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Abstract: We study the role of short-range correlations, as well as pion and rho loops governing
long-range RPA correlations, in nuclear matter properties and response functions. We use an adapted
formulation of the Brueckner G-matrix approach to generate a pair correlation function satisfying the
Beg–Agassi–Gal theorem, providing a natural cutoff to the loop integrals. We present results for the
case of a relativistic chiral theory, including the effects of quark confinement and of the chirally broken
vacuum in a version where parameters are directly connected to QCD observables or constrained by
well-established hadron phenomenology. This provides a unified and coherent view of the nuclear
matter equation of state and the effect of correlations on neutrino–nucleus scattering.

Keywords: nuclear matter properties; short range correlations; G matrix; chiral symmetry;
confinement; nucleon substructure

1. Historical Introduction

More than thirty years ago, the observed depletion of the nuclear structure function
with respect to the free nucleon one, with the maximum effect observed when the Bjorken
variable had a value of x ' 0.6 [1,2], was tentatively attributed to a possible modification of
the nucleon structure in the nuclear medium. The reason was the inability of the standard
mean-field Hartree–Fock approach [3] to reproduce this celebrated EMC effect, as discussed
in [4]. This depletion is governed by the separation energy, 〈ε〉, a negative quantity that is
the opposite of the mean energy needed to remove a nucleon from the nucleus. For typical
nuclei from 12C to 56Fe, the value 〈 ε 〉 = −(40÷ 50) MeV gives a correct fit to the EMC
effect. Hence, according to the Koltun sum rule, −〈 ε 〉 = 〈 t 〉+ 2 B [5], this necessitates
a nucleon mean kinetic energy as large as 〈 t 〉 ∼ 35 MeV, in strong disagreement with
the conventional HF calculation giving 〈 t 〉HF ∼ 20 MeV. The reason for this large value
of kinetic energy is well known and is linked to correlations. Realistic calculations based
on correlated wave functions have shown that the bare nucleon momentum distribution
acquires a long tail beyond the Fermi momentum since the effect of short-range correla-
tions is the depopulation of the Fermi sea. For instance, in the evaluation by Ciofi degli
Atti et al. [6–8], for nuclei ranging from 12C to 56Fe, the kinetic energy per nucleon becomes
larger, namely, 〈 t 〉 ' 35 MeV, and the absolute value of the separation energy also becomes
larger, −〈 ε 〉 ' 50 MeV. Thus, conventional nuclear effects are indeed able to reproduce the
major part of the EMC effect. One can conclude that the independent particle picture is a
very approximate view of the nucleus or that the Hartree–Fock scheme with bare nucleons
is a poor approximation of the nuclear ground state. This conclusion seems surprising at
first since we know that independent particle models based on the HF scheme accurately
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reproduce many basic properties of nuclei. The reason for the apparent discrepancy is due
to the implicit identification of bare and dressed nucleons. In reality, Hartree–Fock nucleons
should not be treated as bare nucleons but as nucleons surrounded by a polarization cloud,
constituting quasi-particles (in the Landau sense), moving independently in a smooth mean-
field potential. As pointed out in [9], such dressed objects couple differently from bare ones
to an external (electroweak) probe.

A similar story occurred twenty years later in 2009/2010, when the measurement of the
charged-current quasielastic-like (CCQE-like) neutrino–nucleus cross-section performed
by the MiniBooNE collaboration [10,11] turned out to be in strong disagreement with the
predictions based on the Fermi gas model (the model implemented in all Monte Carlo at
that time; see, e.g., [11]), suggesting that scattering between a neutrino and independent
nucleons strongly underestimates the measured cross-section. It was first proposed that
this effect was due to a possible in-medium modification of the nucleon axial form factor,
i.e., to an intrinsic modification of the bound nucleon structure. However, very soon,
the explanation of this disagreement was given by the Lyon group [12]: nucleons are
correlated via short-range correlations (SRCs) and meson exchange currents (MECs), which
implies the possible ejection of a pair of nucleons from the scattering of the neutrino.
This process is referred as the two-particle–two-hole (2p-2h) or n-particle–n-hole (np-nh)
contribution to the cross-section. As an elaboration of the approach outlined in [9], we
recently proposed in [13] a general technique based on a unitary transformation mapping
of the Fermion operators relative to bare nucleons into quasi-particle operators relative to
dressed nucleons. In short, this unitary transform is governed by the G matrix, which is
the effective interaction felt by the dressed HF nucleon, with this G matrix G(r) being very
schematically related to the bare nucleon interaction V(r) by G(r) = V(r) f (r), where f (r)
is the pair correlation function.

In the following, we elucidate the influence of short-range correlations, which depop-
ulate the Fermi sea and enhance the response functions, on the nuclear matter equation
of state. The discussion is specifically illustrated on the basis of a microscopic model,
inspired by QCD, describing the nucleon–nucleon interaction and its modification in the
nuclear medium.

In the second section, we slightly reformulate the approach of [13], which allows
the generation of the G matrix governing the interaction between dressed nucleons. We
then propose a way to cause the resulting correlation function to vanish at zero distance,
in agreement with the Beg–Agassi–Gal theorem [14–16]. The parameter qC appearing in
this correlation function represents the inverse of the correlation hole radius induced by
short-range correlations (SRCs). Its value can be fixed from the bare NN interaction derived
from a relativistic chiral theory, including the effect of quark confinement, developed in the
recent years [17–25].

This approach, which we now call the chiral confining model, is the subject of Section 3.
The original phenomenological version [18,20,21] described in Section 3.1 is based on a
linear sigma model (LσM) Lagrangian with standard Yukawa couplings of the various
meson fields (scalar s, π, ρ, ω, . . .) to the nucleon but with three important physical pillars.
First, the scalar field s, associated with the radial fluctuation of the chiral condensate,
is identified with the sigma meson of relativistic theories [17,19]. Second, the effect of
the quark substructure of the nucleon is reflected by its polarizability in the presence of
the nuclear scalar field generating a repulsive three-nucleon force, providing an efficient
saturation mechanism [18,20,21,25]. Third, the associated response parameters, namely,
the nucleon scalar coupling constant, gS, and scalar susceptibility, κNS, can be related to
two chiral properties of the nucleon given by lattice QCD simulations, imposing severe
constraints on their values [20,21,25]. This model has been applied in the past to the
equation of state of nuclear matter and neutron stars, as well as to the study of the chiral
properties of nuclear matter at different levels of approximation in the treatment of the
many-body problem (RMF, Relativistic Hartree–Fock, or RHF, pion loop correlation energy).
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However, it has been realized that the correct description of saturation properties
compatible with lattice QCD constraints requires a large value of the scalar susceptibility,
κNS, which is not compatible with realistic confining models of the nucleon. Hence, in
Section 4.2, we present an enriched version recently proposed in [26], the NJL chiral
confining model, which is based on the semi-bosonization of the Nambu–Jona-Lasinio
model, as described in [23]. The main new feature of this improved framework is the
replacement of the LσM effective potential, Vχ,LσM, by a more repulsive NJL one, Vχ,NJL,
considerably reducing the tension between the expected model values of the response
parameters and the lattice QCD constraints.

A further step is accomplished in Section 3.3, where we build an effective Hamil-
tonian inspired by QCD that allows the simultaneous introduction, within some ansatz
prescriptions, of a confining model for the nucleon, allowing the calculation of the response
parameters, and an equivalent NJL model. This is the foundation of the QCD-connected
chiral confining model, which basically depends on two genuine QCD quantities, namely,
the string tension, σ, and the gluon condensate, G2.

Section 4 is devoted to nuclear matter calculations. We first summarize the values and
the origin of the various parameters entering the (in-medium) nuclear interaction, trying to
distinguish between those coming from the QCD-connected model (essentially the scalar
and pionic sectors) and those coming from hadron phenomenology (essentially the vector
sector), and we explain how the effect of short-range correlations is implemented in this
context through the adapted G-matrix approach. We thus finally discuss the combined
effect of short-range correlations and long-range RPA-like correlations (pion–rho loops) on
nuclear matter properties and the depopulation of the Fermi sea, which is an indicator of
the magnitude of the 2p-2h contribution to the neutrino–nucleus scattering cross-section.

2. Connecting Different Microscopic Models for Correlations
2.1. From Bare to Dressed Nucleons: Landau Quasi-Particles

Let us consider a nuclear system described by a Hamiltonian where the bare nucleon–
nucleon interaction reduces to a two-body potential, written with standard notation as

H = ∑
k1,k2

< k1 | T | k2 > a†
k1

ak2 +
1
4 ∑

k1k2k3k4

< k1 k2 | V̄ | k3 k4 > a†
k1

a†
k2

ak4 ak3 , (1)

where a (a†) is the annihilation (creation) operator relative to the bare nucleons. According
to Goldstone [27], the correlated ground state of the nucleus, |0 >, can be obtained from
the state of uncorrelated bare nucleons, |0 >uncorr, by a unitary transformation as follows:

|0 > = U |0 >uncorr= U(a)

(
∏

h
a†

h

)
|vac >= U(a)

(
∏

h
a†

h

)
U†(a) |vac >

≡
(

∏
h

A†
h

)
|vac >, (2)

where |vac > is the true vacuum state with a baryonic number equal to zero. The label
h stands for hole states with a momentum below the Fermi momentum kF. Hence, the
correlated ground state |0 > can be obtained as a Slater determinant of dressed nucleons
created by the A†

h operators. These operators are related to the bare creation operators, a†
h,

by a unitary transformation preserving the anticommutation relation:

A†
h = U(a) a†

h U†(a) ⇔ a†
h = U†(A) A†

h U(A). (3)

Starting, as in references [28,29], with a unitary operator U(A) = exp(S(A)), with
S(A) being an anticommutation operator truncated at 2p-2h excitations,

S(A) =
1
4

(
sp1 p2h1h2 A†

p1
A†

p2
Ah1 Ah2 − hc

)
, (4)
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one obtains, to the leading order in S(A), the following result for hole (h) and particle (p)
creation and annihilation operators:

ah =
√

Zh Ah −
1
2 ∑

h2 p3 p4

sp3 p4h2h A†
h2

Ap4 Ap3 (5)

ap =
√

Zp Ap −
1
2 ∑

p2h3h4

spp2h3h4 A†
p2

Ah3 Ah4 , (6)

where Zh and Zp are normalization factors that are fixed to ensure that < 0|{ak, a†
k}|0 >= 1:

Zh = 1 − 1
2 ∑

h2 p3 p4

∣∣∣sp3 p4h2h

∣∣∣2, Zp = 1 − 1
2 ∑

p2h3h4

∣∣∣spp2h3h4

∣∣∣2. (7)

To the same order, the ground state energy can obtained by a straightforward al-
though tedious calculation as a functional of sp1 p2h1h2 . These coefficients can be obtained
variationally, i.e., by minimizing the ground-state energy, yielding:(

εh1 + εh2 − εp1 − εp2

)
sp1 p2h1h2 =< p1 p2 | V̄ | h1 h2 >

+
1
4 ∑

p′1,p′2

< p1 p2 | V̄ | p′1 p′2 > sp′1 p′2h1h2
+

1
4 ∑

h′1,h′2

sp1 p2h′1h′2
< h′1 h′2 | V̄ | h1 h2 > (8)

with single-particle energy: εk =< k | T | k > +∑
h
< k h | V̄ | k h >≡< k | h0 | k > .

The solution of this equation can be found as follows:

sp1 p2h1h2 =
< p1 p2 | Ḡ(E = εh1 + εh2) | h1 h2 >

εh1 + εh2 − εp1 − εp2

, (9)

where G(E), the G matrix, is a two-body operator satisfying

G(E) = V + V
Q

E− h0
G(E)⇐⇒

< k1 k2 |G(E) | k′1 k′2 >=< k1 k2 |V | k′1 k′2 > (10)

+ ∑
p1,p2>kF

< k1 k2 |V | p1 p2 >
1

E− εp1 − εp2

< p1 p2 |G(E) | k′1 k′2 >,

and Q is the Pauli-blocking operator projecting on particle states above the Fermi sea.
A different derivation of this result, not based on a variational approach, is given in
references [28,29]. It follows that the binding energy of nuclear matter is

E0 = ∑
h<kF

< h | T | h > +
1
4 ∑

h1h2<kF

< h1 h2 | Ḡ(E = εh1 + εh2) | h1 h2 >, (11)

reflecting the fact that the dynamics of dressed HF nucleons is governed by the G matrix.
The important point is that this G matrix, often identified with the effective interaction in
the Hartree–Fock calculation, refers to objects, the dressed or renormalized nucleons, which
can be seen as Landau quasi-particles that are definitely different from bare nucleons. If
an energy-independent mean field is assumed, then the single-particle energy difference
entering, for example, Equations (5), (6) and (9) involves only the kinetic energy difference
between particle and hole states.
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2.2. Response Function and Occupation Numbers

Using the correspondence between bare and dressed nucleon operators (Equations (5)
and (6)), an explicit form of the genuine particle and hole spectral functions (i.e., related to
the bare nucleons) can be obtained (see [13]):

Sh
k,k′(E) = ∑

n
< 0|a†

k |n >< n|ak′ |0 > δ
(

E + EA−1
n − EA

0

)
= Zk δkk′ δ(E− εk) ρk

+
1
2 ∑

p2h3h4

< k p2 | Ḡ | h3 h4 >< k′ p2 | Ḡ | h3 h4 >(
εk + εp2 − εh3 − εh4

) (
εk′ + εp2 − εh3 − εh4

) (12)

δ
(
E−

[
εh3 + εh4 − εp2

])
ρ̄k ρ̄k′

Sp
k′ ,k(E) = ∑

n
< 0|ak′ |n >< n|a†

k |0 > δ
(

E− EA+1
n + EA

0

)
= Zk δkk′ δ(E− εk) ρ̄k

+
1
2 ∑

h2 p3 p4

< p3 p4 | Ḡ | h2 k′ >< p3 p4 | Ḡ | h2 k >(
εk + εh2 − εp3 − εp4

) (
εk′ + εh2 − εp3 − εp4

) (13)

δ
(
E−

[
εp3 + εp4 − εh2

])
ρk ρk′ .

