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Abstract

A novel beam model is proposed in order to consider deformations of its cross-section in the context of straight
thin-walled tubes. For this purpose, the straight beam kinematics is enriched by addition of orthogonal shell-type
displacement field of the tube section. The considered displacement field is composed of three contributions: classical
linear beam and linear shell terms in conjunction with the non-linear coupling between local deformation of the
section and its global rotation. Both Euler-Bernoulli and Love-Kirchhoff hypotheses for beam and shell kinematics,
respectively, are adopted as well as the thin-walled assumption. First-order shear deformation for the radial variable
and Fourier expansion in terms of the circumferential variable are also considered for the mid-surface displacement
field. Then, the stress tensor is obtained under plane stress conditions. The virtual power principle is finally used
to obtain the equations of motion satisfied by the corresponding generalized forces. Afterwards, an explicit updated
Lagrangian Finite-Element approach using a lumped mass matrix is proposed for solving the tube governing equations
and the stability condition of the time integration is given. Test-cases are then chosen to assess the present tube finite-
element. Both static and dynamic problems are considered. First, the proposed model is compared to analytical
solutions. Finally, a tube subjected to a distributed patch loading is studied. The influence of the number of Fourier
modes, of warping and coupling terms is examined. The proposed model makes it possible to retrieve classical shell
solution of the cross-section deformation with significant computational savings.

Keywords: Beam kinematics, shell kinematics, straight thin-walled tubes, explicit time integration, Finite-Element
method

1. Introduction1

Piping systems are widely used in many industrial energy and transportation applications. Under operational or2

accident conditions, pipelines can be subjected to a wide variety of static or dynamic loads. The dynamic behavior3

of such structures has therefore received much attention in recent decades. Furthermore, the presence of fluid inside4

the pipes also has a significant influence on the pipe motion. The fluid-structure interaction (FSI) effects in piping5

systems are summarized in following comprehensive textbooks [1, 2] and reviews [3, 4]. Two main approaches have6

been developed in order to represent the mechanical behavior of pipelines based on shell or beam models. A very7

large literature exists for describing models issued from different theories. Shell models describe the pipe mid-surface8

motion in order to depict the cross-sectional evolution. However, the high computational cost associated with these9

models prohibits their use for realistic complex piping systems. In contrast, beam models describe the pipe center line10

motion considering rigid cross-sections rendering these models very computationally efficient without taking account11

of cross-sectional evolutions. What is more, some piping elements such as elbows are known since the pioneer work12

of von Kàrmàn [5] to present significant cross-section deformations under bending. As a consequence, formulations13

able to represent the pipe cross-section deformations at an affordable computational cost are of strong interest.14

For this purpose, many researchers have previously proposed formulations based on finite elements for both curved15

and straight pipes [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. In addition, Weicker et al. [14] have reviewed much of the16
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aforementioned research. For example, in order to consider the pipe radial expansion into their formulation, Ohtsubo17

& Watanabe [6] use the thin Love-Kirchhoff shell kinematic constraints in conjunction with Fourier series expan-18

sions in terms of the tangential variable for longitudinal, tangential and radial displacements of the pipe mid-surface.19

Furthermore, Bathe & Almeida [7] have proposed a formulation based on the combination between beam and shell20

kinematics where cross-sectional deformations are expressed in Fourier series. In addition, warping deformations are21

neglected and the inextensibility in the circumferential direction is assumed by the authors. Additional improvements22

have been proposed in order to consider interaction effects between straight and curved pipes [18] and pressure stiffen-23

ing effects [19]. Then, Militello & Huespe [9] consider warping displacements into the formulation initially proposed24

by Bathe & Almeida in [7]. What is more, Abo-Elkhier [10] consider a more complete displacement-strain relations25

into this formulation. Finally, as reviewed in [14], there is a great difference among the previously mentioned works.26

For example, incomplete Fourier expansions are considered as well as some displacements as warping are neglected.27

For instance, only the second mode of ovalization is considered in [8, 11]. For more generality, complete Fourier28

series for all three displacements of the mid-surface are adopted in [14, 15] within the framework of the approach pro-29

posed by Ohtsubo & Watanabe [6]. The obtained formulation considers warping deformations, variations of tangential30

and longitudinal displacements in the longitudinal and transverse directions as well as the pipe radial expansion. In31

addition, Attia et al. [16] have compared three different interpolating schemes for the displacement fields in the cir-32

cumferential direction showing the good behavior of the Fourier series expansion in the context of straight pipes. More33

recent researches have been published concerning enriched beam elements. For example, a non-linear beam model34

has been proposed in order to take into account the Poisson effect [20]. Moreover, a high-order beam model has been35

recently derived to consider deforming cross-sections including both Poisson effect and warping deformations [21].36

In addition, enhanced beam kinematics is also considered in [22] to allow distortion of the cross section. In addi-37

tion, a higher-order beam model able to accurately represent the buckling behaviour of three-dimensional thin-walled38

structures has been proposed in [23]. Furthermore, a geometrically exact cross-section deformable curved thin-walled39

beam finite element is proposed in [24]. In the aforementioned research, non-linear or high-order beam models are40

used for the derivation of the elements. A review of beam models can be found in the textbook [25].41

A new non-linear tube model is here proposed for straight thin-walled pipes. The corresponding displacement42

field is taken as a combination of three contributions:43

• an Euler-Bernoulli beam model (for the tube axis motion),44

• a Love-Kirchhoff shell kinematics (for the mid-surface evolution) in order to consider both warping and evolu-45

tion of the cross-section,46

• a non-linear coupling between local deformation of the cross-section and the rotation of the tube axis.47

Thanks to the consideration of this non-linear coupling, the pipe inertia evolve with cross-section deformation, possi-48

ble cross-section ovalization is then ensured. Furthermore, the thin-walled cylindrical Flügge shell theory is adopted.49

In addition, complete Fourier series are used for the shell kinematics respectively to the tangential (or circumferential)50

variable. As in [12], the coefficients in Fourier expansion corresponding to rigid-body motion are excluded to avoid51

redundancy with the beam displacements and rotations.52

In conjunction with this new model, an explicit solver based on an updated Lagrangian Finite-Element approach53

is also developed here. Focus is given to the explicit time integration for considering fast-transient events occurring in54

accidental conditions. Due to the use of explicit schemes, additional questions arise especially concerning the mass55

matrix as well as the stability condition. As for all elements involving both translational and rotational degrees of56

freedom (DOFs), a special attention has to be given to the lumped mass matrix. Finally, stability conditions are here57

simply estimated using natural frequencies of both beams and shells.58

The paper is organized as follows. Section 2 is devoted to the derivation of the proposed tube model. The tube59

kinematics decomposed into both beam and shell terms is presented as well as the non-linear coupling between the60

tube cross-section deformations and the tube axis rotations. The assumptions adopted for the derivation of the present61

tube model are also detailed. Afterwards, explicit finite-element resolution of the proposed model is presented in62

Section 3. In particular, the lumped mass matrix is described and stability conditions are given. The tube model is63

then assessed on several problems involving a variety of loads in Section 4. Both static and dynamic problems are64

examined. A series of test-cases where analytical solutions are available is first considered. Finally, the proposed tube65
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model is assessed on a distributed patch load via the comparison with shell elements. In particular, influence of the66

number of Fourier modes is analyzed as well as influence of warping and of non-linear coupling.67

2. Theoretical model: kinematics, strain-displacement relations and equations of motion68

This section is devoted to the derivation of the model proposed here for straight thin-walled tubular geometries.69

For this purpose, kinematics is decomposed into beam and shell contributions. Conditions of Euler-Bernoulli for70

the beam contribution and Love-Kirchhoff for the shell description are assumed. In addition, a non-linear coupling71

between cross-section deformation and rotation of the tube axis is considered. Finally, the tube equations of motion72

obtained using the virtual power principle are given.73

2.1. Enriched beam kinematics of a straight tube74

Let us consider a straight tube of length L, mean radius a and thickness e along the axis Ex as depicted in Fig.75

(1). The axial, circumferential and radial (with respect to the mean radius) coordinates are denoted by x, θ and z,

L

Mo

M

Ex

Ez
Ey

a Ey

Ez

θ

EREθ

Ey

Ez

θ

M (x, θ, z)
a + z

Mo (x)
a

e

Figure 1: Sketch of a straight pipe: flat view (left), cross-sectional view - cylindrical coordinate system (center), pipe mid-surface, i.e. z = 0, and
thickness (right).

76

respectively, while t denotes the time.77

The kinematics is here decomposed into beam-type and shell-type contributions. The beam motion is given78

by displacements of the tube axis, i.e. Uo(t, x), Wo(t, x) and Vo(t, x) expressed in the basis (Ex,Ey,Ez) and by79

rotations of section, i.e. R(t, x). Thereafter, the shell-type kinematics is associated with the relative displacements80

with respect to the rotated section, i.e. u(t, x, θ, z), w(t, x, θ, z) and v(t, x, θ, z) expressed in the basis (Ex,ER,Eθ ),81

where −e/2 ≤ z ≤ e/2 (see Figs. (2) and (3)). These displacements represent respectively the warping (associated

Uo

Wo

Vo

Ωx

Ωy

Ωz

u

v

w

Figure 2: Beam and shell displacements: Uo , Vo , Wo , Ωx , Ωy and Ωz for the beam kinematics and u, v and w for the shell kinematics.

82

with u) and the ovalization (associated with v and w) of the deformed section, (see Figs. (2) and (3)).83
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The coordinates of the point denoted by M(x, θ, z) in the initial state and the coordinates of the point m(t, x, θ, z)84

in the deformed state are respectively given by:85

M = Mo + (a + z)ER = x Ex + (a + z)ER

m = M + U = (x + Uo)Ex + Vo Ez + Wo Ey + R(t, x).
(
(a + z + w)ER + u Ex + v Eθ

) (1)

The rotation of the section is considered to be small, therefore:86

R(t, x) = I +Ω(t, x), Ω.V =
(
Ωx(t, x)Ex +Ωy(t, x)Ey +Ωz(t, x)Ez

)
∧ V (2)

where V is any 3-D vector and I the identity matrix.87

88

Even if a full 3-D motion has been developed as described in [26], only an in-plane motion in (Ex,Ez) is considered89

in the following in order to simplify the presentation of the new model, i.e. Wo = 0 and Ωx = Ωz = 0 (see Fig. (3)).90

Assuming small perturbations, linear strain in terms of displacement is considered. However, in order to take into91

account the ovalization of the section in a straight tube, a non-linear coupling between the beam-type rotation and the92

shell-type displacements is also introduced. Only the coupling between the cross-section ovalization driven by w and93

v and the rotation of the tube axis, i.e. Ωy , is taking into account, the coupling involving the warping cross-section94

being here neglected. As it is explained in the following, the consideration of this coupling ensures that the inertia of95

the section can evolve. In addition, the present motion considers the dynamic behavior as the proposed tube model96

is a first step for the simulation of fast-transient events involving fluid-structure interaction in piping systems with97

deformable cross-sections.

Mo Ex

Ez

initial tube axis
Uo

Vo

mo

deformed tube axis

ex
Ωy

ez
u

m1

m

M
m1 ey

ez

θ

a + z
w

v

m

Figure 3: In-plane beam motion (left) and shell displacement in the tube cross-section (right).

98

The current position, m(t, x, θ, z), is written in the cylindrical basis (Ex,ER,Eθ ) as:99

m =
(
x + Uo + u + [(a + z + w) sin θ + v cos θ]Ωy

)
Ex + (a + z + Vo sin θ + w)ER + (Vo cos θ + v)Eθ (3)

The non-linear coupling is described in the axial component by the term hΩy with h = w sin θ+v cos θ. The derivatives100

of the position vector m with respect to the coordinates x, θ and z are detailed in Appendix A as well as the strain-101
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displacement relations which are given in Eq. (A.1) and summarized in the following:102 

εxx =
∂Uo

∂x
+ (a + z) sin θ

∂Ωy

∂x
+
∂u
∂x

+

(
Ωy +

∂Vo

∂x

)
∂h
∂x

+ h
∂Ωy

∂x

εθθ =
1

a + z

(
∂v

∂θ
+ w

)
εzz =

∂w

∂z

2 εxθ =

(
Ωy +

∂Vo

∂x

)
cos θ +

1
a + z

∂u
∂θ

+
∂v

∂x
+

1
a + z

(
Ωy +

∂Vo

∂x

)
∂h
∂θ

2 εxz =

(
Ωy +

∂Vo

∂x

)
sin θ +

∂u
∂z

+
∂w

∂x
+

(
Ωy +

∂Vo

∂x

)
∂h
∂z

2 εzθ =
1

a + z

(
∂w

∂θ
− v

)
+
∂v

∂z

(4)

The strain tensor given in Eq. (4) is decomposed into three contributions: linear beam-type kinematic terms εb , linear103

shell-type kinematic terms εs and non-linear coupling terms εnl:104

εbxx =
∂Uo

∂x
+ (a + z) sin θ

∂Ωy

∂x
, εsxx =

∂u
∂x
, εnlxx =

(
Ωy +

∂Vo

∂x

) ∂h
∂x

+ h
∂Ωy

∂x
,

εbθθ = 0, εsθθ =
1

a + z

( ∂v
∂θ

+ w
)
, εnlθθ = 0,

εbzz = 0, εszz =
∂w

∂z
, εnlzz = 0,

2 εbxθ =
(
Ωy +

∂Vo

∂x

)
cos θ, 2 εsxθ =

1
a + z

∂u
∂θ

+
∂v

∂x
, 2 εnlxθ =

1
a + z

(
Ωy +

∂Vo

∂x

) ∂h
∂θ
,

2 εbxz =
(
Ωy +

∂Vo

∂x

)
sin θ, 2 εbxz =

∂u
∂z

+
∂w

∂x
, 2 εnlxz =

(
Ωy +

∂Vo

∂x

) ∂h
∂z
,

2 εbzθ = 0, 2 εszθ =
1

a + z

( ∂w
∂θ
− v

)
+
∂v

∂z
, 2 εnlzθ = 0.

