * .
Indeed, using the convergence (1.5) in Theorem 1.3, we then get that lim n→∞

1 βn 1/6 log P ω,β n,h A ε,ε ′ n < 0.
We apply the same decomposition we used in the proof of Theorem 1.

3 over indices k 1 such that -[k 1 , k 1 + 1)δn 1/3 ̸ ⊂ U ε,ε ′ . Thus, lim δ↓0 lim n→∞ 1 βn 1/6 log Z ω,β n,h (A ε,ε ′ n ) + 3 2 hT * n ≤ sup u̸ ∈U ε,ε ′ X (1) u + X (2) c h -u ≤ X u * -ε ′ , so we indeed have P ω,β n,h (A ε,ε ′ n ) → 0. Using that ε ′ >0 U ε,ε ′ ⊂ B 2ε (u *
) by unicity of the supremum, we have thus proved that, P-a.s., n

-1/3 M - n → -u * in P ω,β n,h -probability.
3 Proof of Theorem 1.6 for a Gaussian environment

In this section we prove Theorem 1.6 under the assumption that ω 0 has a Gaussian distribution. We take full advantage of the fact that in this case, the coupling with the Brownian motions X (1) , X (2) , is just an identity: it will thus not create any coupling error and allows us to work directly on these processes. The proof still requires some heavy calculations as we must rst nd what are the relevant trajectories in the factorized logpartition function.

Going forward, we take the following setting: random variables ω z are i.i.d. with normal distribution N (0, 1) and X (1) , X (2) are standard Brownian motions such that

1 n 1/6 x z=1 ω -z = X (1) xn -1/3 , 1 n 1/6 y z=0 ω z = X (2) yn -1/3 . (3.1)
We will adapt the following proof to a general environment in Section 4 by controlling the error term due to the coupling.

We dene

Zω,β

n,h := Z ω,β n,h e 3 2 hT * n -βn 1/6 Xu * , Zω,β n,h (A) := Z ω,β n,h (A) e 3 2 hT * n -βn 1/6
Xu * , so that (1.7) can be rewritten as a statement regarding the convergence of n -1/9 log Zω,β n,h . Here are the four steps of the proof:

We rst rewrite Zω,β n,h to make X xn -1/3 -X u * appear. Having this negative quantity makes it easier to nd the relevant trajectories since when |X |M - n |n -1/3 -X u * | is too large for a given trajectory, the relative contribution of this trajectory to the partition function goes exponentially to 0, meaning it has a low P ω,β n,h -probability.

We prove the P-almost sure convergence of n -1/9 log Zω,β n,h restricted to the event

A K,L n,ω = |∆ n | ≤ Kn 2/9 , |M - n + u * n 1/3 | ≤ Ln 2/9
towards a positive value. It consists again of a coarse-graining approach where each component Zω,β n,h (u, v) converges to Y u,v -c h,β (u + v) 2 . This leads to dening (U, V) via a variational problem.

We prove that n -1/9 log Zω,β n,h restricted to (A K,L n,ω ) c is almost surely negative as n → ∞ as soon as K or L is suciently large. Coupled with the previous convergence towards a positive limit, we prove that all of these trajectories have a negligible contribution.

Afterwards, the convergences in P ω,β n,h -probability are derived in the same way as for Theorem 1.3.

Corollary 3.1 (of Lemma 2.3). There exists a vanishing sequence

(ε n ) n≥1 such that Z ω,β n,h = (1 + ō(1))Z ω,β n,h |M - n n -1/3 + u * | ≤ ε n P-a.s. as n → ∞ .
Going forward, we will work conditionally on u * . Recall that

1 √ 2 (X -X (2) 
c h ) has the law of a standard Brownian motion, thus according to Proposition 1.4, the processes

(X u * -X u * -t , t ≥ 0) and (X u * -X u * +t , t ≥ 0) are two Brownian meanders, respectively on [0, u * ] and [0, c h -u * ].
Recall that since u * follows the arcsine law on [0, c h ], these intervals are P-almost surely nonempty.

Rewriting the partition function

Thanks to (1.4) and Theorem 1.3, we have shown that

Zω,β n,h = (1 + ō(1))ψ h sin u * π c h |x-u * n 1/3 |≤εnn 1/3 |y-(c h -u * )n 1/3 |≤εnn 1/3 exp βn 1/6 Ω x,y n - 3π 2 (∆ x,y n ) 2 2c 4 h n 1/3 (1 + ō(1)) , (3.2) 
with

Ω x,y n := 1 n 1/6 x z=1 ω -z + 1 n 1/6 y z=0 ω z -X u * = X (1) xn -1/3 + X (2) yn -1/3 -X u * , (3.3)
where for the last identity we have used the relation (3.1) between X and ω. Both ō(1) are deterministic and the rst one includes a term in ε n .

Note that X u * -(X

xn -1/3 + X

(2) yn -1/3 is not necessarily positive since the supremum in (1.5) is taken over non negative u and v such that u + v = c h , whereas x + y ̸ = c h n 1/3 in the general case. However we can write X

(1)

xn -1/3 + X (2) yn -1/3 = X (1) xn -1/3 + X (2) c h -xn -1/3 + X (2) yn -1/3 -X (2) c h -xn -1/3 , so that Ω x,y
n can be rewritten as

Ω x,y n := -(X u * -X xn -1/3 ) + X (2) yn -1/3 -X (2) c h -xn -1/3 . (3.4)
Note that it is not problematic that c h -xn -1/3 can be negative if y is small enough, since X (2) can be dened on the real line. Although (3.4) may seem more complex to study than (3.3), having a term that is always non-positive is useful to isolate the main contributions to the partition function.

Recall that X u * -X xn -1/3 can be expressed in terms of Brownian meanders depending on the sign of u * -xn -1/3 , see Proposition 3.7. More precisely, there exist M + , M -two independent Brownian meanders on [0, 1] such that

X u * -X xn -1/3 = √ u * M - u * -xn -1/3 u * 1 {u * ≥xn -1/3 } + √ c h -u * M - xn -1/3 -u * c h -u * 1 {u * <xn -1/3 } . (3.5)
Heuristic. In (3.2) and in view of (3.4), the term inside the exponential can be split into three parts. The rst part is -βn 1/6 (X u * -X xn -1/3 ), which is negative and of order

n 1/6 |u * -xn -1/3 | 1/2 . The second term is βn 1/6 (X (2) 
yn -1/3 -X (2) c h -xn -1/3 ), which is of order at most (∆ n ) 1/2 . The last term is -c h (∆ n ) 2 n -1/3
. We thus can easily compare the second term to the last one: dominant terms in (1.4) are all negative when

(∆ n ) 2 n -1/3 ≫ (∆ n ) 1/2
or in other words if ∆ n ≫ n 2/9 . Thus we will show that the corresponding trajectories have a negligible contribution to Z ω,β n,h , and that we can restrict the partition function to trajectories such that ∆ n = Ō(n 2/9 ). We can apply the same reasoning to the rst term, which must verify n 1/6 (X

(2) yn -1/3 -X (2) c h -xn -1/3 ) = Ō(n 1/9 ), from which we will deduce |M - n n -1/3 + u * | = Ō(n -1/9 ).

Restricting the trajectories

Our goal is now to characterize the main contribution to the partition function directly in terms of M - n and M + n or equivalent quantities, and not in terms of the processes. With this goal in mind, we dene, for K, L ≥ 0:

Z> n,ω (K, L) := Zω,β n,h |∆ n | ≥ Ln 2/9 , Kn 2/9 ≤ |M - n + u * n 1/3 | ≤ ε n n 1/3 and Z≤ n,ω (K, L) := Zω,β n,h |∆ n | ≤ Ln 2/9 , |M - n + u * n 1/3 | ≤ Kn 2/9 ≤ ε n n 1/3 .
In the next section, we will prove in particular that P-a.s., lim n→∞ n -1/9 log Z≤ n,ω (K, L) > 0, see Proposition 3.6 and Lemma 3.9.

The following proposition shows that lim n→∞ n -1/9 log Z> n,ω (K, L) < 0 P-a.s. for K or L large enough, meaning that trajectories in Z> n,ω (K, L) have a negligible contribution.

Proposition 3.2. Uniformly in n ≥ 1 such that ε n < 1 2 , we have

lim K→∞ P 1 n 1/9 log Z> n,ω (K, 0) ≥ -1 = lim L→∞ P 1 n 1/9 log Z> n,ω (0, L) ≥ -1 = 0 .
The proof boils down to upper bounds on both probabilities, uniform in n, and a use of monotone convergence theorem. We rst explain a small argument that we will use repetitively throughout the paper when we don't need to have exact values for the constants. Take an interval I and real numbers α, λ > 0. In the following Lemmas we will need to compute probabilities such as

P inf |u|∈λI {X u * -X u * +u } ≤ α ≤ 2 max σ∈{-1,+1} P inf u∈λI {X u * -X u * +u } ≤ α .
Recall that for both values of σ we can express X u * -X u * +u as a Brownian meander M σ on [0, 1] by using the scaling given in (3.5). Taking for example σ = +1, we have

P inf u∈λI {X u * -X u * +u } ≤ α = P inf u∈ λ c h -u * I √ c h -u * M + u ≤ α .
Now, if λ and α can be multiplied by some positive number (typically when we don't need to have exact values), we can freely replace them by λ(c h -u * ) and α √ c h -u * in order to ease the notation.

Lemma 3.3. There is a positive constant C = C(h, β), uniform in L, n ≥ 1 such that

P 1 n 1/9 log Z> n,ω (0, L) ≥ -1 ≤ e -CL 3 ---→ L→∞ 0 . (3.6) 
Proof. We can write Z>

n,ω (0, L) = k,l≥0 Z> n,ω (0, L) k,l with Z> n,ω (0, L) k,l = Zω,β n,h |∆ n | ∈ 2 l [1, 2)Ln 2/9 , ||M - n |n -1/3 -u * | ∈ [k, k + 1)2 l Ln -1/9 .
Using (3.2), we have

Z> n,ω (0, L) k,l ≤ C h (ε n n 1/3 ) 2 exp βn 1/6 (X (2) 
k,l -M n k,l ) - 3π 2 2c 4 h (2 l Ln 2/9 ) 2 n -1/3 ,
where we have set

M n k,l := inf |u-u * |∈[k,k+1)2 l Ln -1/9 X u * -X u , X (2) 
k,l := sup

|∆ x,y n |∈2 l [1,2)Ln 2/9 |u-u * |∈[k,k+1)2 l Ln -1/9
|X (2) v -X

(2)

c h -u |
with u = xn -1/3 and v = yn -1/3 . Thus, a union bound yields

P Z> n,ω (0, L) ≥ e -n 1/9 ≤ +∞ k,l=0 P C h (ε n n 1/3 ) 2 e βn 1/6 (X (2) k,l -M n k,l ) e -3π 2 2c 4 h (2 l L) 2 n 1/9 ≥ e -n 1/9 2 l+1 ≤ +∞ k,l=0 P βn 1/6 (X (2) 
k,l -M n k,l ) ≥ c ′ h n 1/9 2 2l L 2 ,
where we have used that for n large enough (how large depends only on h)

n 1/9 ( 3π 2 2c 4 h 2 2l L 2 -1) -(l + 1) log 2 -2 log(ε n n 1/3 ) -log C h ≥ c ′ h n 1/9 2 2l L 2
for some constant c ′ h , uniformly in L ≥ c 2 h /π and l ≥ 0. We now work out an upper bound on P X