By integrating the spectral function, the occupation numbers are also obtained:

nh ≡ 1− ∆nh = = 1 − 1
2 ∑

h2 p3 p4

∣∣∣∣ < p3 p4 | Ḡ | h2 h >

εh + εh2 − εp3 − εp4

∣∣∣∣2 (14)

np ≡ ∆np =
1
2 ∑

p2h3h4

∣∣∣∣ < p p2 | Ḡ | h3 h4 >

εp + εp2 − εh3 − εh4

∣∣∣∣2, (15)

which is a well-known form, quoted, for instance, in ref. [30], Equations (2.31 and 2.32).
We can now obtain the response function to a probe (such as the vector boson re-

lated to charged current neutrino interaction), which transfers an energy-momentum to
the nucleus (ω, q) and couples to individual nucleons with time-independent operators:
O(j) = τ±j , (σ j · q̂) τ±j , (σ j × q̂)i τ±j

1. This response is defined as

R(ω, q) = ∑
n
| < n|

A

∑
j=1
O(j) eiq·xj |0 > |2 δ(ω− En + E0), (16)

where |n > and En are the eigenstates and eigenvalues of the full nuclear Hamiltonian.
In the factorization approximation, this response can be expressed in terms of the above
spectral functions according to:

R(ω, q) = ∑
k′1,k′2,k1,k2

< k′1|O†e−iq·x|k′2 >< k2|Oeiq·x|k1 >

∫ εF

−∞
dE1 Sh

k1,k′1
(E1)

∫ ∞

εF

dE2 Sp
k′2,k2

(E2) δ(ω− E2 + E1). (17)

The indices k (k = (k, s, t)) stand for the basis of single-particle states, and ak and
a†

k are the associated destruction and creation operators with discrete normalization{
ak, a†

k′
}
= δkk′ . The expression of the response function involves the known coupling

of the external (electroweak) probe to the bare nucleon. The leading term (Equation (34)
in [13]) is the pure p-h response quenched by Z factors. Correlations generate two addi-
tional contributions, the so-called correlation piece (Equation (35) in [13]) and the so-called
polarization piece (Equation (36) in [13]) involving 2p-2h excitations at the origin of the
enhancement of the neutrino–nucleus quasielastic cross-section seen by the MiniBooNE
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collaboration [10,11]. In addition, notice that, as explained in detail in [13], the delta
resonance states can be incorporated as extra particle states in all parts of this approach.

An excellent indicator of the role of the correlations is provided by the sum rule:

S(q) =
1
A

∫
dω R(ω, q) =

4
A ∑

k
nk
(
1− nk+q

)
. (18)

In particular, at zero momentum, this sum rule does not vanish. Indeed, we established
the result in [13]:

S(0) ≈ 2∆n, (19)

where ∆n represents the mean depopulation (i.e., per nucleon) of the Fermi sea,

∆n =
1

2A ∑
h1,h2,p1,p2

∣∣∣∣ < p1 p2 | Ḡ | h1 h2 >

εh1 + εh2 − εp1 − εp2

∣∣∣∣2 ≡ κ, (20)

which just coincides with the dimensionless wound integral of the Brueckner theory [31,32],
which is the norm of the defect wave function averaged over all NN pairs. The defect wave
function is the difference between the correlated and uncorrelated NN wave functions,
and therefore, κ is a measure of the importance of NN correlations, whose net effect is the
depopulation of the Fermi sea. To show the effect of the correlation on the response function
with a concrete example, we display in Figure 1 the result of the calculation (see [13]) for
the sum rule in a toy model adjusted to reproduce the values obtained in references [6–8]
for light nuclei such as carbon:

∆n = 0.15, < t >=
3
k3

F

∫ ∞

0
dk k2 k2

2M
nk = 35 MeV. (21)

with kF = 245 MeV or ρ = 0.8 ρ0. We can check that S(0) ≈ 2∆n = 0.3 with good accuracy
and that the enhancement due to the correlations persists up to a momentum q = 350 MeV.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  100  200  300  400  500  600

S
(q

)

q(MeV)

Free Fermi gas
With correlations

Figure 1. Sum rule as a function of momentum transfer in the free Fermi gas case and for including
nucleon correlations. The value of the Fermi momentum is fixed at kF = 245 MeV.

2.3. The G Matrix and the Pair Correlation Function

To simplify the matter described below, we first omit the tensor force that we will
reintroduce later perturbatively. We separate the total CM momentum and the relative
momentum of the two-nucleon states and write the G-matrix elements in each given
spin–isospin (S, T) channel as
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< k1 k2 |GST(E) | t1 t2 >=
1
V < k |GST

K (E) | t > δK,T ≡
1
V GST

K (k, t; E) δK,T (22)

with: k1 =
K
2
+ k, k2 =

K
2
− k, t1 =

T
2
+ t, t2 =

T
2
− t, (23)

where all the plane-wave states are normalized to one in a box with a volume V . In view of
the nuclear matter calculation, the entry energy will be the total energy of the two initial
nucleons in the Fermi sea:

E = εK/2+t + εK/2−t < 2εF. (24)

Similarly, the matrix elements of the bare two-body potential are written as:

< k1 k2 |VST | t1 t2 >=
1
V < k |VST | t > δK,T (25)

< k |VST | t >≡ VST(k− t) =
∫

dr e−i(k−t)·r VST(r). (26)

Just to fix the idea, let us first consider the case of a potential only involving the sigma,
omega, pion and rho exchange channels. In the simplest non-relativistic scheme, ignoring
recoil correction, one has (with standard notations) for the most important spin–isospin
states (i.e., the ones surviving in the orbital s state after antisymmetrization):

S = 0, T = 1 and S = 1, T = 0 states :

V01(q) = Vσ(q) + Vω(q)−
(
Vπ(q) + 2 Vρ(q)

)
= V10(q)

Vσ(q) = −g2
σ

1
q2 + m2

σ
Γ2

S(q), Vω(q) = g2
V

1
q2 + m2

V
Γ2

V(q), (27)

Vπ(q) = −
(

gA
2Fπ

)2 q2

q2 + m2
π

Γ2
π(q), Vρ(q) = −

(
gA
2Fπ

)2
Cρ

q2

q2 + m2
ρ

Γ2
ρ(q),

with Cρ =

(
Fπ gρ (1 + κρ)

gA MN

)2

, Γα(q) =
Λ2

α

Λ2
α + q2 ,

where q represents the modulus of the exchanged three-vector momentum. The form factors
that mathematically regularize the UV (i.e., the short-distance) behavior of the potential
are physically motivated by the compositeness and the finite size of the nucleon source
of the emitted mesonic fields. In particular, they remove the contact piece of the central
part of the (spin–isospin) π and ρ exchange and make the globally repulsive interaction at
r = 0 finite, transforming the hard core into a soft core. Of course, they do not affect the
globally attractive long-range part of the interaction, dominated by the pion exchange and
rho exchange in the strong rho scenario (κρ ∼ 6) [33]:

[
V01

]
long range

(r) = −g2
S

e−mSr

4πr
+ g2

V
e−mVr

4πr
−
(

gA
2Fπ

)2(
m2

π
e−mπr

4πr
+ 2 Cρ m2

ρ
e−mρr

4πr

)
. (28)

The combination of the repulsive short-range piece and the attractive long-range piece
produces a pocket (see Figure 2) able to generate an approximately zero-energy bound
state. Of course, distinguishing the singlet channel (S = 0, T = 1) from the triplet deuteron
channel (S = 1, T = 0) necessitates the introduction of the tensor potential related to
the difference between pion and rho exchange potentials and the time component of the
Lorentz vector part of the rho exchange, with these two effects making the triplet interaction
significantly more attractive than the singlet interaction.
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Figure 2. The full bare NN potential (solid line) and the various contributions listed in Equation (28).
The values of the parameters are given in Equation (43).

In order to isolate the role of the short-range correlations, we introduce a mixed
representation of the G matrix (see ref. [34]) according to:

GST
K (r, t) = < r |GST

K (E) | t >=
∫ dq

(2π)3 eiq·r GST
K (q, t; E) (29)

VST(r, t) = < r |VST | t >=
∫ dq

(2π)3 eiq·r < q |VST | t >= VST(r) eit·r. (30)

This suggests the need to search for a solution for the G matrix in the form:

GST
K (r, t) = VST(r) f ST

K (r, t). (31)

It follows that the G-matrix equation is equivalent to an equation for the correlation
function f ST

K (r, t; E):

f ST
K (r, t) = eit·r +

∫
dy
[

Q
e

]
K
(r− y)VST(y) f ST

K (y, t) (32)[
Q
e

]
K
(r− y) =

∫ dq
(2π)3 eiq·(r−y) PK/2+q PK/2−q

εK/2+t + εK/2−t − εK/2+q − εK/2−q
. (33)

All these equations can be rewritten in an operator form,

GST
K (E) = VST FST

K (E), GST
K (E) = VST + VST

[
Q
e

]
K
(E) GST

K (E)

FST
K (E) = 1 +

[
Q
e

]
K
(E)VST FST

K (E) = 1 +
[

Q
e

]
K
(E) GST

K (E), (34)

in terms of operators acting in the space of relative motion and defined by their matrix elements:

< r | 1 | t >= eit·r, < r |VST | t >= eit·r VST(r) < r | FST
K (E) | t >= f ST

K (r, t)

< r |GST
K (E) | t >= GST

K (q, t) = FK(q, t)VST(r),

< x |
[

Q
e

]
K
(E) | y >=

[
Q
e

]
K
(x− y; E). (35)
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The correlation function can be expanded in partial waves, and one can define a
correlation function for each two-body channel identified by the quantum numbers STl:

f ST
K (r, t) = ∑

lm
4π (i)l gSTl

K (r, t)Ylm(r̂)Y∗lm(t̂). (36)

with : gSTl
K (r, t) ≡ f STl

K (r, t) jl(tr). (37)

The resulting integral equation in the channel STl reads:

gSTl
K (r, t) = jl(tr) +

∫ ∞

0
4πy2dy

[
Q
e

]
K
(r, y)V(y) gSTl

K (y, t) (38)

with :
[

Q
e

]
K
(r, y) =

∫ 4πq2dq
(2π)3 jl(qr)

¯[Q
e

]
K
(q) jl(qy), (39)

with :
¯[Q
e

]
K
(q) =

∫ dq̂
(4π)

PK/2+q PK/2−q

εK/2+t + εK/2−t − εK/2+q − εK/2−q
. (40)

This equation is approximate in the sense that the Pauli-blocking operator divided
by the energy denominator in relative momentum space has been replaced by its an-
gle average. It nevertheless becomes exact for zero CM momentum. The functions
f STl
K (r, t) = gSTl

K (r, t)/jl(tr) play the role of correlation functions to be compared with the
state-independent correlation function f (r) of the variational LOCV approaches (see [34]
and references therein). At variance with the variational framework, these Brueckner
correlation functions depend on the two-body channel and on the initial state with total
CM momentum K (P in [34]) and relative momentum t (q in [34]). However, according
to the results of ref. [34], for the dominant l = 0 Fourier component at normal nuclear
density, one finds that the correlation functions for the 1S0 (S = 0, T = 1) channel and
the 3S1 (S = 1, T = 0) channel (which is sensitive to the tensor force) calculated at given
t and K values are very similar. In addition, it is found that these correlation functions
are also very similar to the state-channel-independent correlation function of the varia-
tional LOCV method. Moreover, using the v18 Argonne potential [35], this calculation
demonstrates that the dependence on the CM momentum and on the relative momentum
is also weak. Hence, for convenience and practical reasons, but not only these reasons (see
below), we propose representing the effect of short-range correlations by a unique state
and channel-independent Jastrow function as:

fα(r) = 1 − α j0(qcr). (41)