(5)

Considering the beam strain, the absence of shear deformation corresponding to the Euler-Bernoulli hypothesis105

imposes that:106

εbxz = 0 or equivalently Ωy +
∂Vo

∂x
= 0 (6)

Under this hypothesis, the beam kinematics enforces planar sections normal to the neutral axis to remain planar after107

deformation. As a consequence, the deformation terms associated to the beam are only present in the εbxx component.108

Finally, this corresponds to a beam whose straight section is an undeformed circular ring. Note that one of the main109

consequences of the previous hypothesis is that the non-linear coupling term is only present in the εxx component,110

i.e. εnlxx = h∂xΩy while εnlθθ = εnlzz = εnlxθ = εnlxz = εnlzθ = 0.111

112

Concerning the shell-type kinematics, the mid-surface of the tube corresponding to z = 0 (see Fig. (4)) is taken to113

be the reference surface and the local rotations of this surface are here considered and assumed to be small. Taking114

the classical Love-Kirchhoff hypothesis corresponding to the absence of shear deformation for the shell kinematics,115

i.e. the shell-type terms in the εsxz and εszθ components being null, leads to the two following additional relations:116

∂u
∂z

+
∂w

∂x
= 0 and

1
a + z

(
∂w

∂θ
− v

)
+
∂v

∂z
= 0 (7)

The shell kinematics follows here the first-order shear deformation shell theory [27, 28] leading to the following117

displacement field:118

w = wo, v = vo + zv1, u = uo − zu1 (8)
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uo

wo

vo

v1

u1

Ex

ER

Eθ

e

Figure 4: Shell geometry: tube mid-surface at z = 0 in gray, its associated cylindrical coordinates system (Ex, ER, Eθ ) and the shell DOFs: uo ,
vo , wo , u1 and v1.

with u1 and v1 the rotation angles of the mid-surface of transverse normal ER in the (Ex,ER) and (ER,Eθ ) planes,119

respectively, (see Fig. (4)). As a consequence, Eq. (7) rewrites as:120

u1 =
∂wo

∂x
and v1 = −1

a

(
∂wo

∂θ
− vo

)
(9)

Under this hypothesis, the shell kinematics enforces straight fibres initially perpendicular to the middle surface to121

remain straight and perpendicular to the deformed mid-surface.122

123

In addition, the global strain tensor is decomposed into first-order terms related to the radial variable z and the124

thin-shell hypothesis is also considered. As a consequence, terms in
1

a + z
are approximated as follows:125

1
a + z

=
1
a
− z

a2 + o
( z

a2

)
(10)

neglecting the second-order and higher order terms. Consequently, the strain tensor can be decomposed as the sum of126

a membrane term denoted by εm and a linear term in z corresponding to curvatures denoted by k as ε = εm + z k127

which can be expressed in terms of both axis displacements, i.e. Uo and Vo, and mid-surface displacements, i.e. uo,128

vo and wo:129

εxx =
∂Uo

∂x
− a sin θ

∂2Vo

∂x2 +
∂uo
∂x
− ∂

2Vo

∂x2 (wo sin θ + vo cos θ) + z kxx

εθθ =
1
a

(
∂vo
∂θ

+ wo

)
+ z kθθ

2 εxθ =
1
a
∂uo
∂θ

+
∂vo
∂x

+ 2 z kxθ

(11)

and the following curvature terms:130

kxx = − sin θ
∂2Vo

∂x2 −
∂2wo

∂x2 +
cos θ

a
∂2Vo

∂x2

(
∂wo

∂θ
− vo

)
kθθ = − 1

a2

(
∂2wo

∂θ2 + wo

)
2 kxθ = −1

a

(
2
∂2wo

∂x∂θ
+

1
a
∂uo
∂θ
− ∂vo
∂x

) (12)
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Notice that the shell-type membrane and curvature terms correspond exactly to those obtained with the Flügge shell131

theory [29]. A brief review of thin cylindrical shell theories can be found in [14] where it is shown that the different132

contributions on thin-shell theory all agree concerning the expressions of the membrane strain. However, different133

expressions for curvature have been obtained relying upon the assumptions used in the derivation. For example, the134

shell-type curvature terms adopted in Ohtsubo and Watanabe [6], Millard and Roche [8], Berton [11] or in Weicker et135

al. [14] are different from the present ones and correspond to those developed by Timoshenko [30]. However, it has136

to be noticed that with the additional assumption of the pipe radial inextensibility, the mentioned thin cylindrical shell137

theories lead to the same strain-displacement relations. In the present work, the pipe is not assumed to be inextensible138

in order to capture its radial expansion/contraction. Finally, in all these previous works, the coupling terms between139

the section deformation and the axis rotation have not been taken into account. The coupling contributes only in the140

uni-axial components εmxx and kxx .141

2.2. Fourier series expansion142

The shell displacement field is now expanded in Fourier series in terms of the tangential variable θ. In contrast to143

previous works [31, 8, 13, 32, 7, 9, 10] where incomplete displacement Fourier series are considered, the longitudinal,144

tangential and radial mid-surface displacements, i.e. uo, vo and wo, are here all expanded in Fourier series:145 

uo(t, x, θ) = uc
o(t, x) + uc

1 (t, x) cos θ + us
1(t, x) sin θ +

N f∑
i=2

(
uc
i (t, x) cos(iθ) + us

i (t, x) sin(iθ)
)

vo(t, x, θ) = vco (t, x) + vc1 (t, x) cos θ + vs1 (t, x) sin θ +

N f∑
i=2

(
vci (t, x) cos(iθ) + vsi (t, x) sin(iθ)

)
wo(t, x, θ) = wc

o(t, x) + wc
1 (t, x) cos θ + ws

1 (t, x) sin θ +

N f∑
i=2

(
wc
i (t, x) cos(iθ) + ws

i (t, x) sin(iθ)
)

(13)

Nf represents the number of Fourier modes considered in the expansion. uc
i (t, x), us

i (t, x), vci (t, x), vsi (t, x), wc
i (t, x) and146

ws
i (t, x) are the coefficients of the Fourier series becoming the new unknowns and depending only on the longitudinal147

variable x (and on the time t). The index c represents the coefficients in cosine while the index s the coefficients in148

sine in the Fourier expansion.149

The coefficients in the expansion producing a rigid-body motion are set equal to zero in order to avoid redundancy150

with the beam-type degrees of freedom. As a consequence, uc
o corresponding to a rigid-body longitudinal displace-151

ment is taken to be zero. Similarly, uc
1 , us

1 and vco are also null as these terms correspond to a rigid-body rotation152

about the Ez , the Ey and the Ex axis, respectively. In addition, the coefficient multiplying cos θ in the expansion of vo153

has been set to the negative of the coefficient multiplying sin θ in the expansion of wo, i.e. vc1 (t, x) = −ws
1 (t, x). This154

produces a vanishing rigid-body displacement of the cross-section in the Ez direction [12] via the integration over155

the tangential variable θ. In the same way, the coefficient multiplying sin θ in the expansion of vo has been set to the156

coefficient multiplying cos θ in the expansion of wo, i.e. vs1 (t, x) = wc
1 (t, x) in order to produce a vanishing rigid-body157

displacement of the cross-section in the Ey direction.158

In addition, for Fourier modes of higher order, i.e. greater than or equal to two, an inextensibility assumption in159

the circumferential direction of the section is also taken in consideration meaning that the section perimeter remains160

constant [33, 34]. In other words, the circumferential membrane deformation is null, i.e. ( εm)θθ = 0, for i ≥ 2. As161

( εm)θθ ≡ 1
a (∂θ vo + wo), this allows to obtain a relation between vci , ws

i , wc
i and vsi for i ≥ 2:162

1
a

N f∑
i=2

(
∂

∂θ

(
vci cos(iθ) + vsi sin(iθ)

)
+ wc

i cos(iθ) + ws
i sin(iθ)

)
= 0 (14)

7



Thus, the shell-type displacements of the tube mid-surface can be expressed as:163 

uo =

N f∑
i=2

(
uc
i cos(iθ) + us

i sin(iθ)
)

vo = −ws
1 cos θ + wc

1 sin θ+
N f∑
i=2

(
1
i
ws
i cos(iθ) − 1

i
wc
i sin(iθ)

)
wo = wc

o +wc
1 cos θ + ws

1 sin θ+
N f∑
i=2

(
wc
i cos(iθ) + ws

i sin(iθ)
)

(15)

wc
o represents the radial extensibility of the cross-section. wc

1 and ws
1 are associated with vanishing lateral rigid-body164

displacements. wc
i and ws

i for i ≥ 2 represent cross-section distortions. In addition, uc
i and us

i for i ≥ 2 represent the165

warping cross-section deformations.166

167

Finally, the tube displacement field is given by:168

U =
(
Uo + u + [(a + z + w) sin θ + v cos θ]Ωy

)
Ex + (Vo sin θ + w)ER + (Vo cos θ + v)Eθ (16)

respecting for the beam-type displacement terms the Euler-Bernoulli hypothesis169

Ωy = −∂Vo

∂x

and with the shell-type displacement field:170

w = wo, v = vo + zv1, u = uo − zu1 (17)

where uo, vo and wo are expressed in Eq. (15) and with171

u1 =
∂wo

∂x
and v1 = −1

a
©­«2ws

1 cos θ − 2wc
1 sin θ +

N f∑
i=2

i2 − 1
i

(
ws
i cos (iθ) − wc

i sin (iθ)
)ª®¬ (18)

respecting the Love-Kirchhoff hypothesis.172

2.3. Virtual power principle173

The equations of motion can be obtained through the application of the virtual power principle which expresses174

the equilibrium between the forces of inertia, external and internal forces:175

Pa = Pe + Pi (19)

with Pa, Pe and Pi the power of inertia, external and internal forces, respectively. The power of inertia forces is176

defined in the current (deformed) configuration as:177

Pa =

∫
Ω

ρ
∂2 U
∂t2 · δU dV (20)

in which the integration is performed over the current volume Ω occupied by the solid body and where ρ is the solid178

density,
∂2 U
∂t2 the acceleration vector, δU the virtual displacement field.179

180

The power of external forces (without considering volume forces) is defined as:181

Pe =

∫
∂Ω

T.δU dS (21)
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So

SL

A−

A+

Figure 5: Tube surfaces decomposed by the two cross-sections So and SL and by A− the inner and A+ the outer lateral sections.

T is the vector of applied forces on the boundaries. The edge of the tube is decomposed into the two end surfaces182

denoted by So and SL where the elementary surface dS is set to be equal to a dθdz instead of (a + z) dθdz due to the183

thin-walled assumption, and the inner and outer skins of the tube denoted by A− and A+ where A± = 2πL(a ± e/2) as184

depicted in Fig. (5).185

186

Finally, the power of internal forces is given by:187

Pi = −
∫
Ω

σ : δ ε dV (22)

where σ is the Cauchy stress tensor and δ ε the virtual stress tensor. Using the circular geometry of the considered188

pipe leads to the following expression for the power of internal forces:189

Pi = −
∫ L

0

(∫ 2π

0

∫ e/2

−e/2
σ : δ ε a dθdz

)
dx (23)

Due to the thin-shell assumption, i.e. z << a, the integration is performed through the elementary volume a dθdzdx190

instead of (a + z) dθdzdx.191

The strain-stress relationship is here obtained using a local linear elastic behavior:192

σ =
E

1 − ν2

(
(1 − ν) ε + ν trac( ε) I

)
(24)

Using plane stress conditions in the (Eθ,Ex) plane, i.e. σzz = σxz = σθz = 0, this leads to:193

©­«
σxx

σθθ
σxθ

ª®¬ =
E

1 − ν2
©­«
1 ν 0
ν 1 0
0 0 1 − ν

ª®¬ ©­«
εxx
εθθ
εxθ

ª®¬ (25)

with ν the Poisson’s ratio and E the Young’s modulus of the pipe wall material.194

195

The power of inertia forces as well as the power of internal forces are expressed in Appendix B (see Eqs. (B.5)196

and (B.8) respectively) when considering all the Fourier modes and the non-linear coupling terms. In addition,197

the governing equation of the tube are expressed in Eq. (B.14) and the corresponding generalized forces in Eqs.198

(B.9,B.10,B.11,B.12,B.13).199

200

In the following, details are given when considering only the mode 0 in the Fourier series and then only the Fourier201

mode 2. As previously mentioned, Fourier mode 0 corresponds to the radial expansion/contraction of the tube cross-202

section whereas Fourier mode 2 corresponds to its ovalization. Comments are also given when higher Fourier modes203

are considered.204
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2.4. Governing equations and generalized forces for Fourier mode 0 for linear-type motion205

When only the first Fourier mode (Nf = 0) is considered, the shell kinematics is only carried by wo (i.e. uo = vo =206

0) and u1 (i.e. v1 = 0) (cf. Eqs. (15) and (18)). In addition, the non-linear coupling term is not taken into account at207

this stage. As a consequence, the shell-type displacement field is given by:208

wo(t, x, θ) = wc
o(t, x), u1 =

∂wc
o

∂x
(26)

leading to the tube displacement field:209

U =

(
Uo − z

∂wc
o

∂x
− (a + z) sin θ

∂Vo

∂x

)
Ex +

(
Vo sin θ + wc

o

)
ER + (Vo cos θ)Eθ (27)

As a consequence, the non-zero components of the strain tensor are given by:210

εxx =
∂Uo

∂x
− a sin θ

∂2Vo

∂x2 + z
(
− sin θ

∂2Vo

∂x2 −
∂2wc

o

∂x2

)
and εθθ =

(
1
a
− z

a2

)
wc
o (28)