(2) k,l -M n k,l ≥ c ′ h n -1/18 2 2l L 2 /β , we rst observe that writing u k = u * + 2 l kLn -1/9 , we have |c h -u k -v| ≤ |c h -u -v| + |u -u k | ≤ 2 l+1
Ln -1/9 on the intervals where the supremum are taken in X

(2) k,l . Thus, we have the upper bound

X (2) k,l ≤ sup |c h -u k -v|≤2 2 l L n 1/9 |X (2) v -X (2) 
c h -u k | + sup |u-u k |≤ 2 l L n 1/9 |X (2) 
c h -u k -X (2) 
c h -u | . (3.7) Write X (2),v k,l
and X

(2),u k,l for the rst and the second term of the right-hand side of (3.7) respectively, as well as α l := c ′ h n -1/18 2 2l L 2 /β. We rst need to control the term k = 0, in which we know that M n 0,l = 0, then we are left to bound

+∞ l=0 P βn 1/6 X (2) 0,l ≥ c ′ h n 1/9 2 2l L 2 ≤ +∞ l=0 P X (2),v 0,l ≥ α l 2 + P X (2),u 0,l ≥ α l 2 .
By the reection principle for Brownian motion, both of these variables are the modulus of a Gaussian of variance 2 2 l L n 1/9 and 2 l L n 1/9 respectively. Thus, we have the upper bound

+∞ l=0 P βn 1/6 X (2) 0,l ≥ c ′ h n 1/9 2 2l L 2 ≤ +∞ l=0 c 0 e -c 1 2 3l L 3 + e -c 2 2 3l L 3 ≤ (cst.) +∞ l=0 e -c2 3l L 3 .
for some constants c 0 , c 1 , c 2 , c > 0.

We now focus on k ≥ 1 and decompose on whether M n k,l is less or greater than

k 1/8 (2 l L) 1/2 n -1/18 . On M n k,l ≤ k 1/8 (2 l L) 1/2 n -1/18
, we use Hölder inequality for p > 1:

P M n k,l ≤ k 1/8 √ 2 l L n 1/18 , X (2) k,l -M n k,l ≥ α l ≤ P M n k,l ≤ k 1/8 √ 2 l L n 1/18 1/p P X (2) k,l ≥ α l 1-1 p .
Since k can we taken arbitrarily, in the denition of M n k,l we can replace X u * -X u * +u by M u for M a Brownian meander on [0, 1]. Thus, with the help of Corollary B.2 with λ = 2 and the previous argument (L and k can be taken up to a positive multiplicative constant), we compute

P M n k,l ≤ k 1/8 √ 2 l Ln -1/18 ≤ 16k 1/8 √ πk 1 ∧ (2k 1/8 ) 2 2k + (cst.)k 5/4 e -2k 1/4
1 -e -8k 1/4 ≤ (cst.)k -9/8 + (cst.)k 1/4 e -2k 5/4

1 -e -8k 1/4 ≤ (cst.)k -9/8 .

And for the other probability, we use P X

k,l ≥ α l = P X

(2) 0,l ≥ α l ≤ (cst.)e -c2 3l L 3 .

Therefore,

P M n k,l ≤ k 1/8 √ 2 l Ln -1/18 , X (2) 
k,l -M n k,l ≥ α l ≤ (cst.)k -9/8p e -c(1-1 p )2 3l L 3
which has a nite sum in k ≥ 1 and l ≥ 0 that goes to 0 when L → +∞ when p is suenciently close to 1.

On the other hand,

P M n k,l ≥ k 1/8 √ 2 l Ln -1/18 , X (2) 
k,l -M n k,l ≥ α l ≤ P X (2) k,l ≥ α l + k 1/8 √ 2 l Ln -1/18 ,
and again by (3.7) and the Brownian reection principle, P X

k,l ≥ α l + k 1/8 √ 2 l Ln -1/18 ≤ Ce -c (α l +k 1/8 √ 2 l Ln -1/18 ) 2 2 l Ln -1/9 ≤ (cst.)e -c 1 2 3l L 3 e -c 2 k 1/4 , (2) 
which is again summable in k, l, with a sum that goes to 0 when L → +∞. In conclusion, we proved that P Z> n,ω (0, L) ≥ e -n 1/9 is bounded by ce -CL 3 , uniformly in n large enough, thus proving the lemma.

Lemma 3.4. There is a positive C such that for any n ≥ 1 such that ε n < 1 2 , any K ≥ 1

P 1 n 1/9 log Z> n,ω (K, 0) ≥ -1 ≤ C K 1/12 ---→ K→∞ 0 . (3.8)
Proof. We will use the same strategy as for Lemma 3.3, meaning controlling both M - n + u * n 1/3 and ∆ n , instead of only M - n + u * n 1/3 . Thus, we consider

Z> n,ω (K, 0) k,l = Zω,β n,h |M - n + u * n 1/3 | ∈ 2 k [1, 2)Kn 2/9 , |∆ n | ∈ [l, l + 1)n 2/9 ,
and when summing on l ≥ 0 we get Z> n,ω (K, 0

) k = Zω,β n,h |M - n + u * n 1/3 | ∈ 2 k [1, 2)Kn 2/9
similar to the notation in Lemma 3.3. Let us introduce

ξ k,l := - inf |u|∈2 k [1,2)Kn -1/9 {X u * -X u * +u } + sup |∆n|∈[l,l+1)Ln 2/9 |X (2) v -X (2) 
c h -u | .
With the same considerations as before, we have by a union bound

P Z> n,ω (K, 0) ≥ e -n 1/9 ≤ +∞ k,l=0 2 k K≤εnn 1/9 P C h (ε n n 1/3 ) 2 e βn 1/6 ξ k,l e -3π 2 2c 4 h l 2 n 1/9
≥ e -n 1/9 2 k+l+1 .

(3.9)

Observe that each probability in the sum is equal to

P βn 1/6 ξ k,l ≥ 3π 2 2c 4 h l 2 -1 n 1/9 -(k + l + 1) log 2 -2 log(ε n n 1/3 ) -log C h .
Since we have the restriction

2 k Kn -1/9 ≤ ε n , assuming K ≥ 1 we have k log 2 ≤ log(ε n n 1/9
), thus there is a constant c > 0 such that for n large enough (how large depends only on h),

3π 2 2c 4 h l 2 -1 n 1/9 -(k + l + 1) log 2 -2 log(ε n n 1/3 ) ≥ cl 2 -2 n 1/9 ,
uniformly in k, K, l. Therefore, we get that

P Z> n,ω (K, 0) ≥ e -n 1/9 ≤ +∞ k,l=0 2 k K≤εnn 1/9 P βn 1/18 ξ k,l ≥ cl 2 -2 . Let us dene C n,l := sup |∆ x,y n |∈[l,l+1)n 2/9 |X (2) v -X (2) 
c h -u | -β -1 n -1/18 (cl 2 -2)
, with again u = xn -1/3 and v = yn -1/3 . Recalling the denition of ξ k,l above we have

P βn 1/18 ξ k,l ≥ cl 2 -2 = P inf |u|∈2 k [1,2)Kn -1/9 {X u * -X u * +u } ≤ C n,l .
Let us now decompose over the values of C n,l . Since X u * -X u ≥ 0, when C n,l < 0 the probability equals 0, so we can intersect with C n,l ≥ 0. We have

P βn 1/18 ξ k,l ≥ cl 2 -2 ≤ +∞ j=1 P inf |u|∈2 k [1,2)Kn -1/9 X u * -X u * +u ≤ jn -1/18 , C n,l ∈ [j -1, j) n -1/18 ≤ +∞ j=1 P inf |u|∈2 k [1,2)Kn -1/9 X u * -X u * +u ≤ jn -1/18 1/2 P C n,l ∈ [j -1, j) n -1/18 1/2 ,
where we have used Cauchy-Schwartz inequality.

First, let us treat the last probability: using the Brownian scaling, we have

P C n,l ∈ [j -1, j) n -1/18 = P sup r∈[l,l+1) |X (2) r | -β -1 (cl 2 -2) ∈ [j -1, j) ≤ P sup r∈[l,l+1) |X (2) r | ≥ j -1 + β -1 (cl 2 -2) .
We can get a bound on this probability using usual Gaussian bounds and the reection principle:

P sup r∈[l,l+1) |X (2) r | ≥ α ≤ P sup r∈[0,l+1) |X (2) r | ≥ α ≤ 2e -α 2 2(l+1) .
Then, we substitute α with j -1 + β -1 (cl 2 -2) to get the upper bound

P C n,l ∈ [j -1, j) n -1/18 ≤ 2e -c l 4 l+1 e -(j-c ′ ) 2 2(l+1) e -c l 2 l+1 (j-c ′ ) ,
for some constants c, c ′ (that depend only on h, β).

For the other probability, with the argument explained previously (since K and j can again be taken up to a positive multiplicative constant), we only need to get a bound on

P inf u∈2 k [1,2)Kn -1/9 M + u ≤ jn -1/18 . (3.10) 
For σ = -1 we can do the same reasoning, thus we only need to get a bound for (3.10).

We use Corollary B.2: for any λ > 0, we have

P inf u∈[s,t] M + u ≤ a ≤ 8λa √ πs 1 ∧ (λa) 2 2s + (cst.) a √ t t -s e -2 t-s a 2 (λ-1) 2 1 -e -2 t-s a 2 λ 2 , which translates for λ = (2 k K) 1/3 to P inf u∈2 k [1,2)Kn -1/9 M + u ≤ jn -1/18 ≤ 8j(2 k K) 1/3 √ π2 k K + j √ 2 k K 2 k K (cst.) 1 -e -2(2 k K) 2/3 j 2 2 k K ≤ 16j √ π(2 k K) 1/6 + (cst.) j 2 k K (2 k K) 5/6 ≤ (cst.) j (2 k K) 1/6
where we used that 1 x(1-e -α/x ) is bounded for x ≥ 1, uniformly in α ≥ 1 (note that j ≥ 1). Together with the above, this yields the following upper bound for 2 k Kn -1/9 ≤ ε n < 1 2 :

P βn 1/6 ξ k,l ≥ n 1/9 cl 2 -2 ≤ (cst.) (2 k K) 1/12 e -cl 3 +∞ j=1 je -(j-c ′ ) 2
2(l+1) e -cl(j-c ′ ) .