Indeed, it was demonstrated in ref. [36] that, starting from the Bonn potential, this
simple Jastrow ansatz can rather accurately reproduce the Brueckner reaction matrix in
the dominant channels (but with state-dependent qc and α parameters). Of course, in the
Brueckner theory, the correlation function has no reason to vanish (i.e, α = 1) at the origin.
For instance, one systematically has f (r = 0) ∼ 0.2 (or α = 0.8 for the corresponding
Jastrow ansatz) for various values of the relative momentum, of the CM momentum and of
the density in the results reported in [34]. The fact that two nucleons may coexist at the
same point is, mathematically, a consequence of modeling through the presence of the form
factor transforming the hard core potential into a soft core potential; i.e., V(r = 0) remains
finite. One can very well consider that this modeling approach is not appropriate at very
short distances if we state that two composite nucleons cannot coexist at the same place
as a six-quark cluster, which has never been observed. For this reason, one can take the
following ansatz for the Jastrow function:

f STl
K (r, t) = fc(r) = 1 − j0(qcr) (42)

satisfying fc(r = 0) = 0. An immediate consequence is that the effective interaction
automatically vanishes at high momentum, providing the natural regularization of the
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loop integral entering, for instance, the two-pion (or two-rho) exchange contribution to
the energy per nucleon of nuclear matter. As discussed in [16], this property can be seen
as a consequence of the Beg–Agassi theorem, which states that virtual mesons propagate
freely inside the correlation hole. However, the function g01l

K (r, t) = fc(r) j0(tr) cannot be
an exact solution of the integral Equation (38). To find the optimal choice, we proceed
as follows: we enter the function fc(r) = 1− j0(qcr) into the r.h.s of Equation (38) and
calculate the output function f̃c(r). We thus fix the value of qc to obtain f̃c(r = 0) = 0.
Using typical parameters of the Bonn potential (potential A in [37]), we obtain a value of
the order of qc ∼ 600 MeV, which changes very little if we vary the input parameters. We
show the result of the calculation for a Bonn-like non-relativistic OBE potential but with
the parameters taken from or inspired by the chiral confining model in its QCD-connected
version, as described below in Section 3:

gσ = 8.37, mσ = 919 MeV, ΛS = 1 GeV,

gV = 7.5, mV = 783 MeV, ΛV = 1 GeV,

gA = 1.26, Fπ = 92.4 MeV, mπ = 140 MeV, Λπ = 1 GeV,

gρ = gV/3, κρ = 6, Cρ = 1.865, mρ = 770 MeV, Λρ = 2 GeV. (43)

In this version of the model, one actually introduces two scalar potentials: one as-
sociated with the QCD-connected scalar field, s, describing the fluctuations of the chiral
condensate (see next section), and the other, σ′, simulating the two-pion (and two-rho)
exchange potential with the delta resonance in the intermediate state. In the traditional
OBE model, the correlated and uncorrelated two-pion exchanges correspond to all the
diagrams in Figure 3 in ref. [38] (apart from the iterative process with NN intermediate
states). The parameters are:

g2π = 4.8 ≡ gσ′ , m2π = 550 MeV ≡ mσ′ , Λ2π = 1 GeV ≡ Λσ′ . (44)

We show the various contributions to this simple non-relativistic NN potential in
Figure 2 and note the existence of an attractive pocket in the full potential, which is
expected to be slightly deepened when the tensor force (needed to produce the deuteron
bound state) and the time component of the rho exchange are incorporated. We recall in
passing that such a strong rho scenario (i.e., a strong (Lorentz) tensor coupling, Kρ = 6)
is required to decrease the (Wigner) tensor force without obtaining too large a D-state
probability in the deuteron.

In Figure 3, we show the output correlation function f̃ (r) after one G-matrix iteration
for a two-nucleon system in the l = 0 state at normal nuclear density for either the singlet
channel, 1S0 (S = 0, T = 1), or the triplet channel, 3S1 (S = 1, T = 0). We fix qc = 670 MeV
to have a vanishing correlation function for a relative momentum t = 100 MeV. As can be
seen in this figure, varying t induces a very moderate change in the correlation function,
which is reminiscent of the very weak relative momentum dependence of the correlation
function observed in ref. [34]. In addition, varying gσ′ and mσ′ by ∼20% or varying the
density between zero and twice the nuclear matter density induces a change in qc of only a
few tens of MeV.
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Figure 3. The input correlation function fc(r) (solid line) and the output correlation function after
one iteration using Equation (38) for various values of the relative momentum t and for zero total
momentum K. The calculation is performed at normal nuclear matter density.

If we now accept that the correlation function is well represented by this Jastrow
function, the effective tensor force can be obtained very simply as GT(r) = VT(r) fc(r). For
the total spin–isospin interaction written in momentum space, this explicitly gives:

Gστ(q) =
∫

dr e−iq·r
[ ∫ dk

(2π)3 eik·r
(

1
3
(
Vπ(k) + 2Vρ(k)

)
σ1 · σ2

+
1
3
(
Vπ(k)−Vρ(k)

) (
3 σ1 · k̂ σ2 · k̂ − σ1 · σ2

))]
(1− j0(qcr)). (45)

One can adopt two different decompositions for the effective spin–isospin interaction:
central and tensor or longitudinal and transverse,

G στ(q) =

(
gA
2Fπ

)2 (
vc(q)σ1 · σ2 + vt(q)

(
3 σ1 · q̂ σ2 · q̂ − σ2 · σ2

))
(46)

=

(
gA
2Fπ

)2

(vL(q)σ1 · q̂ σ2 · q̂ + vT(q)σ1 × q̂ · σ2 × q̂), (47)

with

vc(q) =
1
3
(
vπ(q) + 2vρ(q) + 3g′(q)

)
, vt(q) =

1
3
(
vπ(q)− vρ(q) + 3h′(q)

)
vL(q) = vπ(q) + g′(q) + 2h′(q), vT(q) = vρ(q) + g′(q)− h′(q), (48)
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and

vπ(q) = −Γ2
π(q

2)
q2

q2 + m2
π

vρ(q) = −Cρ Γ2
ρ(q

2)
q2

q2 + m2
ρ

g′(q) = −1
3

∫ dk
(2π)3

(
vπ(k) + 2vρ(k)

) 2π2

qc
δ(|q− k| − qc) (49)

' 1
3

Γ2
π(q

2 + q2
c )

q2 + q2
c

q2 + q2
c + m2

π
+

2 Cρ

3
Γ2

ρ(q
2 + q2

c )
q2 + q2

c
q2 + q2

c + m2
ρ

h′(q) = −1
3

∫ dk
(2π)3

(
vπ(k)− vρ(k)

) (
3(k · q̂)2 − 1

) 2π2

qc
δ(|q− k| − qc)

' 1
3

Γ2
π(q

2 + q2
c )

q2

q2 + q2
c + m2

π
−

Cρ

3
Γ2

ρ(q
2)

q2

q2 + q2
c + m2

ρ
.

The analytical forms of g′(q) and h′(q), which are exact for vanishing and large
momenta, provide an accurate interpolation between these two limits. This is the well-
known result quoted in [39]. In the Landau limit, we obtain the Landau–Migdal parameter
g′ = g′(0) = 0.59, which is compatible with the range of accepted values [40]. We can also
remark that a large value of the cutoff for the ρNN (Lorentz) tensor coupling is needed to
obtain a value for g’ that is not too small. Finally, we also note that the whole G-matrix
interaction is only made of terms in the form F(q2)− F(q2 + q2

c ), which vanishes in the UV
for q >> qC as a consequence of the Beg–Agassi–Gal theorem.

It is well known that nuclear matter calculations based on a pure two-body interaction
fail to simultaneously reproduce the binding energy and the saturation density (the famous
Coester band problem) even if relativistic effects (Walecka mechanism) [41,42] included in
the Dirac–Brueckner–Hartree–Fock (DBHF) approach may improve the situation, hence
providing a guide for parameterization for an in-medium RMF with density-dependent
coupling constants simulating many-body forces [43]. In the following, we follow another
route, where effects linked to the quark substructure and the broken chiral symmetry of
the QCD vacuum generate the needed three-body forces. This is performed in the chiral
confining model that we describe in the next section.

3. The Chiral Confining Model
3.1. The Phenomenological Model

The very early motivation of this chiral model for dense nuclear matter (and neutron
star interior) was to find a firm theoretical basis of the very successful relativistic theories
initiated by Walecka and collaborators [41,42]. This type of approach indeed provides a
very economical saturation mechanism, and a spectacular well-known success is the correct
magnitude of the spin–orbit potential since the nucleons move in an attractive background
scalar field and in a repulsive vector background field, which contribute in an additive
way. Although the origin of the repulsive vector field can be safely identified as associated
with the omega vector-meson exchange, the real nature of the attractive Lorentz scalar field
has been a controversial subject since there is no sharp scalar resonance that would lead
to a simple scalar particle exchange. More fundamentally, the question of the very nature
of these background fields has to be elucidated; in other words, it is highly desirable to
clarify their relationship with the QCD condensates and, in particular, with the chiral quark
condensate and, more generally, with the low-energy realization of chiral symmetry, which
is spontaneously broken in the QCD vacuum and is expected to be progressively restored
when the density increases.

To bridge the gap between relativistic theories of the Walecka type and approaches
insisting on chiral symmetry, it was proposed in [17] (see also the detailed discussion given
in ref. [19]) that the “nuclear physics scalar sigma meson” of the relativistic Walecka model
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at the origin of the nuclear binding be identified; let us call it σW , with the chiral invariant
s = S− Fπ field associated with the radial fluctuation of the chiral condensate S around
the “chiral radius” Fπ , identified to the pion decay constant. Said differently, we take the
point of view that the effective theory has to be formulated, as a starting point, in terms of
the fields associated with the fluctuations of the chiral quark condensate parameterized in
a matrix form:

W = σ + i~τ · ~π ≡ S U ≡ (s + Fπ)U ≡ (σW + Fπ)U (50)

with U(x) = ei~τ·~φ(x)/Fπ .

The scalar field σ (S) and pseudoscalar fields ~π (~φ) written in Cartesian (polar) co-
ordinates appear as dynamical degrees of freedom and may deviate from the vacuum
value, 〈σ〉vac = 〈S〉vac = fπ ∝ 〈q̄q〉vac. The sigma and pion fields, associated with the
amplitude s ≡ σW and phase fluctuations φ of this condensate, are promoted to the rank
of effective degrees of freedom. Their dynamics are governed by an effective potential,
Vχ(σ, ~π)), having a typical Mexican hat shape associated with a broken (chiral) symmetry
of the QCD vacuum.

There is, however, a well-identified problem concerning nuclear saturation with the
usual chiral effective theories [44–47]. Independently of the particular chiral model, in the
nuclear medium, one can move away from the minimum of the vacuum effective potential
(Mexican hat potential), i.e., into a region of smaller curvature. This single-effect equivalent
to the lowering of the sigma mass destroys the stability, creating problems for the applica-
bility of such effective theories in the nuclear context. The effect can be associated with an
s3 tadpole diagram, generating attractive three-body forces and destroying saturation, even
if the repulsive three-body force from the Walecka mechanism is present. One possible
way to solve this problem is to introduce the nucleonic response to the scalar field, κNS,
which is the central ingredient of the quark–meson coupling model (QMC), introduced in
the original pioneering work of P. Guichon [48] and successfully applied to finite nuclei
with an explicit connection to the Skyrme force [49–51]. This effect, which is associated
with the polarization of the quark substructure in the presence of the nuclear scalar field,
will unavoidably generate three-body forces, which may provide the desired repulsion.
In practice, this response or, more precisely, the nucleon scalar susceptibility κNS generates
a non-linear coupling of the scalar field to the nucleon or, equivalently, a decrease in the
scalar coupling constant with increasing density. Hence, to achieve saturation, in a set of
successive works [18,20–22,25], we have complemented the relativistic chiral approach in
such a way that the effect of the nucleon response is able to counterbalance the attractive
chiral tadpole diagram to obtain good saturation properties, especially the correct curvature
coefficient—the empirical incompressibility parameter.

Phenomenologically, the model is described with standard notations by the Lagrangian

L = Ψ̄ iγµ∂µΨ + Ls + Lω + Lρ + Lπ , (51)

with

Ls = −M∗N(s)Ψ̄Ψ − V(s) +
1
2

∂µs ∂µs

Lω = −gV ωµ Ψ̄γµΨ +
1
2

m2
V ωµωµ −

1
4

FµνFµν (52)

Lρ = −gρ ρaµ Ψ̄γµτaΨ − gρ
κρ

2 MN
∂νρaµ Ψσ̄µντaΨ +

1
2

m2
ρ ρaµρ

µ
a −

1
4

Gµν
a Gaµν

Lπ =
gA

2 Fπ
∂µ ϕaπΨ̄γµγ5τaΨ− 1

2
m2

π ϕ2
aπ +

1
2

∂µ ϕaπ∂µ ϕaπ .

It involves the scalar field s (the “nuclear physics sigma meson” σW), the pion field
ϕaπ , and the vector fields associated with the omega meson channel (ωµ) and with the rho
meson channel (ρµ

a ). Each meson-nucleon vertex is regularized by a meson-nucleon form



Universe 2023, 9, 316 14 of 36

factor mainly originating from the compositeness of the nucleon, hence generating a bare
OBE Bonn-like NN interaction, as given in Equation (28). The specific crucial ingredients
beyond the simplest approach are the presence of a chiral effective potential associated with
the chirally broken vacuum and an in-medium-modified nucleon mass, which is supposed
to embed its quark substructure.