The power of internal forces can thus be expressed as:211

Pi = −
∫
Ω

σ : δ ε dV = −
∫ L

0

(
N
∂δUo

∂x
− My

∂2δVo

∂x2 − (mw)co
∂2δwc

o

∂x2 + (tw)co δwc
o

)
dx (29)

where the generalized forces are defined as:212

N =

∫
S

σxx dS ; My =

∫
S

σxx (a + z) sin θ dS

(tw)co =

∫
S

σθθ

(
1
a
− z

a2

)
dS ; (mw)co =

∫
S

σxx z dS
(30)

with dS = adθdz. The term z/a2 in (tw)co is neglected in the following due to the thin-walled assumption.213

In addition, the power of inertia forces can be expressed as:214

Pa =

∫
Ω

ρ
∂2 U
∂t2 · δU dV

=

∫ L

0
ρ

(
S
∂2Uo

∂t2 δUo + S

(
∂2Vo

∂t2 −
Iby
S

∂4Vo

∂t2∂x2

)
δVo + S

(
∂2wc

o

∂t2 −
e2

12
∂4wc

o

∂t2∂x2

)
δwc

o

)
dx

(31)

with the pipe cross-section S = 2πae and the moment of inertia Iby = πae
(
a2 +

e2

12

)
≈ πa3e.215

Without considering external forces, i.e. Pe = 0, the equations of motion write:216 

ρS
∂2Uo

∂t2 − ∂N
∂x

= 0

ρS
∂2Vo

∂t2 − ρIby
∂4Vo

∂t2∂x2 −
∂2My

∂x2 = 0

ρS
(
∂2wc

o

∂t2 −
e2

12
∂4wc

o

∂t2∂x2

)
− ∂2 (mw)co

∂x2 + (tw)co = 0

(32)

Note that for a plate element with uniform material properties, the ratio between the moment of inertia and the area of217

the cross-section corresponds to e2/12 which thus takes the same role as Iy/S for the shell-type DOFs.218

The static counterpart of Eq. (32) corresponds to:219

∂N
∂x

= 0;
∂2My

∂x2 = 0; −∂
2 (mw)co
∂x2 + (tw)co = 0 (33)
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For the considered behavior given in Eq. (25), the generalized forces are given by:220

N =
ES

1 − ν2

(
∂Uo

∂x
+ ν

wc
o

a

)
; My = −

EIby
1 − ν2

∂2Vo

∂x2 ;

(tw)co =
ES

1 − ν2

1
a

(
ν
∂Uo

∂x
+
wc
o

a

)
; (mw)co = − ES

1 − ν2

e2

12
∂2wc

o

∂x2

(34)

where N corresponds to the beam-type axial force with an additional term involving the pipe radial contraction/expansion221

corresponding to the Poisson effect, My to the beam in-plane bending moment whereas (tw)co corresponds to the radial222

force divided by the mean radius and (mw)co to the bending moment of the mid-surface in the (Ex,ER) plane. Eqs.223

(32) and (34) correspond to Eqs. (B.15) and (B.16) described in Appendix B.224

Note that, without considering the Poisson effect, the two first equations in Eq. (32) correspond to the classical225

straight Euler-Bernoulli beam governing equations which, for example, are given in [35]. In addition, it has to be226

noticed that Eq. (32) correspond to the axisymmetric thin-shell cylinder equations of motion as expressed in [36]227

where the terms e2/12a is neglected due to the thin-walled assumption and thus the integration over a dθdz instead of228

(a + z) dθdz. Finally, neglecting the ∂2
x2 (mw)co term in Eq. (32) makes it possible to retrieve the equations of motion229

proposed by Walker & Phillips [37] for an axisymmetric small-deformed elastic plane-stressed tube as also reported230

in the review [3].231

2.5. Governing equations and generalized forces for Fourier mode 2232

Only the second Fourier mode is here considered corresponding to the cross-section ovalization. As in [8, 11], only233

the shell membrane deformations are considered (i.e. for shell-type DOFs k = 0 except kθθ , 0)). The assumption234

of the section inextensibility is taken into account (see Eq. (14)) as well as the non-linear coupling terms. As a235

consequence, for an in-plane motion, the considered shell kinematics of the mid-surface writes:236

uo(t, x, θ) = 0, wo(t, x, θ) = wc
2 (t, x) cos(2θ), vo(t, x, θ) = −1

2
wc

2 (t, x) sin(2θ) (35)

The strain tensor is thus given by:237 

εxx =
∂Uo

∂x
− [(a + z) sin θ + ho]

∂2Vo

∂x2

εθθ = 3
z

a2 cos(2θ) wc
2

2 εxθ = −1
2

sin(2θ)
∂wc

2

∂x

with ho =

(
cos(2θ) sin θ − 1

2
sin(2θ) cos θ

)
wc

2 (36)

After some algebraic manipulations, the power of internal forces leads to the following expression:238

Pi = −
∫ L

0

(
N
∂δUo

∂x
− My

∂2δVo

∂x2 + (tw)c2 δwc
2 + (nw)c2

∂δwc
2

∂x

)
dx (37)

where the generalized forces are defined as:239

N =

∫
S

σxx dS

My =

∫
S

σxx [(a + z) sin θ + ho] dS

(tw)c2 =

∫
S

(
1
2
σxx (sin(2θ) cos θ − 2 cos(2θ) sin θ) ∂

2Vo

∂x2 + 3
z

a2σθθ cos(2θ)
)

dS

(nw)c2 = −
∫
S

1
2
σxθ sin(2θ) dS

(38)
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Without considering external forces, i.e. Pe = 0, the equations of motion write:240 

ρS
∂2Uo

∂t2 − ∂N
∂x

= 0

ρS
∂2Vo

∂t2 − ρIy
∂4Vo

∂t2∂x2 −
∂2My

∂x2 = 0

ρS
1
2

(
5
4
∂2wc

2

∂t2 −
e2

12
∂4wc

2

∂t2∂x2

)
−

∂ (nw)c2
∂x

+ (tw)c2 = 0

(39)

with the moment of inertia given by:241

Iy = πa3e

(
1 +

e2

12a2 −
3
2
wc

2

a
+

5
8

(
wc

2

a

)2
)
≈ πa3e

(
1 − 3

2
wc

2

a
+

5
8

(
wc

2

a

)2
)

where Iby ≈ πa3e.242

In a similar way, the equilibrium equations in static are obtained as:243

∂N
∂x

= 0 ;
∂2My

∂x2 = 0 ;
∂ (nw)c2
∂x

− (tw)c2 = 0 (40)

With the behavior law given in Eq. (25), the generalized forces are expressed as:244

N = +
ES

1 − ν2

∂Uo

∂x
; ξ =

wc
2

a

My = −
EIby

1 − ν2

(
1 − 3

2
ξ +

5
8
ξ2

)
∂2Vo

∂x2

(tw)c2 = +
ES

1 − ν2

1
2

((
−3

4
+

5
8
ξ

)
a

(
∂2Vo

∂x2

)2

+ 3
e2

4a2

1
a
ξ

)
(nw)c2 = +

ES
1 + ν

1
16

a
∂ξ

∂x

(41)

As previously, N corresponds the beam-type axial force and My to the beam in-plane bending moment. For the shell245

DOFs, (tw)c2 corresponds to a force divided by the mean radius and (nw)c2 to a shear-type force. Eqs. (39) and (41)246

correspond to Eqs. (B.17) and (B.18) described in Appendix B.247

Due to the non-linear coupling between the tube cross-section deformation (here linked to wc
2 ) and the rotation of248

the tube axis, i.e. −∂xVo, the in-plane bending moment My depends on terms in wc
2 and, in a similar way, terms in249

∂xVo are involved in the expression of (tw)c2 . Let consider the curvature κ defined as:250

κ =
a2

e

(
−∂

2Vo

∂x2

)
In the case of Euler-Bernoulli beams and in the case of Fourier mode 0 described previously, it appears that the251

bending moment My is linear with respect to the curvature κ as the inertia remains constant. In contrast, in the present252

model involving both the Fourier mode 2 and the non-linear coupling, due to the terms in ξ in the expression of the253

bending moment, the inertia of the section can change with its deformation leading to a non-linear relation between254

My and κ. Comparison between the different moment-curvature and ovalization-curvature relationships encountered255

in the literature is performed in [34]. The ovalization-curvature are obtained taking (tw)c2 equal to zero. For example,256

considering only the first-order terms in the expressions of My and (tw)c2 , i.e.257

My = −
EIby

1 − ν2

(
1 − 3

2
ξ

)
∂2Vo

∂x2 and (tw)c2 =
ES

1 − ν2

3
8

(
−a

(
∂2Vo

∂x2

)2

+
e2

a3 ξ

)
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leads to the following moment-curvature and ovalization-curvature relationships:258

My = K
(
1 − 3

2
ξ

)
κ and ξ = κ2

with K a constant. This exactly corresponds to the relationships initially derived by Brazier [33]. Then, considering259

the second-order terms in Eq. 41 leads to the following moment-curvature and ovalization-curvature relationships:260

My = K
(
1 − 3

2
ξ +

5
8
ξ2

)
κ and ξ =

κ2

1 + 5
6 κ

2

which corresponds to the relationships referred to as modified Brazier initially straight tubes in [34].261

2.6. Higher Fourier modes262

The derivation of both governing equations and generalized forces has been presented previously when only263

considering Fourier mode 0 or Fourier mode 2. Taking into account higher Fourier modes together makes this deriva-264

tion more complex, especially due to the coupling between different modes. The corresponding tube governing265

equations are derived in Appendix B and are expressed in Eq. (B.14). The generalized forces are given in Eqs.266

(B.9), (B.10), (B.11), (B.12) and (B.13). In addition, mathematical tools dedicated to formal computation such as267

Sympy (https://www.sympy.org) and wxMaxima (https://wxmaxima-developers.github.io/wxmaxima/)268

have been used for verification.269

2.7. Further discussion on the kinematics of the present element and comparison with previous beam elements270

As shown in the previous sections, the present tube element is here derived in the context of thin-walled tubu-271

lar geometries. Even if a full 3-D motion has been considered in the derivation of this element, only an in-plane272

motion is presented for simplicity. As described previously, the kinematics is obtained through the enrichment of273

straight beam kinematics by the addition of orthogonal shell-type displacement field of the tube cross-section. The274

corresponding displacement field is here composed of three contributions: linear beam and shell terms in conjunction275

with a non-linear coupling between cross-section deformation and rotation of the tube axis. First, concerning the276

beam-type DOFs of the proposed tube model, as shown in the derivation of the generalized forces (cf. Appendix B.2),277

the classical Euler-Bernoulli beam is recovered plus the consideration of the Poisson effect which is derived from the278

link between beam and shell. Then, concerning the shell-type motion, the present tube element incorporates all the279

elements reviewed in Weicker [14] including the elements previously proposed in [6, 7, 8, 9, 10, 11, 13] as complete280

Fourier series for warping, ovalization and radial deformations of the mid-surface are considered. In addition, as281

shown in Appendix B.4, the present tube kinematics incorporates the circular shell kinematics as the corresponding282

circular cylindrical shells equations of motion can be retrieved from the present formulation. What is more, via the283

consideration of the non-linear coupling, the inertia of the section can change with its deformation as described in284

Brazier [33]. As a consequence, the present tube element seems to present the simplest kinematics able to consider285

both deformations of its cross-section and changes of inertia as only one non-linear coupling term is considered for286

this purpose. However, this single non-linear term is not sufficient to describe all possible local and global buckling287

as it is performed in [34]. In addition, the previous elements have been derived for static analysis whereas the present288

one is considered for explicit dynamic analysis.289

290

In the following section, the numerical method used to solve the derived tube model is detailed.291

3. Numerical approximations: an explicit updated Lagrangian Finite-Element approach292

The governing equations are here discretized using an explicit updated Lagrangian Finite-Element approach which293

is described in the following. For simplicity, the numerical methods are detailed in the case where only the 0-mode294

is considered in the Fourier expansion as described in Sec. 2.4 and the extension to higher Fourier modes is briefly295

discussed. In addition, even if the numerical method as well as the tube element have been derived for a 3-D motion,296

only an in-plane motion is presented in the following for simplicity. The time integration is performed using the297

explicit central difference operator whose stability condition is given considering both beam and shell contributions.298
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3.1. Nodal unknowns and shape functions299

By means of the Finite-Element method, the spatial domain of the beam is discretized into a number of sub-300

domains named here tube element. Each element has two nodes and the vector of nodal generalized displacements is301

defined as:302

de =
(

d1
e, d2

e

)T
where di

e =
(
Ui
o, V i

o, Ω
i
y,

(
wc
o

) i
, ui1

)T
(42)

when only Fourier mode 0 is here considered. The subscript e associates a given quantity with a typical tube element303

whereas the superscript i = 1, 2 associates a given quantity with the corresponding node of the considered tube304

element. The length of the element is denoted by `e. Due to the assumption of small deformations, the length of the305

tube element is assumed to be the same as the initial undeformed element, i.e. `ne = `oe where the superscript n denotes306

the time level. Shape functions are used to approximate the displacement field inside the tube element of any arbitrary307

point located at the beam axis for the beam-type DOFs and at the mid-surface of the tube for the shell-type DOFs. In308

addition, the displacement field is assumed to satisfy the conditions imposed by the tube kinematics, in particular the309

Euler-Bernoulli and the Love-Kirchhoff hypotheses:310

Ωy +
∂Vo

∂x
= 0 and u1 =

∂wc
o

∂x
(43)

To this end, for the beam-type DOFs, linear and cubic interpolating polynomials are chosen to approximate, respec-311

tively, the axial and transverse neutral fiber displacements within each tube element whereas cubic shape functions312

are used for the mid-surface displacements for the shell-type DOFs. As a consequence the displacement field within313

the tube element is approximated using Ne the matrix of shape functions as follows:314

de = Ne de with Ne =
(
N1
e N2

e

)
and Ni

e =

©­­­­­­­«

NU i
o

0 0 0 0
0 NV i

o
NΩi

y
0 0

0 −
dN

V i
o

dx −
dN
Ωiy

dx 0 0
0 0 0 N(wc

o )i Nui
1

0 0 0
dN(wc

o )i
dx

dN
ui

1
dx

ª®®®®®®®®¬
(44)

with the following shape functions:315 
NU1

o
= 1 − λ

NV 1
o

= N(wc
o )1 = (λ − 1)2 (2λ + 1)

