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A.S. convergence for infinite colour Pólya urns associated
with stable random walks

Arthur Blanc-Renaudie∗

April 10, 2023

Abstract

We answer Problem 11.1 of Janson [6] on Pólya urns associated with stable random walk.
Our proof use neither martingales nor trees, but an approximation with a differential equation.
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1 Introduction

1.1 Model and motivations

We consider single ball addition random walk (SBARW) Pólya urns defined as follows. Let d ∈ N.
Let ∆ be a Borel random variable on Rd. Let (∆i)i∈N be independent copies of ∆. Let X1 = ∆1.
Then, independently for every n ≥ 2, let Un be uniform in {1, . . . , n−1} and let Xn = XUn + ∆n.
We are interested in the random measure as n→∞

µn :=
n∑
i=1

δXi .

Morally, we give colors (Xi)i∈N to the balls of a classical Pólya Urn, which corresponds to
positions of some random walks with displacement ∆. Since for n ∈ N, Xn corresponds to the
position of such a random walk after approximatively log n steps, it is not hard to show, under
natural assumptions for ∆, that Xn after proper renormalisation converge in law. Our problem is:
Can we say the same thing for µn? We show an almost sure (a.s.) convergence when ∆ is in the
stable regime, thus answering Problem 11.1 from Janson [6].

This model of Urn was first studied by Bandyopadhyay and Thacker [1, 2, 3] who first studied
precisely the law of (Xn) and then showed the convergence of µn in distribution. At the same
period, Mailler and Marckert [7], also proved this convergence for µn, and proved an almost sure
convergence when ∆ have finite exponential moment. Later, Janson [6] extended this almost sure
convergence assuming only a second moment.

All those authors also studied another model of urn: the deterministic addition random walk
(DARW) Pólya urns which is similar to the SBARW model. Although our method can be used
without much change to study both models, we will focus for simplicity on the SBARW model.

Remark. I also believe the method of this paper work for several generalization of SBARW urns:
non integer number of balls, adding several balls at once, non uniformly distributed displacement
(∆i)i∈N. . . However, I am not fully aware of the various urn motivations. So I decided instead to
keep the setting as elementary as possible, to better explain the method.

∗Tel Aviv University, Israel, ablancrenaudiepro@gmail.com
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1.2 Main result and differential equation

In this paper we assume that ∆ is in the stable regime. That is we assume that there exists α > 0,
and a random variable Λ on Rd of law L(Λ) such that as n→∞,

1

nα

n∑
i=1

∆i
(d)−→Λ. (1)

Note that in this case there exists β > 0 such that as n→∞,

P(‖∆‖ > nβ) = o(1/n). (2)

For every a > 0, and finite Borel measure µ on Rd we define its renormalization Θa(µ) as the
unique Borel measure such that for every Borel set B ⊂ Rd we have Θa(µ)(B/a) = µ(B). For
n ∈ N, we define µ̃n := Θn,0(µ) = 1

n

∑n
i=1 δXi . Note that Θa(µ̃n) = 1

n

∑n
i=1 δXi/a.

The main goal of this paper is to show the following theorem.

Theorem 1. Under (1), almost surely, we have the following weak convergence as n→∞,

Θlog(n)α(µ̃n)−→L(Λ).

We use a completely a different method from the ones used in [1, 2, 3, 6, 7], which are based
on martingales, Yule trees and branching random walk. Our proof use none of those tools, and is
instead based on an approximation with a differential equation for (µn)n∈N.

We can think of our urn problem as the following informal approximative differential equation:

d

dt
µt ≈

1

t
µt ∗∆, (3)

where ∗ denotes the convolution between two measures. To make use of this differential equation,
we consider some times 0 = T0 < T1 < T2 < · · · < Tn < . . . , and use for n ∈ N,

µTn =
n∑
i=1

(µTi − µTi−1).

This allows us to split the complex estimate of (µn)n∈N into many simpler ones. To this end, we
follow (3), and show that approximatively for i ∈ N,

µTi − µTi−1 ≈ (Ti − Ti−1)
1

t
µt ∗∆. (4)

We will detail how we prove this approximation in the next section.
For this approach to work, (Ti)i∈N must be properly chosen. Indeed, the faster (Ti)i∈N grows,

the harder it is to study µn(Ti)− µn(Ti−1). On the other hand, the slower (Ti)i∈N grows, the less
precise we are in (4), and by sum the less precise we are on (µn)n∈N.