In the majority of our previous works [18–22,24,25], the chiral effective potential had
the simplest linear sigma model (LσM) form:

Vχ,LσM(s) =
1
2

M2
σ s2 +

1
2

M2
σ −M2

π

Fπ
s3 +

1
8

M2
σ −M2

π

F2
π

s4. (53)

The effective Dirac nucleon mass M∗N(s) deviates from the bare nucleon mass in the
presence of the nuclear scalar field s:

M∗N(s) = MN + gS s +
1
2

κNS s2 +O(s3). (54)

where gS is the scalar coupling constant of the model. In [18–22,24], we took the pure
linear sigma model value gS = MN/Fπ , but in the most recent work [25], gS was allowed
to deviate from LσM and was fixed by performing a Bayesian analysis. This quantity
actually corresponds to the first-order response of the nucleon to an external scalar field
and can be obtained in an underlying microscopic model of the nucleon. The nucleon scalar
susceptibility κNS is another response parameter and reflects the polarization of the nucleon,
i.e., the self-consistent readjustment of the quark wave function in the presence of the scalar
field. Very generally, the scalar coupling constant, gS, and the nucleon response parameter,
κNS, depend on the subquark structure and the confinement mechanism, as well as the
effect of spontaneous chiral symmetry breaking. In our previous works [18,20–22,24,25],
we introduced a dimensionless parameter,

C ≡ κNS F2
π

2MN
, (55)

which is expected to be of the order C ∼ 0.5 as in the MIT bag used in the QMC frame-
work. The physical motivation to introduce this nucleonic response is the observation that
nucleons experience huge fields at finite density, e.g., the scalar field is of the order of a
few hundred MeV at saturation density. Nucleons, being composite objects in reality, will
react to the nuclear environment (i.e., the background nuclear scalar field) through the (self-
consistent) modification of quark wave functions. This effect may generate a three-body
force that provides the desired repulsion if confinement dominates spontaneous chiral
symmetry breaking in the nucleon mass origin, as discussed in ref. [23] within particular
models. Indeed, it is possible to show that the scalar sector generates a three-nucleon
repulsive contribution to the energy per nucleon:

E(3)

A
'

g2
S

2 M4
σ

(
κNS −

gS
Fπ

)
ρ2

s =
g3

S
2 M4

σ Fπ

(
2 C̃3 − 1

)
ρ2

s with C̃3 '
MN

gS Fπ
C. (56)

This is the result previously quoted in Equation (44) in ref. [20], but without the factor
MN/gSFπ , which appears when the scalar coupling constant is allowed to deviate from its
pure LσM value, as in ref. [25]. This three-body effect provides a very natural mechanism
for the saturation mechanism but is at variance with the QMC model, which ignores the
attractive tadpole diagram present in the chiral approach, this requires a C parameter that
is close to or even larger than one [18,20–22,24,25].

One very important point is that it is possible to relate these scalar response parameters
to the chiral properties of the nucleon, namely, the first derivative of the nucleon mass
with respect to to the current quark mass (or to the pion mass), which is related to the
light-quark sigma commutator and the second derivative, linked to the chiral susceptibility
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of the nucleon. The nucleon mass and other intrinsic properties of the nucleon (sigma term,
chiral susceptibilities) are indeed QCD quantities, which are, in principle, obtainable from
lattice simulations. The problem is that lattice calculations of this kind are difficult for small
current quark mass, m, or equivalently, small pion mass, M2

π . Here, Mπ represents the
pion mass to the leading order in the quark mass (i.e., ignoring the NLO chiral logarithm
correction), M2

π = 2m B = −2m 〈q q〉χL/F2 (Gell–Mann–Oakes–Renner (GOR) relation).
The quantities B and F, the pion decay constant in the chiral limit, are two low-energy
parameters appearing in chiral perturbation theory [52]. The difficulty of the extrapolation
is linked to the nonanalytical behavior of the nucleon mass as a function of m (or equiv-
alently, M2

π), which comes from the pion cloud contribution. The idea of the Adelaide
group [53–56] was to separate the pion cloud self-energy, Σπ(M2

π , Λ), from the rest of the
nucleon mass and to calculate it with just one adjustable cutoff parameter Λ entering the
πNN, πN∆ form factor regularizing the pion loops. Actually, different cutoff forms for the
pion loops (Gaussian, dipole, monopole, sharp) were used with the adjustable parameter
Λ. This formulation of ChiPT is thus called the Finite-Range Regulator (FFR) method. The
remaining nonpionic part is expanded in terms of powers of M2

π as follows:

MN(M2
π) = a0 + a2M2

π + a4M4
π + · · ·+ Σπ(Mπ , Λ), (57)

Depending of the details of the chiral extrapolation, the extracted values of the parame-
ters are within the range of a2 ' 1.5 GeV−1, a4 ' −0.5 GeV−3 [54] and
a2 ' 1.0 GeV−1, a4 ' −0.25 GeV−3 [56]. The explicit connection between lattice QCD pa-
rameters a2 and a4 and the response parameters gS and C in the LσM case was obtained
in [20,21]:

a2 =
Fπ gS

M2
σ

, a4 = − Fπ gS

2M4
σ

(
3 − 2 C̃3

)
. (58)

Notice that in the expression of a4, the factor MN/Fπ gs in C̃3, present in our recent
paper [25], was absent in [20,21] since the nucleon mass was fixed to be MN = Fπ gs.
The quantity a2M2

π ∼ 20–30 MeV represents the nonpionic piece of the sigma commutator
directly associated with the scalar field, s (see the detailed discussion of this quantity in
ref. [20]). One very robust conclusion is that the lattice result for a4 is much smaller than
that obtained in the simplest linear sigma model, ignoring the nucleonic response (C = 0),
for which a4 ' 3.5 GeV−3. Hence, lattice data require a strong compensation from the
effects governing the three-body repulsive force needed for the saturation mechanism:
compare Equations (58) and (56). Hence, both lattice data constraints and nuclear matter
phenomenology require quite a large value of the dimensionless response parameter, C,
which must be at least larger than one. Moreover, in a recent work based on a Bayesian
analysis with lattice data as an input [25], we found that the response parameter is strongly
constrained to the value C ∼ 1.4, very close to the value where the scalar susceptibility
changes in sign: C = 1.5.

3.2. The NJL Chiral Confining Model

The problem that one has to face is that it seems impossible to find a realistic confining
model for the nucleon able to generate C larger than one. For instance, as mentioned
above, in the MIT bag model used in the QMC scheme, one has CMIT ' 0.5. One possible
reason for this discrepancy between models and phenomenological values of C lies in the
use of the linear sigma model (LσM), which is probably too naive. Hence, one should
certainly use an enriched chiral effective potential from a model able to give a correct
description of the low-energy realization of chiral symmetry in the hadronic world. A good,
easily tractable candidate is the Nambu–Jona–Lasinio (NJL) model. Indeed, in ref. [23],
an explicit construction of the background scalar field was performed in the NJL model
using a bosonization technique based on an improved derivative expansion valid at low
(space-like) momenta [57]. Various confining interactions have been incorporated (quark–
diquark string interaction, linear and quadratic confining interaction) on top of the NJL
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model, which seem to be sufficient to generate saturation, although the response parameter
C remains relatively small, of the order of C ∼ 0.5. The reason is that, for a given scalar
mass, the NJL chiral effective potential generates a significantly smaller s3 cubic term (hence
generating a smaller attractive tadpole diagram) than the simplistic linear sigma model.
We discuss this point below in more detail and demonstrate that the repulsive three-body
force generating saturation is determined not only by the nucleon response C but also
by the cubic term of the NJL potential, hereafter governed by the parameter Cχ, with the
parameters C and Cχ combining together in the three-body interaction. Below, we briefly
outline this approach, which is described in detail in a parallel paper [26].

Let us now consider the NJL model defined by the Lagrangian:

L = ψ
(
i γµ∂µ − m

)
ψ +

G1

2

[(
ψψ
)2

+
(
ψ iγ5~τ ψ

)2
]

− G2

2

[(
ψ γµ~τ ψ

)2
+
(
ψ γµγ5~τ ψ

)2
+
(
ψ γµ ψ

)2
]
. (59)

It depends on four parameters: the coupling constants G1 (scalar) and G2 (vector), the
current quark mass m and a (noncovariant) cutoff parameter Λ. Three of these parameters
(G1, m and Λ) are adjusted to reproduce the pion mass, the pion decay constant and
the quark condensate. We refer the reader to [23] for more details. Using path integral
techniques (i.e., integrating out qq̄ pairs in the Dirac sea) and after the chiral rotation of
the quark field, it can be equivalently written in a semi-bosonized form involving a pion
field ~φ embedded in the unitary operator U = ξ2 = exp(i~τ · ~φ(x)/Fπ), a scalar field, S , a
vector field, Vµ, and an axial-vector field, Aµ, with all these meson fields being coupled to
the constituent valence quarks. It has the explicit form given in Equations (2) and (7)–(11)
in ref. [23]. Subtracting vacuum expectation values, the chiral effective potential can be
expressed as:

Vχ,NJL(s) = −2NcN f
(

I0(S) − I0(M0)
)
+

(S −m)2 − (M0 −m)2

2 G1
. (60)

The quantity −2NcN f I0(S) is nothing but the total (in-medium) energy of the Dirac
sea of constituent quarks with the NJL loop integral I0(S) given in ref. [26]. The S fields
whose vacuum expectation value coincides with the vacuum constituent quark mass M0 is
related to the “nuclear physics sigma meson” field s according to:

S ≡ M0

Fπ
(s + Fπ). (61)

For a comparison with the usual RMF model using the LσM chiral effective potentials
in Equation (53) or, equivalently, non-linear sigma couplings, we expand the effective
potential to the third order in s as:

Vχ,NJL(s) = Vχ(0) + V′χ(0) s +
1
2

V′′χ (0) s2 +
1
6

V′′′χ (0) s3 + . . . (62)

An explicit calculation of the derivatives of the potential yields [26]:

Vχ,NJL(s) =
1
2

M2
σ s2 +

1
2

M2
σ −M2

π

Fπ
s3 (1 − Cχ,NJL

)
+ . . . , (63)

The effective sigma mass Mσ ∼ 2M0 and the pion mass Mπ and Fπ are calculated
within the model. The quantity Cχ,NJL is another NJL parameter, whose expression in terms
of the NJL loop integral is given in [26]. For a large cutoff value, the Cχ,NJL parameter
goes to zero, but for typical values of the NJL parameters, its value is in the range 0.4–0.5.
Figure 4 shows that the approximate expansion (63) reproduces the exact NJL potential
(60) very well. In this figure, the values of the NJL parameters are taken from the QCD-
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connected model presented in the next subsection. Comparing LσM with the NJL scalar
potential, one sees that the attractive tadpole term is larger in the case of LσM for the
same value of the effective sigma mass, Mσ. The effect of the parameter Cχ,NJL is then the
reduction in the attractive tadpole diagram and the greater repulsion of the chiral potential.
In the same figure, we also show the potential of the original Walecka model (again for the
same effective sigma mass) that is limited to the quadratic term.
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Figure 4. Effective potential (in units of the string tension σ2, with σ = 0.18 GeV2) plotted against
|s|/Fπ for the NJL model (solid line), LσM (dashed line) and original Walecka model limited to the
quadratic term (dotted line). The figure also shows the approximate form of the NJL potential when
limited to the cubic term in the scalar field s expansion (63) (dot-dashed line). The values of the
parameters are G1 = 12.514, G2 = 0, Λ = 0.604 GeV and m = 5.8 MeV, which yields Fπ = 91.9 MeV,
Mπ = 140 MeV, Mσ = 716.4 MeV and Cχ,NJL = 0.488. Note that the approximate expansion (63) is
almost identical to the NJL potential.

As derived in [26], to the leading order in density, the scalar sector generates a three-
nucleon contribution contribution to the energy per nucleon, which is modified according
to (compare with Equation (56)):

E(3b)

A
'

g2
S

2 M4
σ

(
κNS −

gS V′′′χ (0)

3 M2
σ

)
ρ2

s =
g3

S
2 M4

σ Fπ

(
2 C̃3 − 1

)
ρ2

s

with C̃3 '
MN

gS Fπ
C +

1
2

Cχ. (64)

One very important point is that, as established in [26], the relationship between lattice
QCD parameters is also modified according to (compare with Equation (58)):

a2 =
Fπ gS

M2
σ

, a4 = − Fπ gS

2M4
σ

(
3 − 2 C̃L

)
with C̃L =

MN
gS Fπ

C +
3
2

Cχ. (65)

The important conclusion discussed in detail in ref. [26] is that for a given three-
nucleon force allowing saturation, one needs a lower value of the dimensionless parameter
C to obtain a small value of the lattice parameter a4 compatible with lattice data. To provide
insight into the effect of an enriched chiral effective potential, we return to our our original
paper [18]. In this paper, where LσM was used (gS = MN/Fπ), we obtained the correct
saturation properties with C = 1 (see Figure 4 in this paper). We can retrospectively
calculate the a2 and a4 parameters: we find a2 = 1.67 GeV−1 and a4 = −1.48 GeV−3.
If the value obtained for a2 is not very far from the lattice values, a4 is at a magnitude
three times larger than the upper value compatible with the lattice calculation. We can
now play a little game by just incorporating the NJL-like (1− Cχ) correction in the cubic
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term term of the LσM chiral effective potential with Cχ = 0.44. Keeping all the other
parameters at their original value, we take C = 0.78 so as to keep the same value of
the repulsive three-body force, i.e., C̃3 = C + Cχ/2 = 1 (64). The new saturation point
remains very close to the original one, but the a4 parameter becomes very close to zero,
a4 = −0.1 GeV−3, in much better agreement with the lattice data mentioned above, namely,
a4 ' −0.5 GeV−3 [54] and a4 ' −0.25 GeV−3 [56]. See also the discussion given in [26].
The conclusion is that the use of an enriched chiral effective potential of the NJL type
significantly increases the agreement with lattice data, together with the expected model
values of the nucleonic response parameter C. In the last section, we present the calculation
of the nuclear matter equation of state with parameters taken from the QCD-connected
model. We show explicitly that the inclusion of the Cχ parameter will generate a correct
value of the a4 parameter, together with a moderate value of the C parameter, while
preserving the saturation properties.

