
HAL Id: hal-04157011
https://hal.science/hal-04157011v2

Preprint submitted on 1 Feb 2024 (v2), last revised 12 Apr 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-Management of ROV Umbilical using sliding
element: a general 3D-model - Full version

Christophe Viel

To cite this version:
Christophe Viel. Self-Management of ROV Umbilical using sliding element: a general 3D-model - Full
version. 2023. �hal-04157011v2�

https://hal.science/hal-04157011v2
https://hal.archives-ouvertes.fr


Self-Management of ROV Umbilical using sliding element: a general
3D-model - Full version

Christophe Viel∗

February 1, 2024

Abstract

The umbilical of Remote Operated Vehicle (ROV) has
two main problems: it is subject to entanglement with
obstacles or itself, and its shape is difficult to predict
for navigation. To address these issues, this article
proposes a passive self-management of an ROV’s um-
bilical by adding one or two elements, like ballasts,
buoys, or an oriented thruster, to stretch it and gives
it a predictable shape. These elements can be fixed or
move freely on the umbilical. In opposite with [26, 27],
we propose a general model which can estimate the
shape of the umbilical in three-dimension regardless of
the orientation of the force applied to the elements,
allowing to consider the presence of currents and un-
derwater currents, passive or motorized elements on
the tether, and the presence or not of TMS. Several
examples of umbilical configuration are proposed, each
one adapted to ROV exploration missions like near the
surface, seafloor, wall, dive in presence of obstacles...
The model is compared with results proposed in other
works like [26, 27]. The limits of the method are dis-
cussed.

Part I

Introduction,
state-of-art,
contribution
1 Introduction

Underwater umbilicals allow to connect an underwater
Remotely Operated Vehicle (ROV) to a control
unit or Human-Machine Interface typically located
on a boat. The umbilical, or tether, fulfills three
objectives: real-time bidirectional data transmission,
i.e. including video feedback, control inputs, and
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instrument measurements... (see [6, 23]), providing
energy to the ROV, and preventing the loss of the
robot during exploration [21]. However, umbilicals
have drawbacks such as collision risks, impact on ROV
maneuverability due to umbilical inertia and drag
forces, entanglement, and cable breakage. Designing
the umbilical involves balancing the constraints of the
umbilical, battery power, and real-time feedback for
optimal ROV performance [7].

Understanding the shape of the umbilical holds two
main advantages. Firstly, designing the umbilical’s
parameters before diving helps avoid weight-related
issues and reduces the risk of entanglement by using
a cable that is appropriately sized and not excessively
long. Secondly, real-time knowledge of the umbilical
shape during the dive enables operators to prevent
self-entanglement or collisions with known obstacles in
a mapped environment or detected by sensors such as
sonar or vision systems. In the literature, umbilicals
have been modeled and instrumented to provide
feedback on their position and shape. Two main
categories of methods exist: vision-based detection
of the umbilical [19, 18, 20] and/or sensors placed
directly on or in the umbilical to obtain shape feed-
back [13, 10], or direct modeling of the umbilical using
boat and ROV positions [14, 15, 12, 27, 5], sometimes
accounting for sea current information. While the first
category offers accurate real-time shape estimation,
it often requires expensive umbilical equipment and
complex sensor setups, making modeling methods
more appealing for cost-effective obstacle avoidance.
In opposite, this second category of methods have
the advantage of being implementable for all kinds
of umbilicals, but are often less accurate and cannot
always provide results in real-time.

Various methods are available for modeling the
cable’s shape and dynamics. These range from simple
geometrical models like the catenary curve [24, 8, 9]
to segment-based models with geometrical constraints
[14]. Geometrical models are suitable for simulating
a large number of segments in real-time and are
memory-efficient when precise physical modeling is
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not necessary. For cases requiring accurate cable
dynamics, the Lumped-mass-spring method [4, 15, 16]
and the segmental method are commonly used
[11, 12, 2, 5]. The former represents the umbilical as
mass points interconnected by massless elastic ele-
ments, while the latter treats the cable as a continuous
system and solves the resulting partial differential
equations numerically.

The umbilical can also be equipped. A Tether
Management System (TMS) [1] is a subsea winch
controlled by a human operator and attached to
the ROV cage. The TMS helps regulate the length
of the tether cable to maintain the umbilical taut.
However, this system adds weight to the cable and
can be operationally complex. Some research explores
automation or alternative solutions, such as using
an Unmanned Surface Vehicle (USV) [25, 17], a
secondary ROV [20], multiple ROVs, or a motorized
plug/float assembly [3]. In [9, 8], an estimation of the
catenary tether shape connecting a pair of underwater
robots is performed using data acquired from inertial
measurement units (IMUs) attached to the cable
near its ends. To provide a fast time computational
model of the cable, the main author [27, 26] has
proposed to equip the umbilical with ballasts or buoys
moving freely on the cable, allowing it to be stretched
and given a predictable shape. The umbilical can
therefore be assimilated to predictable straight lines,
simple to model and compute calculate in real time.
Nonetheless, these systems still rely on knowledge of
various ROV parameters, such as its position.

This paper proposes proposes a passive self-
management of an ROV’s umbilical by adding one
or two elements, like ballasts, buoys or an oriented
thruster, to stretch it and gives it a predictable shape.
These elements can be fixed or move freely on the um-
bilical, restrained to a specific part of the cable with
stops to prevent the elements from staying constantly
in contact. In opposite with our previous work [26, 27],
a general model is proposed which can estimate the
shape of the umbilical in three-dimension regardless of
the orientation of the force applied to the elements,
allowing to consider presence of underwater currents,
passive or motorized elements on the tether, and pres-
ence or not of TMS.

The main contributions are

• a self-management of the umbilical to stretch it
and so avoid self-entanglement. This one can be
passive using only sliding ballasts and buoys using
only weight and Archimedes force, or active using
motorized thruster or TMS;

• a method simple to add to existing ROVs with a
light and simple setup;

• a general model of the umbilical in three-
dimensions which can consider presence of under-
water currents or external forces, helping the op-
erator to prevent collisions with environmental ob-
stacles.

The umbilical is modeled using geometrical relations
and the Fundamental Principle of Static (FPS).
Depending on the umbilical configurations, the reso-
lution will be performed analytically or numerically.
Numerical performance are discussed

The paper is divided in five parts. Part I introduces
the problem in Section 1 and the related work in Sec-
tion 2.

Part II grouped the umbilical model, the assump-
tions taken, definitions and properties of the umbilical
and elements studied. The problematic and assump-
tions considered are described in Section 3. The geo-
metrical model of the umbilical is exposed in Section 4.
The dynamics of the system is studied in Section 4.2.

To solve the geometric and dynamics model, differ-
ent configurations of the umbilical can be observed in
function of the position of the moving elements on the
cable. These different configurations and their partic-
ularities are described in Part III.

Part IV presents theorems allowing to solve the sys-
tem in function of the current configuration of the um-
bilical.

Part V discuses of the numerical resolution of
the problem, proposes possible umbilical configura-
tion/equipment adapted for specific missions, discuss
of the limits of the model based on simulation and ex-
perimentation.

Section 11 concludes this work.

2 Related work

2.1 Cable modeling

Various methods are available for modeling the shape
and dynamics of cables. The simplest model is the
catenary curve [24], which describes a non-rigid flexi-
ble cable with greater weight in water than buoyancy
force. However, for longer or heavier cables, additional
parameters such as bending stiffness need to be con-
sidered. In other methods, like the one presented in
[14], neutrally buoyant cables are assumed, allowing
the gravity and buoyancy forces to be ignored. These
methods involve modeling the umbilical as a chain of
segments with geometric constraints to account for its
stiffness. While these geometric models may not be
physically accurate or consider cable dynamics, they
offer fast calculations and are memory efficient.

For a dynamic and physically accurate cable model,
two main types of methods exist as discussed in [2]: the
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lumped-mass-spring method[4, 15, 16] and the segmen-
tal method [11, 12]. The lumped-mass-spring method
represents the umbilical as mass points connected by
massless elastic elements. This approach is suitable for
modeling elastic cables but requires significant compu-
tational resources. On the other hand, the segmental
method treats the cable as a continuous system and nu-
merically solves the resulting partial differential equa-
tions. These two methods primarily focus on cable dy-
namics in simplified environments, considering forces
such as gravity, buoyancy, hydrodynamic drag, envi-
ronmental inertial force, axial tension, twisting force,
and bending force. In [12], a three-dimensional ROV-
cable model is presented, utilizing the Euler-Bernoulli
beam theory modified to allow for cable compression.
The model’s accuracy is verified through experimental
validation. Building on the beam equation, [5] derives
a realistic 3D model of tether dynamics and approxi-
mates it via the Finite Element Method (FEM), which
can be executed in real time. The method is however
only tested in simulation.

In [27, 26] the umbilical is equipped with ballasts or
buoys moving freely on the cable giving it a predictable
shape. The umbilical can therefore be assimilated to
predictable straight lines, simple to model and com-
pute calculate in real time. The method however stills
rely on knowledge of parameters like ROV’s position
and forces applied on the sliding elements, and solves
the problem for specific configurations. In particular,
[26] considers only a 2 dimensional case without hori-
zontal underwater current.