This approach is very similar to the chaining method developed by Talagrand [9], which, with
proper divisions, found many applications to prove nearly optimal bound of stochastic processes.
Recently, the chaining method was also highly developed to study random geometry, and notably
of trees constructed by stick-breaking (see e.g. the introduction of my thesis [4] for a detailed
explanation on the method) or by aggregation (see e.g. Sénizergues thesis [8]). Since Pólya urns are
closely related to recursive trees it is not surprising that the exact same methods can be used here.
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1.3 Main ideas of the proof

First, let us introduce some notations and random variables. To ease the writing, the random
variables defined below, unless mentioned otherwise are defined independent and independent of
the previously defined random variables.

For n ∈ N let Tn := be3n1/3c. Note that (Tn+1 − Tn)/Tn+1 ∼ n−2/3. Let (Rn)n∈N be
Bernoulli random variables with parameter ((Tn+1 − Tn)/Tn+1)n∈N. Let (∆̃i)i∈N be copies of ∆.
For n ∈ N, let Yn := Rn∆̃n. For n ∈ N, let Ũn be uniform in {1, . . . , n}, and let X̃i := XUn .

The following result is our main technical idea to prove Theorem 1. Indeed, it will give us that
a.s. given (Xi)i∈N,

X̃Tn

(d)
≈ Y1 + Y2 + · · ·+ Yn

and Theorem 1 will follow (see Section 3).

Proposition 2. Almost surely X := (Xi)i∈N satisfy the following property:
"For every n ∈ N large enough we can construct a coupling between X̃Tn + Yn and X̃Tn+1 such
that those two variable are at distance for ‖ · ‖∞ at least n−2 with probability at most 3n−4/3."

Note that, in the above, the existence of the coupling is random as we see for n ∈ N, the law of
X̃Un + Yn and of X̃Un+1 as random variables on the set of probability measure on Rd. And the law
of those random variables are determined by (Xi)i∈N.

Morally the principle behind Proposition 2 is the following: with probability at least 1− n−4/3

a uniform variable in (Xi)1≤i≤Tn+1 is either in (Xi)1≤i≤Tn , or it is in (Xi)Tn<i≤Tn+1 and Ui ≤ Tn.
So X̃Tn+1 ≈(d) X̃Tn + Yn.

To prove Proposition 2 we split Rd into small box of the form, for i1, . . . , id ∈ Z,

�n
i1,i2,...,id

:=

[
i1
n2
,
i1 + 1

n2

)
×
[
i2
n2
,
i2 + 1

n2

)
× · · · ×

[
id
n2
,
id + 1

n2

)
.

And we count given (Xi)1≤i≤Tn the number of (Xi)i≤Tn+1 that are in the small box �n
i1,i2,...,id

.
Note that this number is exactly equal to

Tn+1P
(
X̃Tn+1 ∈ �n

i1,i2,...,id

∣∣∣X) . (5)

Morally, to estimate this number we focus on the Tn < i ≤ Tn+1 such that Ui ≤ Tn. And for
all Tn < i, j ≤ Tn+1, given Ui, Uj ≤ Tn and (Xi)1≤i≤Tn , the conditional random variables
Xi, Xj are independent and have law X̃Tn + ∆. As a result, the number (5) is essentially a sum of
independent random variables and so is concentrated, and we have the following approximation,

P
(
X̃Tn+1 ∈ �n

i1,i2,...,id

∣∣∣X) ≈ P
(
X̃Tn + Yn ∈ �n

i1,i2,...,id

∣∣∣X) .
Rigorously, we show the next result which directly implies the existence of the desired couplings.

Proposition 3. Almost surely as n→∞∑
i1,i2,...,id∈Zd

∣∣∣P(X̃Tn+1 ∈ �n
i1,i2,...,id

∣∣∣X)− P
(
X̃Tn + Yn ∈ �n

i1,i2,...,id

∣∣∣X)∣∣∣ ≤ 3/n4/3.
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2 Proof of Proposition 3

2.1 The bulk : Proof of Lemma 4

Let γ > 0. The aim of this section is to prove the next result.