NΩ1
y

= −Nu1
1

= −`eλ (λ − 1)2
and


NU2

o
= λ

NV 2
o

= N(wc
o )2 = λ2 (3 − 2λ)

NΩ2
y

= −Nu2
1

= −`eλ2 (λ − 1)

with λ = x/`e where `e corresponds to the length of the tube element.316

We can also note that the tube displacement field given in Eq. (27) can be expressed as:317

U = T de with T =
©­«

1 0 (a + z) sin θ 0 −z
0 sin θ 0 1 0
0 cos θ 0 0 0

ª®¬ (45)

as the non-linear coupling term is here neglected.318

For the discretized pipe, the virtual power principle (see Eqs. (20) and (29)) writes:319 ∑
e

(∫
Ve

ρ
∂2 U
∂t2 · δU dV

)
= −

∑
e

[∫ `e

0

(
N
∂δUo

∂x
+ My

(
−∂

2δVo

∂x2

)
+ (tw)co δwc

o − (mw)co
∂2δwc

o

∂x2

)
dx

]
(46)

with Ve the volume of the tube element and considering the sum over the tube elements. This can be rewritten in the320

following form:321 ∑
e

[∫
Ve

(
ρ (δU)T ∂2 U

∂t2

)
dV

]
= −

∑
e

[∫ `e

0

(
(δE)T F

)
dx

]
(47)
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with the generalized force vector F and the generalized strain vector E defined as:322

F =
(
N, My, (tw)co , (mw)co

)T and E =

(
∂Uo

∂x
, −∂

2Vo

∂x2 , w
c
o, −

∂2wc
o

∂x2

)T
which are related using the constitutive matrix denoted here by D as follows:323

F = D E with D =
ES

1 − ν2

©­­­­«
1 0 ν

a 0
0 Iy

S 0 0
ν
a 0 1

a2 0
0 0 0 e2

12

ª®®®®¬
With the assumed displacement field within the tube element, the vector E can be expressed using the nodal displace-324

ment vector, i.e. E = Be de, with the strain-displacement matrix Be given by:325

Be =
(
B1
e B2

e

)
with Bi

e =

©­­­­­­­«

dN
Ui
o

dx 0 0 0 0

0
d2N

V i
o

dx2

d2N
Ωiy

dx2 0 0
0 0 0 N(wc

o )i Nui
1

0 0 0
d2N(wc

o )i
dx2

d2N
ui

1
dx2

ª®®®®®®®¬
With the previous notations, the virtual power principle can be expressed as:326 ∑

e

[
(δ de)T Me

Üde

]
= −

∑
e

[
(δ de)T f e,int

]
(48)

with the consistent mass matrix Me and the nodal internal forces vector f e,int defined by:327

Me =

∫
Ve

ρNT
e TTTNe dV and f e,int =

∫ `e

0
BT
e F dx

The internal forces are approximated using a Gauss quadrature approach:328

f e,int =

∫ `e

0
BT
e F dx ≈

NG∑
j=1

ωjBT
e

(
λj

)
F

(
λj

)
(49)

with NG the number of Gauss points used for the present tube element, ωj and λj the weight and location of each329

Gauss point, respectively. The number of Gauss points as well as the corresponding weights and locations depends on330

the order of the polynomials used in BT
e F. Due to the presence of the cubic interpolating functions N(wc

o )i for i = 1, 2,331

a polynomial of power six is involved as F = DBe de. A four-point Gauss rule is thus necessary to integrate this332

six-order polynomial function in an exact manner, i.e. NG = 4, with the following weights and locations:333

λ1 = 0.0694318442, ω1 = 0.1739274226 `e
λ2 = 0.3300094782, ω2 = 0.3260725774 `e
λ3 = 0.6699905218, ω3 = 0.3260725774 `e
λ4 = 0.9305615580, ω4 = 0.1739274226 `e

In the case of the standard Euler-Bernoulli beam element, only two Gauss points are required as described in [35, 38,334

39].335

3.2. Consistent and lumped mass matrices336

Based on the assumed displacement field within the tube element, the consistent mass matrix has the following337

explicit form:338

Me =

(
M11

e M12
e

M21
e M22

e

)
with Mi j

e =

∫
Ve

ρ
(
Ni
e

)T
TTTNj

e dV
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as Mji
e =

(
Mi j

e

)T
, the consistent mass matrix is symmetric and its components are given by:339

M11
e = ρS`e
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M22

e = ρS`e
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M12

e = ρS`e
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and M21

e =
(
M12

e

)T

Note that the first 3 × 3 block-matrix of each component of the mass matrix of the present tube element corresponds340

exactly to the component of the consistent mass matrix of the Euler-Bernoulli beam element as described in [35, 38].341

As an explicit time integration is retained in the following, the use of lumped or diagonal mass matrix in place of342

the consistent mass matrix is classically used to enhance the computational efficiency of the explicit scheme. For343

the Euler-Bernoulli beam element described in [35] with both translational and rotational DOFs, the lumping of the344

mass matrix is performed as follows. Concerning the translational terms, a “row-sum“ approach is used. This also345

corresponds to the element mass preservation by dividing the total mass among the diagonal entries of the mass matrix346

and setting all other entries to zero. This leads to the diagonal term: ρS`e/2. In contrast, for the rotational terms, the347

lumping is performed by ignoring the off-diagonal terms of the consistent mass matrix and scaling the term involving348

inertia in the diagonal term as performed in [38, 35]. The same procedure is here used for both beam and shell349

translational and rotational DOFs leading to the following lumped mass matrix:350

M̃e =

(
M̃11

e 0
0 M̃22

e

)
with M̃11

e = M̃22
e = ρS`e

©­­­­­­«

1
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0 1

2 0 0 0

0 0 `2
e

105 +
Iy
S 0 0

0 0 0 1
2 0

0 0 0 0 `2
e

105 + e2

12

ª®®®®®®¬
(50)

where the same scaling is used for the terms Iy/S and e2/12 in the rotational beam and shell DOFs, respectively.351

The local coordinate system for each tube element has been used for expressing the nodal displacement vector de.352

In order to express the unknowns in the global coordinate system, the transformation matrix is used Pe. Note that353

the present lumped mass matrix is independent of the coordinate system, i.e. PeM̃ePT
e = M̃e. The assembly is then354

obtained through the sum over the elements after the connectivity transformation:355

Pe de = Ce d (51)

with d the global displacement expressed in generalized coordinates and Ce the connectivity matrix associated with356

the finite element in question. As the two displacement vectors Pe de and d are expressed in the same coordinate357
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system, the Ce matrices are simply Boolean matrices. Finally, this leads to the following relation:358

dTM Üd = −dT f int or equivalently M̃ Üd = − f int (52)

with M̃ =
∑
e

(
CT
e M̃eCe

)
the global lumped mass matrix and f int =

∑
e

(
CT
e Pe f e,int

)
the global internal force vector.359

3.3. Explicit central difference scheme360

The explicit time integration of Eq. (52) is here performed using the central difference operator leading to:361 
Ûdn+1/2

= Ûdn
+ ∆tn Üdn/2

dn+1 = dn + ∆tn Ûdn+1/2

Üdn+1
=

(
M̃n+1

)−1 (
fn+1

ext − fn+1
int

)
Ûdn+1

= Ûdn+1/2
+ ∆tn Üdn+1/2

(53)

with d, Ûd and Üd the nodal displacements, velocities and accelerations, fint and fext the nodal internal and external forces,362

respectively, the superscript n denoting the time level. As the inertia of the section can evolve, the lumped mass matrix363

is updated at each time step.364

The explicit central difference scheme is one of the most popular explicit time integration operator due to its365

simplicity and its second-order accuracy in time. In addition, in the case of constant time step, this scheme is known366

to be non-dissipative [40].367

3.4. Extension to higher Fourier modes368

The previous derivation has been detailed for Nf = 0 in the Fourier expansion described previously and for an369

in-plane motion. Considering the Fourier mode 1 leads to the integration of the two following additional DOFs ws
1 and370

∂ws
1

∂x for an in-plane motion in the generalized displacement vector di
e. Cubic interpolating shape functions are thus371

used for ws
1 . Then, considering the k-th Fourier mode for k ≥ 2 induces to take into account three additional DOFs372

for an in-plane motion, i.e. um
k

, wm
k

and
∂wm

k

∂x with m = s if k is impair and m = c if k is pair. As a consequence, linear373

shape functions are used for um
k

whereas cubic shape function for wm
k

. For the same reason as previously, a 4-point374

Gauss quadrature approach is still used for the computation of the internal forces (cf. Eq. (49)) even if higher Fourier375

modes are considered. In addition, the lumped mass matrix of the tube element is modified in Eq. (50) as follows:376

M̃11
e = M̃22

e = ρS`e
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(54)

where the first 3 × 3 block diagonal matrix corresponds to the standard Euler-Bernoulli lumped mass matrix [35, 39],377

the following 2 × 2 block diagonal matrix corresponds to the Fourier mode 0, the next 2 × 2 block diagonal to the378

Fourier mode 1 and the next 3 × 3 to the Fourier mode i. The diagonal term for the transitional DOFs for both379

beam and shell is ρS`e/2, whereas the term of the rotational DOFs for beam and shell are ρS`e
(
`2
e/105 + Iy/S

)
and380

ρS`e
(
`2
e/105 + e2/12

)
respectively.381
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3.5. Stability condition and time step evaluation382

For the explicit time integration of an undamped system with the central difference operator, the time step ∆tn383

used in Eq. (53) has to respect the following stability condition [41, 42]:384

∆tn = C∆tncrit with ∆tncrit =
2

ωn
max

(55)

where 0 < C ≤ 1 is the Courant number, ∆tncrit the critical time step and ωn
max the maximum eigenvalue of the system385

which is classically bounded by the largest element eigenvalue:386

ωn
max ≤ max

e

(
ωn
e,max

)
(56)

with ωn
e,max the maximum eigenvalue of the e-th element, unrestrained.387

Therefore, to express the stability condition, the expression of the maximum frequency of the proposed tube388

element is required. Instead of solving the eigenvalue problem which can be complex in the case of the present element389

especially when considering higher Fourier modes, this is here performed using the natural frequencies of beams and390

cylindrical shells which are given in [43]. Even if only an in-plane motion is presented in the previous sections for391

simplicity, we recall that a full 3-D motion is derived. As a consequence, all the corresponding contributions have392

been also considered for numerical stability. Finally, the maximum element eigenvalue corresponds to the maximum393

of the eigenvalues associated to all of the contributions of the present tube element:394

ωn
e,max = max

(
ωn
e,b, ω

n
e,s

)
(57)

where for the beam-type contribution, i.e. beam axial and beam flexural, as described in [35, 39]:395

ωn
e,b = max ©­« 2

`e

√
E
ρ
,

2
`2
e

√
EIy
ρS

π4ª®¬ (58)

and the natural frequencies of cylindrical shells as expressed in [43] in terms of a dimensionless frequency parameter396

λ are given by:397

ωn
e,s =

2λ
a

√
E

ρ
(
1 − ν2

) (59)

with the following expressions of the dimensionless frequency parameter λ:398

λ =
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a
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π2 for the axial tube mode
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a
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)
π2

2
for the torsional tube mode

λf =
a2

`2
e

√(
1 − ν2

) π4

2
for the flexural tube mode

λo
i j =

√(
1 − ν2

) (
jπa
`e

)4
+ e2

12a2

(
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(
jπa
`e

)2
)4

i2 +
(
jπa
`e

)2 for the ovalization tube mode

(60)

with i = 6 and j = 1 as i and j correspond to the number of circumferential and axial modes, respectively.399
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As a consequence, the maximum element eigenvalue is defined as:400

ωn
e,max = max ©­« 2

`e
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E
ρ
,

2
`2
e

√
EIy
ρS

π4,
2λmax

a

√
E

ρ
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) ª®¬ (61)

where λmax = max
(
λr, λa, λt, λf, λo

i j

)
given in Eq. (60) making it possible to express the stability condition used for401

the time step evaluation at each time iteration using Eq. (55).402

4. Numerical results403

The new tube finite-element proposed here and detailed in the previous sections is then assessed via comparisons404

with analytical or numerical reference solutions. For this purpose, several test-cases on a single straight pipe under405

various loading conditions are considered dealing with extension, breathing due to internal pressure, pure bending406

and punctual force on the tube cross-section. The pipe configuration used for all the considered tests is described in407

Table 1 and respects both the thin-shell and the Euler-Bernoulli hypotheses. In the following, in order to assess the

L (m) a (m) e (m) E (GPa) ν ρ (kg/m3)
10 1 0.1 200 0.3 7800

Table 1: Geometric and material properties of the pipe configuration used for the present tests.