2.2 Cable instrumentation
The umbilical can be equipped and instrumented to
provide feedback on its position and shape. In the lit-
erature, two main categories of methods are discussed:
vision-based detection of the umbilical [19, 18, 20], and
the use of sensors embedded directly in the umbili-
cal [13, 10]. These methods offer accurate real-time
modeling but require specific, expensive, and complex
equipment.

In [13], the "Smart Tether" method is introduced,
which uses IMU sensor nodes embedded in the umbil-
ical to provide real-time information about its shape
and motion. However, this method is costly and in-
troduces irregularities along the cable, making winding
problematic. In [10], optic fibers are braided within the
umbilical and use interferometry properties to monitor
the cable’s 3D curve in real time. Again, this solution
is expensive (around 200,000 euros for 50m length).

For shallow-water exploration, [9, 8, 20] proposes an
estimation of the shape of a catenary for a negatively
buoyant cable, connecting a pair of underwater
robots. First estimate with camera-based detection
and tracking of a constant distance between the ROVs
in [20, 19, 18], the method is then in [9, 8] based on

the calculation of local tangents thanks to the data ac-
quired from inertial measurement units (IMUs), which
are attached to the cable near its ends. In opposite
with works in [19], the cable shape’s identification
is not affected by the limits of the camera’s field of
view and by the image projection. Combining it with
the study in [27], an improvement is proposed in [28]
by equipping the umbilical with moving ballasts and
buoys to give it a predictable shape with straight
lines, in opposite with the catenary curve trickier to
estimate.

Additional components such as TMS, ballasts,
buoys, or intermediate cables can be used as dampers
to mitigate undesired forces on the ROV caused by
waves, underwater currents, or the weight of the um-
bilical. For deep and ultra-deep-water operations, [22]
proposes alternative configurations to minimize umbil-
ical tension and the risk of snap, such as installing a
series of floaters along the umbilical. However, floaters
increase the ROV’s offset and sensitivity to currents.
The TMS is a common equipment choice, acting as an
underwater winch attached to the ROV’s cage to reg-
ulate the tether length and maintain tension. When
placed underwater, it also serves as a ballast to re-
duce ROV offset due to underwater currents and waves.
However, TMS is not suitable for umbilicals equipped
with buoys or ballasts.

Due to the complexity of TMS operation, efforts
have been made to automate or replace it with other
vehicles such as USVs or secondary ROVs [20, 3, 25].
In [3], a motorized plug/float assembly moves along
the umbilical to adjust its buoyancy, even allowing the
ROV to temporarily function as an AUV. The cable
length is regulated by a winch on the boat. While
this system offers flexibility, it is large, expensive, and
not suitable for all ROV applications. In [25, 17], an
integrated system consisting of a USV with an embed-
ded winch, an umbilical, and an ROV is proposed to
provide various cable management options. The dis-
tance between the USV and the ROV can be adjusted
to control the tension in the umbilical and avoid colli-
sions with underwater obstacles. A segmental method-
based mechanical behavior model is proposed in the
study. In [27, 26], the addition of ballast and a buoy
or two buoys moving freely on the umbilical allows to
avoid self-entanglement of the cable by stretching it,
and gives it a predictable shape. The buoys move on
their own to keep the cable taut without a motorized
system, making this method easy to adapt to existing
ROVs with few constraints on their navigation. [27, 26]
proposes different shape of umbilical obtained with bal-
lasts an buoy, allowing to expose close to the surface,
seafloor exploration, or dive easily in a cluttered envi-
ronment.
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Part II

Umbilical model,
assumption, properties
3 Problematic and assumption

3.1 Notation

Consider the indirect referential R where the vertical
axis is oriented to the ground such that y = 0 cor-
responds to the sea level and y1 > y2 means that
y1 is deeper than y2. The umbilical is attached be-
tween O = (0, 0, 0) and R = (x, y, z), the boat’s and
ROV’s coordinates. Let define ~ex =

[
1 0 0

]T ,
~ey =

[
0 1 0

]T and ~ez =
[

0 0 1
]T . Let

~a.~b be the scalar product of two vector ~a ∈ R3 and
~b ∈ R3. For the two arguments (x, y), the function
atan2 is defined as φ = atan2 (y, x) = Arg (x+ iy)
with −π < atan2 (y, x) ≤ π.

For a variable a, let note aRb the variable in a refer-
ential Rb. In order to lighten notations, the notations
vRb =

[
aRb bRb cRb

]T and vRb =
[
a b c

]T
Rb

are equivalent. By default and unless otherwise spec-
ified in the current section, parameters are expressed
in R (xR is noted x). For two lists L1 = {a, b} and
L2 = {c, d}, L1 ∪ L2 = {a, b, c, d} is the union of the
lists and L3 = {L1, L2} = {{a, b} , {c, d}} is a list of
lists.

3.2 Problematic

In the absence of tension, a cable can move freely and
take on an irregular shape. To prevent it from becom-
ing entangled with itself or its environment, a common
technique for shallow dives is to suspend a ballast at
a fixed length on the umbilical, stretching the portion
between the boat and the ballast. However, the part
between the ballast and the ROV remains loose, es-
pecially when the ROV is close to the boat, where it
takes the shape of a bell. In order to keep the umbilical
taut independently of the robot position, we propose
to equip the umbilical with other elements to stretch it
and give it a geometrical shape that is simple to model
and predict. In opposite with [26, 27], the model pro-
posed here consider three-dimensional case and a gen-
eral orientation of the forces applied on the umbilical.

In [26, 27], additional elements attached to the ca-
bles were ballasts and buoys, i.e. the study considered
only vertical forces. They can be defined as “fixed”
or “sliding”. A fixed element can usually only stretch
one part of it, both in particular configuration. A
sliding element however finds its position at its min-
imum potential energy where it stretches both parts

of the cable simultaneously, corresponding to the low-
est/highest point in case of ballast/buoy. Sliding el-
ements can be obtained using for example pulley, as
illustrated in Figure 1 and used in [26, 27].

In this study, the Definition 1 defines the term "ele-
ment" such that it takes into account both horizontal
and vertical forces, making it possible to take into ac-
count the presence of underwater currents in addition
to the forces exerted by the ballast/buoy, or to propose
a motorized element pushing in a customized direction.

Definition 1. An element i on the umbilical is defined
by a vector ~Fi expressed as

~Fi =

 cos (φi) cos (ψFi)
sin (φi) cos (ψFi)

sin (ψFi)

Fi (1)

where Fi is the norm of the force applied on the
cable, ψFi is the orientation in the plan O~x~y and
φi ∈

[
−π2 ,

π
2

]
is the angle of elevation from the

plan O~x~y. Let’s also define the notation ~Fi =[
Fix Fiy Fiz

]T .
An element is considered

• “Sliding” if its point of application changes with
the cable orientation. The movements of the slid-
ing element are limited to a defined portion of the
cable of length li. Let li1 and li2 be the two parts
of the cable li on each side of the element i such
li = li1 + li2 with li ≥ lij ≥ 0 for j ∈ {1, 2}.

• “Fixed” if its point of application is constant on
the cable. In this case, consider the element is at
the end of its portion of cable, i.e. ones has li1 = li
and li2 = 0.

A combination of sliding elements or fixed and sliding
elements is an interesting solution to stretch the tether.
Each sliding element must be restrained to a specific
part of the cable with stops to prevent the elements
from staying in contact at the same minimum potential
energy. The umbilical is so divided into several parts
with defined lengths. In the optic to make this study
the most general possible, consider here the length of
these parts can be modified using TMS at the end of
the tether or at the stop position, but that the length
of these parts is always known.

In this paper, the umbilical is equipped with one or
two elements at most, with always at least one sliding
element, plus a possible anchor directly after the boat.
Cases with more elements are not treated here because
the solution will be too complex and/or none efficient.
This point will be discussed in Section 10.3.

3.3 Assumption
Consider the umbilical is equipped maximum two ele-
ments at most, plus a possible anchor directly after the
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Figure 1: Examples of sliding siding elements made
using pulley. 1: pulley, 2: umbilical, 3: stop element on
the umbilical, 4: ballast to create a vertical downward
force, 5: buoys to create a vertical ascending force.

boat (not necessarily on the seafloor). The following
assumption are considered:

A1) The forces applied on the umbilical due to its
mass/buoyancy are negligible compare to the ac-
tion made by the elements and the anchor.

A2) The umbilical length is such that it is reasonable
to neglect its length variation, considered as con-
stant.

A3) When the umbilical is taut, its geometry can
be assimilated to straight lines between defined
points, here the elements, the boat and the ROV.

A4) Consider the ROV, boat and anchor are strong
enough to compensate action of the cables and
the elements, and therefore remain stationary.
(x, y, z) is so fixed when ROV is not moving.

A5) Consider the sliding elements move freely on the
umbilical without friction.

A6) The end of a cable connected to an anchor or to
the boat is assumed to be perfectly fixed. A cable
connected at both ends by the boat and the anchor
does not need to meet the Assumption A1–A3.