(3.11)

The sum on j ≥ 1 is bounded from above by c ′′ (l + 1) 3 (where the constant c ′′ does not depend on l ≥ 0), so we nally get

P Z> n,ω (K, 0) ≥ e -n 1/9 ≤ +∞ k,l=0 P βn 1/18 ξ k,l ≥ cl 2 -2 ≤ (cst.) K 1/12 +∞ k,l=0 1 2 k/6 (l + 1) 3 e -cl 3 .
The lemma follows since the last sum is nite. Corollary 3.5. We have the following convergence

lim K→∞ P lim n→∞ 1 n 1/9 log Z> n,ω (K, 0) ≥ -1 = lim L→∞ P lim n→∞ 1 n 1/9 log Z> n,ω (0, L) ≥ -1 = 0 .
Moreover, P-a.s., there exists K 0 = K 0 (ω) and L 0 = L 0 (ω) such that, for all K ≥ K 0 and

L ≥ L 0 , Zω,β n,h = (1 + ō(1)) Zω,β n,h |∆ n | ≤ Ln 2/9 ; |M - n + u * n -1/3 | ≤ Kn -1/9
. Proof. Using Proposition 1.5 and Section 1.5, we can redo the proof of Proposition 3.2 using the processes B and Y for n ≥ n 0 (ω). Indeed, take such n ≥ n 0 (ω) such that ε n < δ(ω) (recall its denition from Proposition 1.5), then using the same notation as in the proofs of Lemmas 3.4,3.3, we have

- inf |u|∈2 k [1,2)K n 1/18 {X u * -X u * +un -1/9 } = - inf |u|∈2 k [1,2)K B u .
On the other hand,

X (2) v -X (2) 
c h -u = 1 2 (Y c h -v -X c h -v + Y u -X u ) since c h -v = ∆ x,y n n -1/3 + u and u = u * + s with s ≤ ε n ≤ δ 0 (ω), this is equal to 1 2 (Y c h -v -X c h -v + Y u -X u ), which means that n 1/18 sup c h -u-v∈n -1/9 |X (2) v -X (2) 
c h -u | = 1 2 sup r∈[l,l+1),s≤δ (Y r+s -B r+s + Y s -B s ) .
Thus, we see that the random quantities ξ k,l and X

(2) l do not depend on n when n is large enough (meaning n ≥ n 0 ), thus lim n→∞ 1 n 1/9 log Z> n,ω (K, 0) = 1 n 1/9 log Z> n,ω (K, 0) , the same being true for Z> n,ω (0, L), which proves the announced convergences. The existence of K 0 and L 0 follows from Borel-Cantelli lemma and the monotony of Z> n,ω (K, L) in both of its arguments, coupled with the fact that we prove next section that lim inf n→∞ n -1/9 log Z≤ n,ω (K, L) > 0.

Convergence of the log partition function

In this section we study the convergence of n -1/9 log Z≤ n,ω (K, L) for xed K and L (large), in which we recall that Z≤ n,ω (K, L)

:= Zω,β n,h |∆ n | ≤ Ln 2/9 , |M - n + u * n 1/3 | ≤ Kn 2/9 . It is a bit more convenient to transform the condition |∆ n | ≤ L into the condition |M + n -(c h - u * )n 1/3 | ≤ Ln 2/9
, which restricts to the same trajectories after adjusting the value of L. Finally, since we plan to take the limit for K, L → ∞ it is enough to treat the case where K = L. Thus, we dene

Z≤K n,ω := Zω,β n,h |M - n + u * n 1/3 | ≤ Kn 2/9 , |M + n -(c h -u * )n 1/3 | ≤ Kn 2/9 .
As explained in the beginning of this section, as K → ∞, Z≤K n,ω contains all the relevant trajectories giving the main contribution to the partition function. Proposition 3.6. For any h, β > 0 and any K > 1, P-almost surely,

lim n→∞ √ 2 βn 1/9 log Z≤K n,ω = sup -K≤u,v≤K Y u,v - 3π 2 βc 4 h √ 2 u + v 2 , with Y u,v := Y u -Y -v -χ(B u + B v )
and (B, Y) as in Proposition 1.5.

Proof of Proposition 3.6. For any δ > 0, we dene the following subsets of N C - n,δ (k 1 ) := x :

x -u * n 1/3 δn 2/9 = k 1 , C + n,δ (k 2 ) := y : y -(c h -u * )n 1/3 δn 2/9 = k 2 (3.12) as well as C n,δ (k 1 , k 2 ) := C - n,δ (k 1 ) × C + n,δ (k 2 ). Recall (3.
2) and the notation

Ω n (x, y) = Ω x,y n = -(X u * -X xn -1/3 ) + X (2) yn -1/3 -X (2) 
c h -xn -1/3 .
Similarly to the proof of Theorem 1.3, we dene

Λω,β n,h (K, δ) := K/δ k 1 =-K/δ K/δ k 2 =-K/δ Zω,β n,h (k 1 , k 2 , δ) , where Zω,β n,h (k 1 , k 2 , δ) := (x,y)∈C n,δ (k 1 ,k 2 ) exp -βn 1/6 Ω x,y n -ĉh (∆ x,y n ) 2 n 1/3 (1 + ō(1)
) . Note that both ō(1) → 0 are the deterministic quantities mentioned in Section 1.2. Again, we only have to get bounds on the maximum of Zω,β n,h (k 1 , k 2 , δ), as 0 ≤ log Λω,β n,h (K, δ) -max

-K δ ≤k 1 ,k 2 ≤ K δ log Zω,β n,h (k 1 , k 2 , δ) ≤ 2 log 4K δ , (3.14) 
and n -1/9 2 log 4K δ

goes to 0 as n → ∞. Now, if we factorize Zω,β n,h (k 1 , k 2 , δ) by the contribution of x = xk 1 := u * n 1/3 + k 1 δn 2/9 and y = ŷk 2 := (c h -u * )n 1/3 + k 2 δn 2/9 respectively, we have Zω,β n,h (k 1 , k 2 , δ) = e Ξ(k 1 ,k 2 ,δ) (x,y)∈C n,δ (k 1 ,k 2 ) e -βn 1/6 ζ k 1 ,k 2 n,δ ( x n 1/3 , y n 1/3 )+ ĉh n 1/3 ((k1+k2) 2 δ 2 n 4/9 -(∆ x,y n ) 2 )
where we have dened

Ξ(k 1 , k 2 , δ) := βn 1/6 Ω n (x k 1 , ŷk 2 ) -n 1/9 ĉh k 1 δ + k 2 δ 2 (3.15) and ζ k 1 ,k 2 n,δ (u, v) := Ω n (un 1/3 , vn 1/3 ) -Ω n (x k 1 , ŷk 2 ) = X u -X u * + k 1 δ n 1/9 -X (2) 
c h -u + X (2) c h -u * - k 1 δ n 1/9 + X (2) v -X (2) 
c h -u * + k 2 δ n 1/9 . (3.16) Finally, dene Rn (k 1 , k 2 , δ) := sup (x,y)∈C n,δ (k 1 ,k 2 ) βn 1/6 ζ k 1 ,k 2 n,δ ( x n 1/3 , y n 1/3 ) + ĉh n 1/3 (k 1 + k 2 ) 2 δ 2 n 4/9 -(∆ x,y n ) 2 , then we have log Zω,β n,h (k 1 , k 2 , δ) -Ξ(k 1 , k 2 , δ) ≤ Rn (k 1 , k 2 , δ) + log |C n,δ (k 1 , k 2 )|.
(3.17)

Since n -1/9 log |C n,δ (k 1 , k 2 )| → 0 as n → ∞, in the rest of the proof we have to control n -1/9 Rn (k 1 , k 2 , δ) and then prove the convergence of n -1/9 Ξ(k 1 , k 2 , δ). Afterwards we will plug those convergences in (3.14) and (3.17) to prove Proposition 3.6.

Control of Rn (k 1 , k 2 , δ). We now seek a bound on Rn (k 1 , k 2 , δ). First we have

n 1/9 k 1 δ + k 2 δ 2 - (∆ x,y n ) 2 n 1/3 ≤ 2 k 1 δ + k 2 δ n 1/9 x + y -c h n 1/3 -k 1 δn 2/9 -k 2 δn 2/9 ≤ 4|k 1 + k 2 |δ 2 n 1/9 ≤ 4Kδn 1/9 .
To control the random part ζ k 1 ,k 2 n,δ (xn -1/3 , yn -1/3 ), we use the following proposition, that we prove afterwards.

Proposition 3.7. Let δ j = 2 -j , j ∈ N, then, P-almost surely, there exists a positive C ω such that for any n and j large enough, any k 1 , k 2 ∈ -K δ j , K δ j , we have

n 1/6 sup (x,y)∈C n,δ j (k 1 ,k 2 ) ζ k 1 ,k 2 n,δ (xn -1/3 , yn -1/3 ) ≤ C ω δ 1/4 j n 1/9 .
We will still denote this parameter by δ while keeping in mind that δ → 0 along a specic sequence. Assembling these results, we see that 

1 n 1/9 Rn (k 1 , k 2 , δ) ≤ βC ω δ 1/4 + 4ĉ h Kδ =: ε(ω, δ) . (3.18) Thus, n -1/9 Rn (k 1 , k 2 , δ) is bounded by a function ε(ω, δ) that goes to 0 as δ ↓ 0 uniformly in -K δ ≤ k 1 , k 2 ≤ K δ , for almost all ω. Convergence of n -1/9 Ξ(k 1 , k 2 , δ).
Ξ(k 1 , k 2 , δ) βn 1/9 = -n 1/18 X u * -X u * + u n 1/9 -c h,β u + v 2 + n 1/18 X (2) c h -u * + v n 1/9 -X (2) c h -u * -u n 1/9 , (3.19) 
with c h,β = β -1 ĉh .

Recall Proposition 1.5 and its notation. Set

X u = X (1) u + X (2) c h -u , Y u = X (1) u -X (2) 
c h -u ,
and denote by B a two-sided three-dimensional Bessel process and by Y a standard Brownian motion, independent from B. Then for any n ≥ n 0 (ω),

n 1/18 X u * -X u * + u n 1/9 = √ 2χB u , with χ = χ(ω, u) = √ c h -u * 1 {u≥0} + √ u * 1 {u<0} -1
, and

n 1/18 X (2) c h -u * + v n 1/9 -X (2) c h -u * -u n 1/9 = n 1/18 2 X u * -v n 1/9 -Y u * -v n 1/9 -X u * + u n 1/9 + Y u * + u n 1/9 = 1 √ 2 χ(B u -B v ) + Y u -Y -v .
Assembling those results with (3.19), we established the following convergence (which is an identity for n ≥ n 0 (ω)):

Ξ(k 1 , k 2 , δ) βn 1/9 P-a.s. ---→ n→∞ 1 √ 2 (-χ(B u + B v ) + Y u -Y -v ) -c h,β u + v 2 . (3.20) Conclusion of the proof. If we dene Y u,v := Y u -Y -v -χ(B u + B v ), combining (3.18)
and (3.20) with (3.17) proves 

lim n→∞ 1 βn 1/9 log Zω,β n,h (k 1 , k 2 , δ) -Y k 1 δ,k 2 δ + c h,β (k 1 δ + k 2 δ) 2 ≤ ε(ω, δ).
βn 1/9 ≤ sup -K≤u,v≤K 1 √ 2 Y u,v - 3π 2 2βc 4 h u + v 2 + ε(δ, ω) P-a.s. ,
and, using the uniform continuity of Y u,v and of (u + v) 2 on [-K, K] 2 , we have

lim n→∞ log Z≤K n,ω βn 1/9 ≥ sup -K≤u,v≤K 1 √ 2 Y u,v - 3π 2 2βc 4 h u + v 2 -ε ′ (δ, ω) P-a.s.
Finally, letting δ go to 0 proves the convergence of n -1/9 log Z≤K n,ω .

Proof of Proposition 3.7. Recall the denition (3.12) of C - n,δ (k 1 ) and C + n,δ (k 2 ) as well as

C n,δ (k 1 , k 2 ) = C - n,δ (k 1 ) × C + n,δ (k 2 )
The proof essentially boils down to the following lemma and a use of Borel-Cantelli lemma.