408

grid-independence of the numerical solution, two computations are performed: the first one with a single tube element409

and the second one with ten tube elements. The verification of the present beam model is assessed on both static and410

dynamic problems. All the computations considered here are performed using a Courant number C = 0.5 in Eq. (55).411

For all considered test-cases, it appears that the critical time step is linked to the pipe cross-section ovalization (cf.412

Eq. (61)) leading to the following expression:413

∆t = C a
λo
i j

√
ρ
(
1 − ν2

)
E

(62)

with λo
i j the dimensionless ovalization frequency parameter expressed in Eq. (60). Finally, the following values of414

the time step are obtained: ∆t = 9.039 × 10−5 s for one element and ∆t = 9.862 × 10−6 s for ten elements. For415

the considered static problems, as an explicit time integration is used for solving the tube equations of motion, the416

imposed loading is not imposed suddenly but with a smooth increase in time in order to avoid spurious numerical417

oscillations. The associated rise time which is denoted here by τ is set to be significantly greater than the maximum418

time scale of each contribution of the tube element, i.e. beam axial, beam flexural, tube radial, tube torsional, tube419

flexural and tube ovalization, expressed in Sec. 3.5. In other words, τ is taken to be:420

τ = N T with T = max ©­«`e
√
ρ

E
, `2

e

√
ρS

EIyπ4 ,
a
λmin

√
ρ
(
1 − ν2

)
E

ª®¬ (63)

where λmin = min
(
λr, λa, λt, λf, λo

i j

)
given in Eq. (60) and N >> 1.421

4.1. Test 1: Pipe contraction due to a uniform and static extension via the Poisson effect422

The first test-case considered here consists in a simple extension. For this purpose, a symmetric displacement is423

imposed at the two boundaries of the tube, i.e. ±uD/2 at each side. Due to the Poisson effect which is taken into424

account in the present tube model, the pipe elongation is accompanied by a pipe cross-section reduction.425

First, the analytical solution of the present test-case is derived from the proposed model considering only a uniform426

radial displacement which corresponds to the 0 mode in Fourier series as described in Sec. 2.4. In the present case of a427
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uniform extension, only the beam-type axial displacement Uo and the shell-type radial displacement wc
o are non-zero.428

Considering a uniform radial displacement, the non-zero components of the strain tensor given in Eq. (11) and the429

non-zero generalized forces defined in Eq. (34) are expressed as:430


εxx =

∂Uo

∂x
εθθ =

(
1
a
− z

a2

)
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o

and


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+ ν

wc
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a

)
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ES
1 − ν2

1
a

(
ν
∂Uo

∂x
+
wc
o

a

) (64)

Finally, the static equilibrium equations expressed in Eq. (33) write:431

∂N
∂x

= 0, (tw)co = 0 (65)

leading to the two following relations verified by the axial and the radial displacements:432

wc
o = −νa

∂Uo

∂x
and

∂2Uo

∂x2 = 0 (66)

Finally, using the value of the axial displacements at the two pipe boundaries, i.e. Uo(0) = −uD

2
and Uo(L) =

uD

2
,433

leads to:434

Uo =
uD

2L
(2x − L) and wc

o = −νa
uD

L
(67)

In the present test-case, the elongation is taken as: uD/L = 0.01 satisfying the small deformation assumption and435

leading to the following constant value: wc
o/a = −3 × 10−3. Then, the numerical solutions are compared to the436

analytical solution previously described in order to assess the numerical method used for approximating the governing437

equations of the tube model.438

The time evolution of the imposed displacement at the boundaries depicted in Fig. (6) starts with a smooth increase439

in order to avoid spurious numerical oscillations. The associated rise time is set to be equal to τ = 100T in Eq. (63).
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Figure 6: Test 1: Time evolution of the axial imposed normalized displacement.

440

The numerical solutions of the radial displacement obtained with one single element and ten elements are com-441

pared with the analytical solution in Fig. (7). It is shown that the steady-state solution is in good agreement with the442

analytical one as expected.443
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Figure 7: Test 1: Comparison between numerical and analytical solutions of the radial displacements for the elongation test.

4.2. Test 2: Radial pipe expansion due to an internal pressure444

The second test-case consists in a tube under an internal pressure. A uniform pressure denoted by Pint is applied445

inside the pipe and creates a uniform expansion of the tube cross-section.446

As in the previous case, the analytical solution of the present test is derived from the enriched beam model447

developed in this paper and considering only the mode 0 in the Fourier expansion. Once again, under an internal448

pressure loading, only the beam-type axial displacement Uo and the shell-type radial displacement wc
o are non-zero.449

In addition, let us consider that wc
o is uniform and that Uo is null. As a consequence, the only non-zero component450

of the strain tensor εθθ expressed in Eq. (11) and the generalized force associated with the radial pipe cross-section451

expansion (tw)co given in Eq. (34) can be expressed as:452

εθθ =

(
1
a
− z

a2

)
wc
o and (tw)co =

ES
1 − ν2

1
a2 w

c
o (68)

The power of the internal pressure applied to the inner tube surface writes as:453

Pe =

∫
A−

Pintδw
c
odA− =

∫ L

0

∫ 2π

0
Pintδw

c
o

(
a − e

2

)
dθdx =

∫ L

0
2πPint

(
a − e

2

)
δwc

odx (69)

Knowing the external loading, the equilibrium equation derived from Eq. (33) becomes:454

(tw)co = 2πPint

(
a − e

2

)
(70)

As a consequence, the radial displacement due to the internal pressure can be expressed as:455

wc
o =

Pint
(
1 − ν2)
E

a
e

(
a − e

2

)
(71)

The numerical solutions are now compared with this analytical solution. In the present test-case, a uniform internal456

pressure Pint of 100 bar is imposed following a time evolution similar to the one depicted in Fig. (6) with a smooth457

linear increase in order to avoid spurious numerical oscillations where τ = 100T as defined in Eq. (63). In addition,458

a condition of zero axial displacement, i.e. Uo = 0, is imposed at the two boundary nodes. For a pressure of 100 bar,459

the analytical solution expressed in Eq. 71 leads to the following value: wc
o = 4.3225 × 10−4 m.460

The comparison between the numerical solutions and the analytical radial displacement is shown in Fig. (8). The461

numerical results for one element is registered at the right boundary node and at the middle node for the computation462

with ten elements. As in the previous test-case, a good agreement between the numerical solutions and the analytical463

one is achieved.464
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Figure 8: Test 2: Comparison between numerical and analytical solutions of the radial displacements for the breathing test - the analytical solution
corresponds to the value: wc

o = 4.3225 × 10−4 m.

4.3. Test 3: Dynamic radial tube motion465

The present test-case is similar to the previous one except that a dynamic internal pressure loading is now consid-466

ered. Following the same assumptions as previously, the equation of motion given in Eq. (32) writes as:467

ρS
∂2wc

o

∂t2 + (tw)co = 2πPint

(
a − e

2

)
with (tw)co =

ES
1 − ν2

1
a2 w

c
o

(72)

with the initial condition: wc
o(t = 0) = 0 m. The analytical solution of this equation writes as:468

wc
o (t) = wc,sta

o

(
1 − cos (ωt)

)
with wc,sta

o =
Pint

(
1 − ν2)
E

a
e

(
a − e

2

)
and ω =

1
a

√
E

ρ
(
1 − ν2

) (73)

wc,sta
o corresponds to the static solution, i.e. the analytical solution of the previous test, and ω corresponds to the radial469

pulsation of a cylindrical shell as expressed in [43].470

The computation of the present test-case is performed by imposing the internal pressure of 100 bar at the first471

time step. The corresponding numerical solutions obtained with both one element and ten elements shown in Fig.472

(9) correspond to a periodic function. The period obtained from the numerical solution is compared to its analytical473

counterpart: Tthe ≈ 1.1836761 × 10−3 s versus Tnum ≈ 1.183688 × 10−3 s, showing the good agreement between the474

two results.475

476

In the two previous cases, only mode 0 in the Fourier expansion is considered which corresponds to the radial477

expansion/contraction of the tube cross-section. In the next test-case, only Fourier mode 2 is considering in order to478

represent the cross-section ovalization.479

4.4. Test 4: Ovalization due to a pipe in-plane bending480

The present test-case consists in a pure in-plane bending test where a symmetric rotation is imposed at the two481

boundaries of the tube, i.e. ±Ω at each side. Due to the bending, it is expected that the tube tends to ovalize.482

The analytical solution of the present test is derived from the present beam model considering only mode 2 in the483

Fourier series as it is detailed in Sec. 2.5. Considering in addition that wc
2 is uniform and that wc

2 /a � 1, the non-zero484
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Figure 9: Test 3: Time evolution of the radial displacement in the case of an internal pressure loading.

forces defined in Eq. (41) can be expressed as:485 
My = − E

1 − ν2 πa3e
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) (74)

and the equilibrium equations given in Eq. (40) write:486

∂2My

∂x2 = 0, (tw)c2 = 0 (75)

with the following boundary conditions:487

{
Vo(0) = 0
Vo(L) = 0 and


−Ωy(0) =

∂Vo

∂x
(0) = −Ω

−Ωy(L) =
∂Vo

∂x
(L) = Ω

(76)

As a consequence, the beam-type vertical displacement Vo and the shell-displacement wc
2 are given by:488

Vo = Ω
x
L
(x − L) and wc

2 = 4Ω2a
a4

e2L2
(77)

In the present test-case, the rotation at the two pipe ends is taken as Ω = 0.1 radian.489

The numerical solutions are now compared to the analytical reference previously described. The time evolution490

of the imposed rotation at the two tube boundaries is once again similar as the one shown in Fig. (6). As previously, a491

smooth increase of the imposed rotation is considered in order to avoid spurious oscillations. In the present case, the492

rise time τ is taken as τ = 3000T as defined in Eq. (63). In addition, the beam-type vertical displacement is set to be493

zero at the two pipe ends, i.e. Vo(0) = 0 and Vo(L) = 0.494

The time evolution of the shell displacement corresponding to the second Fourier mode associated with the pipe495

cross-section ovalization is depicted in Fig. (10). The numerical results are taken at the outlet end of the tube for both496

one and ten elements. Once again, the analytical solution corresponds to the numerical steady-state solution. Note497

that, during the period 0 ≤ t ≤ τ where the imposed rotation Ω evolves linearly in time, the radial displacement wc
2498

follows a quadratic behavior. This is explained as wc
2 evolves with the square of Ω as shown in Eq. (77).499
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Figure 10: Test 4: Comparison between numerical and analytical solutions of the shell-type radial displacement corresponding to the second Fourier
mode.

4.5. Test 5: Cross-section deformation of a clamped tube subject to a distributed patch load500

This test-case consists in a tube clamped at its two ends and subjected to a downward distributed patch load501

of amplitude Fz = 1010 N acting at the mid-region of its mid-surface within an area given by 0.4L ≤ x ≤ 0.6L,502

π/2 − θp ≤ θ ≤ π/2 + θp at z = 0 with θp = π/100 as depicted in Fig. (11). A reference numerical solution is first

L

0.4L 0.2L 0.4L

Fz

Ex

Ez
Ey

Ey

Ez

θp θp

Fz

Figure 11: Test 5: Clamped tube subjected to a distributed patch load - patch loading area and direction of the vertical force.

503

obtained with shell elements in order to identify the tube cross-section deformation due to the present loading. For this504

purpose, this reference numerical solution is obtained using Code Aster (https://www.code-aster.org) with the505

9-node linear and bi-quadratic quadrilateral shell elements named Coque 3D [44]. The corresponding computation is506

performed with 9 082 elements, 32 068 nodes and 171 345 DOFs. Afterwards, the ability of the present tube model to507

retrieve the tube deformation is assessed. To this end, the distributed loading is applied with a smooth increase and508

τ = 100T in Eq. (63) similarly as in Fig. (6). Due to the longitudinal variation of the distributed patch loading, 10509

elements are used in the present computations, i.e. `e = L/10. The external force is here applied to the present tube510

model through the virtual power principle where the power of this external force can be expressed as:511

Pe = −Fz

∫ 0.6L

0.4L

∫ π/2+θp

π/2−θp

(
δVo + sin θ δwo + cos θ δvo

)
dθdx

In practice, the external force is applied on the two tube elements located at the mid-length of the pipe, i.e. 0.4L ≤512

x ≤ 0.5L for the first element and 0.5L ≤ x ≤ 0.6L for the second one. The different tests performed for the analysis513

of the present tube model on this test-case are described in the following.514
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4.5.1. Influence of the number of Fourier modes515

First, the influence of the number of modes considered in the Fourier expansion in terms of the circumferential516

variable expressed in Eq. (15) is examined. For this purpose, the numerical solutions of the tube model using Nf = 2,517

Nf = 4 and Nf = 6 are compared to the reference shell-type solution. Fig. (12) shows the tube cross-section518

deformation at x = 0.5L obtained with the different computations as well as the initial undeformed circular cross-

Figure 12: Test 5: Influence of the number of Fourier modes on the tube cross-section deformation at x = 0.5L.

519

section. The tube cross-section obtained with Nf = 2 has an elliptical shape with a slight asymmetry which is due520

to the inextensibility hypothesis as discussed in [34]. In contrast, the tube cross-section obtained with Nf = 4 and521

Nf = 6 is in good agreement with the reference shell solution with an improved concordance with Nf = 6. Note that522

this result is in accordance with the following references [6, 15, 45] where Nf = 6 is also retained by the authors. In523

the following, Nf = 6 is thus considered.524

4.5.2. Influence of the warping terms525

The influence of the consideration of the warping terms in the tube displacement field is now studied. The tube526

cross-sections at x = 0.5L obtained with and without the warping terms are compared in Fig. (13). It is clearly shown

Figure 13: Test 5: Influence of the warping terms on the tube cross-section deformation at x = 0.5L.

527

that considering the warping terms is necessary to retrieve the reference deformation. This shows the interaction528

between warping and ovalization terms through the distortion εxθ . Note that this coupling is also observed in the529

generalized forces as terms in uc/s
i are involved in the forces (tw)c/si (see Eq. (B.13)). In addition, it has to be noticed530
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that the second Fourier mode for the warping terms uo seems to be sufficient to be in agreement with the shell solution.531

However, in the following the warping terms are considered in conjunction with Nf = 6 for uo, vo and wo.532

4.5.3. Influence of the non-linear coupling terms533

The influence of the consideration of the non-linear coupling terms in the tube kinematics is now analyzed. Fig.534

(14) shows the cross-section deformations at x = 0.5L obtained with or without the non-linear terms. This demon-

Figure 14: Test 6: Influence of the non-linear coupling terms on the tube cross-section deformation at x = 0.5L.