A7) The lengths li of the different parts of the um-
bilical are supposed to be constant or known in
real time. Possible TMS positioned on the boat,
anchor or the ROV can be placed to effect these
lengths.

A8) The influence of underwater currents and exter-
nal perturbations are considered in the elements i.

In order to ensure assumptions A1 and A2, the appli-
cation scope of the present system is for ROVs having
an umbilical shorter than 50 m. In addition, to re-
spect assumption A3, the current system requires the

umbilical to be flexible and allow the sliding element
to move freely along it. Therefore, the current method
is suitable for the following scenarios:

• Exploration of shallow water from a boat with a
depth of less than 50m, with zero or stable under-
water currents,

• Ship’s hull inspection, navigation under uniform
ice, etc., since the sliding ballast must remain sub-
merged without touching any obstacle or the sea
floor to keep the cable taut,

• Umbilical between an ROV and its cage in case
of deep exploration. The umbilical length is then
measured from the cage, which is is considered as
an anchor in this study. The cable between the
boat and the cage, then, does not need to meet
the assumptions described above, as described in
Assumption A6.

• Chain of ROVs connected with the same umbili-
cal, the model being applicable for each section of
cable linking two consecutive ROVs.

Validity of the assumptions in these conditions have
been observed in experiments, see Section 10.2.1.

The model proposed in this paper assumes that the
umbilical can be assimilated to straight lines by the ac-
tion of the elements (neglecting a slight bending of the
cable). Excluding the configurations where an element
reaches the surface (for buoys) or touches the seabed
(for ballasts), these cases do not exist if two sliding
elements are used, only if fixed elements are involved.

4 Description umbilical model

4.1 Geometrical model

The description made below consider a cable with
two sliding elements and an anchor, named the gen-
eral combination. Other combinations will be deduced
from it.

The parameters are illustrated in Figure 2 in 2D,
with an illustration of a 3D case in Figure 3. The
umbilical of length l is divided in three parts. Let
l0 = ‖OA‖ ≥ 0 be the part between the boat O and
the anchor A, l1 = ‖AS‖ ≥ 0 the part between the
anchor A and a stop S, and l2 = ‖SR‖ ≥ 0 the part
between the stop S and the ROV R. The total length
of the boat is l = L+ l0 with L = l1 + l2. The sliding
elements B1 and B2 can respectively move freely on l1
and l2.

Following Assumption A6, the part l0 is supposed to
stay perfectly vertical. The sliding elements B1 and B2

create angles in the geometry of the umbilical. Note
that the stop S does not create an angle by itself, so
‖B1B2‖ is a straight line.
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All the other combinations with fixed elements or a
single element can be deduced from the general com-
bination. Indeed:

• a fixed element i can be assimilated to a particu-
lar case of a sliding element i where li2 = 0 (see
Definition 1);

• the absence of anchor correspond to l0 = 0;

• a combination with an unique element can be ob-
tained taking l2 = 0 and F2 = 0.

The orientation of ‖AB1‖ is described by the oriented
angle α1 and ψ1 such that

−−→
AB1 = l11 (cos (α1) cos (ψ1)~ex

+ sin (α1) cos (ψ1)~ey + sin (ψ1)~ez) (2)

In the same way, one can define the orientation of
‖B1B2‖ and ‖B2R‖ with angles (α2, ψ2) and (α3, ψ3)
such that

−−−→
B1B2 = (l12 + l21) (cos (α2) cos (ψ2)~ex

+ sin (α2) cos (ψ2)~ey + sin (ψ2)~ez) (3)
−−→
B2R = l22 (cos (α3) cos (ψ3)~ex

+ sin (α3) cos (ψ3)~ey + sin (ψ3)~ez) . (4)

Note that α1 ∈ [−π, π], α2 ∈ [−π, π], α3 ∈ [−π, π]
and ψ1 ∈

[
−π2 ,

π
2

]
, ψ2 ∈

[
−π2 ,

π
2

]
, ψ3 ∈

[
−π2 ,

π
2

]
. The

vectors
−−→
B1S and

−−→
SB2 can also be expressed

−−→
B1S =l12 (cos (α2) cos (ψ2)~ex

+ sin (α2) cos (ψ2)~ey + sin (ψ2)~ez) (5)
−−→
SB2 =l21 (cos (α2) cos (ψ2)~ex

+ sin (α2) cos (ψ2)~ey + sin (ψ2)~ez) . (6)

In a configuration where the umbilical is taut, the
system can be expressed such

x = l11 cos (α1) cos (ψ1) + (l12 + l21) cos (α2) cos (ψ2)

+l22 cos (α3) cos (ψ3)

y = l0 + l11 sin (α1) cos (ψ1) + (l12 + l21) sin (α2) cos (ψ2)

+l22 sin (α3) cos (ψ3)

z = l11 sin (ψ1) + (l12 + l21) sin (ψ2) + l22 sin (ψ3)

(7)

Remark 1. When α1 = α2 and ψ1 = ψ2, the portion of
cable l1 is perfectly straight. Same remark for l2 when
α2 = α3 and ψ2 = ψ3.

Let’s define CA,r the sphere of center A =[
0 l0 0

]
and radius r = l1 + l2. Let’s also de-

fine C̄A,r the truncated sphere such as for all (x, y, z) ∈
C̄A,r, one has (x, y, z) ∈ CA,r and y ≥ 0, i.e. C̄A,r =
{(x, y, z) ∈ CA,r|y ∈ [0, r]}. C̄A,r corresponds to the un-
derwater sphere where the ROV can move.

Figure 2: Parameters of the umbilical with two sliding
elements B1 and B2 and an anchor A, in 2 dimension.
~F1 and ~F2 are the forces applied on the elements B1

and B2. Here ~F1 is a pure vertical force made for ex-
ample by a buoy, and ~F2 is a combination of a vertical
and horizontal forces, for example a buoy plus horizon-
tal underwater currents.

Depending on the ROV’s position, the sliding ele-
ments move and can come in contact 1) with the anchor
A or the stop S for the element 1, 2) with the stop S
or the ROV R for the element 2. To simplify the nota-
tions, let note Si and Si+1 the stops that surround the
element i such that the element i is in contact with
Si when li1 = 0 and in contact with the Si+1 when
li2 = 0. Thus, one has S1 = A and S2 = S for the
element 1, and S2 = S and S3 = R for the element 2.

The different cases representing when elements do
or do not touch a stop are called “configurations” or
“areas”. The system is considered to be inside an area
if the ROV coordinates (x, y, z) are inside this area.
The different areas will be described in Section 5

4.2 Dynamic of the system

The systems presented in the following sections are
studied in equilibrium. It should be noted that each
time the ROV moves, part of the umbilical temporar-
ily becomes loosen, which can lead to entanglement
and not follow the proposed model. As a loose ca-
ble is complex to model and/or computationally heavy,
we propose to maintain a quasi-static equilibrium by
controlling the ROV to shorten transient phases, thus
minimizing the gap between proposed models and re-
ality. In this way, the ROV is controlled to move more
slowly than the elements on the cable: as long as their
behavior is faster than the ROV speed, the umbilical
will remain taut overall. Details of this approach is de-
scribed in [27]. Same solution can be taken to manage
the waves.

6



Figure 3: Illustration of the umbilical with two slid-
ing elements and an anchor, in 3-Dimension.. ~F1 =[

0.5 2 0.5
]
and ~F2 =

[
0.5 −1 0.5

]
.

4.2.1 Fundamental Principle of Static

The dynamics of the system is studied at its equilib-
rium. Consider in this section than neither of the two
elements touches the surface, the seafloor or an obsta-
cle. Since there is not friction (Assumption A5), the
Fundamental Principle of Static (FPS) on Bi can be
expressed as

~Fi + ~Ti + ~Ti+1 = 0 (8)

where ~Ti and ~Ti+1 are the tension of the umbilical ap-
plied on element i. Let’s note Ti =

∥∥∥~Ti∥∥∥ > 0 and∥∥∥~Ti+1

∥∥∥ = Ti+1 > 0.
Again, depending on the ROV’s position, the sliding

elements can come in contact with stop, changing the
expression of the FPS. For an element i ∈ {1, 2}, if
B1 6= B2 and 1) B1 6= A if i = 1 or 2) B2 6= R if i = 2,
one can perform the following FPS in Bi:

− cos (ψi) cos (αi)Ti + cos (ψi+1) cos (αi+1)Ti+1

+Fi cos (ψFi) cos (φi) = 0

− cos (ψi) sin (αi)Ti + cos (ψi+1) sin (αi+1)Ti+1

+Fi cos (ψFi) sin (φi) = 0

− sin (ψi)T1i + sin (ψi+1)Ti+1 + Fi sin (ψFi) = 0

(9)

with Ti > 0, Ti+1 > 0, Fi > 0. (9) is also valid if
element i is fixed.