Lemma 3.8. There exists some positive constants λ, µ such that for any δ ∈ (0, 1) and any

C ≥ 1, sup n≥1 sup -K δ ≤k 1 ,k 2 ≤ K δ P sup (x,y)∈C n,δ (k 1 ,k 2 ) ζ k 1 ,k 2 n,δ (xn -1/3 , yn -1/3 ) ≥ C δ 1/4 n 1/18 ≤ µe -λ C δ 1/4 .
Using Lemma 3.8 and a union bound immediately yields

sup n≥1 P sup -K δ ≤k 1 ,k 2 ≤ K δ sup (x,y)∈C n,δ (k 1 ,k 2 ) ζ k 1 ,k 2 n,δ (u, v) ≥ C δ 1/4 n 1/18 ≤ K δ 2 µe -λ C δ 1/4 .
Summing over δ j = 2 -j gives a bound which is summable in C: this allows us to use a Borel-Cantelli lemma. This means that with P-probability 1, there is a positive C ω such that for all j ≥ 0, for all -K2 j ≤ k 1 , k 2 ≤ K2 j , for all (x, y) 

∈ C n,δ (k 1 , k 2 ), we have ζ k 1 ,k 2 n,δ x n 1/3 , y n 1/3 ≤ C ω δ 1/4 n -1/
ζ k 1 ,k 2 n,δ (u, v) = X u -X u * + k 1 δ n 1/9 -X (2) c h -u + X (2) c h -u * - k 1 δ n 1/9 + X (2) v -X (2) c h -u * + k 2 δ n 1/9
and that 2X

(2)

c h -t = X t -Y t . Then we can rewrite ζ k 1 ,k 2 n,δ (u, v) as ζ k 1 ,k 2 n,δ (u, v) = X u -X u * + k 1 δ n 1/9 - X u -Y u 2 + X c h -v -Y c h -v 2 + X u * + k 1 δ n 1/9 -Y u * + k 1 δ n 1/9 2 - X u * -k 2 δ n 1/9 -Y u * -k 2 δ n 1/9
2 , which simplies to

2ζ k 1 ,k 2 n,δ (u, v) = X u + Y u -(X u * + k 1 δ n 1/9 + Y u * + k 1 δ n 1/9 ) + X c h -v -Y c h -v -(X u * -k 2 δ n 1/9 -Y u * -k 2 δ n 1/9 ) = X u -X u * + k 1 δ n 1/9 + X c h -v -X u * -k 2 δ n 1/9 + Y u -Y u * + k 1 δ n 1/9 + Y u * -k 2 δ n 1/9 -Y c h -v .
We split ζ k 1 ,k 2 n,δ (u, v) into four parts corresponding to the terms in X and those in Y :

X u -X u * + k 1 δ n 1/9 and X c h -v -X u * -k 2 δ n 1/9
which we call meander parts because of (3.5)

|Y u -Y u * + k 1 δ n 1/9 | and |Y u * -k 2 δ n 1/9 -Y c h -v | which we call Brownian parts.
We use a union bound to separately control the probability for each increment to be greater than

Cδ 1/4 8n 1/18 .
Control of the Brownian parts. First, recall that Y and u * are independent (since u * is X-measurable). Thus, the Brownian reection principle yields sup

un 1/3 ∈C - n,δ (k 1 ) Y u -Y u * + k 1 δ n 1/9 (d)
= sup

vn 1/3 ∈C + n,δ (k 2 ) Y u * -k 2 δ n 1/9 -Y c h -v (d) = |W δ n 1/9 | ,
where W is a standard Brownian motion. This leads us to P sup

(u,v)n 1/3 ∈C n,δ (k 1 ,k 2 ) Y u -Y u * + k 1 δ n 1/9 ≥ Cδ 1/4 8n 1/18 ≤ P |W δ n 1/9 | ≥ Cδ 1/4 8n 1/18 ≤ e -C 2 128 √ δ ,
and similarly for |Y u * -

k 2 δ n 1/9 -Y c h -v |.
Control of the meander parts. We have to bound the following:

P sup

un 1/3 ∈C - n,δ (k 1 ) |X u -X u * + k 1 δ n 1/9 | ≥ Cδ 1/4 8n 1/18 (3.22)
and similarly for

|X c h -v -X u * -k 2 δ n 1/9
|; we will focus on bounding (3.22) since the other bound follows from it b . Recall (3.5) to get sup

un 1/3 ∈C - n,δ (k 1 ) |X u -X u * + k 1 δ n 1/9 | = sup un 1/3 ∈C - n,δ (k 1 ) χ M u-u * χ 2 -M k 1 δn -1/9 χ 2 . b Observe that if vn 1/3 ∈ C + n,δ (k 2 ), writing ṽ := c h -v and assuming v ̸ = c h -u * + k2δ n 1/9 , we have ṽn 1/3 -u * n 1/3 δn 2/9 = -vn 1/3 -(c h -u * )n 1/3 δn 2/9 = -1 -k 2 , thus (c h -v)n 1/3 ∈ C + n,δ (-1 -k 2 ).
Observe that χ = χ(u, ω) is a constant that only depends on the sign of k 1 and that since K and C are arbitrary chosen, we only need to get a bound on the probability of

sup un 1/3 ∈C - n,δ (k 1 ) |M u-u * -M k 1 δ n 1/9
| being greater than Cδ 1/4 8n 1/18 .

Without any loss of generality we can suppose that k 1 ≥ 0: to get the case where k 1 ≤ 0 we only need to do the same proof with |k 1 + 1| instead. Use Lemma B.1 and Markov's inequality to get P sup

un 1/3 ∈C - n,δ (k 1 ) M u-u * -M k 1 δ n 1/9 ≥ C δ 1/4 8n 1/18 ≤ 4P M (k 1 +1)δ n 1/9 -M k 1 δ n 1/9 ≥ Cδ 1/4 8n 1/18 ≤ 4E e n 1/18 √ δ (M (k 1 +1)δ n 1/9 -M k 1 δ n 1/9 ) e -C 8 δ 1 4
.

We show below that there is a constant c = c(K) > 0 such that, for n large enough

E e n 1/18 √ δ (M (k 1 +1)δ n 1/9 -M k 1 δ n 1/9 ) ≤ c (3.23)
uniformly in k 1 ∈ {0, 1, . . . , K/δ} and 0 < δ < 1, thus proving Lemma 3.8.

Proof of (3.23). We want to get an upper bound on quantities E e α(Mv-Mu) for specic u < v, α > 0. In order to do so, we rst condition on the value of M u and use the transition probabilities of the Brownian meander to get an upper bound, which we then integrate with respect to the law of M u . Let us set κ n δ := k 1 δn -1/9 with k 1 ̸ = 0 (we treat the case k 1 = 0 at the end) and α := n 1/18 / √ δ.

Step 1: Meander increment conditioned on M κ n δ =: x. We write φ t (x) :

= 1 √ 2πt e -x 2 2t
and Φ t (y) := ´y 0 φ t (x)dx. Using (B.1), the density of an increment between time κ n δ ̸ = 0 and a time u = (k 1 + 1)δn -1/9 = κ n δ + α -2 , when starting at M κ n δ = x, is given by

φ u-κ n δ (m) -φ u-κ n δ (m + 2x) Φ 1-u (m + x) Φ 1-κ n δ (x)
1 {m≥-x} .

Then we use that (recall that u -

κ n δ = α -2 ) φ u-κ n δ (m) -φ u-κ n δ (m + 2x) = 1 2π(u -κ n δ ) e -m 2 2(u-κ n δ ) -e - (m+2x) 2 2(u-κ n δ ) ≤ α √ 2π e -α 2 m 2 2
,

and since u is taken close to u * (recall |u -u * | ≤ ε n ), Φ 1-u (m + x) Φ 1-κ n δ (x) ≤ x + m x e x 2 2(1-κ n δ ) 1 -κ n δ 1 -u ≤ (cst.) 1 + m x e x 2 2(1-κ n δ
) .

Thus we have to bound )× e αm ) we can rewrite the above as (cst.) αe

E exp α(M (k 1 +1)δ n 1/9 -M κ n δ ) M κ n δ = x ≤ (cst.) α √ 2π e x 2 2(1-κ n δ ) ˆ∞ -x 1+ m x e αm e -
x 2 2(1-κ n δ ) √ 2π ˆ∞ -x Ψ(m) dm + 2 xα 2 Ψ(-x) + α ˆ∞ -x Ψ(m) dm .
Usual bounds for Gaussian integrals (notice that Ψ(m) = e 1/2 e -1 2 (αm-1) 2 ) then yield the

upper bound conditioned to x = M κ n δ E exp α(M (k 1 +1)δ n 1/9 -x) M κ n δ = x ≤ αe x 2 2(1-κ n δ ) √ 2π 1 + 2 αx √ 2π 1 α e 1/2 + 2Ψ(-x) xα 2 ,
which we simplify (using that Ψ(m) ≤ e 1/2 for all m) as

E exp α(M(k 1 +1)δ n 1/9 -x) M κ n δ = x ≤ (cst.)e x 2 2(1-κ n δ ) 1 + 1 xα . (3.24) 
Step 2: Averaging on x = M k 1 δn -1/9 . In order to take the expectation in (3.24), we use the following bounds, given in (B.3) (using that

√ 2π ≥ 2): for 0 < a < r/2, E e aM 2 r ≤ (1 -2ar) -3/2 , E (M r ) -1 e aM 2 r ≤ √ 2π r(1 -r) (1 -2ra) -1 . (3.25) 
Recalling that κ n δ = k 1 δn -1/9 ≤ ε n → 0, we can use the above to get that for n suciently large, there is a C > 0 such that

E e 1 2(1-κ n δ ) M 2 κ n δ 1 + 1 αM κ n δ ≤ 1 - κ n δ 1 -κ n δ -3/2 + 2 √ π α √ κ n δ 1 - κ n δ 1 -κ n δ -1 ≤ C , recalling that α √ κ n δ = √ k 1 ≥ 1.
This proves the bound (3.23) in the case k 1 > 0.

Case

k 1 = 0. When k 1 = 0 we have E exp α M(k 1 +1)δ n 1/9 -M k 1 δ n 1/9 = E exp αM δ n 1/9 ≤ 4 1 - 2 α -3/2
where we used the previous bound and the fact that δn -1/9 = 1/α 2 . Since √ δn -1/18 = ō(1), this gives the bound (3.23) when k 1 = 0.

Combining Proposition 3.2 with the fact that the right-hand side quantity in Proposition 3.6 increases with K and thus converges almost surely as K → ∞ yields Theorem 1.6 in the case of a Gaussian environment. We only need to see that the convergence is towards a non trivial quantity, which is the object of the following lemma. Lemma 3.9. P-almost surely, there exists a unique (U, V) such that

W 2 := sup u,v Y u,v - 3π 2 βc 4 h √ 2 u + v 2 = Y U ,V - 3π 2 βc 4 h √ 2 U + V 2 ∈ (0, +∞) . (3.26) Proof. Choose v = 0 to get W 2 ≥ sup u Y u -B u -c h,β √ 2u 2 .
We get a positive lower bound since almost surely, there are real numbers

(u k ) ↓ 0 such that Y u k ≥ 2 √ u k and B u k ≤ √ u k . This leads to W 2 ≥ sup k √ u k -c h,β √ 2u 2 k > 0 almost surely.
In order to show that W 2 is almost surely nite, see B u as the modulus of a 3dimensional standard Brownian motion W

(3) u and consider a one dimensional Wiener process W . We use the fact that t -1 (|W

t |+W t ) → 0 almost surely to get Y u,v /|u+v| → 0 as |u + v| → ∞. Thus, Y u,v -c h,β √ 2(u + v) 2 ≤ 0 P-a.s. when |u + v| is large enough, (3) 
meaning that the supremum of this continuous process is almost surely taken on a compact set, thus it is nite. The existence of (U, V) is also a consequence of the continuity of Y u,v -c h,β √ 2(u + v) 2 and of the fact that the supremum is P-a.s. taken on a compact set. The uniqueness of the maximum follows from standard methods for Brownian motion with parabolic drift (see [START_REF] Berger | One-dimensional polymers in random environments: stretching vs. folding[END_REF]Appendix A.3]).