535

strates the requirement of considering the non-linear coupling to retrieve the reference shell deformation. To complete536

the analysis, the same comparison is now performed at different locations along the pipe, i.e. x = 0.6L, x = 0.7L,537

x = 0.8L and x = 0.9L. In addition, the warping of the tube cross-section is also examined. Fig. (15) shows the538

corresponding results. At x = 0.6L, the highly deformed cross-section presents also a significant warping as well539

as a notable rotation which is not observed at x = 0.5L due to the symmetry of the present problem. Once again,540

considering the non-linear coupling makes it possible to improve the agreement between the tube and the shell solu-541

tions. The more the sections are far from the pipe center the less is the corresponding deformation (ovalization and542

warping). In the same way, the influence of the non-linear coupling is reduced as the section moves away. In all the543

observed locations, the solutions considering the non-linear coupling is in good agreement with the reference solution.544

545

The previous analysis is performed on the tube cross-section deformation including both ovalization and warping.546

Focus is now given to the local generalized stress field for both linear and non-linear tube models. This is performed547

through the comparison with the numerical solutions obtained with shell finite-elements.548

4.5.4. Analysis of the longitudinal stress component and comparison with shell elements549

Comparison with shell-type solution is now performed on the longitudinal stress component σxx given by:550

σxx = σm
xx + zσk

xx with σm
xx =

E
1 − ν2

(
εmxx − ν εmθθ

)
and σk

xx =
E

1 − ν2 (kxx − νkθθ )

The profile of this contribution along the circumferential direction at x = 0.5L is depicted in Fig. (16) for the shell-551

type modeling, the non-linear and the linear tube model in conjunction with six Fourier modes at z = 0, i.e. at the552

mid-surface, for the membrane term and at z = e/2 which corresponds to the outer surface. Concerning the membrane553

term σm
xx , it has to be noticed that the three models lead to a similar oscillatory response with a first peak associated554

with a compressive stress at θ = π/2 which corresponds to the location of the external load center and a second555

compressive stress peak at θ = 3π/2. In addition, two peaks associated with a tensile stress are also obtained but556

their locations differ from one model to the other. With the shell model, these two peaks are located at θ = π and557

θ = 2π. However, with the present tube model (for both linear and non-linear formulations), the analysis of the strain558

tensor components shows that these tensile stress peaks are located at the locations of the two local extrema of the εmxx559

component. Due to the inextensibility assumption for Fourier modes of order greater than or equal to two considered560
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(a) (b)

(1)

(2)

(3)

(4)

Figure 15: Test 5: Influence of the non-linear coupling on the tube cross-section (a) ovalization and (b) warping at different locations along the
pipe: (1) at x = 0.6L, (2) at x = 0.7L, (3) at x = 0.8L and (4) at x = 0.9L.
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(a) σm
xx at the mid-surface z = 0 (b) σxx at the outer surface z = e/2
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Figure 16: Test 5: Longitudinal stress component σxx at x = 0.5L (a) for z = 0 and (b) for z = e/2, comparison between shell elements,
non-linear and linear tube model with 6 Fourier modes, the stress values are divided by 109 Pa.

in the present formulation, only the first Fourier mode is involved in εmθθ which, finally, has no influence on these two561

tensile stress peaks. Nevertheless, a quite good agreement is obtained with the three models. This agreement seems to562

be furthermore improved for the σxx component at the outer surface. Once again, two compressive stress peaks and563

two tensile stress peaks are observed in the shell solution which are retrieved with the present tube model with both564

linear and non-linear formulations.565

566

The previous analysis demonstrates the accuracy of the present tube model in comparison with a shell solution.567

The two types of numerical solution are now compared in terms of computational efficiency.568

4.5.5. Further discussion on the computational efficiency of the present tube model569

In order to estimate the computational savings providing by the use of the present tube model with respect to570

the use of shell elements, focus is here firstly given to the number of DOFs involved in the two types of model571

considered here. Classically when using quadrangle shell elements, it corresponds to 4-node elements with 6 DOFs572

per node (3 translations and 3 rotations). Let us denote by N the number of shell elements used to discretize the pipe573

circumference. A lower estimation ofN is 16 where only 4 nodes are used for the discretization of a quarter of the pipe574

circumference which corresponds to a quite coarse description of the pipe perimeter. Using only one shell in the pipe575

longitudinal direction leads to 192 DOFs. In contrast, when using one single tube element, only 2 nodes are considered576

with 42 DOFs per nodes (or 22 DOFs for an in-plane motion), i.e. 84 DOFs (or 44 DOFs for an in-plane motion).577

As a consequence, with similar length and stability condition, the use of the present tube model makes it possible to578

reduce the computational effort by a factor of 2.28 (or 4.56 for an in-plane motion). Obviously, the computational579

savings are increased when the pipe circumference is more accurately discretized. For example, in the present test-580

case,N = 64 nodes are used for the pipe perimeter leading to a ratio of 9.14 (or 17.45 for an in-plane motion) between581

the DOFs with shell elements and the DOFs with one single tube element showing the significant reduction of the582

number of DOFs. Then, another aspect which has to be considered for the evaluation of computational efficiency of583

the present tube model in comparison with standard shell elements is the time for constructing generalized forces. For584

this purpose, the size and sparseness of the stiffness matrices when using the tube element and the standard 4-node585

shell finite element are here studied and detailed in Appendix C. It is shown that the stiffness matrix of the present586

tube element has 1948 non-zero components using the non-linear formulation and 476 non-zero components when it587

is derived following the linear formulation for one single element. In comparison, the shell stiffness matrix has 208588

non-zero components for one single element showing a ratio of 9.36 for the non-linear tube and a ratio of 2.29 for the589

linear tube. As it is discussed previously N = 16 shell elements represent a coarse description of the pipe perimeter.590

However, it leads to a greater time for constructing the stiffness matrix when using shell elements in comparison591
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with only one single tube element for the same section. Finally, focus is now given to the comparison between the592

critical time step obtained with the present tube model and the one obtained with shell elements as it directly drives593

the computational cost for dynamic analysis. In the present case, as discussed previously, the critical time step is given594

by the cross-section ovalization (cf. Eq. (62)) leading to the following value: ∆ttube ≈ 9.862 × 10−6 s for `e = L/10595

(corresponding to 10 elements in the pipe length). For shell elements, the critical time step should be rigorously given596

by the most restrictive mode among traction, bending and torsion which is in general due to the rotational DOFs. In597

explicit dynamics, the rotary mass can be scaled to permit larger time steps without a loss of stability [46, 41]. As a598

consequence, the critical time step is given by the traction mode with the following expression:599

∆tshell = C`e

√
ρ
(
1 − ν2

)
E

(78)

leading to the value: ∆ttube ≈ 9.25×10−6 s for `e = 2πa/64 (corresponding to 64 elements in the pipe perimeter) with600

a Courant number C = 0.5. This leads to a similar value for the critical time step between the proposed tube element601

and shell elements. This analysis clearly demonstrates the interest of the present tube model in terms of computational602

efficiency. In addition, it has to be noticed that for FSI problems, the present tube model has to be coupled with a 1-D603

fluid model for the internal fluid. In that case, only one 1-D fluid cell is required in conjunction with the present tube604

model as described in [39]. In contrast, it is necessary to mesh the 3-D internal fluid domain inside the tube when it605

is discretized with shell elements. Once again it strongly increases the computational effort associated with the use606

of shell elements in contrast to the one of the present tube model. What is more, it also makes it possible to avoid607

the numerical problems due to the rezoning procedure with large pipe cross-section deformations where robustness608

problems can appear due to the apparition of high distortions of meshes in the fluid domain. This is an additional609

major interest of using the present tube model.610

5. Conclusion and perspectives611

A novel straight thin-walled tube element has been here proposed in order to take deformations of its cross-section612

and inertia evolution into account. The present kinematics is decomposed into Euler-Bernoulli beam, Love-Kirchhoff613

shell contributions and a non-linear coupling between cross-section deformation and neutral axis rotation. Concern-614

ing the shell kinematics, the Flügge thin cylindrical shell theory is used. Finally, Fourier expansion in terms of the615

circumferential variable is applied for the mid-surface DOFs in which coefficients producing a rigid-body motion are616

excluded to avoid redundancy with beam DOFs. In addition, for Fourier modes of order greater than or equal to two,617

an inextensiblity of the section is assumed. Following this derivation, the proposed tube element DOFs depend only on618

the longitudinal variable while also considering radial expansion, warping as well as ovalization of its cross-section.619

In addition, the consideration of the non-linear coupling terms ensures that the inertia of the tube section can evolve620

with its deformation. A comparison between the proposed formulation and the previously published ones is discussed621

showing that the present formulation consider complete Fourier expansion for all the shell DOFs which thus can be622

seen as a generalization of the previous approaches. In addition, the present formulation seems to be the simplest623

one able to consider the cross-section deformations as well as the changes of inertia as only one non-linear coupling624

term is taken into account for this purpose. Note that this non-linear term is not sufficient to describe all possible625

local and global buckling. Then, the tube equations of motion are obtained and expressed through the virtual power626

principle. Afterwards, an explicit updated Lagrangian Finite-Element solver is proposed for the present tube model.627

In particular, the lumped mass matrix is described as well as the stability condition of the explicit scheme taking into628

account both beam and shell contributions. Then, the proposed tube model is assessed on several test-cases. A first629

series of simple cases where analytical solutions of the tube model can be obtained is considered in order to evaluate630

the numerical method. Finally, a more complex test-case involving a distributed patch loading is studied. The numer-631

ical solution of the present tube model is here compared with a reference solution obtained with shell elements. The632

influence of the Fourier modes number as well as the warping terms and the non-linear coupling is examined. The633

shell-type cross-section deformation is retrieved with the present tube model. Finally, a discussion concerning the634

computational efficiency of the proposed element is also provided in order to illustrate the corresponding savings in635

comparison with the use of shell elements.636

637
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The present tube element has been proposed and derived in the context of straight thin-walled tubular geometries.638

However, realistic piping systems involve elbows and bends. For this reason, the present model has first to be extended639

to curved thin-walled tubes via the introduction of the elbow’s radius of curvature and the associated local frame640

of reference where the tube displacement field has to be expressed. In addition, only a linear elastic behavior is641

considered in the present study. Plasticity has thus to be taken into account in the future in order to perform inelastic642

analysis of piping systems where additional questions arise. In particular, a yield criterion taking into account all643

of the generalized forces of the tube element has to be defined. In addition, focus has also to be given to the local644

detection of the tube region where plasticity occurs. Finally, for considering FSI problems, the present tube model has645

also to be coupled with a 1-D fluid model in a similar way as it is proposed in [39] where a standard Euler-Bernoulli646

beam element is used. In this kind of coupling, the cross-section deformation has a direct impact on the wave speed647

of the internal fluid pressure waves whereas the internal fluid pressure variation has an influence on the tube section648

evolution. These different issues are under consideration for current research in order to use the present tube element649

for the simulation of fast-transient events occurring in industrial piping systems such as pipe whipping for example.650
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[26] Y. Pascal Abdellaoui, Modèles mécaniques de poutre enrichis pour la simulation de tubes minces sous pression, Ph.D. thesis, Université693
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Appendix A. Derivatives with respect to coordinates x, θ and z727

As given in Eq. (1), the coordinates of the point m in the deformed configuration following an in-plane motion in728

the (Ex,Ez) plane, i.e. Wo = 0 and Ωx = Ωz = 0, are expressed as:729

m =
(
x + Uo + u + [(a + z + w) sin θ + v cos θ]Ωy

)
Ex +

(
Vo sin θ + a + z + w − uΩy sin θ

)
ER+(

Vo cos θ + v − uΩy cos θ
)

Eθ

The coupling terms involving the tube axis rotation and the warping degree-of-freedom, i.e. uΩy , are here neglected730

leading to:731

m =
(
x + Uo + (a + z)Ωy sin θ + u +Ωyh

)
Ex + (Vo sin θ + a + z + w)ER + (Vo cos θ + v)Eθ

with h = (wER + vEθ ) · Ez = w sin θ + v cos θ. The derivatives of the coordinates of the point m with respect to the732

variables x, θ and z are given by:733 

∂x m =

(
1 +

∂Uo

∂x
+
∂u
∂x

+ (a + z)
∂Ωy

∂x
sin θ +

∂

∂x
(
Ωyh

) )
Ex +

(
∂Vo

∂x
sin θ +

∂w

∂x

)
ER +

(
∂Vo

∂x
cos θ +

∂v

∂x

)
Eθ

∂z m =

(
∂u
∂z

+Ωy sin θ +Ωy
∂h
∂z

)
Ex +

(
1 +

∂w

∂z

)
ER +

∂v

∂z
Eθ

∂θ m =

(
∂u
∂θ

+ (a + z)Ωy cos θ +Ωy
∂h
∂θ

)
Ex +

(
∂w

∂θ
− v

)
ER +

(
∂v

∂θ
+ a + z + w

)
Eθ

The metrics associated with this gradient are defined as:734

gi j ≡ ∂i m · ∂j m
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with i = x, θ, z and j = x, θ, z. Then, neglecting both the second-order beam-type displacement terms and the second-735

order shell-type displacement terms leads to the following metrics expressions:736 

gxx = 1 + 2
(
∂Uo

∂x
+
∂u
∂x

+ (a + z)
∂Ωy

∂x
sin θ

)
+ 2

(
Ωy +

∂Vo

∂x

)
∂h
∂x

+ 2h
∂Ωy

∂x

gθθ = (a + z)2 + 2 (a + z)
(
∂v

∂θ
+ w

)
gzz = 1 + 2

∂w

∂z

gxθ =
∂u
∂θ

+ (a + z)
(
Ωy +

∂Vo

∂x

)
cos θ +

(
Ωy +

∂Vo

∂x

)
∂h
∂θ

+ (a + z) ∂v
∂x

gxz =
∂u
∂z

+

(
Ωy +

∂Vo

∂x

)
sin θ +

(
Ωy +

∂Vo

∂x

)
∂h
∂z

+
∂w

∂x

gzθ =
∂w

∂θ
− v + (a + z) ∂v

∂z

The strain tensor is directly obtained with the metrics using the relations:737


2 εxx = gxx − 1

2 εθθ =
1

(a + z)2
gθθ − 1

2 εzz = gzz − 1

and


2 εxθ =

1
a + z

gxθ

2 εxz = gxz

2 εzθ =
1

a + z
gzθ

As a consequence, the strain-displacement relations are given by:738 

εxx =
∂Uo

∂x
+ (a + z) sin θ

∂Ωy

∂x
+
∂u
∂x

+

(
Ωy +

∂Vo

∂x

)
∂h
∂x

+ h
∂Ωy

∂x

εθθ =
1

a + z

(
∂v

∂θ
+ w

)
εzz =

∂w

∂z

2 εxθ =

(
Ωy +

∂Vo

∂x

)
cos θ +

1
a + z

∂u
∂θ

+
∂v

∂x
+

1
a + z

(
Ωy +

∂Vo

∂x

)
∂h
∂θ

2 εxz =

(
Ωy +

∂Vo

∂x

)
sin θ +

∂u
∂z

+
∂w

∂x
+

(
Ωy +

∂Vo

∂x

)
∂h
∂z

2 εzθ =
1

a + z

(
∂w

∂θ
− v

)
+
∂v

∂z

(A.1)