In particular case where both elements are in con-
tact, i.e. B1 = B2, one gets a single FPS in B1:

− cos (ψ1) cos (α1)T1 + cos (ψ3) cos (α3)T3

+FΣx = 0

− cos (ψ1) sin (α1)T1 + cos (ψ3) sin (α3)T3

+FΣy = 0

− sin (ψ1)T1 + sin (ψ3)T3 + FΣz = 0

(10)

where ~FΣ = ~F1 + ~F2 can be expressed as FΣx

FΣy

FΣz

 =

2∑
i=1

 cos (φi) cos (ψFi)
sin (φi) cos (ψFi)

sin (ψFi)

Fi
 (11)

From Assumption A4, the ROV, boat and anchor are
strong enough to compensate action of the elements.
Thus, when a element is in contact with the anchor A,
boat O or the ROV R, element’s action can be fuse
with them and so no FPS are performed.

4.2.2 Sliding elements properties

Since the sliding element move freely on the tether,
the tensions of the cable try to balance on both sides
of the element. Thus, some properties can be defined,
as described in Definition 2, Theorem 1 and illustrated
in Figure 4.

Definition 2. For the sliding element i, the following
properties can be expressed:
(1) If

(
~Fi. ~Ti < 0

)
&
(
~Fi. ~Ti+1 < 0

)
and

(li > li1 > 0) & (li > li2 > 0), the sliding element i can
move freely and is not in contact with a stop. Since
the element slides without friction (Assumption A5),
one has the property

Ti = Ti+1. (12)

(2) If li1 = 0 and
(
~Fi. ~Ti+1 < 0

)
, the element i is in

stable contact with Si. In this configuration, it can be
assimilate to a fixed element. Reciprocally for Si+1 if
li2 = 0 and

(
~Fi. ~Ti < 0

)
.

(3) If ~Fi. ~Ti > 0, then the element i slides in the
direction

−−→
BiSi and so cannot stay in contact with Si+1.

Reciprocally in direction direction
−−−−→
BiSi+1 if ~Fi. ~Ti+1 >

0.
(4) If

(
~Fi. ~Ti > 0

)
&
(
~Fi. ~Ti+1 > 0

)
, the cable is

loosen.

Theorem 1. For i ∈ {1, 2}, if the sliding element i is
not in contact with a stop, then

cos (ψi) sin (φi − αi) = cos (ψi+1) sin (φi − αi+1) .
(13)

The proof of Theorem 1 can be found in Appendix A.

Remark 2. The condition
(
~Fi. ~Ti < 0

)
in Definition 2

can be replaced by the condition
(
~Fi.
−−→
BiSi < 0

)
. Same

for
(
~Fi. ~Ti+1 < 0

)
with

(
~Fi.
−−−−→
BiSi+1 < 0

)
.

These properties will be used the next sections to
solve the system (7) and estimate if a solution found
is physically possible.
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(
~Fi. ~Ti < 0

)
&
(
~Fi. ~Ti+1 < 0

) (
~Fi. ~Ti > 0

)
&
(
~Fi. ~Ti+1 > 0

)
Ti = Ti+1: element i immobile the cable is loosen

li1 = 0 and
(
~Fi. ~Ti+1 < 0

)
li1 = 0 and

(
~Fi. ~Ti+1 > 0

)
element i moves to Si+1

Figure 4: Illustration of the forces applied on the um-
bilical with a sliding element. The different cases cor-
respond to the cases exposed in Definition 2.

Part III

Resolution of the model:
the problem of the
configuration areas
5 Configuration areas of the um-

bilical

As already explained, depending on the ROV’s posi-
tion, the sliding elements can come in contact stops S,
modifying the shape of the umbilical and the balance
of the forces exerted on it. The different cases where
elements do or do not touch a stop are called “config-
urations” or “areas”. Each configuration therefore has
its own geometrical particularity and dynamic model
based on PFS due to the sliding elements properties
described in Section 4.2.

The system is considered to be in a configuration if
the ROV coordinates (x, y, z) are inside its associate
area. In the 2D-case developed in [26, 27], it was pos-
sible to calculate the boundaries of these areas and
thus deduce in which configuration the umbilical was
in based of the ROV coordinate. In this way, the sys-
tem was solved only once in its current area.

Unfortunately, it is not possible to find an expres-
sion of the boundaries areas in the 3D case in presence
of horizontal forces, which makes the problem trickier
to solve because we cannot known in which configu-
ration the umbilical is and therefore how to express
the geometric and dynamic systems. The system must
so be solved in all configurations and results obtained

must be compared to find the real solution, as it will
be described in Section 6.4.

This section describes the different zones and their
specific dynamics.

5.1 Description of the areas
Eight areas corresponding to specific umbilical config-
urations can be observed, plus the forbidden area F,
as illustrate in Figures 5 and 6.

The different areas are described below:

• Area A0: the two elements move freely on l1 and
l2, i.e. 0 < l11 < l1, 0 < l12 < l1, 0 < l21 < l2,
0 < l22 < l2.

• Area A1: the element 1 moves freely on l1, i.e.
0 < l11 < l1, 0 < l12 < l1. Moreover:

– Area A11: the element 2 is in contact with
R, thus l21 = l2, l22 = 0.

– Area A12: the element 2 is in contact with
S, thus l21 = 0, l22 = l2.

• Area A2: the element 2 moves freely on l2, i.e.
0 < l21 < l2, 0 < l22 < l2. Moreover:

– Area A21: the element 1 is in contact with
A, thus l11 = 0, l12 = l1.

– Area A22: the element 1 is in contact with
S, thus l11 = l1, l12 = 0.

• Area D: both elements are in contact with a stop
such that

– Area D1: the element 1 is in contact with S
and element 2 is in contact with R, l11 = l1,
l12 = 0, l21 = l2, l22 = 0.

– Area D2: the two elements are in contact
with S, i.e. l11 = l1, l12 = 0, l21 = 0, l22 = l2.

– Area D3: the element 1 is in contact with
A and element 2 is in contact with S, i.e.
l11 = 0, l12 = l1, l21 = 0, l22 = l2.

• Area F. The forbidden area F includes 1) the inac-
cessible area for the ROV due to the length of its
umbilical, 2) the areas where the umbilical cannot
be taut by the elements, 3) case where an element
is in contact with the seabed/surface.

In function of the number and characteristic of the
elements on the umbilical, some configurations cannot
exist. Area A0 for example cannot exist in presence of
two forces in the same direction (example: two buoys)
because one of the element will always be in contact
with a stop, see Theorem 2. When the element 1 is
fixed, Areas 21 and Areas 22 does not exist.

The Table 1 summarizes the existing area in function
of the configurations.
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Figure 5: Areas for an umbilical with two sliding ele-
ments and an anchor. Green: A0. Blue: A11. Cyan:
A12. Red: A21. Magenta: A22.Yellow: areas D.
Black: area F where the umbilical cannot be stretched.
Blue arrow : force ~F1. Red arrow: force ~F2.

Definition 3. When the cable l1 is perfectly straight,
i.e. α1 = α2 and ψ1 = ψ2, the sliding element 1 has
no obstacle on this path. Since we consider there is no
friction (Assumption A5) and to remove any ambigu-
ity, we also assume that the sliding element can only be
in contact with a stop, even in the case where ~F1 and−−→
AB1 are perpendicular. Same remark for element 2 if
l2 is straight. In this condition:
(1) The configuration (α1 = α2) & (ψ1 = ψ2) is ex-

clude in areas A0, A11, A12, A22, D1, D2, but is
assigned to area A21 or D3;
(2) The configuration (α2 = α3) & (ψ2 = ψ3) is ex-

clude in areas A12, A0, A21, A22, D2, D3, but is
assigned to area A21 or D1.

Theorem 2. The area A0 doesn’t exist if
(1) ~F1

‖~F1‖ =
~F2

‖~F2‖ , i.e. the forces have the same ori-

entation,
(2) ~F1

‖~F1‖ = − ~F2

‖~F2‖ and F1 6= F2, i.e. the forces’

orientations are opposite and they don’t have the same
strength.

The proof of Theorem 2 is provided in Ap-
pendix F.3.1.

5.2 Forces applied inside the areas
From the areas properties exposed in Section 5 and
PFS performed in Section 4.2, one can deduce that

• The PFD (9) with i = 1 is valid in areas A0, A11,
A12, A22, D1;

• The PFD (9) with i = 2 is valid in areas A0, A12,
A21, A22, D3;

• The PFD (10) is valid in area D2.

Figure 6: Illustration of the umbilical in all areas.
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case Element 1 Element 2 Existing areas Remark

1 sliding sliding A0*, A11, A12, A21, A0*: depend of the direction
A22, D1, D2, D3, F of the element force

2 fixed sliding A22, D1, D2, F l11 = l1. Else, see case 5
3 sliding fixed A12, D2, D3, F l21 = 0. Else, see case 5

4 fixed fixed D3, F equivalent to one element
in S. l11 = l1 and l21 = 0

5 sliding / A11, D1, D3, F One element configuration.

6 fixed / F the cable cannot be taut
excepted as a straight line

Table 1: Existing areas in function of the number and type of element. Note that a fixed element is always fixed in
S. Else, it is assimilate to the anchor A or the ROV R (Assumption A4).