Comment. We could have taken another form of Z ω,β n,h (k 1 , k 2 , δ) given by (3.3), without using the process X that was only useful to reject trajectories whose minimum is too far from -u * n 1/3 . This would have led us to the alternative form

W ′ 2 := sup u,v X(1) u + X(2) v -c h,β u + v 2 = W 2
where X(i)

u are Brownian-related processes provided by a suitable coupling. However, these limit processes are not independent and their distribution may not be known processes, making W ′ 2 less exploitable. 

Path properties at second order

U ε,ε ′ 2 := (u, v) ∈ R 2 : sup (s,t)∈Bε(u,v) Y s,t -c β,h (s + t) 2 ≥ W 2 -ε ′ > 0 , with B ε (u, v) the Euclidean ball of radius ε centered at (u, v). Dene the event A ε,ε ′ 2,n := M - n + u * n 1/3 n 2/9 , M + n -(c h -u * )n 1/3 n 2/9 ̸ ∈ U ε,ε ′ 2 , then log P ω,β n,h A ε,ε ′ 2,n = log Z ω,β n,h A ε,ε ′ 2,n -log Z ω,β n,h .
Afterwards, using the denition of U ε,ε ′ 2 we prove as above that lim sup

n→∞ √ 2 βn 1/9 log Z ω,β n,h A ε,ε ′ 2,n = sup (u,v)̸ ∈U ε,ε ′ 2 Y s,t - 3π 2 βc 4 h √ 2 (s + t) 2 < W 2 -ε ′ ,
and thus lim sup

n→∞ n -1/9 log P ω,β n,h A ε,ε ′ 2,n < 0, proving (1.8) since ε ′ >0 U ε,ε ′ 2 ⊂ B 2ε ((U, V)).
4 Generalizing with the Skorokhod embedding 4.1 Proof of Theorem 1.6, case of a nite (3 + η)th moment For now, Theorem 1.6 has only been established for a Gaussian environment ω, meaning that the variables (ω z ) are i.i.d with a normal distribution. In the following, we will explain how we can generalize those results to any random i.i.d. eld with sucient moment conditions after doing the work in Section 3.

We rst expand on the coupling between the random eld ω and the Brownian motions X (i) , i = 1, 2. Our starting point is the following statement from [24, Chapter 7.2]. Theorem 4.1 (Skorokhod). Let ξ 1 , . . . , ξ m be i.i.d. centered variables with nite second moment. For a Brownian motion W , there exists independent positive variables τ 1 , . . . , τ m such that

ξ 1 , . . . , ξ m d = W (τ 1 ), W (τ 1 + τ 2 ) -W (τ 1 ), . . . , W ( m i=1 τ i ) -W ( m-1 i=1 τ i ) .
Moreover, for all k ≤ m, we have

E [τ k ] = E ξ 2 k and ∀p > 1, ∃C p > 0, E [(τ k ) p ] ≤ C p E (ξ k ) 2p .
The following theorem gives us asymptotic estimates for the error of this coupling. Theorem 4.2 ([11, Theorem 2.2.4]). Let (θ i ) be i.i.d. centered variables, and assume that E [|θ 1 | p ] < ∞ for a real number p ∈ (2, 4). Then, if the underlying probability space is rich enough, there is a Brownian motion W such that m i=1 θ i -W m = ō m 1/p (log m) 1/2 a.s. as m → ∞ .

We can easily adapt this statement and choose the Wiener processes X (1) and X (2) to be independent Brownian motions such that, as n → ∞,

un 1/3 z=1 ω -z -n 1/6 X (1) u ∨ vn 1/3 z=0 ω z -n 1/6 X (2) v = ō (u ∨ v) 1/p (n 1/3 ) 1/p (log n) 1/2
as long as E[|ω z | p ] < +∞ for some p ∈ (2, 4). Since in the partition function we can restrict to trajectories with x and y are taken between 0 and (c h + ε n )n 1/3 (recall (1.4)), we can obtain a uniform bound over every u, v we consider, meaning that P-a.s. there is some constant C(ω) such that for all n ≥ 1,

x z=1 ω -z -n 1/6 X (1) u ∨ y z=0 ω z -n 1/6 X (2) v ≤ C(ω) n 1/3p (log n) 1/2 , (4.1) uniformly for |x|, |y| ≤ 2c h n 1/3 . Let us also recall the notation Zω,β n,h = Z ω,β n,h e 3 2 hT * n -βn 1/6 Xu * .
Proof of Theorem 1.6 with E [|ω 0 | 3+η ] < ∞. We now repeat the proof for a Gaussian eld, but with the introduction of an error term given by Theorem 4.2. Recall (3.3): with a Gaussian environment, we had Σ - x = X

xn -1/3 and Σ + y = X

(2) yn -1/3 . Now, we must introduce an error term E n (x, y) := Σ - x -X

(1)

xn -1/3 + Σ + y -X (2) yn -1/3 : the equation (3.2) becomes Zω,β n,h ∼ ψ h sin u * π c h |x-u * n 1/3 |≤εnn 1/3 |y-(c h -u * |n 1/3 |≤εnn 1/3 exp β Ωx,y n + E n (x, y) - 3π 2 (∆ x,y n ) 2 2c 4 h n 1/3 (1 + ō(1)) , (4.2) 
with ō(1) deterministic and uniform in x, y, and Ωx,y

n := n 1/6 X (1) 
xn -1/3 + X (2) yn -1/3 -X u * , E n (x, y) := y z=-x ω z -Ωx,y n .
Take p = 3 + η with η ∈ (0, 1), and assume that E [|ω 0 | p ] < +∞. Then, using (4.1), we have |E n (x, y)| ≤ C(ω)n 1/(9+3η) (log n) 1/2 for all summed (x, y). Therefore, combining with (4.2), we get that P-a.s.

log Zω,β n,h -log |x-u * n 1/3 |≤εnn 1/3 |y-(c h -u * )n 1/3 |≤εnn 1/3 exp β Ωx,y n - 3π 2 (∆ x,y n ) 2 2c 4 h n 1/3 ≤ C(ω)n 1 9+3η (log n) 1/2 .
Since n

1 9+3η (log n) 1/2 = ō(n 1/9
), we can restrict our study to (exactly) the same sum that appeared in the Gaussian case, see (3.2). Then, (1.8) follows identically from the same proof as in Section 3.4.

4.2 Adaptation to the case of a nite (2 + η)th moment

We now explain how we can infer (1.9), i.e. a version of Theorem 1.6 where we only assume that E [|ω 0 | 2+η ] < ∞ for some positive η, from adapting the proofs of Section 3.

We are able to prove that the relevant trajectories converge to the suspected limit for Z ω,β n,h , however some technicalities prevent us from getting the full theorem.

The key observation is the following: when subtracting β

(c h -u * )n 1/3 u * n 1/3
ω z instead of βn 1/6 X u * from log Z ω,β n,h + 3 2 hc h n 1/3 , we precisely cancel out the (ω z ) present in both

Σ - |M - n | + Σ + M + n and Σ - u * n 1/3 + Σ + (c h -u * )n 1/3
. This leaves us with a smaller sample of the variables (ω z ), with size

|M - n + u * n 1/3 | + |M + n -(c h -u * )n 1/3
| which is at most 2ε n n 1/3 (see (3.2)), and of order n2/9 when restricting to trajectories giving the main contribution (see Proposition 3.2). We thus write Zω,β n,h := Z ω,β n,h exp( 3 2 hc h n 1/3 -β

(c h -u * )n 1/3
z=-u * n 1/3 ω z ), and for δ > a (x) := sgn(x -a), we dene

Ω u * n,h (x, y) := y z=-x ω z - (c h -u * )n 1/3 -u * n 1/3 ω z = δ > u * ( x n 1/3 ) x∨u * n 1/3 z=x∧u * n 1/3 ω -z + δ > c h -u * ( y n 1/3 ) y∨(c h -u * )n 1/3 z=y∧(c h -u * )n 1/3 ω z , to have Zω,β n,h ∼ ψ h sin u * π c h |x-u * n 1/3 |≤εnn 1/3 |y-(c h -u * )n 1/3 |≤εnn 1/3 exp βΩ u * n,h (x, y) - 3π 2 (∆ x,y n ) 2 2c 4 h n 1/3 (1 + ō(1)) , (4.3) 
The goal is now to rewrite Ω u * n,h (x, y) as Ω x,y n in (3.4) with an additional error term that is a ō(n 1/9 ). Since we are interested in the case where (|M - n |, M + n ) is close to (u * , c h -u * ), we see that we only need to have a good coupling between the environment and (X (1) , X (2) ) near (u * , c h -u * ) instead of a global coupling like the one we used in Section 4.1.

An application of Theorem 4.2 yields the following coupling: Proposition 4.3. Assume E [ω p 0 ] < +∞ for some p ∈ (2, 4). Then, conditionally on u * , there is a coupling of (X (1) , X (2) ) and the environment ω such that P-a.s. there is a constant C(ω) such that

Ω u * n,h (x, y) -n 1/6 X (1) 
xn -1/3 + X (2) yn -1/3 -X u * ≤ C(ω) (g n (x, y)) 1/p (log n) 1/2
where g n (x, y)

= |u * n 1/3 -x| ∨ (|(c h -u * )n 1/3 -y| ∧ |c h n 1/3 -(x + y)|).
In order to prove (1.9), we would need to adapt the proof of Proposition 3. 

Z≤K n,ω := Z ω,β n,h |M - n + u * n 1/3 | ∨ |M + n -(c h -u * )n 1/3
3π 2 (∆ x,y n ) 2 2c 4 h n 1/3 ≤ C(ω)(Kn 2/9 ) 1/p (log n) 1/2 .
Since we have (Kn 2/9 ) 1/p (log n) 1/2 = ō(n 1/9 ), this shows that Proposition 3.6 still holds (the sum that remains to control is exactly the one treated in Proposition 3.6).

Thus, we proved that

lim n→+∞ lim n→∞ √ 2 βn 1/9 log Z≤K n,ω = sup -K≤u,v≤K Y u,v - 3π 2 βc 4 h √ 2 u + v 2 ,
what remains is to show that n -1/9 log Z>K n,ω has a non-positive limsup as K, n → +∞ in the same spirit as Proposition 3.2.

In Lemma 3.3,3.4, we used union bounds to prove that P n -1/9 log Z>K n,ω ≥ -1 → 0 as K → ∞. If we repeat the same steps, for Lemma 3.3 we would need to compute probabilities such as (recall the notations in the proof )

P βn 1/6 (X (2) k,l -M n k,l ) + E n k,l ≥ c ′ h n 1/9 2 2l L 2 with E n k,l := sup c h -u-v∈2 l [1,2)Ln -1/9 |u-u * |∈[k,k+1)2 l Ln -1/9 ] Ω u * n,h (x, y) -n 1/6 X (1) 
xn -1/3 + X (2) 
yn -1/3 -X u * .