3.3. The QCD-Connected Chiral Confining Model

The general picture underlying our approach can be summarized as follows. Nuclear
matter is made of nucleons, which are themselves built from quarks and gluons and look
like Y-shaped strings generated by a nonperturbative confining force, with constituent
quarks at the ends. These quarks acquire a large mass from a quark condensate, which is the
order parameter associated with the spontaneous breaking of chiral symmetry in the QCD
vacuum. When the density ρ of nuclear matter increases, the QCD vacuum is modified
by the presence of the nucleons, yielding a decrease in the quark condensate, indicating
the progressive restoration of chiral symmetry. Hence, what is usually called “the nuclear
medium” can be seen as a “shifted vacuum” with a lower value of the order parameter. The
mass of the constituent quarks coincides with the in-medium expectation value, M = S̄(ρ),
of the chiral-invariant scalar field S , associated with the radial fluctuation mode of the
chiral condensate. To implement such a physical picture, in this section, we propose an
effective model of low-energy QCD that incorporates both chiral symmetry breaking, i.e.,
the condensation of quark–antiquark pairs in the QCD vacuum, and a confining string
force that binds the massive constituent quarks inside the nucleon. It is based on the
field correlator method (FCM) developed by Y. Simonov and collaborators [58–66], where
the starting point is the Euclidean QCD Lagrangian and partition function written with
conventional notation:

LQCD = L0 + L1 + LG, Z =
∫

dψ dψ̄ dAµ e−[L0+L1+LG ],

with L0 =
∫

d4x ψ̄(x)
(
γµ∂µ + m

)
ψ(x), (66)

L1 =
∫

d4x ψ̄(x) igγµ Aµ ψ(x), LG = −1
4

∫
d4x Fa

µνFa
µν.

In the first step, we integrate over the colored gluon fields (Aµ ≡ Aa
µ ta) to generate

a pure quark effective action. This is the gluon field averaging briefly described below.
However, before carrying out this gluon integration, one makes a gauge choice (modified
Fock–Schwinger gauge [58–65]) such that

Aµ(x4, r0) = 0, (x− r0)j · Aj(x4, x) = 0, (67)

where r0 is an arbitrary point, which will be identified later with a string junction coordinate.
In this particular gauge, it is possible to express Aµ in terms of the field strength tensor
Fµν ([58–65]):

A4(x4, x) =
∫ 1

0
dv (x− r0)k Fk4(x4, r0 + v(x− r0))

Aj(x4, x) =
∫ 1

0
dv v (x− r0)k Fkj(x4, x0 + v(x− r0)). (68)
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Hence, the vector field appears as a contour integral, with the contour C(x) reducing
to a straight line z(v) = r0 + v(x− r0) between the x4 axis and the point where the gluon
field is calculated. The partition function can be written in successive forms,

Z =
∫

dψ dψ̄ dAµe−[L0+L1+LG ] ≡
∫

dψ dψ̄ e−L0
〈

e−L1
〉

G

≡
∫

dψ dψ̄ e−[L0+Leff
1 ] ≡

∫
dψ dψ̄ e−Leff

, (69)

where, in the second form, gluon field averaging has been performed, which subsequently
defines the effective quark Lagrangian Leff once the gluon field has been integrated out.
In the field correlator method, the latter quantity can be obtained as an expansion of
the exponential

〈
e−L1

〉
G. Using cluster expansion [58,59,61,62], Leff can be written as an

infinite sum containing averages such as 〈(Aµ)k〉. According to ref. [62], one can make a
Gaussian approximation, neglecting all correlators 〈(Aµ)k〉 of degrees higher than k = 2.
The numerical accuracy has been studied on the lattice, demonstrating that the corrections
to the Gaussian approximation are not larger than 3% [62,67]. Hence, neglecting all higher
correlators, this effective Lagrangian (or more precisely, this effective action) reads

Leff ' L0 +
1
2
〈L1L1〉G =

∫
d4x ψ̄(x)

(
γµ∂µ + m

)
ψ(x)

+
1
2

∫
d4x d4y ψ̄(x) γµ ta ψ(x) ψ̄(y) γν tb ψ(y)

δab
CF

Jµν(x, y), (70)

with CF = (N2
c − 1)/2Nc = 4/3 and

Jµν(x, y) =
g2

2Nc

〈
Aµ

a (x)Aν
a(y)

〉
=

∫ 1

0
dv
∫ 1

0
dw αµ(v) αν(w) (x− r0)k (y− r0)q

g2

2Nc

〈
Fkµ

a (z(v)) Fqν
a
(
z′(w)

)〉
, (71)

with z4 = x4, z(v) = r0 + v(x− r0), z′4 = y4, z′(w) = r0 + w(y− r0), α4(v) = 1, αk(v) = v.
This expression of the kernel can be shown to be gauge-invariant, the reason being that
the parallel transporters on the contour C(x, y) are identically equal to unity in this
gauge. The whole nonperturbative physics is contained in the nonlocal gluon condensate
g2
〈

Fkµ
a (z(v)) Fqν

a (z′(w))
〉

, and parameterization is known from lattice measurements [66].
As in many previous works by Simonov and collaborators, we keep only the nonperturba-
tive confining piece,

g2

2Nc

〈
Fρµ

a (z) Fλν
a (z′)

〉
=
(
δρλδµν − δρνδµλ

)
D(z− z′), (72)

where D(x) decreases in all directions and describes the profile of the bilocal correlator of
the nonperturbative gluonic fields in the QCD vacuum. It depends on two QCD quantities,
the gluon condensate G2 ∼ 0.015 GeV4 and the gluon correlation length Tg, which physically
corresponds to the string width. It may also be parameterized in terms of two QCD
parameters, the string tension σ = 0.18 GeV2 and Tg. We adopt a convenient Gaussian
parameterization approach [61,62]:

D(x) = D(0) e−x2/4T2
g with D(0) =

σ

2πT2
g
=

π2

18
G2, hence σ =

π3

9
G2 T2

g . (73)

This form of the bilocal correlator, which has the advantage of simplifying the calcula-
tions, was justified in [61,62]. In short, since all the observables are integrals of D(x), its
explicit form is not essential at large distances, provided that it has a finite range Tg and
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that the string tension, i.e., the coefficient in the area law of the Wilson loop, is equal to
σ =

∫
d2u D(u)/2. Numerically, the gluon correlation length can be estimated as:

Tg = 0.336

(
σ ((GeV2)

0.2

)1/2(
0.02

G2 (GeV4)

)1/2

fm. (74)

A “small” parameter is:

η2 = σ T2
g = 0.2

(
σ (GeV2)

0.2

)(
Tg (fm)

0.1973

)2

= 0.462

(
σ (GeV2)

0.2

)(
Tg (fm)

0.3

)2

. (75)

As in references [61,62], we will ignore the magnetic piece of the kernel, keeping only
the dominant electric piece J44. In addition, we make a static approximation, ignoring
retardation effects:

e−x2
4/4T2

g ' 2
√

π Tg δ(x4). (76)

This approximation, already made in ref. [68] in the context of the heavy–light quark
system, can be valid if the energy scale T−1

g ∼ 700–800 MeV is bigger than the other scale
σ ∼ 400 MeV of the problem or, equivalently, if the parameter η is smaller than one. Hence,
we end up with an effective static Lagrangian and, consequently, a more tractable effective
Hamiltonian governing the dynamics of light quarks in the presence of a three-quark
junction (or a static heavy quark) placed in r0 in the QCD vacuum. Said differently, this
effective Hamiltonian has to be seen as a way to derive baryonic Green’s function and
bound-state equations [69–72], already given in Refs. [58,59,62]. In principle, the point r0 is
arbitrary and should be chosen as the one minimizing the string lengths (Torricelli point)
joining the three quarks (see the discussion after Equation (28) in [62]). In practice, we
take it as a constant parameter coinciding with the three-quark string junction, and the
three-quark wave function is simply expressed in a factorized form in terms of single-quark
orbitals centered in r0 [62]. Moreover, as discussed below, a strong point of this approach
is that vacuum chiral symmetry breaking will show up as being intimately related to the
confinement mechanism. Physically, this means that the three-quark string keeping the
quarks together is constructed on top of a chirally broken vacuum, building a constituent
quark at the end of the strings [68]. Indeed, the effective Hamiltonian reads:

H =
∫

d3x ψ†(x)
(
−i~α · ~∇ + m

)
ψ(x) +

1
2

∫
d3x

∫
d3y ψ†(x) ta ψ(x)V(x, y)ψ†(y) ta ψ(y). (77)

Introducing R = (x + y)/2− r0, r = x− y, X = x− r0 and Y = y− r0, the potential V,
derived from J44 [61,62], can be written in various forms:

V(x, y) =
1

CF

σ√
π Tg

(x− r0) · (y− r0)
∫ 1

0
dv
∫ 1

0
dw e

− (v(x−r0)−w(y−r0))
2

4T2
g ≡

V(R, r) =
1

CF

σ√
π Tg

(
R2 − r2

4

) ∫ 1

0
dv
∫ 1

0
dw e

−
(
(v+w)r

4Tg + (v−w)R
2Tg

)2

≡ (78)

V(X, Y ; r) =
1

CF

σ√
π Tg

(
X2 + Y2

2
− r2

2

)
I(X, Y ; r)

with I(X, Y ; r) =
∫ 1

0
dv
∫ 1

0
dw e

−
(
(v+w)r

4Tg + (v−w)
2Tg

X+Y
2

)2

.

The relative variable r is the one associated with the self-interaction of the quark.
Keeping only the r dependence in the second form of Equation (79), namely, taking R = 0,
i.e, r0 at the mid-point between x and y, the V(r) interaction allows the generation of
a BCS-like chirally broken vacuum and a mass gap equation for the constituent quark.
The light qq̄ mesons and, in particular, the Goldstone pion mode can be generated using
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this approach in a way equivalent to the RPA in the many-body nuclear problem [73]. It
is also equivalent to the quark Dyson–Schwinger (gap) and bound-state Bethe–Salpeter
equations [69,74,75]. In the FCM approach, this program is implemented using a Fierz
transformation and a bosonization procedure, taking the origin r0 at the mid-point between
the quark and the antiquark [63–65]; see also Section VII-D of ref. [76] for a short summary
of this method. The variable R physically corresponds to the length of the confining
string. Indeed, at a large value of R, one can analytically check that the integral of the
Gaussian factor in Equation (79) has a 1/R behavior, which, together with the R2 prefactor,
yields a linear behavior: CFV(R, r) ∼ σR. We see (Equation (79)) that, in practice, the
self-interacting part and the string-like confining piece of the kernel might be mixed up in
a very complicated way in the case of the presence of an “external” source, either a string
junction or a static heavy (anti)quark. The treatment of chiral symmetry breaking versus
confinement entanglement is certainly the most prominent problem of QCD, which already
manifests at the level of the bare nucleon, as well as at the level of dense and hot nuclear
or hadronic matter. However, some approximation schemes have been developed in the
literature to partially disentangle these two aspects [68,77]. Inspired by the third writing
of the potential in Equation (79), we propose a specific ansatz interpolating between the
ansatz used in Refs. [26,68]:

V(X, Y ; r) = ṼC(X) + ṼC(Y) + ṼCSB(r), (79)

with

ṼCSB(r) = −
1

CF

σ

2
√

π Tg
r2 I(0 , 0 ; r) = − 1

CF

σ

2
√

π Tg
r2
∫ 1

0
dv
∫ 1

0
dw e

−
(
(v+w)2 r2

16T2
g

)
(80)

ṼC(X) =
1

CF

σ

2
√

π Tg
X2 I(X, X ; 0) =

1
CF

σ

2
√

π Tg
X2

∫ 1

0
dv
∫ 1

0
dw e

−
(
(v−w)2 X2

4T2
g

)
(81)

ṼC(Y) =
1

CF

σ

2
√

π Tg
Y2 I(Y, Y ; 0) =

1
CF

σ

2
√

π Tg
Y2

∫ 1

0
dv
∫ 1

0
dw e

−
(
(v−w)2 Y2

4T2
g

)
. (82)

It turns out that ṼCSB(r) has the following form:

ṼCSB(r) =
1

CF

4σ Tg√
π

(
vl(r/Tg)− 1

)
, (83)

where vl(r) is a rapidly decreasing function of r with vl(0) = 1 and vl(∞) = 0. This
suggests decomposing the potential according to

V(X, Y ; r) = VC(X) + VC(Y) + VCSB(r), (84)

with

VCSB(r) =
1

CF

2 σ Tg√
π

2 − r2

4 T2
g

∫ 1

0
dv
∫ 1

0
dw e

−
(
(v+w)2 r2

16T2
g

) ≡ 1
CF

4 σ Tg√
π

vl(r/Tg) (85)

VC(R) = ṼC(R)− 1
CF

2 σ Tg√
π

=
1

CF

σ Tg

2
√

π

R2

T2
g

∫ 1

0
dv
∫ 1

0
dw e

−
(
(v−w)2 R2

4T2
g

)
− 1

CF

2 σ Tg√
π

. (86)
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Hence, the effective interaction Hamiltonian can be split according to:

Hint = HCSB + HC (87)

HCSB =
1
2

∫
d3x

∫
d3y ψ†(x) ta ψ(x)VCSB(r)ψ†(y) ta ψ(y) (88)

HC =
1
2

∫
d3x

∫
d3y ψ†(x) ta ψ(x)KC(X, Y)ψ†(y) ta ψ(y) (89)

with KC(X, Y) = VC(X) + VC(Y).