It can be deduced that T1 does not exist in areas A21
and D3 , T2 does not exist in area D2 and T3 does not
exist in areas A11 and D1.

Note also that

• Since element 1 is sliding in areas A0, A11, A12,
the Theorem 1 is valid for i = 1;

• Since element 2 is sliding in areas A0, A21, A22,
the Theorem 1 is valid for i = 2.

Moreover, the conditions described in Definition 2
must be respected for each sliding element.

In function of if the systems (9) and (10) exist, i.e. in
function of the areas, the expressions of the forces T1,
T2 and T3 changed. Let’s note TSji for i ∈ {1, 2, 3} and
j ∈ {1, 2} the expression of T1, T2 and T3 in function
of the different cases exposed below. In all case, one
has

F1xy = cos (ψF1)F1 (14)
F2xy = cos (ψF2)F2. (15)

T
Sj
i =

T
Sj
ixy

cos (ψi)
(16)

• If not area D2: the systems (9) is valid. Follow-
ing steps described in Appendix A.4, if cos (α1) 6=
0 and/or cos (α3) 6= 0, sin (α2 − α1) 6= 0 and/or
sin (α3 − α2), one gets T1xy = TS1

1xy,T2xy = TS1
2xy

and T3xy = TS1
3xy where

TS1
1xy =

{
0 if A21 or D3,

1
cos(α1)

(
cos (α2)TS1

2xy + F1xy cos (φ1)
)

else,
(17)

TS1
3xy =

{
0 if A11 or D1,

1
cos(α3)

(
cos (α2)TS1

2xy − F2xy cos (φ2)
)

else,
(18)

with

TS1
2xy =

{
− sin(φ1−α1)

sin(α2−α1)F1xy if A0, A11, A12 or D1,
− sin(φ2−α3)

sin(α3−α2)F2xy if A21, A22 or D3.
(19)

• If area D2: the systems (10) is valid. Fol-
lowing the steps described in Appendix A.4.4,
if cos (α1) 6= 0 and sin (α3 − α1) 6= 0, one has
T1xy = TS2

1xy and T3xy = TS2
3xy where

TS2
1xy =

1

cos (α1)

(
cos (α3)TS2

3xy + FΣx

)
(20)

TS2
3xy =

FΣx sin (α1)− FΣy cos (α1)

sin (α3 − α1)
(21)

and TS2
2xy = 0 because doesn’t exist.

In the case where α3 = α1 + k2π with k2 ∈ Z, one

has T3xy = T1xy =

√
F 2

Σx+F 2
Σy

2 . If α1 = sπ2 , one has
T3xy = FΣx

1
cos(α3) and T1xy = s [sin (α3)T3xy + FΣy].

• Particular cases: if not area D2, in the case
where α1 = α2 + k2π or α3 = α2 + k2π with
k2 ∈ Z, one has respectively T1xy = T2xy =

F1xy

2

or T3xy = T2xy =
F3xy

2 . Moreover, if α1 = sπ2 or
α3 = sπ2 , one has respectively T2xy = F1xy

cos(φ1)
cos(α2)

and T1xy = sF1xy [tan (α2) cos (φ1) + sin (φ1)]

or T2xy = F2xy
cos(φ2)
cos(α2) and T3xy =

sF2xy [tan (α2) cos (φ2) + sin (φ2)].

Proves of all these expression can be found in Ap-
pendix A. These systems will be used in next sections
to solve the model of the umbilical.

6 Deduction of the current area
The method for deducing the current area can be sum-
marized as follow. First, based on previous umbilical
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Figure 7: Graph of connection between areas.

configuration (if known), the number of possible areas
can be reduced using the graph of areas exposed in
Section 6.1. The system is then solved for all remain-
ing areas, as it will be summarized in Section 6.2. If
no solution can be found for an area, it is excluded.
If only one area has a solution, it is automatically the
current area. Otherwise, the system energy described
in Section 6.3 is used to find the current solution as
described in Section 6.4.

6.1 Graph of areas

When a sliding element moves on the cable, it comes
in contact with a stop or becomes free again: the um-
bilical pass so from one configuration to another. One
can define a graph of communication between the dif-
ferent areas, as summarizes in Figure 7. When some
areas don’t exist (see Table 1), the graph is cut off
from the associated branches, but remains globally
connected. Moreover, since an element cannot pass
instantaneously from one stop to another without pass-
ing by a sliding phase, this graph is not fully-connected,
i.e. the umbilical cannot always pass directly from any
area to any other. Two areas directly connected are
called neighbors.

This graph will be used to reduce the number of
configurations to calculate to find the next shape of
the umbilical.

6.2 Resolution of the model inside the
areas

Due to their geometric and dynamic differences, each
area requires its own mathematical resolution. Using
transformations of the referential and the simple geo-
metrical shape of the umbilical in areas D1, D2 and D3,
the solution of system (7) in theses areas can be found
analytically. On the other hand, due to the high non-
linearity of system (7), the model is too complex to be
solved analytically in areas A0, A1 and A2: a theoret-
ical solution is proposed along a numerical resolution.
Details of these resolutions are given in Part IV.

6.3 Energy of the configuration
Let Ep (A) be the energy of the configuration A. Ep
will be used in the Section 6.4 to compare results ob-
tained in the different areas to find the actual umbilical
configuration. In this section, we only consider config-
urations for which a solution can been found, i.e. where
the position of B1 and B2 are known.

The movement of the element 1 are limited by the
cable l1 attached to the anchor A =

[
0 l0 0

]T . If
the cable l1 were subjected only to the actions of ~F1,
element 1 would slide since it came in contact with S,
and then the part AS would behave like a pendulum,
whose minimum potential energy Epmin,1 is reached
at the position pEpmin,1 = A+ l1

~F1

F1
, i.e. the point fur-

thest from A in direction ~F1

F1
. Using A as reference, the

energy Ep,1 of element 1 can so be expressed as

Ep,1 = l1F1 −
−−→
AB1. ~F1 (22)

In the same way, the element 2 is limited to the cable
l2 attached in S to the cable l1. Following the same
reasoning, the minimal energy Ep,2 of element 2 can so
be expressed as

Ep,2 = (l1 + l2)F2 −
−−→
AB2. ~F2 (23)

with
−−→
AB2 =

−−→
AB1 +

−−→
B1S +

−−→
SB2. The energy of the

system can so be expressed as

Ep = Ep,1 + Ep,2. (24)

6.4 Algorithm deduction of the area
The Part IV will provide theorems giving a solution
to the system (7) if the ROV is inside a correspond-
ing area. If not solution can be found for the current
coordinate, then the ROV is not inside this area. How-
ever, it can happen that several solutions are found in
different areas, and only one corresponds to the real-
ity. This section allows to select the current solution
between the several solution found.

Consider in this section that if a solution is possible
in an area for the current coordinate, then this solution
is found. The current configuration can be found using
the following steps:

1. Reduction of the number of areas possible:

(a) Areas possible: Table 1 defines the number
of existing areas to be evaluated according to
the elements on the umbilical.

(b) Areas neighbors: when the area of the pre-
vious position is known, if the new coordi-
nates, forces and cable length are close to the
previous configuration, only the current zone
and its neighbors as defined in Section 6.1
need to be evaluated.
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2. Evaluation of the solution in the different
areas: a solution is searched in each remaining
area using Theorems exposed in Part IV, Sec-
tions 7 and 8.

3. Selection of the areas: if only one solution is
found, this solution is the current configuration.
Else, the true solution is the one with the smallest
energy Ep exposed in Section 6.3.

4. Final test: check if the solution is a submerged
configuration, i.e. the coordinate y is positive for
the points B1, S and B2.

5. If not solution is found: the system is in area F.

Remark 3. not solution is found: in presence of at
least one fixed element, sometime the umbilical cannot
be stretched for some position of the ROV. In these
conditions, the system (7) cannot find a solution and is
considered inside area F. Example: element 1 is a fixed
ballast pushing vertically with l1 > l2 (see [27]). The
coordinate (0, l0, 0) requires the cable l1 to be folded
back to reach the position.

Part IV

Resolution model in the
areas

7 Resolution model in areas A0,
A1 and A2

Due to the strong non-linearity of system (7), the
model is too complex to be solved analytically in areas
A0, A1 and A2, named here areas A. Thus, theorems
exposed in this section proposes a theoretical solution
and a numerical resolution of system (7) and a value
of all its parameters in the different areas. To sim-
plify the resolution, the solution is evaluated in several
references obtained using a rotation of R.

The transformation of the referential is described in
the subsection 7.1. The analytical and numerical res-
olutions are described in Section 7.3, based on set of
parameters for each areas described in theorems pro-
posed in Sections 7.5.1, 7.5.2, 7.6.1, 7.6.2 and 7.7. The
calculation of the lengths are summarized in subsec-
tion 7.4.

Remark the proposed theorems are valid only if the
ROV is in their respective areas. The deduction of the
area where the ROV is currently located is exposed in
Section 6.4. Comments on the numerically resolution
of the system will be made in Section 9.