Appendix B. Virtual power principle739

The virtual power principle writes:740

Pa = Pi + Pe with Pa =

∫
Ω

ρ
∂2 U
∂t2 · δU dV and Pi = −

∫
Ω

σ : δ ε dV (B.1)

with the elementary volume dV = a dθdzdx and the elementary surface dS = a dθdz.741
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Appendix B.1. Power of inertia742

Based on the displacement field expressed in Eq. (16), the acceleration and virtual displacement vectors are given743

by:744 
∂2 U
∂t2 =

(
∂2Uo

∂t2 +
∂2u
∂t2 + [(a + z) sin θ + h]

∂2Ωy

∂t2 + 2
∂h
∂t

∂Ωy

∂t
+Ωy

∂2h
∂t2

)
Ex +

(
∂2Vo

∂t2 sin θ +
∂2w

∂t2

)
ER +

(
∂2Vo

∂t2 cos θ +
∂2v

∂t2

)
Eθ

δU =
(
δUo + δu + [(a + z) sin θ + h] δΩy +Ωyδh

)
Ex + (δVo sin θ + δw)ER + (δVo cos θ + δv)Eθ

leading to the following scalar product:745

∂2 U
∂t2 · δU =

∂2Uo

∂t2 δUo +
∂2u
∂t2 δu + [(a + z) sin θ + h]2

∂2Ωy

∂t2 δΩy+

∂2Vo

∂t2 δVo +
∂2Vo

∂t2 δh +
∂2h
∂t2 δVo +

∂2v

∂t2 δv +
∂2w

∂t2 δw

Using the Euler-Bernoulli condition (cf. Eq. (6)) and the relation δh = δw sin θ + δv cos θ leads to the following746

expression:747

Pa =

∫
Ω

ρ

[
∂2Uo

∂t2 δUo +

(
∂2Vo

∂t2 − [(a + z) sin θ + h]2 ∂4Vo

∂t2∂x2 +
∂2h
∂t2

)
δVo+

∂2u
∂t2 δu +

(
∂2v

∂t2 +
∂2Vo

∂t2 cos θ
)
δv +

(
∂2w

∂t2 +
∂2Vo

∂t2 sin θ
)
δw

]
dV

Then, using the first-order decomposition of the shell-type displacements (cf. Eq. (8)) makes it possible to rewrite the748

power of inertia as:749

Pa =

∫
Ω

ρ

[
∂2Uo

∂t2 δUo +

(
∂2Vo

∂t2 − [(a + z) sin θ + h]2 ∂4Vo

∂t2∂x2 +
∂2h
∂t2

)
δVo+(

∂2uo
∂t2 − z

∂2u1

∂t2

)
δuo − z

(
∂2uo
∂t2 − z

∂2u1

∂t2

)
δu1+(

∂2vo

∂t2 + z
∂2v1

∂t2 +
∂2Vo

∂t2 cos θ
)
δvo + z

(
∂2vo

∂t2 + z
∂2v1

∂t2 +
∂2Vo

∂t2 cos θ
)
δv1+(

∂2wo

∂t2 +
∂2Vo

∂t2 sin θ
)
δwo

]
dV

As
∫ e/2
−e/2 zd z = 0, this relation can be simplified to:750

Pa =

∫
Ω

ρ

[
∂2Uo

∂t2 δUo +

(
∂2Vo

∂t2 − [(a + z) sin θ + h]2 ∂4Vo

∂t2∂x2 +
∂2ho
∂t2

)
δVo+

∂2uo
∂t2 δuo + z2 ∂

2u1

∂t2 δu1 +

(
∂2vo

∂t2 +
∂2Vo

∂t2 cos θ
)
δvo + z2 ∂

2v1

∂t2 δv1+(
∂2wo

∂t2 +
∂2Vo

∂t2 sin θ
)
δwo

]
dV

(B.2)

with ho = wo sin θ + vo cos θ. Then, using the Love-Kirchhoff conditions (cf. Eq. (9)) leads to:751

Pa =

∫
Ω

ρ

[
∂2Uo

∂t2 δUo +

(
∂2Vo

∂t2 − [(a + z) sin θ + h]2 ∂4Vo

∂t2∂x2 +
∂2ho
∂t2

)
δVo+

∂2uo
∂t2 δuo + z2 ∂

3wo

∂t2∂x
∂δwo

∂x
+

(
∂2vo

∂t2 +
∂2Vo

∂t2 cos θ
)
δvo+

+
z2

a2

(
∂3wo

∂t2∂θ
− ∂

2vo

∂t2

) (
∂δwo

∂θ
− δvo

)
+

(
∂2wo

∂t2 +
∂2Vo

∂t2 sin θ
)
δwo

]
dV

33



After integration by parts this rewrites as:752

Pa =

∫
Ω

ρ

[
∂2Uo

∂t2 δUo +

(
∂2Vo

∂t2 − [(a + z) sin θ + h]2 ∂4Vo

∂t2∂x2 +
∂2ho
∂t2

)
δVo+

∂2uo
∂t2 δuo +

(
∂2vo

∂t2 +
∂2Vo

∂t2 cos θ − z2

a2

(
∂3wo

∂t2∂θ
− ∂

2vo

∂t2

))
δvo+(

∂2wo

∂t2 +
∂2Vo

∂t2 sin θ − z2 ∂4wo

∂t2∂x2 −
z2

a2

(
∂4wo

∂t2∂θ2 −
∂3vo

∂t2∂θ

))
δwo

]
dV

The mid-surface displacement field are expressed as Fourier expansions (cf. Eq. (15)). In addition, note that the753

integral of the product of two Fourier expansions given by:754

α = αc
o +

N f∑
i=1

(
αc
i cos(iθ) + αs

i sin(iθ)
)

β = βco +

N f∑
i=1

(
βci cos(iθ) + βsi sin(iθ)

)
is as follows:755 ∫ 2π

0
αβ dθ = 2παc

oβ
c
o + π

N f∑
i=1

(
αc
i β

c
i + αs

i β
s
i

)
As a consequence, the power of inertia is expressed as:756

Pa =

∫
ρ

[
2πae

∂2Uo

∂t2 δUo +

(
2πae

∂2Vo

∂t2 − Iy
∂4Vo

∂t2∂x2

)
δVo+

πae
N f∑
i=2

(
∂2uc

i

∂t2 δuc
i +

∂2us
i

∂t2 δus
i

)
+ πae

(
1 +

e2

12a2

) N f∑
i=1

1
i2

(
∂2wc

i

∂t2 δwc
i +

∂2ws
i

∂t2 δws
i

)
− πae

∂2Vo

∂t2 δws
1

+πae
e2

12a2
©­«
∂2wc

1

∂t2 δwc
1 +

∂2ws
1

∂t2 δws
1 −

N f∑
i=2

(
∂2wc

i

∂t2 δwc
i +

∂2ws
i

∂t2 δws
i

)ª®¬ +

2πae
∂2wc

o

∂t2 δwc
o + πae

N f∑
i=1

(
∂2wc

i

∂t2 δwc
i +

∂2ws
i

∂t2 δws
i

)
+ πae

∂2Vo

∂t2 δws
1

−2πae
e2

12
∂4wc

o

∂t2∂x2 δw
c
o − πae

e2

12

N f∑
i=1

(
∂4wc

i

∂t2∂x2 δw
c
i +

∂4ws
i

∂t2∂x2 δw
s
i

)
+ πae

e2

12a2

N f∑
i=1

(
i2 ∂

2wc
i

∂t2 δwc
i + i2 ∂

2ws
i

∂t2 δws
i

)
+πae

e2

12a2
©­«
∂2wc

1

∂t2 δwc
1 +

∂2ws
1

∂t2 δws
1 −

N f∑
i=2

(
∂2wc

i

∂t2 δwc
i +

∂2ws
i

∂t2 δws
i

)ª®¬
 dx

as
∫ 2π

0 ho dθ = 0 and with the area moment of inertia:757

Iy =

∫
S

(
(a + z) sin θ + h

)2
dS

which can be expressed as:758

Iy = πa3e

(
1 + 2

wc
o

a
− 3

2
wc

2

a
+

(
3
4
ws

1

a

)2

+

(
wc
o

a
− 3

4
wc

2

a

)2

+

1
4

∑
i≥2

((
i + 2
i + 1

ws
i+1

a
− i − 2 + 2δi2

i − 1
ws
i−1

a

)2

+

(
i + 2
i + 1

wc
i+1

a
− i − 2 + 2δi2

i − 1
wc
i−1

a

)2
)

+
e2

12a2

(
1 + 4

wc
1

a

)) (B.3)
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Note that the moment of inertia for a beam is given by:759

Iby = πa3e
(
1 +

e2

12a2

)
(B.4)

After some algebraic manipulations, this can be rewritten under the following form:760

Pa =

∫
ρ

[
S
∂2Uo

∂t2 δUo + S
(
∂2Vo

∂t2 −
Iy
S

∂4Vo

∂t2∂x2

)
δVo+

πae
N f∑
i=2

(
∂2uc

i

∂t2 δuc
i +

∂2us
i

∂t2 δus
i

)
+ 2πae

(
∂2wc

o

∂t2 −
e2

12
∂4wc

o

∂t2∂x2

)
δwc

o+

2πae
(
1 + 2

e2

12a2

) (
∂2wc

1

∂t2 δwc
1 +

∂2ws
1

∂t2 δws
1

)
− πa

e3

12

(
∂4wc

1

∂t2∂x2 δw
c
1 +

∂4ws
1

∂t2∂x2 δw
s
1

)
+πae

N f∑
i=2

i2 + 1
i2

(
∂2wc

i

∂t2 δwc
i +

∂2ws
i

∂t2 δws
i

)
+ πa

e3

12a2

N f∑
i=2

(
i2 − 1

)2

i2

(
∂2wc

i

∂t2 δwc
i +

∂2ws
i

∂t2 δws
i

)
−πa

e3

12

N f∑
i=2

(
∂4wc

i

∂t2∂x2 δw
c
i +

∂4ws
i

∂t2∂x2 δw
s
i

) dx

(B.5)

with S = 2πae.761

Appendix B.2. Power of internal forces762

The power of internal forces is now expressed using the stress-strain relation. Following the decomposition ε =763

εm + zk, the stress tensor can also be decomposed as:764

σ = σm + zσk with σm =
E

1 − ν2

(
(1 − ν) εm + ν trac( εm) I

)
and σk =

E
1 − ν2

(
(1 − ν)k + ν trac(k) I

)
The power of internal forces can thus be expressed as:765

Pi = −
∫
Ω

(
σm : δ εm + z2σk : δk

)
dV (B.6)

as
∫ e/2
−e/2 z dz = 0. Based on the strain-displacement relationship expressed in Eq. (11), we can write:766

Pi = −
∫
Ω

[
σm
xx

(
∂δUo

∂x
− a sin θ

∂2δVo

∂x2 +
∂δuo
∂x
− ∂

2δVo

∂x2 ho −
∂2Vo

∂x2 (δwo sin θ + δvo cos θ)
)

+

z2σk
xx

(
− sin θ

∂2δVo

∂x2 −
∂2δwo

∂x2 +
cos θ

a
∂2δVo

∂x2

(
∂wo

∂θ
− vo

)
+

cos θ
a

∂2Vo

∂x2

(
∂δwo

∂θ
− δvo

))
+

σm
θθ

1
a

(
∂δvo
∂θ

+ δwo

)
− σk

θθ

z2

a2

(
∂2δwo

∂θ2 + δwo

)
+

σm
xθ

(
1
a
∂δuo
∂θ

+
∂δvo
∂x

)
− σk

xθ

z2

a

(
2
∂2δwo

∂x∂θ
+

1
a
∂δuo
∂θ
− ∂δvo

∂x

)]
dV

(B.7)

which can be rearranged as:767

Pi = −
∫
Ω

[
σm
xx

∂δUo

∂x
− σxx

(
(a + z) sin θ + ho −

z
a

cos θ
(
∂wo

∂θ
− vo

))
∂2δVo

∂x2 +

σm
xx

∂δuo
∂x

+
1
a

(
σm
xθ −

z2

a
σk
xθ

)
∂δuo
∂θ

+(
−σm

xx

∂2Vo

∂x2 sin θ +
1
a

(
σm
θθ −

z2

a
σk
θθ

))
δwo +

z2

a
σk
xx

∂2Vo

∂x2 cos θ
∂δwo

∂θ
− z2

a2σ
k
θθ

∂2δwo

∂θ2

−2
z2

a
σk
xθ

∂2δwo

∂x∂θ
− z2σk

xx

∂2δwo

∂x2

−
(
σm
xx +

z2

a
σk
xx

)
∂2Vo

∂x2 cos θδvo +

(
σm
xθ +

z2

a
σk
xθ

)
∂δvo
∂x

+ σm
θθ

1
a
∂δvo
∂θ

]
dV
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The mid-surface displacement virtual field is now expanded in Fourier series as in Eq. (15):768

Pi = −
∫
Ω

[
σm
xx

∂δUo

∂x
− σxx ((a + z) sin θ + h) ∂

2δVo

∂x2 +

σm
xx

N f∑
i=2

(
∂δuc

i

∂x
cos(iθ) +

∂δus
i

∂x
sin(iθ)