HCSB represents a short-range interaction generating chiral symmetry breaking and
the condensation of light qq̄ pairs in the QCD vacuum, whereas HC represents a long-range
interaction confining quarks inside the nucleon. In the following, the QCD vacuum and the
“shifted” vacuum at finite density will be determined variationally as a BCS-like state |ϕ(ρ)〉.
It is a simple matter to check that 〈ϕ(ρ)|HC |ϕ(ρ)〉 = 0. Hence, the confining interaction in
the presence of a string junction does not contribute to the chiral effective potential. Since
this confining interaction exists only in the presence of an external source, i.e., a string
junction, we can consider it to act only on valence quarks and not on the Dirac sea quarks.
The same mechanism was described in ref. [68] for the heavy–light quark system, with a
heavy quark seen as an external source located in r0.

3.3.1. The Self-Energy Kernel

The short-range r-dependent piece HCSB will generate dynamical chiral symmetry
breaking. One numerically finds that

∫
d3r vl(r/Tg) = π3/2 T3

g µ3 with µ3 = 30. In Figure 5,
we compare the exact form with the approximate Gaussian form:

vG
l (r/Tg) = e

− r2

µ2 T2
g = e

−
(

r
3.1 Tg

)2

. (90)

This interaction can be rewritten as:

VCSB(r) =
1

CF

4 σ Tg√
π

π3/2 T3
g µ3 vl(r/Tg)∫

d3r′ vl(r′/Tg)
=

1
CF

4π σ T4
g µ3 vl(r/Tg)∫

d3r′ vl(r′/Tg)
(91)

' 1
CF

4 Nc N f G1 δ(r) with 4 Nc N f G1 ≡ 4π σ T4
g µ3.

In the second line of Equation (92), we have approximated the kernel by a point-like
interaction with the same total strength. By performing a Fierz transform [60,63–65] of the
Lagrangian or Hamiltonian of this type, (ψ†taψ)(ψ†taψ), one can check that this interaction
is equivalent to a Nambu–Jona–Lasinio (NJL) model with a scalar sector coupling constant
G1 (we take N f = 2, Nc = 3):

G1 =
4π σ T4

g µ3

4 Nc N f
= 3.1416

(
σ (GeV2)

0.2

)(
Tg (fm)

0.1973

)4

GeV−2. (92)

The reason for introducing a point-like interaction is mainly practical. Keeping the
finite-range CSB interaction would imply the use of bilocal meson fields resulting from the
bosonization procedure, which was used in our previous paper [23]. This cumbersome
formalism would have required completely reformulating and extending our approach and
would also lack its simplicity. Conversely, one can also say that this FCM approach justifies,
on firm grounds, the NJL phenomenology, which is itself an important result, despite the
approximations performed. The momentum space representation of this interaction can be
written as:
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V̂CSB(q) =
1

CF
4π σ T4

g µ3 Γ(q) =
1

CF
4 Nc N f G1Γ(q) (93)

Γ(q) =

∫
d3r exp(−iq · r) vl(r/Tg)∫

d3r vl(r/Tg)
' exp

(
−

µ2 T2
g q2

4

)
' Θ(Λ − q)).

In the second line of Equation (94), we have approximated the interaction in momen-
tum space by the Gaussian form and then by a theta function with the cutoff Λ which
regularizes the equivalent NJL model. Since this correspondence is not exact, fixing the
equivalent NJL cutoff is somewhat arbitrary. A possible prescription is:

VCSB(r = 0) =
1

CF

4σ Tg√
π

=
∫ d3q

(2π)3 V̂CSB(q) '
1

CF
4π σ T4

g µ3
∫ d3q

(2π)3 Θ(Λ − q). (94)

This yields:

Λ =

(
6
√

π

µ3

)1/3 1
Tg

= 0.71
(

0.1973
Tg(fm)

)
GeV. (95)

One relevant dimensionless parameter to appreciate the strength of the NJL equivalent
interaction is:

G1 Λ2 =
(36π4µ3)1/3

NcN f
σT2

g = 7.86 σT2
g = 7.86 η2. (96)

By considering the NJL gap equation [26] in the chiral limit,

1 = 24 G1

∫ Λ

0

d3 p
(2π)3

1√
p2 + M2

0

,

it is easy to establish that one must have G1 > π2/3 ' 3.29 to have a nontrivial solution
of the gap equation, i.e., a nonvanishing constituent quark mass, M0. In practice, this
necessitates a sizable η2 > 0.5.

Starting with accepted values of the string tension and gluon condensate, for orienta-
tion, we take σ = 0.18 GeV2 and G2 = 0.025 GeV4, which implies that Tg = 0.286 fm, and
hence, η =

√
σTg = 0.615. Consequently, the NJL parameters are G1 = 12.514 GeV−2 and

Λ = 0.488 GeV. It follows that G1Λ2 = 3 is just below the critical value for chiral symmetry
breaking. Hence, as in many QCD-inspired approaches, our model, at this level of approxi-
mation, is not able to properly generate the physical broken vacuum. We thus decided to
increase the cutoff parameter to Λ = 0.604 MeV to obtain the correct phenomenology.

We solve the NJL gap equation, V′χ,NJL(S) = 0, with a light-quark mass m = 5.8 MeV
to obtain the vacuum constituent quark mass S = M0. With this set of parameters, we
ignore the vector interaction and, consequently, the π-axial mixing and calculate the pion
decay constant, the pion mass and the quark condensate from the GOR relation, with
all formal details being given in [23]. We obtain the following results: M0 = 356.7 MeV,
Fπ = 91.9 MeV, mπ = 140 MeV, 〈q̄q〉 = −(241.1 MeV)3. It is remarkable that by taking
accepted values of the two basic QCD parameters, namely, the string tension and the gluon
condensate, one recovers the NJL parameters, yielding good NJL phenomenology, or at
least their order of magnitude.

We also find that the NJL parameter entering the cubic term of the chiral effective poten-
tial is significant, Cχ = 0.488, and the effective sigma mass parameter is Mσ = 716.4 MeV.
We will show below with the FCM confining potential that the scalar coupling constant
(ignoring the effect of the pion cloud) is gS = 6.52, and the response parameter is C = 0.32.
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Figure 5. The reduced self-energy kernel vl(r) normalized to vl(0) = 1 as a function of the reduced
distance, r/Tg. The exact result (solid line) and the Gaussian approximation (dashed line) are shown
(see text).

3.3.2. The Confining Kernel

The confining interaction is given by Equation (86). We see immediately that it has a
quadratic behavior at a short distance (R << Tg), whereas at a large distance, it is possible
to show that it has a linear behavior:

R << Tg : (VC)S( R) +
1

CF

2 σ Tg√
π

=
1

CF

σ

2
√

π Tg
R2

R >> Tg : (VC)L(R) +
1

CF

2 σ Tg√
π

=
1

CF
σ

(
R − 2√

π
Tg

)
. (97)

For the bound-state calculation, to simplify the numerical computation, we make use of
an approximate expression interpolating between the short-range and long-range behaviors.

(VC)I(R) = F(R) (VC)S(R) + (1− F(R))(VC)L(R).

with F(R) =

[
1 + exp

(
R− (6/

√
π) Tg

0.1 Tg

)]−1

. (98)

This confining interaction is displayed in Figures 6 and 7 for typical values of
the parameters.
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Figure 6. Solid line: the confining interaction (in units of
√

σ), with the constant shift omitted, as a
function of the reduced distance, R/Tg. The figure also shows the long-range linear part (dashed line)
of the confining interaction and the analytic form (dotted line) interpolating between the quadratic
short-range and linear long-range pieces. The calculation was performed with Tg = 0.286 fm and
η =
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σTg = 0.615.
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Figure 7. Zoom-in on the confining potential limited to R < 3/
√

σ ' 1.5 fm.

3.3.3. The Bound-State Equation

In this section, we give the bound-state equation for a constituent quark with mass
M = S̄(ρ) moving in a BCS-like state representing the broken (modified) QCD vacuum
and submitted to the confining potential with the origin at the string junction point. All the
details for the derivation of the results given below will be given in a long forthcoming
paper (referred as [NJLFCM] [78]). The eigenvalue equation for the confined bound state
described by the Dirac wave function, (ψn)(x), has the form:[

−iα · ~∇x + βM
]
(ψn)(x) +

∫
dz β M(x, z) (ψn)(z) = En(ψn)(x) (99)

where the mass operator is [77,78]:

M(x, y) = −CF γ0 Λred(x, y)γ0 (VC(X + VC(Y))

−Λred(x, y) =
∫ d3k

(2π)3 e−ik·(x−y)Λred(k) =
∫ d3k

(2π)3 e−ik·(x−y) sk − ck γ · k
2

, (100)

and the chiral angle ϕk is defined by sk ≡ sinϕk = M/Ek, ck ≡ cosϕk = k/Ek and
Ek =

√
k2 + M2. The reduced projector Λred is the difference between projectors in the

positive- and negative-energy solutions of the Dirac equation. In ref. [77], a kernel with
the same structure as Equation (84) was used (but in the limit of infinitely thin width,
Tg → 0). With such a kernel structure, the solution of this Dirac equation has the form of a
quasi-plane wave state:

(ψn)(x) =
∫ d3 p

(2π)3 e−ip·x (ψ̃n)(p)

(ψ̃n)(p) =

√
1
2

( √
1 + sp Φn(p)√

1− sp σ · p̂ Φn(p)

)
=

√
EP + M

2EP

(
Φn(p)

σ·p
EP+M Φn(p)

)
. (101)

We are looking for normalized single-quark states, |n; l jm〉, with well-defined parity
and total angular momentum, and the associated spinor wave function reads:

Φn;l jm(p) =
√

4π Rl j(p)Φl jm(p̂)

Φl jm(p̂) = ∑
µs

Ylµ(p̂) χs 〈lµ,
1
2

s|jm〉 with σ · p̂ Φl jm = −Φl′ jm, l′ = 2j− l.(102)
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The bound-state equation finally reduces to a Schrödinger-like equation,

Ep Φn;l jm(p) +
1
2

∫ d3q
(2π)3 W̃S(p− q)

(√
1 + sp

√
1 + sq

+
√

1− sp

√
1− sq σ · p σ · q

)
Φn;l jm(p) =

(
Ejl +

2σTg√
π

)
Φn;l jm(p), (103)

where W̃S(p) is the Fourier transform of an effective one-body confining potential WS(R)
such that

WS(R) =
σ

2
√

π Tg
R2 I(R, R ; 0) =

σ

2
√

π Tg
R2

∫ 1

0
dv
∫ 1

0
dw e

−
(
(v−w)2 R2

4T2
g

)
, (104)

with asymptotic behavior:

R << Tg : WS( R) =
σ

2
√

π Tg
R2, R >> Tg : WS(R) = σ

(
R − 2√

π
Tg

)
. (105)

Actually, this potential deviates from the above VC(R) by a factor of 1/CF with the
constant shift 2σTg/

√
π removed. The bound-state energy can also be written as

Ejl =
∫

dx (ψn)(x)
[
−iα · ~∇x + βM + WS(x)

]
(ψn)(x)−

2σTg√
π

≡ Ejl,kin + Ejl,pot, (106)

Ejl,kin =
∫ dp

(2π)3 Ep R2
jl(p),

Ejl,pot =
∫

dr WS(r)
(
|G1l(r)|2 + |G2l′(r)|2

)
−

2σTg√
π

,

with

G1l(r) =
∫ dq

(2π)3

√
1 + sq Rjl(q) jl(qr), G2l′(r) =

∫ dq
(2π)3

√
1− sq Rjl′(q) jl′(qr). (107)