7.1 Change of referential
To find a solution in the different areas, the system
exposed in previous sections is easier to solve in oth-
ers referential where some of these components become
equal to zero.

In areas A0, A1 and A2, a simple around the ver-
tical axis O~y is used to obtain a referential Rj where
the component ψF1|Rj or ψF2|Rj is equal to zero. The
Definition 4 defines the referential R0, R1 and R2 re-
spectively associated to the resolution of the system in
the areas A0, A1 and A2.

Definition 4. The referential Rj for j ∈ {0, 1, 2}
is defined as a rotation of the referential R around
the axis O~y of an angle µj = atan2

(
Fjz|R, Fjx|R

)
if

j ∈ {1, 2}, µ0 = atan2
(
F1z|R, F1x|R

)
if j = 0. The

rotation matrix Mj is expressed as

Mj =

 cos (µj) 0 sin (µj)
0 1 0

− sin (µj) 0 cos (µj)

 . (25)

Let’s define Lα,ψ|Rj = {α1|Rj , α2|Rj , α3|Rj , ψ1|Rj ,
ψ2|Rj , ψ3|Rj} the list of the angles in Rj. Moreover,
(1) The lengths l11, l12, l21, l22 are unaffected by the

change of referential;
(2) The coordinate of the ROV can be evaluated such

that [
x y z

]T
Rj

= Mj

[
x y z

]T
R (26)

and since the rotation is only around axis O~y, the
length l0 and its orientation are unaffected, so the sys-
tem (7) can be rewritten in Rj using Lα,ψ|Rj ;
(3) The force ~Fi|Rj with i ∈ {1, 2} and its parameters

φi|Rj and ψFi|Rj defined in the referential Rj with j ∈
{0, 1, 2} can be expressed as

~Fi|Rj = Mj
~Fi|R (27)

φi|Rj = atan2
(
Fiy|Rj , Fix|Rj

)
(28)

ψFi|Rj =
π

2
− acos

(
Fiz|Rj
Fi

)
. (29)

and the systems of FPS expressed in (9) can be ex-
pressed using φi|Rj , ψFi|Rj and Lα,ψ|Rj . Thus, the
Definition 2 and Theorem 1 are still valid replacing
φi|R, ψFi|R and Lα,ψ|R by φi|Rj , ψFi|Rj and Lα,ψ|Rj .

The return in the referential R can be performed
using for example Definition 5.

Definition 5. For i ∈ {1, 2, 3}, let’s define the fol-
lowing vector in referential in a referential Rj with a
rotation matrix Mj:

~vi|Rj =

 cos (αi) cos (ψi)
sin (αi) cos (ψi)

sin (ψi)


Rj

(30)
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In referential R, this vector becomes

~vi|R = pinv (Mj)~vi|Rj (31)

an the angles in R can be expressed as

αi|R = atan2
(
viy|R, vix|R

)
(32)

ψi|R = asin
(
viz|R

)
(33)

where ~vi =
[
vix viy viz

]
.

7.2 Additional notations

For a referential Ri, let’s define the energy of the sys-
tem (7)

ERi =
∥∥∥−−→AB1|Ri +

−−−→
B1B2|Ri

+
−−→
B2R|Ri −

[
x (y − l0) z

]T
Ri

∥∥∥2

(34)

This energy will be used to solve the umbilical
model.

Since a solution will be required to be evaluated in
each area, the different angles and lengths are grouped
in a set of parameters expressed in Definition 6.

Definition 6. Let’s define the area Am ∈
{A0, A11, A12, A21, A22} and note Rm the referen-
tial associated to area Am as defined in Definition 4.
For (x, y, z) ∈ C̄A,r, let LAmα,ψ,l

(
α1|Rk

)
be the set of

parameters

LAmα,ψ,l
(
α1|Rm

)
=
{
α1|Rk , α2|Rm , α3|Rk ,

ψ1|Rm , ψ2|Rk , ψ3|Rm ,

l11, l12, l21, l22} (35)

evaluated for the angle α1|Rk and (x, y, z)Rm using re-
spectively
(1) Theorem 4 for area A11,
(2) Theorem 5 for area A12,
(3) Theorem 6 for area A21,
(4) Theorem 7 for area A22,
(5) For area A0, Theorem 8 if ψF2|R0

= 0, Theo-
rem 9 else.
Let also note ERk

(
LAmα,ψ,l

)
the evaluation of (34)

using parameters inside LAmα,ψ,l.

In order to lighten notations, LAmα,ψ,l
(
α1|Rm

)
will be

written LAmα,ψ,l in the next sections of the paper. Theo-
rems exposed in Definition 6 provide sets of parameters
LAmα,ψ,l which will be used in Theorem 3 to solve the sys-
tem in areas A. Theses theorems will be described in
the next sections.

7.3 Resolution of the system in areas A

Due to the strong non-linearity of system (7) and in op-
posite to areas D described in Section G, the model is
too complex to be solved analytically in areas A. The
theoretical solution can however be expressed, and a
numerical resolution is proposed to find a solution to
the system. These two aspects are described in Theo-
rem 3.

Theorem 3. Consider an area Am ∈
{A0, A11, A12, A21, A22}, its associated refer-
ential Rm and the set of parameters LAmα,ψ,l

(
α1|Rm

)
evaluated for an angle α1|Rm as defined in Defini-
tion 6. For the coordinate (x, y, z) ∈ C̄A,r, a solution
of system (7) exists in the area Am if there exists
an angle α1|Rm ∈ [−π, π] such as the associated
LAmα,ψ,l

(
α1|Rm

)
guarantee

EAmmin ≤ η (36)

where

EAmmin = min
α1|Rm ∈ [−π, π]

LAmα,ψ,l
(
α1|Rm

)
6= ∅

ERk

(
LAmα,ψ,l

(
α1|Rm

))
.

(37)
and with η = 0 in theoretical case, η ≥ 0 a chosen
parameter for numerical resolution.
If a solution exist, this solution SAmα,ψ,l can be ex-

pressed as

SAmα,ψ,l =
{
LAmα,ψ,l

(
α1|Rm

)
|ERm

(
LAmα,ψ,l

(
α1|Rm

))
= EAmmin,

LAmα,ψ,l (α1) 6= ∅, ∀α1|Rm ∈ [−π, π]
}
. (38)

In theory, the unique solution of the system (7) is
α1|Rm solution of (34), which is equivalent to solve
(36) with η = 0 in Theorem 3.

The proof of Theorem 3 is connected to the proofs
of Theorems 4, 5, 6, 7, 8 and 9 which will be exposed
in the next sections, each one for a specific areas.

7.4 Length calculation

The calculation of the length of cables l11, l12, l21

and l22 can be performed if the angles αi and ψi for
i ∈ {1, 2, 3} are known. In function of the umbili-
cal configuration, some lengths are already known, see
Section 5. This section details the calculation of the
remaining lengths in function of the areas. Note that
the umbilical lengths are identical in all references, so
they can be calculated with the angles of any referen-
tial. Thus, in order to lighten notations, the referential
is not be specify in the notation of α1, α2, α3, ψ1, ψ2,
ψ3 in this section.
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Let’s define the following terms:

a11 = cos (ψ1) sin (α1) b11 = cos (ψ1) cos (α1)

a12 = cos (ψ2) sin (α2) b12 = cos (ψ2) cos (α2)

a22 = cos (ψ3) sin (α3) b22 = cos (ψ3) cos (α3) .

7.4.1 lengths in Area A0

Following step described in Appendix B.3, one gets

l11 =
x− (b12 (l1 + l2) + (b22 − b12)B11)

(b11 − b12)− (b22 − b12)A11
(39)

l22 = B11 − l11A11 (40)

with A11 =
(
a11−a12

a22−a12

)
and B11 = y−(l0+a12(l1+l2))

a22−a12
.

Moreover, one has l12 = l1 − l11 and l21 = l2 − l22.

7.4.2 lengths in Area A1

In area A1, the length l21 and l22 are known: one has
l22 = 0 if area A11 and l22 = l2 if area A12, and l21 =
l2− l22. Following step described in Appendix B.2, one
gets

l11 =
y − (l0 + a22l22 + a12 (l21 + l1))

a11 − a12
if a11 − a12 6= 0

(41)

l11 =
x− (b22l22 + b12 (l21 + l1))

b11 − b12
if a11 − a12 = 0.

(42)

and l12 = l1 − l11. Note that the Definition 3 excludes
the case a11 = a12 and b11 = b12 simultaneously in
area A2.
Remark 4. For the numerical computation, (42) can
be used instead of (41) when |a22 − a12| is very close
to zero.

7.4.3 lengths in Area A2

In area A2, the length l11 and l12 are known: one has
l11 = 0 if area A21 and l11 = l1 if area A22, and l12 =
l1− l11. Following step described in Appendix B.1, one
gets

l22 =
y − (l0 + a11l11 + a12 (l12 + l2))

a22 − a12
if a22 − a12 6= 0

(43)

l22 =
x− (b11l11 + b12 (l12 + l2))

b22 − b12
if a22 − a12 = 0.