Note that assuming a moment 2 + η, we have E n k,l ≤ C(ω)(k2 l Ln 2/9 ) 1/2+η ′ for some

0 < η ′ < η. However, X (2) 
k,l and M n k,l are of order (k2 l Ln 2/9 ) 1/2 which means that E n k,l should somewhat be negligible. In fact, we can prove with the exact same calculations as in Lemma 3.3 that there is a N ∈ N such that lim k,l→+∞

sup n≥N P βn 1/6 (X (2) k,l -M n k,l ) + E n k,l ≥ c ′ h n 1/9 2 2l L 2 = 0 .
However, with this method, the convergence rate is not fast enough, thus the union bound fails to conclude the proof. To do so, we would need another way of proving the result which is beyond the scope of this paper. ω i 1 {∀k≤n,S k ≥0} P(S).

For now, we will keep studying the case where the eld ω is composed of i.i.d. Gaussian variables. We once again take a Brownian motion X such that 1

n 1/6 T z=0 ω z = X T n -1/3 .
The partition function is given by

Zω,β n,h = +∞ T =1 e -hT + i≤T ω i P(R n = 0, T ) = +∞ T =1
ϕ n (T )e -hT + i≤T ω i -g(T )n with g(T ) = π 2 /2T 2 (see [START_REF] Bouchot | Scaling limits for the penalized random walk in dimension 1[END_REF], this is analogous to what is done in Section 1.2).

It is not dicult to see that our results up to Section 3 still hold, meaning

1 n 1/3 log Zω,β n,h P-a.s. ---→ n→∞ - 3 2 hc h , 1 βn 1/6 log Zω,β n,h + 3 2 hc h n 1/3 P-a.s. ---→ n→∞ X c h .
Factorizing by e βn 1/6 Xc h yields the following exponential term

β T z=0 ω z -βn 1/6 X c h - 3π 2 (T -T * n ) 2 2c 4 h n 1/3 = -βn 1/6 X c h -X T n -1/3 - 3π 2 (T -T * n ) 2 2c 4 h n 1/3 .
Proposition 5.1. For any h, β > 0 there is a standard Brownian motion W such that P-a.s.,

lim n→∞ 1 βn 1/9 log Zω,β n,h + 3 2 hc h n 1/3 -βn 1/6 X c h = sup s∈R W s - 3π 2 2βc 4 h s 2 .
(5.1)

Proof scheme. Since |X c h -X T n -1/3 | ≤ Cn -1/6 |T * n -T | with probability at least 1 -e -C 2
, we can repeat the proof of Proposition 3.2 and restrict the trajectories. This

leads to studying Zω,β n,h (|T * n -T | ≤ Kn 2/9
) which contains all the main contributions for K large. Split over kδn 2/9 ≤ T * n -T ≤ (k + 1)δn 2/9 and the main contribution will be given by the supremum over k of -βn 1/6 X c h -X

c h + kδn 2/9 n 1/3 - 3π 2 (kδn 2/9 ) 2 2c 4 h n 1/3 = -βn 1/6 X c h -X c h + s n 1/9 - 3π 2 s 2 2c 4 h n 1/9
, where we wrote s = kδ. We can conclude similarly to the proof of Theorem 1.6 by changing the limit process Y u,v to B which is the limit of the processes B (n) = n 1/18 X c h -X c h + u n 1/9 u and is a standard Brownian motion. Once again, we can couple the Brownian motion X = X (n) so that the processes B (n) are equal to B when n is large, in the same fashion as Proposition 1.5. We can prove that the right-hand side of (5.1) is P-a.s. positive and nite, attained at a unique point s * .

To sum up the results of this simplied model, we write the following statement Theorem 5.2. Recall the notation of (1.11), this time with Zω,β n,h . Then P-almost surely,

f (1, 1 3 ) ω (h, β) = - 3 2 (πh) 2/3 , f (2, 1 6 ) ω (h, β) = βX c h , 1 β f (3, 1 9 ) ω (h, β) = sup s∈R B s - 3π 2 2βc 4 h s 2 .
Recall the following notation of (1.2):

T n := M + n -M - n = |R n | -1 , T * n := nπ 2 h 1/3 = c h n 1/3 , ∆ n := T n -T * n .
Corollary 5.3. There is a vanishing sequence

(ε n ) such that lim sup n→∞ Pω,β n,h |∆ n -s * n 2/9 | ≥ ε n n 2/9 = 0 .
Our goal is now to nd out whether factorizing the partition function by this quantity leads to a bounded logarithm or not; in other words, we are looking for the 4th order free energy, in the spirit of Section 1.11. We develop here some heuristic to justify that the 4th order free energy is at scale α 4 = 0.

Going forward we work conditionally to s * . We dene

Zω,β n,h := Zω,β n,h exp 3 2 hc h n 1/3 -βn 1/6 X c h -βn 1/9 sup u W u - 3π 2 2βc 4 h u 2 ϕ(T * n ) -1 . (5.2)
We rst rewrite the factorized partition function Zω,β n,h . If we write T n = c h n 1/3 + ∆ n and we recall that thanks to the coupling, for u in a neighborhood of 0, we have W u = n 1/18 X c h + u n 1/9 -X c h for suciently large n, we can rewrite

βn 1/6 X Tnn -1/3 -X c h = βn 1/6 X c h +∆nn -1/3 -X c h = βn 1/9 B ∆nn -2/9 .
Then, we have

Zω,β n,h ∼ |k-s * n 2/9 |≤εnn 2/9 exp βn 1/9 W kn -2/9 -c h,β k 2 n 4/9 -sup s∈R W s -c h,β s 2 . 
(5.3)

We dene the process Y s := B s -c h,β s 2 which is a Brownian motion with quadratic drift, and s * the point at which it attains its maximum on R. (5.3) can thus be rewritten as

Zω,β n,h ∼ |k-s * n 2/9 |≤εnn 2/9
exp βn 1/9 (Y kn -2/9 -Y s * ) .

(5.4)

The exponential term is non-positive, which means that the typical trajectories for the polymer are those that minimize the dierence in (5.3).

Comment. Previous works studied with some extent the laws of s * and Y s * (see [START_REF] Janson | Moments of the location of the maximum of Brownian motion with parabolic drift[END_REF]). In In all the following, we use the fact that the distribution of s * is symmetric to reduce to the case s * > 0. We will also work conditionally on the value of s * , meaning on the location of the maximum of Y . We write α = 2c h,β s * , then observe that for any s > 0,

Y s * -Y s * ±s = B s * -B s * ±s ± αs -c h,β s 2 ≤ B s ± αs =: R ± s .
Thus we have e βn 1/9 (Y kn -2/9 -Ys * ) ≤ e βn 1/9 (R kn -2/9 -Rs * ) which means that we can get an upper bound on the contribution of a given trajectory just by studying the processes R ± conditioned to be positive, provided the existence of a coupling between these processes and Y . Moreover, since we are interested in the setting s → 0, we should have a lower bound that reads Y s * -Y s * ±s ≥ (1+o( 1))R ± s as s → 0. This motivates our rst which is an analog of Proposition 1.5. We will write R

= R -1 R -+ R + 1 R + .
Conjecture 5.4. One can do a coupling of (R, Y ) and a two-sided BES 3 B such that almost surely, there exists δ 1 > 0 and n 1 ∈ N for which ∀n ≥ n 1 , for all |u| < δ 1

n 1/9 R un -2/9 = n 1/9 (Y s * -Y s * + u n 2/9 ) = Bu .
(5.5)

The fact that the three-dimensional Bessel process appears is mainly due to the following result from San Martin and Ramirez [START_REF] Martinez | Quasi-stationary distributions for a Brownian motion with drift and associated limit laws[END_REF].

Theorem 5.5. Dene X α t := x+W t -αt, with α, x > 0. Then the process X α conditioned to stay positive on [0, T ] converges in distribution to the Bessel process as T → ∞.

Our second conjecture is a description of the simplied model and the idea should follow along the steps of Section 3, excluding trajectories and using Conjecture 5.4 to get an almost-sure convergence of Zω,β n,h . Conjecture 5.6. There exist B (given by (5.5)) a two-sided three-dimensional Bessel process such that for n large enough, writing s n * := s * n 2/9 -⌊s * n 2/9 ⌋ we have

P ω,β n,h M + n = c h n 1/3 + ⌊s * n 2/9 ⌋ + k ∼ 1 θ ω (n) e -βW s n * +k , with θ ω (n) := k∈Z e -βW s n * +k (ω) . Heuristic. To minimize n 1/9 (Y s * -Y s * +s ) = n 1/9 R s , since R s ≍ √ s -αs ≍ √
s with high probability when s → 0 (we are close to s * ) we roughly need to have s = Ō(n -2/9 ). In the denition of Zω,β n,h , we take s + s * = ∆n Comment. It should be possible to obtain an analog of Conjecture 5.6 in the general model for a Gaussian environment ω, which supports Conjecture 1.7. This would require a coupling of Y U ,V -Y u,v (recall the denitions in Theorem 1.6) with some suitable process on a small neighborhood of (U, V). For the proofs of these facts, we refer to [START_REF] Durrett | Weak Convergence to Brownian Meander and Brownian Excursion[END_REF] and its references. Using P (M t ∈ dy) ≤ 2yt -3/2 e -y 2 2t dy and Φ 1-t (y) ≤ y/ 2π(1 -t), we have the following estimates: for any a < r/2,

E e aM 2 r ≤ 2 r 3/2 √ 2π ˆ∞ 0 ye -1-2ar 2r y 2 dy = (1 -2ra) -3/2 , E (M r ) -1 e aM 2 r ≤ 1 r 3/2 π (1 -r) ˆ∞ 0 ye -1-2ar 2r y 2 dy = √ 2π r(1 -r) (1 -2ra) -1 , (B.3)
The asymmetry of the meander can be used to prove the following reection principle.