)
+

1
a

(
σm
xθ −

z2

a
σk
xθ

) N f∑
i=2

i
(
−δuc

i sin(iθ) + δus
i cos(iθ)

)
+(

−σm
xx

∂2Vo

∂x2 sin θ +
1
a

(
σm
θθ −

z2

a
σk
θθ

)) ©­«δwc
o + δwc

1 cos θ + δws
1 sin θ +

N f∑
i=2

(
δwc

i cos(iθ) + δws
i sin(iθ)

)ª®¬
+σk

xx

z2

a
∂2Vo

∂x2 cos θ ©­«−δwc
1 sin θ + δws

1 cos θ +

N f∑
i=2

i
(
−δwc

i sin(iθ) + δws
i cos(iθ)

)ª®¬
+σk

θθ

z2

a2
©­«δwc

1 cos θ + δws
1 sin θ +

N f∑
i=2

i2 (
δwc

i cos(iθ) + δws
i sin(iθ)

)ª®¬
−2

z2

a
σk
xθ

©­«−
∂δwc

1

∂x
sin θ +

∂δws
1

∂x
cos θ +

N f∑
i=2

i
(
−
∂δwc

i

∂x
sin(iθ) +

∂δws
i

∂x
cos(iθ)

)ª®¬
−z2σk

xx
©­«∂

2δwc
o

∂x2 +
∂2δwc

1

∂x2 cos θ +
∂2δws

1

∂x2 sin θ +

N f∑
i=2

(
∂2δwc

i

∂x2 cos(iθ) +
∂2δws

i

∂x2 sin(iθ)
)ª®¬

−
(
σm
xx +

z2

a
σk
xx

)
∂2Vo

∂x2 cos θ ©­«−δws
1 cos θ + δwc

1 sin θ +

N f∑
i=2

1
i

(
δws

i cos(iθ) − δwc
i sin(iθ)

)ª®¬
+σm

θθ

1
a

©­«δwc
1 cos θ + δws

1 sin θ −
N f∑
i=2

(
δws

i sin(iθ) + δwc
i cos(iθ)

)ª®¬
+

(
σm
xθ +

z2

a
σk
xθ

) ©­«−
∂δws

1

∂x
cos θ +

∂δwc
1

∂x
sin θ +

N f∑
i=2

1
i

(
∂δws

i

∂x
cos(iθ) −

∂δwc
i

∂x
sin(iθ)

)ª®¬
 dV

Introducing the generalized forces and moments associated with the beam-type and shell-type motions, this can be769

rewritten as:770

Pi = −
∫ L

0

N
∂δUo

∂x
− My

∂2δVo

∂x2 +

N f∑
i=2

(
(tu)ci δuc

i + (tu)si δus
i

)
+

N f∑
i=2

(
(nu)ci

∂δuc
i

∂x
+ (nu)si

∂δus
i

∂x

)
+

(tw)co δwc
o − (mw)co

∂2δwc
o

∂x2 +

(tw)c1 δwc
1 + (tw)s1 δws

1 + (nw)c1
∂δwc

1

∂x
+ (nw)s1

∂δws
1

∂x
− (mw)c1

∂2δwc
1

∂x2 − (mw)s1
∂2δws

1

∂x2
N f∑
i=2

(
(tw)ci δwc

i + (tw)si δws
i + (nw)ci

∂δwc
i

∂x
+ (nw)si

∂δws
i

∂x
− (mw)ci

∂2δwc
i

∂x2 − (mw)si
∂2δws

i

∂x2

) dx

(B.8)
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with the following definition of the generalized forces and moments:771 
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for i ≥ 2 with the following components of the stress-tensor:772 
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N and My are the axial force and the in-plane bending moment, respectively, associated with the beam-type DOFs.773

(tu)c/si and (nu)c/si are the forces associated with the cross-section warping. (tw)co and (mw)co are associated to the774

radial expansion/contraction of the tube cross-section while (tw)c/s1 , (nw)c/s1 and (mw)c/s1 are linked to the vanishing775

rigid-body of the tube cross-section. Finally, (tw)c/si , (nw)c/si and (mw)c/si for i ≥ 2 correspond to the forces associated776

to the tube cross-section distortion.777

The axial force and the in-plane bending moment corresponding to the beam motion are expressed as:778 
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It has to be noticed that N corresponds to the classical axial force of a beam with an additional term related to the779

cross-section expansion/contraction corresponding to the Poisson effect. My involve two type of terms: the first one is780

similar to the beam-type bending moment with the modified moment of inertia given in Eq. (B.3) whereas the second781

one are due to the non-linear coupling.782

Then, the forces corresponding to the cross-section warping are expressed for i ≥ 2 as:783 
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The moments and forces associated to the mode 0 in the Fourier expansion of the cross-section deformation are given784

by:785 
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)
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In addition, the moments and forces associated to the mode 1 in the Fourier expansion of the cross-section deformation786

are given by:787 

(tw)c1 = +
ES

1 − ν2

(
2
wc

1

a2 −
1
2
∂2Vo

∂x2

(
∂us

2

∂x
− e2

12a

∂2ws
2

∂x2

)
− ν ∂

2Vo

∂x2

3
4

(
1 + 2

e2

12a2

)
ws

2

a

+
1
4

(
∂2Vo

∂x2

)2 (
2
(
1 +

e2

12a2

)
wc

1 −
4
3

(
1 − 2

e2

12a2

)
wc

3

))

(tw)s1 = +
ES

1 − ν2

(
2
ws

1

a2 +
1
2
∂2Vo

∂x2

(
∂uc

2

∂x
− e2

12a

(
∂2wc

2

∂x2 + 2
∂2wc

o

∂x2

))
− ν ∂

2Vo

∂x2

(
1 +

(
1 +

e2

12a2

)
wc
o

a
− 3

4

(
1 + 2

e2

12a2

)
wc

2

a

)
+

1
4

(
∂2Vo

∂x2

)2 (
2
(
1 +

e2

12a2

)
ws

1 −
4
3

(
1 − 2

e2

12a2

)
ws

3

))

(nw)c1 = +
ES

1 + ν

1
4

(
1+9

e2

12a2

)
∂wc

1

∂x

(nw)s1 = +
ES

1 + ν

1
4

(
1+9

e2

12a2

)
∂ws

1

∂x

(mw)c1 = − ES
1 − ν2

e2

24

(
∂2wc

1

∂x2 +
∂2Vo

∂x2

3ws
2

4a

)
(mw)s1 = − ES

1 − ν2

e2

24

(
∂2ws

1

∂x2 +
∂2Vo

∂x2

(
1 +

3wc
2

4a

))
(B.12)

39



Finally, the moments and forces associated to the mode i (for i ≥ 2) in the Fourier expansion of the cross-section788

deformation are expressed as:789


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Terms in magenta in the previous equations are due to the non-linear coupling between the axis rotation and the cross-790

section deformation. First, it has to be noticed that without this coupling, the forces corresponding to mode i depends791

only on DOFs of mode i. In contrary, terms with ∂2
x2Vo involves DOFs of mode i − 1, i and i + 1 whereas terms with792 (

∂2
x2Vo

)2
involves DOFs of mode i−2, i and i + 2. Finally, the cross-section warping and the cross-section ovalization793

are connected through the forces (tu)c/si , (nu)c/si , (tw)c/si and (nw)c/si . Terms in blue in the previous equations involved794

the ratio e2/12a2 which can be neglected in the case of very thin-walled tubes.795
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Appendix B.3. Tube equations of motion796

Finally, the equations of motion of the tube are:797
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For the specific case where only mode 0 is considered in the Fourier expansion, the equations of motion write:798 
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with the generalized forces:799 
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a
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)
with the moment of inertia given by:800

Iy = πa3e

(
1 + 2

wc
o

a
+

(
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o

a

)2

+
e2

12a2

)
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When neglecting the terms associated with the non-linear coupling and the terms in e2/12a2 due to the thin-walled801

assumption, this leads to:802 

N = +
ES

1 − ν2

(
∂Uo

∂x
+ ν

wc
o

a

)
My = −

EIy
1 − ν2
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∂x2
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1 − ν2

1
a

(
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o

a
+ ν

∂Uo

∂x

)
(mw)co = − ES

1 − ν2

e2

12
∂2wc

o

∂x2

with Iy = πa3e = Iby (B.16)

For the specific case where only mode 2 is considered in the Fourier expansion, the equations of motion write:803 
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(B.17)

with the following generalized forces:804 
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)
with the moment of inertia given by:805
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)
Assuming that ∂2

x2w
c
2 = 0 and neglecting the terms in e2/12a2 in (nw)c2 , (mw)c2 , in the coupling term in (tw)c2 and in Iy806

leads to:807 
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(B.18)

with Iy = πa3e
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.808
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Appendix B.4. Cylindrical shell equations of motion809

It has also to be noticed that the present tube kinematics incorporates the circular cylindrical shell kinematics.810

Considering the shell terms in Eqs. (B.2) and (B.7) leads to the two following relationships:811

Pa =

∫
Ω

ρ

[
∂2uo
∂t2 δuo + z2 ∂

2u1

∂t2 δu1 +
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∂t2 δwo

]
dV

and812
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)
1
a
δwo

]
dV

As a consequence, the corresponding equations of motion write:813 
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with
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(B.19)

where the variables Q, N and M correspond to the transverse shearing force, in-plane force and moments, respectively.814

These equations are in agreement with those expressed in [47, 48] for circular cylindrical shells when considering815

integration over the elementary volume a dθdzdx instead of (a + z) dθdzdx.816

Appendix C. Size and sparseness of the stiffness matrices817

Using the same notations that the ones used in Sec. 3, the (symmetric) stiffness matrix of the tube element can be818

written as:819

Ke =

(
K11

e K12
e

K21
e K22

e

)
with Ki j

e =

∫ `e

0

(
Bi
e

)T
D Bj

edx (C.1)

with D the (symmetric) constitutive matrix. With the expressions of the generalized forces and moments expressed in820

Eqs. (B.9), (B.10), (B.11), (B.12) and (B.13), we can conclude that the non-zero components of the matrix Ki j
e are:821

Ki j
e =

©­­­­­­­­­­­­­­«

Kb
ij Kb,so

i j Kb,s1
i j Kb,s2

i j Kb,s3
i j Kb,s4

i j Kb,s5
i j Kb,s6

i j

Kso,b
ij Kso

i j Kso,s1
i j Kso,s2

i j 0 0 0 0
Ks1,b

ij Ks1,so
i j Ks1

i j Ks1,s2
i j Ks1,s3

i j 0 0 0
Ks2,b

ij Ks2,so
i j Ks2,s1

i j Ks2
i j Ks2,s3

i j Ks2,s4
i j 0 0

Ks3,b
ij 0 Ks3,s1

i j Ks3,s2
i j Ks3

i j Ks3,s4
i j Ks3,s5

i j 0
Ks4,b

ij 0 0 Ks4,s2
i j Ks4,s3

i j Ks4
i j Ks4,s5

i j Ks4,s6
i j

Ks5,b
ij 0 0 0 Ks5,s3

i j Ks5,s4
i j Ks5

i j Ks5,s6
i j

Ks6,b
ij 0 0 0 0 Ks6,s4

i j Ks6,s5
i j Ks6

i j

ª®®®®®®®®®®®®®®¬
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where the matrix Ki j
e has a symmetric/anti-symmetric form with for k ≥ 2:822

Kb
ij =

©­«
× 0 0
0 × ×
0 × ×

ª®¬ , Kb,so
i j =

©­«
× ×
× ×
× ×

ª®¬ , Kb,s1
i j =

©­«
0 0 0 0
× × × ×
× × × ×
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0 0 0 0 0 0
× × × × × ×
× × × × × ×

ª®¬ ,
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(
× ×
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)
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)
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(
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)
,

823
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i j =
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× × 0 0
× × 0 0
0 0 × ×
0 0 × ×

ª®®®¬ , Ks1,s2
i j =

©­­­«
0 0 0 × × ×
0 0 0 × × ×
× × × 0 0 0
× × × 0 0 0

ª®®®¬ , Ks1,s3
i j =

©­­­«
0 × × 0 0 0
0 × × 0 0 0
0 0 0 0 × ×
0 0 0 0 × ×

ª®®®¬ ,
and for k ≥ 2824

Ksk
i j =

©­­­­­­­«

× × × 0 0 0
× × × 0 0 0
× × × 0 0 0
0 0 0 × × ×
0 0 0 × × ×
0 0 0 × × ×

ª®®®®®®®¬
, Ksk,sk+1

i j =

©­­­­­­­«

0 0 0 0 × ×
0 0 0 × × ×
0 0 0 × × ×
0 × × 0 0 0
× × × 0 0 0
× × × 0 0 0

ª®®®®®®®¬
, Ksk,sk+2

i j =

©­­­­­­­«

0 0 0 0 0 0
0 × × 0 0 0
0 × × 0 0 0
0 0 0 0 0 0
0 0 0 0 × ×
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ª®®®®®®®¬
,

where the non-zero components due to the non-linear coupling are colored in magenta and where the superscript b and825

sk correspond to the beam and the shell DOFs associated with the Fourier mode k, respectively. As a consequence, the826

number of the non-zero components of the stiffness matrix of the tube element is 1948 for the non-linear formulation827

and 476 for the linear formulation. In comparison, the stiffness of a rectangular plate with 4 nodes and 6 DOFs per828

node can be written as:829

ks
e =

(
ki j
e

)
where ki j

e =

(
ktr
i j 0
0 krot

i j

)
for 1 ≤ i, j ≤ 4

where the superscript tr and rot correspond to the translational and rotational DOFs, respectively, with:830

ktr
i j =

©­«
× × 0
× × 0
0 0 0

ª®¬ and krot
i j =

©­«
× × ×
× × ×
× × ×

ª®¬
As a consequence, the number of the non-zero components of the shell stiffness matrix is 208.831
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