(44)

and l21 = l2 − l22. Note that the Definition 3 excludes
the case a22 = a12 and b22 = b12 simultaneously in
area A2.
Remark 5. For the numerical computation, (44) can
be used instead of (43) when |a22 − a12| is very close
to zero.

7.5 Solution in Area A1
The Theorems 4 and 5 proposes a set of parameters
LA11
α,ψ,l

(
α1|R1

)
and LA12

α,ψ,l

(
α1|R1

)
, possibly solution in

area A11. The solution is evaluated in referential R1to
simplify the resolution. The solution inR can be found
using a rotation of referential as described in Defini-
tion 4.

Based on properties made in Section 5 and Defini-
tion 2 for the sliding element 1, and the element 2 in
contact with S or R, the Definition 7 provides condi-
tions which must be satisfied to guarantee the physical
and geometrical feasibility of solutions in areas A11
and A12.

Definition 7. From Definition 2, a set of parameters
LA11
α,ψ,l or LA12

α,ψ,l is a possible solution of system (7)
in respectively area A11 or area A12 iff the following
condition CA1 is respected

CA1 =
(
CA1

1

)
&
(
CA1

2

)
&
(
CA1

3

)
&
(
CA1

4

)
(45)

with

CA1
1 = (0 ≤ l11 ≤ l1) & (0 ≤ l12 ≤ l1) (46)

CA1
2 =

(
TS1

1|R1
> 0
)

&
(
TS1

2|R1
> 0
)

&
(
TS1

3|R1
≥ 0
)

(47)

CA1
3 =

(
~F1.
−−→
AB1 > 0

)
&
(
~F1.
−−→
B1S < 0

)
(48)

CA1
4 =


True if element 2 is fixed or l2 = 0,(
~F2.
−−→
SB2 > 0

)
else if A11(

~F2.
−−→
B2R < 0

)
else if A12

(49)

where TS1
1|R1

, TS1
2|R1

and TS1
3|R1

are evaluated using (16).

7.5.1 Solution in Area A11

The Theorem 4 proposes a set of parameters
LA11
α,ψ,l

(
α1|R1

)
, possibly solution in area A11.

Theorem 4. Consider the system (7) with (x, y, z) ∈
C̄A,r and is inside the area A11. Considering the as-
sumptions A1 to A9. In referential R1, for a de-
fined angle α1|R1

∈ [−π, π], a possible solution LA11
α,ψ,l

of the system (7) exists if LA11
α,ψ,l = Lα,ψ ∪ Ll re-

spects the conditions CA1
1 defined in Definition 7 with

Lα,ψ =
{
α1|R1

, α2|R1
, α3|R1

, ψ1|R1
, ψ2|R1

, ψ3|R1

}
such

that

α2|R1
= −α1|R1

+ 2φ1|R1
+ π (50)

α3|R1
= α2|R1

(51)
ψ1|R1

= ψ2|R1
(52)

ψ2|R1
= asin

(
zR1

l1 + l2

)
(53)

ψ3|R1
= ψ2|R1

. (54)
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and Ll = {l11, l12, l21, l22} where l21 = l2, l22 = 0 and
(l11, l12) can be evaluated in R1 using parameters in
Lα,ψ and Section 7.4.2.

The proof of Theorem 4 is described in Appen-
dices C.2 and C.3.

7.5.2 Solution in Area A12

Consider also the following additional assumption:

A9) In area A1 and A0, consider that two elements 1
and 2, the elements are chosen such that in R1,
the following condition is always respected

2 cos
(
ψF2|R1

)
F2|R1

cos
(
ψF1|R1

)
F1|R1

cos
(
φ2|R1

− φ1|R1

)
+ 1 6= 0.

(55)
Note that (55) is always respected if F2 <

F1

2 , see
Appendix C.5.

The Theorem 5 proposes a set of parameters
LA12
α,ψ,l

(
α1|R1

)
, possibly solution in area A12.

Theorem 5. Consider the system (7) with (x, y, z) ∈
C̄A,r and is inside the area A12. Considering the as-
sumptions A1 to A9. In referential R1, for a defined
angle α1|R1

∈ [−π, π], a possible solution LA12
α,ψ,l of the

system (7) exists if LA12
α,ψ,l 6= ∅ where LA12

α,ψ,l can be ex-
pressed as

LA12
α,ψ,l =

{
S |ER1 (S) = min

S∈Sα,ψ,l
(ER1 (S)) , S ∈ Sα,ψ,l

}
(56)

where Sα,ψ,l is the set of all possible solutions (possibly
empty) defined as

Sα,ψ,l =
{{

Li,jα,ψ,l |C
A1
(
Li,jα,ψ,l

)
= True,

j ∈ {1, ... , Ni}} / ∀i ∈ {1, 2}} (57)

with CA1 is defined in Definition 7, Li,jα,ψ,l = Li,jα,ψ∪L
i,j
l

with

Li,jα,ψ = Liα ∪
{
ψi,j1|R1

, ψi,j2|R1
, ψi,j3|R1

}
(58)

Liα =
{
α1|R1

, α2|R1
, αi3|R1

}
(59)

Li,jl =
{
li,j11 , l

i,j
12 , l21, l22

}
(60)

and 0 ≤ Ni ≤ 4 is the number of elements of
Sψ2

(
αi3|R1

)
, Sψ2

(
αi3|R1

)
=
{
sjψ2
| j ∈ {1, ... , Ni}

}
can be evaluated following the Theorem 10 with the an-
gles

α2|R1
=2φ1|R1

− α1|R1
+ π (61)

αi3|R1
=α30|R1

+ φ1|R1
+ (i− 1)π (62)

ψi,j1|R1
= ψi,j2|R1

(63)

ψi,j2|R1
= sjψ2

(64)

ψi,j3|R1
= atan

(
tan

(
ψi,j2|R1

)
a1 + b1

)
(65)

with a1 =
TS1

2xy|R1

TS1
3xy|R1

and b1 = − F2

TS1
3xy|R1

sin
(
ψF2|R1

)
,

TS1
2xy|R1

and TS1
3xy|R1

evaluated using (19) and (18),

α30|R1
= atan

2
F2xy|R1

F1xy|R1

sin (∆φR1
) + tan (Γ1)(

2
F2xy|R1

F1xy|R1

cos (∆φR1
) + 1

)

(66)

where ∆φR1 = φ2|R1
− φ1|R1

and Γ1 = φ1|R1
− α1|R1

.
Then, the lengths can be expressed as l21 = 0,

l22 = l2 and
(
li,j11 , l

i,j
12

)
can be evaluated in R1 using

parameters in Li,jα,ψ and Section 7.4.2.

The proof of Theorem 5 is described in Appen-
dices C.2 and C.3. Remark also the angles ψi|R1

re-
quire the value of angles αi|R1

, which must be evalu-
ated first.

7.6 Solution in area A2
The Theorems 6 and 7 propose a set of parameters
LA21
α,ψ,l

(
α1|R2

)
and LA22

α,ψ,l

(
α1|R2

)
, possibly solution in

areas A21 and A22. The solution is evaluated in refer-
ential R2to simplify the resolution. The solution in R
can be found using a rotation of referential as described
in Definition 4.

Based on properties made in Section 5 and Defini-
tion 2 for the sliding element 2, and the element 1 in
contact with A or S, the Definition 8 provides condi-
tions which must be satisfied to guarantee the physical
and geometrical feasibility of solutions in areas A21
and A22.

Definition 8. From Definition 2, a set of parameters
LA21
α,ψ,l or LA22

α,ψ,l is a possible solution of system (7)
in respectively area A21 or area A22 iff the following
condition CA2 is respected

CA2 =
(
CA2

1

)
&
(
CA2

2

)
&
(
CA2

3

)
&
(
CA2

4

)
(67)

with

CA2
1 = (0 ≤ l21 ≤ l2) & (0 ≤ l22 ≤ l2) (68)

CA2
2 =

(
TS1

1|R1
≥ 0
)

&
(
TS1

2|R1
> 0
)

&
(
TS1

3|R1
> 0
)
(69)

CA2
3 =

(
~F2.
−−→
SB2 > 0

)
&
(
~F2.
−−→
B2R < 0

)
(70)

CA2
4 =


True if element 1 is fixed,(
~F1.
−−→
B1S < 0

)
else if A21(

~F1.
−−→
AB1 > 0

)
else if A22

(71)

where TS1
1|R1

, TS1
2|R1

and TS1
3|R1

are evaluated using (16).

7.6.1 Solution in Area A21

The Theorem 6 proposes a set of parameters
LA21
α,ψ,l

(
α1|R2

)
, possibly solution in area A21.
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Theorem 6. Consider the system (7) with (x, y, z) ∈
C̄A,r and is inside the area A21. Considering the as-
sumptions A1 to A8. In referential R2, for a de-
fined angle α1|R2

∈ [−π, π], a possible solution LA21
α,ψ,l

of the system (7) exists if LA21
α,ψ,l = Lα,ψ ∪ Ll re-

spects the conditions CA2 defined in Definition 8 where
Lα,ψ =

{
α1|R2

, α2|R2
, α3|R2

, ψ1|R2
, ψ2|R2

, ψ3|R2

}
with

α2|R2
= α1|R2

(72)
α3|R2

= −α2|R2
+ 2φ1|R2

+ π (73)
ψ1|R2

= ψ2|R2
(74)

ψ2|R2
= asin

(
zR2

l1 + l2

)
(75)

ψ3|R2
= ψ2|R2

. (76)

and Ll = {l11, l12, l21, l22} where l11 = 0 and l12 = l1,
l21 and l22 are evaluated in R2 using Lα,ψ and Sec-
tion 7.4.3.