Lemma 4. For n ∈ N, let �n := [−nγ , nγ ]d ∩ Zd. Almost surely as n→∞∑
i1,i2,...,id∈�n

∣∣∣P(X̃Tn+1 ∈ �n
i1,i2,...,id

∣∣∣X)− P
(
X̃Tn + Yn ∈ �n

i1,i2,...,id

∣∣∣X)∣∣∣ ≤ 2.9/n4/3.

This implies together with the next result, which is proved in the next section, Proposition 3.

Lemma 5. If γ > 0 is large enough, almost surely as n→∞

P
(
‖X̃Tn+1‖ > nγ

∣∣∣X) = o(n−4/3) and P
(
‖X̃Tn + Yn‖ > nγ

∣∣∣X) = o(n−4/3).

Before proving Lemma 4, let us recall a consequence of Bernstein’s inequality tailored for our
purpose (see e.g. [5] Section 2.8).

Lemma 6 (Bernstein’s inequality). Let n ∈ N. Let (Xi)1≤i≤n be a family of independent Bernoulli
random variables with parameter (pi)1≤i≤n. Let v ≥

∑n
i=1 pi. Let S =

∑n
i=1Xi − E[Xi]. For

every t ≥ 0,
P(|S| ≥

√
2vt+ t) ≤ e−t.

Let us now prove Lemma 4. We first consider a modification of X̃Tn+1 . For n ∈ N, let (Ūni )n∈N
be independent uniform random variables in {1, . . . , n} such that whenever Ui ≤ n, Ūni = Ui.
Then let

X̄n
i := Xi if i ≤ Tn and let X̄n

i := XŪni
+ ∆i if i > Tn.

Then let X̄Tn+1 be a uniform random variable in (X̄n
i )1≤i≤Tn+1 . Note that

P(X̃Tn+1 6= X̄Tn+1) ≤ 1

Tn+1

∑
Tn<i≤Tn+1

1Ui∈(Tn,Tn+1].

The above sum is a sum of independent Bernoulli random variables with parameter bounded by
(Tn+1 − Tn)/Tn+1. We can thus apply Lemma 6 with v = (Tn+1 − Tn)2/Tn+1 and t = Tn+1/n.
We get that a.s. as n→∞,

P(X̃Tn+1 6= X̄Tn+1) ≤ (1 + o(1))
(Tn+1 − Tn)2

T 2
n+1

∼ n−4/3.

Thus to prove Lemma 4, it suffices to prove the following result.

Lemma 7. Almost surely as n→∞∑
i1,i2,...,id∈�n

∣∣∣P (X̄Tn+1 ∈ �n
i1,i2,...,id

∣∣X)− P
(
X̃Tn + Yn ∈ �n

i1,i2,...,id

∣∣∣X)∣∣∣ ≤ 1.8/n4/3.

Proof. Note that conditionally on (Xi)1≤i≤Tn , for every i1, i2 . . . id ∈ Zn,

Tn+1P
(
X̄Tn+1 ∈ �n

i1,i2,...,id

∣∣X) =

Tn+1∑
i=1

1X̄n
i ∈�ni1,i2,...,id

,
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is a sum of independent Bernoulli random variables. Furthermore, conditionally on (Xi)1≤i≤Tn ,
the random variables X̄Tn+1 and X̃Tn + Yn have exactly the same law. As a result,

1

Tn+1

Tn+1∑
i=1

P
(
X̄n
i ∈ �n

i1,i2,...,id

∣∣ (Xi)1≤i≤Tn
)

= P
(
X̄Tn+1 ∈ �n

i1,i2,...,id

∣∣ (Xi)1≤i≤Tn
)

= P
(
X̃Tn + Yn ∈ �n

i1,i2,...,id

∣∣∣X)
Thus, we may apply Bernstein’s inequality (Lemma 6) with

vni1,i2,...,id := Tn+1P
(
X̃Tn + Yn ∈ �n

i1,i2,...,id

∣∣∣X)
to estimate

δni1,i2,...,id :=
∣∣∣P (X̄Tn+1 ∈ �n

i1,i2,...,id

∣∣X)− P
(
X̃Tn + Yn ∈ �n

i1,i2,...,id

∣∣∣X)∣∣∣ .
We choose for n ∈ N, tn := log(n)2, and we obtain for every n ∈ N, i1, i2, . . . , id ∈ �n,

P
(
Tn+1δ

n
i1,i2,...,id

>
√

2vni1,i2,...,id log(n)2 + log(n)2
)
≤ n− log(n).