We look for a Gaussian solution for the lowest orbital with j = 1/2, l = 0, l′ = 1,

R0(p) = (2π)
3
2

(
b2

π

) 3
4

e−b2 p2/2, (108)

with b being a variational parameter. One can search for a solution for any value M(s) of the
in-medium constituent quark mass, hence producing a density-dependent nucleon mass as
a function of the value of the “nuclear physics sigma meson” field s [26]. Here, we only
need the solution for the vacuum case. With the QCD inputs given above, σ = 0.18 GeV2

and G2 = 0.025 GeV4, yielding Tg = 0.286 fm, η =
√

σTg = 0.615 and M0 = 356.7 MeV, the
value of b minimizing the orbital energy is b = 0.978/

√
σ. The resulting contribution to

the quark orbital energy is E0 = E0,kin + E0,pot = 1.458
√

σ + 0.636
√

σ. The nucleon wave
function is just the product of the three quark orbitals properly projected onto the color
singlet state with I = J = 1/2. After center-of-mass correction, the quark core contribution
to the nucleon mass is:

M(core)
N =

√
9E2

0 − 〈P2〉 = 3

√
E2

0 −
1

2b2 = 3.62
√

σ. (109)

As a side remark, it is possible to perturbatively incorporate within the model (one
obtains gA = 1.24) the pion cloud and the chromomagnetic contribution to the nucleon
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mass to obtain a nucleon mass very close to the physical nucleon mass. We will discuss this
point in a forthcoming paper [26], but here we consider only the quark core contribution to
extract the response parameters, which can obtained either semi-analytically or numerically.
One finds

gS =
M0

Fπ

(
∂M(core)

N (S)
∂S

)
S=M0

= 6.52, C =
M2

0
2MN

(
∂2M(core)

N (S)
∂S2

)
S=M0

= 0.32. (110)

The value of the C parameter looks a priori small, but since gS is significantly smaller
than MN/Fπ , its effective value entering the parameters C̃3 (64) and C̃L (65) is larger,
e.g., (MN/gSFπ)C = 0.50. If we include the value of Cχ = 0.488, also derived from the
microscopic FCM approach [26], one has:

C̃3 =
MN
gSFπ

C +
1
2

Cχ = 0.75, C̃L =
MN
gSFπ

C +
3
2

Cχ = 1.23. (111)

It turns out that the s field whose value lies in the range [0÷−Fπ ] does not exactly
coincide with the canonical scalar field, sc, of the bosonized NJL Lagrangian. According
to [20], they are related by s = zS sc, where the dimensionless rescaling factor zS is express-
ible in terms of the NJL loop integrals. With the above NJL parameters, its numerical value
is zS = 1.284. Hence, the values of the scalar coupling constant and of the scalar mass
associated with the canonical scalar field are:

gσ = zS gS = 8.37, mσ = zS Mσ = 919 MeV. (112)

This is the reason for which we quote those values of gσ and mσ in the parameters en-
tering the NN potential in Equation (43). In addition, notice that the ratio gS/Mσ = gσ/mσ

is not affected when passing from the field s to the canonical scalar field sc, and this rescal-
ing has no effect at the Hartree level but may have a small effect on the Fock terms. It is also
possible to calculate the core rms and the vertex form factors in the various (scalar, axial
and vector) Yukawa channels. Here, we give the cutoff values for the equivalent monopole
form factors regularizing the corresponding Yukawa coupling to the nucleon:

Λσ = 0.86 GeV, Λπ = 1.01 GeV, Λv = 1.13 GeV (113)

This simple estimate just demonstrates that they are close to the Λ = 1 GeV introduced
above in Equation (43).

4. Equation of State and Correlations from the QCD-Connected Chiral Confining Model

To prepare the nuclear matter calculations, let us summarize the origin of the various
input parameters distinguishing between those coming from the QCD-connected model
and those coming from hadron phenomenology:

• Concerning the parameters entering the NN interaction, the scalar and pionic sectors
are entirely given or strongly constrained by the QCD-connected model: gσ = 8.37,
mσ = 919 MeV, ΛS = 1 GeV, gA = 1.26, Fπ = 92.4 MeV, mπ = 140 MeV, Λπ = 1 GeV.
Notice that at this level, the cutoff parameters ΛS, Λπ, as well as the cutoff in the vector
channel ΛV , are only approximately compatible with the QCD-connected model.
The vector-(Lorentz) tensor NN sector is constrained by well-established hadron phe-
nomenology: gV = 7.5, mV = 783 MeV, gρ = gV/3, mρ = 770, MeV, κρ = 6. Notice
that in a version of the underlying NJL including pion-axial mixing (i.e., nonvan-
ishing G2), gV should be promoted to the rank of a QCD-connected parameter. We
again stress that a large value of κρ (used in the Bonn potential [37]) is required to
decrease the (Wigner) tensor force without obtaining too large a D-state probability in
the deuteron.
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• The two parameters entering the three-nucleon force, C = 0.32 and Cχ = 0.488, are
given by the QCD-connected model.

• The parameter qC = 670 MeV entering the pair correlation function, f (r) = 1− j0(qcr),
is obtained from the above NN interaction with an adapted G-matrix calculation
preserving the UV regularization of the loop integrals entering the correlation energy
(see below). Finally, a rather large value of the cutoff, Λρ = 2 GeV, for the tensor
coupling of the rho meson is needed to obtain a sufficiently large value of the Landau–
Migdal parameter g′. This is the only constraint or requirement from nuclear matter
phenomenology.

• At variance with two parallel works [25,79], the lattice parameters a2, a4 are not taken
as inputs but are used to test the consistency of the model.

4.1. Binding Energy of Nuclear Matter

In a previous paper [20] devoted to a discussion of the chiral properties of nuclear
matter, we calculated the equation of state with the inclusion of pion (and rho) loops on top
of the Hartree mean-field approximation using the first version of the model, i.e., with the
LσM chiral potential. The energy density is written as:

E
V

= ε =
∫ 4 d3 p

(2π)3 Θ(pF − p) E∗p(s̄) + Vχ(s̄) +
g2

V
2 m2

V
ρ2 + εLoop, (114)

where εLoop = εFock + εCorr summarizes the loop energy coming from the Fock terms and
multi-loop correlations (with pion + rho + short-range spin–isospin effective interaction). In
passing, we recall that the correlation piece (see Equation (116) below) calculated in the ring
approximation actually includes the long-range RPA correlations but with a spin–isospin
interaction modified by the short-range correlation. The calculation presented here is
essentially the same as the one in [20] but with the following modifications:

• The LσM potential (Equation (53)) is modified by incorporating the factor 1− Cχ

into the cubic s3 term with the value Cχ = 0.488 obtained in the underlying QCD-
connected NJL model, derived from the FCM approach. The parameters entering the
in-medium nucleon mass, gS and C, are those given above by the same underlying
microscopic model, whereas in [20], gS = MN/Fπ was taken from the original LσM
formulated at the nucleonic level, and C was a free parameter.

• The parameters governing the various interaction vertices are those listed in
Equation (43). In particular, the parameters relative to the scalar sector (gσ and
mσ) and the cutoffs regularizing the various vertices are given by or compatible with
the underlying FCM approach.

• The contribution of multi-pion (and multi-rho) exchange is explicitly included in
the correlation energy, which thus incorporates the effect of the two-pion (and two-
rho) exchange which is not reducible to iterative processes with NN intermediate
states. The effect of these diagrams with at least one ∆ in the intermediate state
(see Figure 10) was taken into account in the construction of the NN potential
(Section 2.3, Equation (44)) through the introduction of a second scalar field σ′ by
adding the Lagrangian Lσ′ = −gσ′ N̄σ′N + ∂µσ′∂µσ′/2−m2

σ′ σ
′/2 with gσ′ = 4.8 and

mσ′ = 550 MeV. At the mean-field level, one has σ̄′ = −gσ′ρS/m2
σ′ . The net effect of

this new scalar field is the modification of the Dirac scalar mass given by Equation (3)
in [20], according to

M∗N(s̄) = MN + gS s̄ +
1
2

κNS s̄3 + gσ′ σ̄
′,

where s̄ is the solution of the in-medium gap equation. However, we do not include the
associated energy per nucleon, Eσ′/A = gσ′ σ̄

′+m2
σ′ σ̄
′2/2 ρ ' −46 (ρ/ρ0) MeV, which

is contained as a part of the correlation energy. Numerically, at the saturation density,
the chemical potential is µ = ∂ε/∂ρ = E/A = −13.6 MeV, which is very different



Universe 2023, 9, 316 29 of 36

from the Fermi energy when the σ′ self-energy is ignored, Eno σ′
F = 65 MeV, in strong

violation of the Hugenholtz–Van-Hove (HVH) theorem. The σ′-field energy is actually
not very far numerically from the dominant linear part of the correlation energy. It
follows that the corresponding self-energy contributing to the chemical potential
satisfies Σσ′ ' ∂εcorr/∂ρ. Accordingly, the Fermi energy becomes Ewith σ′

F = −25 MeV,
in much better agreement with the HVH theorem. Consequently, the unique effect of
the σ′ field is to decrease the in-medium Dirac nucleon mass to a value slightly above
750 MeV at normal nuclear matter density, as in [20]. (We recall in passing that this
lack of thermodynamic consistency induces only a small non-relativistic correction to
the binding energy at normal density.)

• For the calculation of the pion and rho Fock terms (Equations (23) and (24) of [20])
and of the correlation energy (Equations (15)–(20) in [20]), we replace the longitudinal
and transverse spin–isospin interaction by the one given in Equations (47)–(50) based
on the Jastrow ansatz (Equation (41)) for the correlation function with qc = 670 MeV.
This procedure has the nice feature of satisfying the Beg–Agassi–Gal theorem, hence
providing a natural UV regularization of the loop integrals. In the calculation of the
correlation energy, we take the same effective interaction in the N∆ and ∆∆ channels,
with the appropriate modification of the coupling constant with the SU(3) flavor
prescription for the ratio RN∆ = gπN∆/gπNN =

√
72/25. This generates a unique

value for the Landau–Migdal parameters g′NN = g′N∆ = g′∆∆ = 0.59. The rather
large value of the cutoff, Λρ = 2 GeV, for the tensor coupling of the rho meson in a
strong rho scenario, κρ = 6, has been chosen to obtain a sufficiently large value of
this Landau–Migdal g′ parameter compatible with phenomenology [40]. With the
notations of [20], one has

εCorr
L =

3
2

∫ idωdq
(2π)4

[
− ln

(
1−VLNNΠ0

N −VL∆∆Π0
∆ − (V2

LN∆ −VLNN VL∆∆)Π0
NΠ0

∆
)

−VLNNΠ0
N −VL∆∆Π0

∆
]

(115)

εCorr
T = 3

∫ idωdq
(2π)4

[
− ln

(
1−VTNNΠ0

N −VT∆∆Π0
∆ − (V2

TN∆ −VTNN VT∆∆)Π0
NΠ0

∆
)

−VTNNΠ0
N −VT∆∆Π0

∆
]
,

where the second line of the two above expressions corresponds to the subtraction of
the mean-field Fock terms.

Even if we are aware that each of the various approximations or prescriptions of this
multi-step approach should or would deserve a more detailed study, we do not refrain from
showing the results of the calculation without a further fine-tuning of the parameters. The
saturation curve is displayed in Figure 8. The binding energy at the saturation point is
too small, Esat/A = −13.18 MeV, and the saturation density is slightly too large, ρ = 1.05
ρ0 = 0.168 fm−3, whereas the incompressibility modulus, Ksat = 215 MeV, is acceptable,
although a bit too low. Even though the saturation point is not perfect, it is rather satisfactory
to arrive at decent results for the properties of nuclear matter in an approach based on a
microscopic model that mainly depends on QCD inputs, namely, the string tension and
the gluon correlation length (or the gluon condensate) and parameters (gV/mV , κρ) known
from well-established hadronic phenomenology. A robust conclusion is that the pion and
rho loops are necessary to obtain sufficient binding, a conclusion already reached in ref. [20].
Concerning the comparison with lattice data, our model calculation yields:

a2 = 1.175 GeV−1, a4 = −0.615 GeV−3. (116)

The value of a2 is compatible with lattice data and yields a nonpionic contribution to
the sigma commutator σ(s) = a2 M2

π = 23.5 MeV. The value of a4, although a bit high, is
essentially compatible with lattice data in the sense that it is much smaller than the value
obtained in the simplest linear sigma model ignoring the nucleonic response (i.e., C = 0)
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and the NJL correction (i.e., Cχ = 0), for which a4 ' −3.5 GeV−3. Hence, the model gener-
ates the strong compensation required by lattice data from effects governing the three-body
repulsive force needed for the saturation mechanism: compare Equations (65) and (64).
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Figure 8. Binding energy of nuclear matter versus ρ/ρ0. Solid line: total energy. Dotted line: mean-
field result. Dot-dashed line: spin–isospin Fock term. Double dotted-dashed line: correlation energy.