Lemma B.1 (Reection principle for the meander). Let M be a Brownian meander, then for all b > 0 and all 0 ≤ s < t ≤ 1,

P sup 0≤r≤t M r ≥ b ≤ 2P (M t ≥ b) , P sup s≤r≤t |M r -M s | ≥ b ≤ 4P (M t -M s ≥ b) .
Proof. If we denote by T b the hitting time of b, we have

P sup 0≤s≤t M s ≥ b = ˆt 0 P (T b ∈ ds) = ˆt 0 P (T b ∈ ds, M t < b) + ˆt 0 P (T b ∈ ds, M t ≥ b) .
Now, write L b the lime of last visit to b before time t, on [L b , t] the process M r -b is a Brownian bridge conditioned to be above -b. We only need to see that any trajectory of M from b to (0, b] which stays above 0 can thus be transformed into a trajectory from b to [b, 2b) that stays above 0 by reecting the trajectory between the last visit L b to b and t (see Figure 2). Since these two Brownian bridges have the same probability and [b, 2b) ⊂ [b, +∞) it shows that this operation is injective and thus P (T b ∈ ds, M t < b) ≤ P (T b ∈ ds, M t ≥ b) for all s ≤ t (note that this is a consequence of the Brownian reection principle). Therefore, we proved

P sup 0≤s≤t M s ≥ b ≤ 2 ˆt 0 P (T b ∈ ds, M t ≥ b) = 2P (T b ≤ t, M t ≥ b) = 2P (M t ≥ b) .
If we study the supremum of an increment M r -M s , s ≤ r ≤ t we only need to repeat the proof for a starting point M s = x and integrate over all the positions x. Since the meander is a Markov process, we get P sup s≤r≤t M r -M s ≥ b ≤ 2P (M t -M s ≥ b) . Afterwards, we only need to see that again using the asymmetry of M , we have that

P sup s≤r≤t |M r -M s | ≥ b ≤ 2P sup s≤r≤t M r -M s ≥ b , hence the result.
Corollary B.2. For any λ > 1, a > 0 and 0 ≤ s < t < 1 2 , we have

P inf s≤r≤t M r ≤ a ≤ P (M s ≤ λa) + P (M t ≤ λa) + 4a √ 2t t -s e -2 t-s a 2 (λ-1) 2 1 -e -2 t-s a 2 λ 2 ,
as well as

P (M t ≤ a) ≤ 4a √ πt 1 ∧ a 2 2t .
Proof. We decompose the probability on whether M s , M t ≤ λa, meaning we only have to consider P inf s≤r≤t M r ≤ a, M s > λa, M t > λa . For this, we rst use Brownian bridge estimates: see that for any z, w, T > 0, we have In particular, if we assume z, w ≥ λα for some λ > 1, then f T (z, w) ≤ f T (λa, λa) Let us mention that a process related to the meander is the 3-dimensional Bessel process B. It can be dened as the solution of the SDE dB t = dW t + B -1 t dt, or as the sum B t = |W t | + L t where L is the local time of W at 0; it is a homogeneous Markov process that has the Brownian scaling property (B αt ) t d = ( √ αB t ) t . We refer to [START_REF] Revuz | Continuous martingales and Brownian motion[END_REF] for those results. The link between the Bessel process and the meander is given by the following result.

P z W T ∈ dw, inf t∈[0,T ] W t > 0 = 1 √ 2πT e -1 2T (z-w) 2 -e -1 2T (z+w) 2 dw P z (W T ∈ dw) = 1 √ 2πT e -1 2T (z-w) 2 dw thus we have P inf t∈[0,T ] W z→w t > 0 = 1 -e 1 2T (z-w) 2 -1 2T (z+w) 2 = 1 -e -
Proposition B.3. The law P +,T of the Brownian meander on [0, T ] has a density with respect to P B the law of the three-dimensional process: if X is the canonical process, we have

P +,T (A, X T ∈ dx) = 1 x πT 2 P B (A, X T ∈ dx) .
In particular, ∀α > 0, ∀s ≤ T, P +,αT (X αs ∈ dx) = P +,T ( √ αX s ∈ dx).

Proof. The formula for the density can be found in [START_REF] Imhof | Density factorizations for Brownian motion, meander and the threedimensional Bessel process, and applications[END_REF]Section 4]. Afterwards, for any positive measurable function f and any α > 0, we have

E +,αT f X αs √ α = E B 1 X αT παT 2 f X αs √ α = π 2 E B √ T X T f (X s ) = E +,T [f (X s )] .
C Coupling of Brownian meander, a three-dimensional Bessel process and a Brownian excursion

In this section we will expand on the way we can construct our dierent processes to have the almost sure results of Theorems 1.3 and 1.6. In particular we want the following result:

1 n 1/6 vn 1/3 -un 1/3 ω z a.s.

---→ n→∞ X (1) u + X (2) v and n 1/18 (X u * + u n 1/9 -X u * ) a.s.

---→ n→∞ B u . P x (A, B t ∈ dz) = z x P x (A, W t ∈ dz, H 0 > t), where W is a Brownian motion and H 0 its rst hitting time of 0. Then for any ε > 0, conditioning on the values of (e ε , B ε ) and (V, B t ), we can write We are interested in taking t = 1/2, but this result could be used for any xed t > 0, in the sense that the Bessel process and the Brownian excursion almost surely cross each-other on ]0, t] for any xed t. Take a positive C > 0 to be chosen later (we will choose C = ε -1/8 ).

Then, we rst get a bound using Cauchy-Schwartz inequality twice: 

E
(e ε B ε ) 2 ≤ 2 √ π Γ( 3 2 )(1 -ε) -3 2 ε -3 ˆR2 + e -x 2 2ε e -y 2 2ε(1-ε) dxdy ≤ (1 -ε) -1 ε -2 ,
where we used the transition probabilities for the Bessel process [23, VI 3 Prop. 3.1],

the Brownian excursion [18, Section 2.9 (3a)] and Γ( (C.4) Thus, assembling (C.1) and (C.4) while taking C = ε -1/8 , for any t > 0 we then have

P (I 0,t ) ≤ C t ε -1 e - C 2 
4(t-ε) 1/6 + C 6 ε ≤ C t ε -1 exp - ε -1/4 2 + ε 1/4 --→ ε→0 0 .
This means that P (I 0,t ) = 0 and in particular, taking t = 1 where u(re iθ ) := r 4 sin(4θ) (this expression is given in [12, (3)]). This result is also stated in 

  h dP(S),where R n = R n (S) := S 0 , . . . , S n is the range of the random walk up to time n, andZ ω,β n,h := E exp z∈Rn βω z -h = E exp β z∈Rn ω z -h|R n |

Z

  ω,β n,h = (1 + ō(1))ψ h e -ϕn(T * ω z + ϕ n (T * n ) -ϕ n (x + y) ,
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 1 Figure 1: A typical trajectory under the polymer measure for a given u * and large n Comment. Theorem 1.3 still holds if (ω z ) are i.i.d and in the domain of attraction of an

=

  sup u∈[0,c h ] X u is almost surely positive and nite, and attained at a unique point u * of [0, c h ].

4 h.

 4 Then, we can write log Z≤K n,ω = log 1 + ō(1) ψ h sin πu * c h + log Λω,β n,h (K, δ) .

  As in the proof of Theorem 1.3 we write u = k 1 δ and v = k 2 δ in (3.15): recalling the denition (3.3) of Ω, this leads to

α 2 m 2 2

 2 dm . Now, setting Ψ(m) := e -(αm) 2 2 +αm , after integrating by parts (writing mΨ(m) = (me -(αm) 2 2

  6 (the convergence of the partition function restricted to the good set of trajectories) and of Proposition 3.2 (the control of other trajectories). While the former can be done without any diculties, the latter poses problems as it consists of proving a control of trajectories with larger coupling errors. Proof of Proposition 3.6 with E [|ω 0 | 2+η ] < +∞. Introduce the notation (analogous to that of Proposition 3.6):

  particular s * follows the so-called Chernov distribution, which is symmetric. Writing Ai for the Airy function, [19, Theorem 1.1] states that E s 2 * = 2 -2/3 c -4/3 h,β 6iπ ˆR y dy Ai(iy) < ∞ and ∀p ∈ N, E [s p * ] < +∞ .

Figure 2 :

 2 Figure 2: Reection of the trajectory b → (0, b] with respect to the horizontal line at b

2 T zw . (B. 4 ) 1 - 1 - 1 -e - 2 T 1 -e - 2 T zw = e - 2 T 2 T zw 1 -e - 2 T.(B. 5 ) 2 T 2 T 2 T

 2411121222125222 For any α > 0 and z, w > α, we deneP α T (z, w) := P inf t∈[0,T ] P inf t∈[0,T ] W z→w t > α P inf t∈[0,T ] W z→w t > 0 .Then, using (B.4) with z, w, z -α, w -α > 0, we can deduceP α T (z, w) = (z-α)(w-α) (z-α)(w-α) -e -zwConsider the mapping f T : (x, y) → e -xy . Using the mean value theorem, there is ac ∈ [0, 1] such that f T (z, w) -f T (z -α, w -α) = ∇f T (1w -2cα)e -2 T (z-cα)(w-cα) . (B.6)Injecting in (B.5), this yieldsP α T (z, w) = 2α T (z + w -2cα) e -(z-cα)(w-cα)1 -e -2 T zw ≤ 2α T (z + w) e -(z-cα)(w-cα)1 -e -2 T zw . (B.7)

P

  (I 0,t ) ≤ E [P (I ε,t | e ε , B ε )] ≤ E e t B t e ε B ε P I Bε→Bt eε→et (t -ε) ,where we have denedIa→b x→y (T ) := ∀r ∈ (0, T ), W x→y T (r) > 0, W a→b T (r) > 0, W x→y T (r) ̸ = W a→b T (r) , in which W a→b T is a Brownian bridge a → b of duration T (resp. for x → y).

2 ,

 2 one can almost-surely nd a positive ε such that Lemma C.3 is true. Proof of Lemma C.4. We can assume 0 < x < a and 0 < y < b (otherwise the probability is zero), then we have P I a→b x→y (T ) = P ∀r ∈ [0, T ], 0 < W x→y T (r) < W a→b T (r) .

(C. 5 )) 4 .

 54 Observe that (C.5) is exactly the probability for the Brownian bridge W x→y,a→b T to stay in the cone C := {(x, y) ∈ R 2 : 0 ≤ x ≤ y} for a time T , meaningP I a→b x→y (T ) = P ∀t ∈ [0, T ], W x→y,a→b T (t) ∈ C .The isotropy of Brownian motion allows us to consider instead Ĉ := re iθ , 0 ≤ θ ≤ π Lemma C.5. Let W z→z ′ be a two dimensional Brownian bridge from z to z ′ . Then, there is a positive C T such that uniformly as |z| → 0 we haveP ∀t ∈ [0, T ], W z→z ′ t ∈ Ĉ = (1 + ō(1))C T |z| 4 |z ′ | 4 sin (4 arg z) sin (4 arg z ′ ) .Proof. Recall that we identify R 2 with C, by writing W for a standard two-dimensional Brownian motion, we haveP ∀t ∈ [0, T ], W z→z ′ t ∈ Ĉ = lim η→0 P x ∀t ∈ [0, T ], W t ∈ Ĉ , W T ∈ B(z ′ , η) P z (W T ∈ B(z ′ , η)) = lim η→0 C(T )η 2 e -|z ′ | 2 /2T -1 ˆB(z ′ ,η) K Ĉ T (z, w)dw ,where K Ĉ T (z, w) is the heat kernel killed on exiting Ĉ and B(z, r) is the ball of radius r centered at z.The key ingredient is the following statement, which is a consequence of[START_REF] Denisov | Random walks in cones[END_REF]]: as δ → 0, uniformly in |z| ≤ δ √ T , |w| ≤ T /δ, we have K Ĉ T (z, w) ∼ χ 0 T 5 e -|w| 2 /2T u(w)u(z) for some χ 0 > 0.

[ 2 ,

 2 Corollary 1]. In particular, as |z| → 0,P ∀t ∈ [0, T ], W z→z ′ t ∈ Ĉ ∼ lim η→0 C(T )η 2 e -|z ′ | 2 /2T -1 ˆB(z ′ ,η) χ 0 T 5 e -|w| 2 /2T u(w)u(z)dw = lim η→0 e |z ′ | 2 /2T χ 0 T 5 e -|z ′ | 2 /2T u(z ′ )u(z) Vol(B(z ′ , η)) C(T )η 2 (1 + h(η)) ,with h(η) → 0 and Vol(B(z ′ , η)) = πη 2 , leading us to the formula of Lemma C.5.