This is summable over all n ∈ N, i1, i2, . . . , id ∈ �n, so by the Borel–Cantelli lemma almost surely
for every n large enough, i1, i2, . . . , id ∈ �n,

Tn+1δ
n
i1,i2,...,id

≤
√

2vni1,i2,...,id log(n)2 + log(n)2.

Summing over all i1, i2, . . . , id ∈ �n we get writing | �n | for the cardinal of �n, and writing
δn :=

∑
i1,i2,...,id∈�n δ

n
i1,i2,...,id

for the sum of the lemma,

Tn+1δn ≤
∑

i1,i2,...,id∈�n

√
2vni1,i2,...,id log(n)2 + | �n | log(n)2.

Then using the concavity of x 7→
√
x,

Tn+1δn ≤
√
| �n |

2
∑

i1,i2,...,id∈�n

vni1,i2,...,id log(n)2

1/2

+ | �n | log(n)2.

Moreover, we have∑
i1,i2,...,id∈�n

vni1,i2,...,id = Tn+1

∑
i1,i2,...,id∈�n

P
(
X̃Tn + Yn ∈ �n

i1,i2,...,id

∣∣∣X) ≤ Tn+1.

Therefore,
Tn+1δn ≤

√
| �n |

√
2Tn+1 log(n)2 + | �n | log(n)2.

The desired result follows as | �n | = O(ndγ) and Tn+1 = e3n1/3(1+o(1)).
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2.2 The tail : Proof of Lemma 5

We now prove Lemma 5. By (2), note that if γ > 2β then P(‖Yn‖ > nγ) = O(n−2) so it suffices
to prove the first part of the lemma. Also writing for n ∈ N,

En := E
[
P
(
‖X̃Tn+1‖ > nγ

∣∣∣X)] ,
we have by Markov inequality for every n ∈ N,

P
(
P
(
‖X̃Tn+1‖ > nγ

∣∣∣X) > n2En

)
≤ 1/n2.

So almost surely for every n ∈ N large enough, P
(
‖X̃Tn+1‖ > nγ

∣∣∣X) ≤ n2En.
Hence it is enough to upper-bound En. We have,

En = E
[
P
(
‖X̃Tn+1‖ > nγ

∣∣∣X)] = E

 1

Tn+1

Tn+1∑
i=1

1‖Xi‖>nγ

 =
1

Tn+1

Tn+1∑
i=1

P (‖Xi‖ > nγ) .

Thus since log(Tn) ∼ 3n1/3, to prove Lemma 5 it suffices to prove the following result.

Lemma 8. If γ is large enough, as n→∞,

P (‖Xn‖ > log(n)γ) = o(log(n)−15).

Proof. it is well known that for every n ∈ N, Xn has the same law as
∑n

i=1Bi∆i, where (Bi)i∈N
is a family of Bernoulli random variables with parameter (1/i)i∈N independent of (∆i)i∈N. With
this representation, for Xn to be larger than log(n)γ , there must either be at least log(n)2 term or
else one of the term is larger than log(n)γ−2. So,

P (‖Xn‖ > log(n)γ) ≤ P

(
n∑
i=1

Bi > log(n)2

)
+ log(n)2P

(
∆ > log(n)γ−2

)
.

By classical concentration inequalities on sum of independent random variables the first right-hand
side term is o(log(n)−15) as n→∞ (one may for instance use Bernstein’s inequality). And by (2),
for γ large enough, P

(
∆ > log(n)γ−2

)
= o(log(n)−17).

3 Proof of Theorem 1

Before proving Theorem 1, let us check two easy results.

Lemma 9. As n,m→∞ with n ∼ m, writing dTV for total variation distance, dTV(µ̃n, µ̃m)→ 0.

Proof of Lemma 9. Assume n ≤ m. Since for every 1 ≤ i ≤ n, X̃n = Xi with probability 1/n
and X̃m = Xi with probability 1/m we get, dTV(µ̃n, µ̃m) ≤ 1− n/m→ 0.

Lemma 10. As n→∞, writing Sn := Y1 + Y2 + · · ·+ Yn−1, Sn/ log(Tn)α−→(d) Λ.