At variance with our original work [20], we should also introduce the Fock contribution
to the binding energy for the scalar, the omega and and the (Lorentz vector piece of) rho
meson exchanges, i.e., as in refs. [21,79]. For orientation, we can use a non-relativistic local
approximation, replacing the exchange momentum in the meson propagators and vertex
form factors by an averaged value q̄2 = 6k2

F/5, which is valid if the Fermi momentum is
small compared to the meson masses:

E(s)
F
A

=
g2

σ

16
Λ2

S(q̄
2)

m2
σ + q̄2

ρ2 + ρ2
S

ρ
(117)

E(ω)
F
A

= −
g2

V
8

Λ2
V(q̄

2)

m2
V + q̄2

2 ρ2
S − ρ2

ρ
,

E(ρ)
F
A

= −
g2

V
24

Λ2
V(q̄

2)

m2
ρ + q̄2

2 ρ2
S − ρ2

ρ
. (118)

In addition, this Fock term is included perturbatively in the sense that we remain
in the Hartree basis, since we neglect the Fock contribution to the scalar self-energy of
the nucleon. It turns out that there is a strong compensation between the scalar and
omega Fock energy, but the rho Fock contribution provides a sizable attraction, and the
net result at normal nuclear density is EF/A = −3.31 MeV. We also introduce the effect of
short-range correlations by subtracting from the Hartree and Fock contributions the same
quantities but adding q2

C to the exchange momentum squared in the meson propagators
and form factors. The net result at normal nuclear matter density is extremely small,
ESRC/A = −0.03 MeV. Of course, the effect of these Fock terms in the presence of SRCs
is the significant modification of the saturation properties: the saturation density is now
much too large, ρsat = 1.2 ρ0, whereas the binding energy becomes Esat/A = −16.9 MeV.
To solve this problem, one certainly has to first incorporate the effect of the Fock terms
in the nucleon self-energy, hence working in the fully self-consistent Hartree–Fock basis
with a resulting modification of the Dirac effective mass. If we decide not to change
the parameters that impact the bare NN interaction, one can also advocate a possible
improvement in the FCM approach, which is flawed with various shortcomings, thus
allowing variations in the C and Cχ parameters. Just to give a flavor of what might
result, we modify the parameters governing the repulsive three-body force by taking a
value of C = 0.4, compatible with other confining models, and by decreasing the NJL
parameter Cχ by 5%. The resulting saturation point (see Figure 9) is slightly improved,



Universe 2023, 9, 316 31 of 36

Esat/A = −14.85 MeV, ρsat = 1.05 ρ0 = 0.168 fm−3, Ksat = 230 MeV, whereas the lattice
parameter a4 = −0.41 GeV−3 is compatible with the lattice results.

It nevertheless remains true that further works are needed to adjust the parameters,
with the QCD-connected model acting as a guideline, to address the question of the EOS at
a higher density, particularly for the neutron star EOS.
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Figure 9. Binding energy of nuclear matter versus ρ/ρ0 with modified C = 0.4 and Cχ = 0.46
parameters and including scalar and (Lorentz time component of) vector exchange Fock terms. Solid
line: total energy. Dotted line: mean-field result. Dot-dashed line: spin–isospin Fock term. Double
dotted-dashed line: correlation energy.

4.2. The Interrelated Role of the Short-Range Correlations

Short-range correlations (SRCs) play a crucial role in the loop energy. The Fock
contribution can be split into pion and rho contributions. At normal nuclear matter density,
the presence of the SRC reduces the repulsive pion Fock term from Eπ

F /A = 11.71 MeV to
Eπ+SRC

F /A = 2.87 MeV and transforms the repulsive rho Fock term, Eρ
F/A = 8.86 MeV, into

a strongly attractive contribution, Eρ+SRC
F /A = −20.5 MeV. Consequently, the total Fock

term, EF/A = −17.6 MeV, appears as an important contribution to the binding energy of
nuclear matter. The same conclusion has been reached in a parallel work, where all the
Fock terms have been incorporated into a full HF approach [79]. The combined effects
of the composite nature of the nucleon embedded in the form factors and of the SRC
control the magnitude of the RPA correlation integrals. In particular, the UV behavior of
the spin–isospin interaction linked to the Jastrow correlation function provides a natural
regularization of the loop integral as a consequence of the Beg–Agassi–Gal theorem. It is
interesting to make a comparison with the chiral perturbation calculation in ref. [80], where
the effect of a short-range correlation is absent. In this work, the contribution of the iterated
pion exchange is found to be −68 MeV, and the short-range physics is described by a
unique cutoff regularizing the pion loop. This has to be compared with our result where
Ecorr/A = −32.3 MeV at normal nuclear matter density. This calculation of the correlation
energy fully incorporates the recoil correction and the energy dependence of the spin–
isospin interaction, which means that the q2 appearing in the pion and rho propagators
is systematically replaced by q2 −ω2, and the integral

∫
idωdq becomes −

∫
dzdq after a

Wick rotation (see [20,22]), hence transforming q2 −ω2 into q2 + z2.
In the following discussion, we consider the case of ρ = 0.8 ρ0, i.e., kF = 245 MeV, ap-

propriate for the carbon nucleus. The full correlation energy per nucleon is
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Ecorr, f ull = −27 MeV. If we limit the calculation of the correlation energy to the two-loop
order, which is essentially equivalent to second-order perturbation theory,

εCorr
L ' 3

2

∫ idωdq
(2π)4

[
V2

LNNΠ02
N + 2 V2

LN∆Π0
NΠ0

∆ + V2
L∆∆Π02

∆
]

εCorr
T ' 3

∫ idωdq
(2π)4

[
V2

TNNΠ02
N + 2 V2

TN∆Π0
NΠ0

∆ + V2
T∆∆Π02

∆
]
, (119)

its value is slightly increased to Ecorr = −30.7 MeV. At this level, one can clearly distinguish
the various contributions to the correlation energy per nucleon, corresponding to the
presence of NN, N∆, ∆∆ in the intermediate states (see Figure 10):

Ecorr = ENN
corr + EN∆

corr + E∆∆
corr = −11.8 − 13 − 5.9 = −30.7 MeV. (120)

If we remove the energy dependence of the spin–isospin interaction, i.e., in a static
approximation, one can show that this two-loop correlation energy takes the simple form

Ecorr,st =
1

2A ∑
h1,h2,p1,p2

|< p1 p2 |Gστ | h1 h2 >|2

εh1 + εh2 − εp1 − εp2

, (121)

where Gστ is the static spin–isospin interaction given by Equations (47)–(50). Apart for the
energy denominator, this expression has the same structure as the expression for the mean
depopulation of the nucleon Fermi sea discussed above in Section 2.2:

∆n =
1

2A ∑
h1,h2,p1,p2

∣∣∣∣< p1 p2 |Gστ | h1 h2 >

εh1 + εh2 − εp1 − εp2

∣∣∣∣2 ≡ κ. (122)

but omitting the Pauli exchange term, which is consistent with the ring summation. This
allows the simultaneous discussion, at the same level of approximation, of the role of the
SRC in the loop energy affecting the equation of state and in the depopulation of the Fermi
sea, ∆n, which is an excellent indicator of the effect of the SRC on the nuclear response
functions and which also coincides with the wound integral of the Brueckner theory. In
the two above expressions, the particle p states can be either a nucleon above the Fermi
sea or a ∆ state. The numerical calculation of the RPA-2p-2h correlation energy can be
performed by using Equations (48)–(50) in our previous work [13] by just replacing the
squared energy denominators by the (always negative) single-energy denominators. In this
static approximation, the various contributions to the long-range correlation energy are:

Ecorr,st = ENN
corr,st + EN∆

corr,st + E∆∆
corr,st = − 11.1 − 14.8 − 8.2 = −34.2 MeV (123)

which is slightly above the nonstatic calculation. As a byproduct, we can also estimate the
contribution to the correlation energy of the scalar (s, σ′) and vector meson (ω) exchanges
that we have not considered explicitly before. This amounts to replacing, in the dotted lines
of Figure 10, the spin–isospin interaction by the σ + ω interaction in the non-relativistic
case; one finds numerically:

Eσ+ω
corr,st = −3.6 MeV, (124)

which is probably overestimated since we did not incorporate the in-medium dropping of
the scalar coupling constant.

We now come to the calculation of the Fermi sea depopulation and the kinetic energy
per nucleon as a complement of the model results given in Section 5.2 of [13]. From baryon
number conservation, the total depopulation per nucleon, ∆n, is equal to the fraction of
states (nucleon or ∆) outside of the Fermi sea. One obtains:

∆n = ∆nN + ∆n∆ = 0.113 + 0.019 = 0.132. (125)
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The proportion of ∆ in the ground state induced by the short-range correlation is thus
2%. The contribution of the probably overestimated scalar+vector exchange is smaller than
the pion+rho exchange:

∆nσ+ω = 0.059, (126)

and the full depopulation of the Fermi sea (or the BHF wound integral) is ∆n = 0.19, which
is not far from the estimate, ∆n ' 0.15÷ 0.2, of references [6].

The calculation of the (non-relativistic) kinetic energy per nucleon, another test of the
role of the SRC, can be performed using Equations (51)–(54) in ref. [13]. One finds:

< t >=
3
5

k2
F

2M
− < t >depop + < t >N

tail + < t >∆= 19 − 2.72 + 10.3 + 5.9 = 32.5 MeV. (127)

One can notice the sizable contribution of the deltas present in the ground state. The
contribution of the scalar+vector exchange is small:

< t >σ+ω= −1.25 + 3.95 = 2.7 MeV. (128)

The total kinetic energy is < t >= 35.2 MeV, where a significant part 16 MeV
comes from SRCs depopulating the Fermi sea. This value is also within the estimate,
< t >' 35 MeV, of [6–8], which is needed to explain the EMC effect.

Figure 10. Diagrams contributing to the correlation energy or to the depopulation of the Fermi sea.

5. Conclusions and Perspectives

The chiral confining model, with inputs linked to genuine QCD quantities (string
tension, gluon condensate) and well-established hadronic phenomenology (κρ ∼ 6), is able
to generate, via an adapted G-matrix approach, a pair correlation function that ensures the
natural UV regularization of the pionic correlation energy. It also gives, without further
fine-tuning, reasonable results for the chiral properties of the nucleon (a2 and a4 parameters
extracted from lattice data) and saturation properties of nuclear matter. In addition, it
allows the simultaneous discussion of the role of SRCs in the loop energy affecting the
equation of state and in the depopulation of the Fermi sea, ∆n, which is an excellent
indicator of the effect of the SRC on the nuclear response. It is remarkable that one obtains
good results for ∆n and the kinetic energy per nucleon < t >∼ 35 MeV, which is needed
to reproduce the celebrated EMC effect. Conversely, one can remark that these values of
the Fermi sea depopulation and of the kinetic energy per nucleon induced by the SRC are
compatible with a large value of the rho meson tensor coupling (κρ ∼ 6 or cρ ∼ 2) and of
the associated cutoff (Λρ ∼ 2 GeV), which, in turn, induces a large binding energy coming
from pion and rho loops. This very interesting link can be captured by just looking at
Equations (121) and (122).

Concerning the QCD-connected chiral confining model specifically, which is at the
heart of the whole approach, the effect of the NJL-like enriched chiral effective potential
significantly improves the compatibility of the lattice data with the model calculations of
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the dimensionless response parameter C. Another important result discussed in detail
in [26] is the existence of a particular combination of C and Cχ (C̃L) constrained by LQCD,
and a closely related combination (C̃3 = C + Cχ/2) governing the repulsive three-nucleon
force ensuring the saturation mechanism. Hence, the fundamental QCD theory and nuclear
matter modeling are linked by, on the one hand, the LQCD data a2 and a4 and, on the
other hand, what we have called the “QCD connected parameters”, namely, the response
parameters gs and C. Indeed, these results provide a link between the chiral properties of
the nucleon and the saturation mechanism and/or a link between the fundamental theory
of strong interaction and nuclear matter properties, although the results presented in this
paper should be enriched in various aspects of this multi-step approach.

The above discussion opens perspectives that may impact the strategy to be adopted
in the near future. First, as pointed out in Section 4.1, the Fock terms, including the
rearrangement terms [21], have not been consistently incorporated at the level of nucleon
self-energy. Although this problem is of minor importance for the binding energy around
the nuclear matter density, the use of a Hartree–Fock basis in place of the Hartree basis
for the nucleon Dirac wave function may play a very important role at a high density in
limiting the maximum mass of a hyperonic neutron star, as pointed out in ref. [24]. The
passage to this Hartree–Fock basis can be implemented without formal difficulty but at the
expense of increasing numerical complexity [21,79]. However, the incorporation of this
thermodynamic consistency (HVH theorem) for the correlation energy certainly necessitates
additional formal developments. Second, there are still improvements to be made in several
directions of the theoretical treatment of the FCM-QCD model, as discussed and suggested
in Section 3.3. Given the remaining theoretical uncertainties, one possible strategy is to use
a Bayesian method with QCD-connected parameters and lattice data (a2, a4) parameters,
implemented with their associated uncertainties, as prior input variables. This may be
implemented with the methodology used in two recent papers of the Lyon group [25,79].
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Note
1 The στ operators are replaced by the usual 1/2 to 3/2 transition operators ST in the case of coupling to the ∆.
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