  Assume that lim n→∞ n -1/4 h n = +∞ and lim n→∞ n -1 h n = 0. Denote by t o n the decimal part of T * n and τ o

	n := 1 2 -π 2 18T * n . Dene A n as {0} if t o n < τ o n , {1} if t o n > τ o n and {0, 1} n . Then we have for any Borel set B ⊆ [0, 1] n = τ o if t o
	lim n→∞	P ω,0 n,hn T n -⌊T * n -2⌋ ̸ ∈ A n = 0, lim n→∞	P ω,0 n,hn

  18 , thus proving the proposition.Proof of Lemma 3.8. Recall the denition(3.16) 

  | ≤ Kn 2/9 e

	which we formulate as				
	Z≤K n,ω = (1+ō(1))	|x-u * n 1/3 |≤Kn 2/9	ψ h sin	u * π c h	exp Ω u * n,h (x, y) -βc h,β	(∆ x,y n ) 2 n 1/3 (1 + ō(1))
	|y-(c h -u * )n 1/3 |≤Kn 2/9			
	where ō(1) is deterministic, uniform in (x, y). Afterwards, using Proposition 4.3 with
	p = 2 + η leads to				
	log Z≤K n,ω -log	exp β Ωx,y n -		
	|x-u * n 1/3 |≤Kn 2/9				
	|y-(c h -u * )n 1/3 |≤Kn 2/9				

5

  Simplied model : range with a xed bottomIn this section we shall focus on a somewhat simpler model in which one of the range's edges is xed at 0. The polymer is modeled by a non-negative random walk and the polymer measure is given by

	Pω,β n,h (S) :=	1 Zω,β n,h	exp -hM + n + β	M + n i=0

  -2/9 , thus we should be able to prove that Zω,β n,h (|∆ n -s * n 2/9 | > K)/ Zω,β n,h → 0 when K → ∞ and n is large enough. On the other hand, for Zω,β n,h (|∆ n -s * n 2/9 | ≤ K), when n is large enough, we have Y kn -2/9 -Y s * = Bk for any |k| ≤ K. Thus, we should be able to prove that when n → +∞, we have | Zω,β n,h (|∆ ns * n 2/9 | ≤ K) -|k|≤K e -β Bk | → 0 in similar fashion to the proof of Proposition 3.6.

  T α 2 (λ-c)2 1 -e -2 T α 2 λ 2 . Therefore, for any λ > 1 and a > 0, ≤ a, M s > λa, M t > λa = E P a t-s (M s , M t )1 {Ms,Mt≥λa} -e -2 t-s a 2 λ 2 E [M s + M t ] , to get the desired result. On the other hand, using (B.2), we write for 0 < t < 1

														and we
	obtain			P α T (z, w) ≤	2α T	(z + w)	e -2
	P inf												
											≤	2a t -s	e -2 t-s a 2 (λ-c) 2 1 (B.8)
	and we compute E [M t ] ≤ 2 √ π	2	√ t ≤	√ 2t for t < 1/2 2
	P (M t ≤ a) =	2 t 3/2	ˆa 0	ye -y 2 2t	ˆy 0	e -u 2 2(1-t) du 2π(1 -t)	dy ≤	2 t 3/2	ˆa 0	ye -y 2 2t	ˆy 0	du 2π(1 -t)	dy
	≤	2at -3/2 2π(1 -t) ˆa 0	ye -y 2 2t dy =	4a(1 -e -a 2 2t ) 2πt(1 -t)	≤	4a √ πt	1 ∧	a 2 2t	.

s≤r≤t M r

  |e t B t | e ε B ε P I Bε→Bt eε→V (t -ε) 1 {Bt∨V >C} ≤ E 1 (e ε B ε ) 2 E (e t B t ) 4 1 4 P (B t ∨ V > C) ε < tand e, B are independent, we have E [(e t B t ) 4 ] ≤ c(t) and

	1	
	2	1 4 .

Since E 1

  We will use the following lemma to get a bound on P I Bε→Bt eε→et (t -ε) .Lemma C.4. For any T > 0, there is a C T > 0 such that for any x, y, a, b > 0,P I a→b x→y (T ) ≤ C T (x 2 + a 2 ) 2 (y 2 + b 2 ) 2 .Thus, using Lemma C.4 in (C.2), we have the upper boundE |e t B t | e ε B ε P I Bε→Bt eε→et (t -ε) 1 {Bt∨et≤C} ≤ C 6 C t,ε E 1 e ε B ε (e ε ) 2 + (B ε ) 2 2 , get E |e t B t | e ε B ε P I Bε→Bt eε→et (t -ε) 1 {Bt∨et≤C} ≤ C 6 C t ε .

										3 2 ) =	√ π/2. Finally we compute
											(C.3)
	and we compute							
	E	  	(e ε ) 2 + (B ε ) 2 e ε B ε	2	   =	2 √ π	Γ(	2 3	)(1 -ε) -3 2 ε -3	ˆR2

P (B t ∨ V > C) ≤ e -C 2 /t 1/6

to get

E |e t B t | e ε B ε P I Bε→Bt eε→V (t -ε) 1 {Bt∨et>C} ≤ c t (1 -ε) -1 2 ε -2 e -C 2 t 1/6 . (C.1)

On the other hand,

E |e t B t | e ε B ε P I Bε→Bt eε→et (t -ε) 1 {Bt∨et≤C} ≤ E C 2 e ε B ε P I Bε→Bt eε→et (t -ε) . (C.2) + (x 2 + y 2 ) 2 xye -x 2 2ε e -y 2 2ε(1-ε) dxdy ≤ (cst.)ε -3 ˆR2 + ε 2 (u 2 + v 2 ) 2 uvεe -u 2 2 e -v 2

2 εdudv ≤ (cst.)ε .

to

hc h n 1/3 -β (c h -u * )n 1/3 z=-u * n 1/3 ωz ,
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A Disorder in a domain of attraction of a Lévy process In this section we will extend the Theorem 1.3 to the case where (ω z ) z∈Z is in the domain of attraction of an α-stable law, with α ∈ (1, 2); we refer to [START_REF] Berger | One-dimensional polymers in random environments: stretching vs. folding[END_REF] where the case α < 1 is shown to have a dierent behavior. More precisely, we assume that the eld ω is such that E [ω 0 ] = 0 and that there exists α ∈ (1, 2) such that P (ω 0 > t) ∼ pt -α , P (ω 0 < -t) ∼ qt -α as t → ∞ with p + q = 1.

(A. [START_REF] Alberts | The intermediate disorder regime for directed polymers in dimension 1 + 1[END_REF] This ensures that 1 k 1/α k z=0 ω z converges in law to an α-stable Lévy process, α ∈ (0, 2).

Note that we treat the case of a pure power tail in (A.1), i.e. the normal domain of attraction to an α-stable law, only for simplicity, to avoid dealing with slowly varying corrections in the tail behavior.

As in the case where

where X (1) , X (2) are two independent α-stable Lévy processes, see [5, 1.2].

If the range is of size of order n ξ , then we have that z∈Rn ω z is of order n ξ/α , which is negligible compared to n ξ since α > 1. Hence the disorder should be negligible at rst order, and this is what is proven in [5, Thm. 1.2]: we have

Our result here is to obtain the second order asymptotic for the convergence of log Z ω,β n,h ;

we deduce a result on the position of the range under P ω,β n,h .

Theorem A.1. Suppose that (ω z ) z∈Z veries (A.1). Then, for any h, β > 0, we have the following P-a.s. convergence

, where X (1) and X (2) are two independent α-stable Lévy processes. Furthermore, u * := arg max u∈[0,c h ] X (1) u + X

(2) c h -u exists P-almost surely and

Proof. The proof is essentially the same as the one of Theorem 1.3. As in (2.1), we can

3). Once again we have

where the error remainer R δ n is dened for u, v ≥ 0 by R δ n (u, v) := max

Using the coupling ω and Lemma A.5 of [START_REF] Berger | One-dimensional polymers in random environments: stretching vs. folding[END_REF], we have P -a.s. ∀ε > 0, ∃n 0 = n 0 (ε, δ, ω) such that ∀n ≥ n 0 ,

Using the càdlàg structure of Lévy processes X (1) and X (2) we push δ to 0 and get the desired convergence.

Afterwards, we can use [3, Theorem 2.1] and [START_REF] Pruitt | The Growth of Random Walks and Levy Processes[END_REF]Section 3] to prove that the variational problem is positive and nite (in the sense that sup 0≤u≤c h X

u + X

(2) c h -u is almost surely positive and nite), which relies on the same reasoning as Lemma 2.2. Then, [5, Proposition 3.1] proves the existence and unicity of the maximizer u * . The proof of the second part of Theorem A.1 is exactly the proof of Lemma 2.3.

B Technical results for the Brownian meander

Let W be a standard Brownian motion on [0, 1] and denote τ := sup {t ∈ [0, 1] : W t = 0}. The Brownian meander on [0, 1] is dened as the rescaled trajectory of W between τ and 1. More precisely it is the process M dened on [0, 1] by

Note that we could dene the meander to be on any interval [0, T ] by changing how we rescale the trajectory, leading to dene a Brownian meander of duration T as the rescaled process T

2t and Φ t (y) := ´y 0 φ t (x)dx. The Brownian meander on [0, 1] is a continuous, non-homogeneous Markov process starting at 0, with transition kernel given by Proof. It is known (see for example [18, p79]) that the Brownian excursion can be decomposed into two Bessel bridges of duration 1 2

joining at a point V whose law has density

. Thus we only need to dene a coupling between a 3d-Bessel process B and a 3d-Bessel bridge B ′ with duration 1 2 and endpoint V . We use the fact that both processes can be realized by the modulus of a three-dimensional Brownian motion.

Consider two independent, three-dimensional Brownian bridges X and Y of duration Lemma C.3. Almost surely, there exists ε(ω) > 0 such that τ ≤ 1 2 -ε(ω). Using this lemma, we can conclude the construction of the coupling. After time τ , we dene a coupling by taking the trajectory of X between τ and 1 2 and plugging it at Y τ after a rotation:

The new process Ŷ is such that for every t ∈ [τ, 1 2 ], we have

Brownian bridge is a diusion process (as the solution to an SDE), thus is Markovian, and τ is a stopping time for both processes X and Y . It follows that Ŷ is a Brownian bridge between y and 0.

To create the coupling between the two Bessel processes B and B ′ , we choose the starting points x and y so that they respectively correspond to W 1 2 (with W a 3d-Brownian motion) and a uniform variable on the sphere centered at 0 of radius V . Then the processes B t = |X Proof of Lemma C.3. On [0, 1 2 ], consider B a 3-dimensional Bessel process starting at 0 and e the Brownian excursion, which is a Bessel bridge of duration 1 2 starting at 0 and ending at V . We dene I s,t := {∀r ∈ (s, t), e r ̸ = B r } the event on which e and B never intersect between 0 and t (with the exception of 0). From [17, (3.1)], we have Comment. We could also use the fact that Ĉ is the Weyl chamber B 2 , thus we can use results from [16, 5.3] after a time scaling by ε to have that the probability in (C.2) is of order (ε/t) 2 , which is ultimately what we proved.

Thus, we proved Lemma C.4 by injecting z = (x, a) and z ′ = (y, b).

Assembling Lemmas C.1 and C.2 yields that one can do a coupling of the Brownian meander M and the three-dimensional Bessel process B such that almost surely, there is a positive time σ for which M t = B t on [0, σ], thus proving Proposition 1.5 using (3.5).