Proof. Recall that for n ∈ N, Sn =(d)
∑n

i=1Bi∆i, where (Bi)i∈N are independent Bernoulli
random variables of parameter ((Tn+1 − Tn)/Tn+1)n∈N. So given (1), it suffices to show that
n → ∞,

∑n−1
i=1 Bi/ log(Tn) converge in probability toward 1. To this end, by the law of large

number it suffices to estimate E[
∑n−1

i=1 Bi]. We have with elementary calculus

E

[
n−1∑
i=1

Bi

]
=

n−1∑
i=1

Tn+1 − Tn
Tn+1

∼
n→∞

n−1∑
i=1

∫ Ti+1

Ti

dx

x
∼

n→∞
log(Tn).

This concludes the proof.
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We first formulate a practical technical consequence of Proposition 2. Let F be the set of all
functions f : Rd 7→ R, 1-Lipschitz for the uniform distance, bounded by 1, and of bounded support.
By Proposition 2, a.s. as n→∞,

max
f∈F

∣∣∣E [f(X̃Tn+1)
∣∣∣X]− E

[
f(X̃Tn + Yn)

∣∣∣X]∣∣∣ = O(1/n4/3).

It follows by sum that a.s. as n→∞, m ∈ N

max
f∈F

∣∣∣∣∣E [f(X̃Tn+m)
∣∣∣X]− E

[
f

(
X̃Tn +

m−1∑
i=0

Yn+i

)∣∣∣∣∣X
]∣∣∣∣∣ = O

(
m−1∑
i=0

(n+ i)−4/3

)
= O(n−1/3),

which we may rewrite into: a.s. as n ≤ m→∞,

max
f∈F

∣∣∣E [f(X̃Tm)
∣∣∣X]− E

[
f
(
X̃Tm + Sm − Sn

)∣∣∣X]∣∣∣ = O(n−1/3).

Since for every m large enough, f ∈ F , the function x 7→ f(x/ log(Tm)α) is also in F , this
implies that a.s. as n ≤ m→∞,

max
f∈F

∣∣∣∣∣E
[
f

(
X̃Tm

log(Tm)α

)∣∣∣∣∣X
]
− E

[
f

(
X̃Tn + Sm − Sn

log(Tm)α

)∣∣∣∣∣X
]∣∣∣∣∣ = O(n−1/3).

Hence, since X̃Tn , Sn are almost surely bounded, by using the Lipschitz property, a.s. as n→∞,

lim sup
m→∞

max
f∈F

∣∣∣∣∣E
[
f

(
X̃Tm

log(Tm)α

)∣∣∣∣∣X
]
− E

[
f

(
Sm

log(Tm)α

)∣∣∣∣X]
∣∣∣∣∣ = O(n−1/3).

Since the left-hand side term above does not depends on n, and since Sm and X are independent,
we get that a.s. for every f ∈ F as m→∞,

E

[
f

(
X̃Tm

log(Tm)α

)∣∣∣∣∣X
]
− E

[
f

(
Sm

log(Tm)α

)]
−→ 0.

Moreover by the Portmanteau Theorem and by Lemma 10 the above second expectation converges
toward E[f(Λ)]. So must the first: A.s. for every f ∈ F as m→∞,

E

[
f

(
X̃Tm

log(Tm)α

)∣∣∣∣∣X
]
−→E[Λ]. (6)

Also as n → ∞, writing mn for the larger integer with Tmn ≤ n, we have Tmn ∼ n so by
Lemma 9, for every f ∈ F as n→∞,

E

[
f

(
X̃Tmn

log(Tmn)α

)∣∣∣∣∣X
]
− E

[
f

(
X̃n

log(Tmn)α

)∣∣∣∣∣X
]
→ 0.

Then using that all f ∈ F are Lipschitz and of bounded support, since as n→∞, log(Tmn)→∞,
and log(Tmn) ∼ log(n), a.s. for every f ∈ F as n→∞,

E

[
f

(
X̃Tmn

log(Tmn)α

)∣∣∣∣∣X
]
− E

[
f

(
X̃n

log(n)α

)∣∣∣∣∣X
]
−→ 0.

To conclude we finally get that by (6) a.s. for every f ∈ F as n→∞,

E

[
f

(
X̃n

log(n)α

)∣∣∣∣∣X
]
−→E[f(Λ)].

Theorem 1 follows by the Portmanteau theorem.
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