The proof of Theorem 6 is described in Appen-
dices D.2 and D.3.

7.6.2 Solution in Area A22

The Theorem 7 proposes a set of parameters
LA22
α,ψ,l

(
α1|R2

)
, possibly solution in area A22.

Theorem 7. Consider the system (7) with (x, y, z) ∈
C̄A,r and is inside the area A22. Considering the as-
sumptions A1 to A8. In referential R2, for a defined
angle α1|R2

∈ [−π, π], a possible solution LA22
α,ψ,l of the

system (7) exists if LA22
α,ψ,l 6= ∅ where LA22

α,ψ,l can be ex-
pressed as

LA22
α,ψ,l =

{
S |ER2

(S) = min
S∈Sα,ψ,l

(ER2
(S)) , S ∈ Sα,ψ,l

}
(77)

where Sα,ψ,l is the set of all possible solutions (possibly
empty) defined as

Sα,ψ,l =
{{

Li,jα,ψ,l |C
A22

(
Li,jα,ψ,l

)
= True,

j ∈ {1, ... , Ni}} / ∀i ∈ {1, 2}} (78)

with CA2 is defined in Definition 8, Li,jα,ψ,l = Li,jα,ψ∪L
i,j
l

Li,jα,ψ = Liα ∪
{
ψi,j1|R2

, ψi,j2|R2
, ψi,j3|R2

}
(79)

Liα =
{
α1|R2

, αi2|R2
, αi3|R2

}
(80)

Li,jl =
{
li,j11 , l

i,j
12 , l21, l22

}
(81)

and 0 ≤ Ni ≤ 4 is the number of ele-
ments of Sψ2

(
αi3|R2

)
, the set Sψ2

(
αi3|R2

)
={

sjψ2
| j ∈ {1, ... , Ni}

}
can be evaluated following the

Theorem 10 with the angles

αi2|R2
= 2φ1|R2

− αi3|R2
+ π. (82)

αi3|R2
= α30|R2

+ φ2|R2
+ (i− 1)π (83)

ψi,j1|R2
= atan

(
tan

(
ψi,j2|R2

)
a2 + b2

)
(84)

ψi,j2|R2
= sjψ2

(85)

ψi,j3|R2
= ψi,j2|R2

(86)

with a2 =
TS1

1xy|R2

TS1
2xy|R2

and b2 = − F1

TS4
1xy|R2

sin
(
ψF1|R2

)
,

TS1
1xy|R2

and TS1
2xy|R2

evaluated using (17) and (19),

α30|R2
= atan

(
2
F1xy|R2

F2xy|R2

[tan (Γ2) cos (∆φR2
)− sin (∆φR2

)]

+ tan (Γ2)) (87)

with ∆φR2 = φ2|R2
− φ1|R2

and Γ2 = φ2|R2
− α1|R2

.
Then, the lengths can be expressed as l11 = l1,

l12 = 0 and
(
li,j21 , l

i,j
22

)
can be evaluated in R2 using

parameters in Li,jα,ψ and Section 7.4.2.

The proof of Theorem 7 is described in Appen-
dices D.2 and D.4. Remark also the angles ψi|R2

re-
quire the value of angles αi|R2

, which must be evalu-
ated first.

7.7 Solution in Area A0
Based on properties made in Section 5 and Defini-
tion 2 for sliding elements 1 and 2, the Definition 9
provides conditions which must be satisfied to guaran-
tee the physical and geometrical feasibility of solutions
in area A0.

Definition 9. From Definition 2, a set of parameters
LA0
α,ψ,l is a possible solution of system (7) in area A0

iff the following condition CA0 is respected

CA0 =
(
CA1

1

)
&
(
CA2

1

)
&
(
CA2

2

)
&
(
CA0

1

)
&
(
CA0

2

)
(88)

with

CA0
1 =

(
~F1.
−−→
AB1 > 0

)
&
(
~F1.
−−→
B1S < 0

)
(89)

CA0
2 =

(
~F2.
−−→
SB2 > 0

)
&
(
~F2.
−−→
B2R < 0

)
(90)

where TS1
1|R0

, TS1
2|R0

and TS1
3|R0

are evaluated using (16).

The Theorems 8 and 9 propose a set of parameters
LA0
α,ψ,l

(
α1|R0

)
, possibly solution in area A0. Theo-

rem 8 considers the particular case where ψF2|R0
= 0,

and Theorem 9 considers the general case. The solu-
tion is evaluated in referential R0to simplify the reso-
lution.
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Theorem 8. Consider the system (7) with (x, y, z) ∈
C̄A,r and is inside the area A0 and not respecting the
conditions of Theorem 2. Considering the assumptions
A1 to A9. In referential R0, in the particular case
where the condition ψF2|R0

= 0 is respected, one has
for i ∈ {1, 2}

αi2|R0
= −αi1|R0

+ 2φ1|R0
+ π (91)

αi3|R0
= −αi2|R0

+ 2φ2|R0
+ π (92)

ψi1|R0
= asin

(
zR0

l1 + l2

)
(93)

ψi2|R0
= ψi1|R0

(94)

ψi3|R0
= ψi1|R0

(95)

so Liα =
{
αi1|R2

, αi2|R2
, αi3|R2

}
and Liα,ψ =

Liα ∪
{
ψi1|R0

, ψi2|R0
, ψi3|R0

}
, the lengths Lil ={

li11, l
i
12, l

i
21, l

i
22

}
can be evaluated in R0 using param-

eters Liα,ψ and Section 7.4.2, and
(1) if sin (∆φR0) = 0, one has

αi1|R0
= (3− 2i) acos

(
xR0

(l1 + l2) cos
(
ψ1|R0

)) . (96)

The solution LA0
α,ψ,l can be expressed with Liα,ψ,l ={

Liα,ψ, L
i
l

}
such as

LA0
α,ψ,l =


L1
α,ψ,l if CA0

y

(
L1
α,ψ,l

)
= True

L2
α,ψ,l if CA0

y

(
L2
α,ψ,l

)
= True

∅ else

(97)

where

CA0
y (Lα,ψ,l) =l0 − y + l11 sin

(
α1|R0

)
cos
(
ψ1|R0

)
+ (l12 + l21) sin

(
α2|R0

)
cos
(
ψ2|R0

)
(98)

(2) if sin (∆φR0
) 6= 0, one has

αi1|R0
=φ1|R0

+ (1− i)π

+ atan

 F2xy|R0

F1xy|R0

+ cos (∆φR0)

sin (∆φR0)

 (99)

with ∆φR0 = φ2|R0
− φ1|R0

, F1xy|R0
and F2xy|R0

are
evaluated using (14)-(15).
The solution LA0

α,ψ,l can be expressed with Liα,ψ,l =

Liα,ψ ∪ Lil such as

LA0
α,ψ,l =


L1
α,ψ,l if CA0

(
L1
α,ψ,l

)
= True

L2
α,ψ,l if CA0

(
L2
α,ψ,l

)
= True

∅ else

(100)

where CA0 is expressed in Definition 9.

The proof of Theorem 8 is provided in Appen-
dices F.2 and F.3.

Theorem 9. Consider the system (7) with (x, y, z) ∈
C̄A,r and is inside the area A0. Considering the as-
sumptions A1 to A9. In referential R0, for a defined
angle α1|R0

∈ [−π, π], a possible solution LA0
α,ψ,l of the

system (7) exists if LA0
α,ψ,l 6= ∅ where LA0

α,ψ,l can be ex-
pressed as

LA0
α,ψ,l =

{
S |ER0

(S) = min
S∈Sα,ψ,l

(ER0
(S)) , S ∈ Sα,ψ,l

}
(101)

where Sα,ψ,l is the set of all possible solutions (possibly
empty) defined as

Sα,ψ,l =
{{

Li,jα,ψ,l |L
i,j
α,ψ,l ∈ Li,jα,ψ,l, C

A0
(
Li,jα,ψ,l

)
= True,

CA0
6

(
Li,jα,ψ,l

)
= True, ∀j ∈ {1, 2}

}
/ ∀i ∈ {1, 2}

}
(102)

with CA0 is defined in Definition 9,

Li,jα,ψ,l ={{
Li,j,kα,ψ,l / ∀k ∈ {1, 2}

}
if
(∣∣∣Ψi,j

3

∣∣∣ ≤ 1
)

&
(
CA0

6 = 0
)

∅ else
(103)

where Li,j,kα,ψ,l = Li,j,kα,ψ ∪ L
i,j,k
l with

Li,j,kα,ψ = Liα ∪
{
ψi,j1|R0

, ψi,j2|R0
, ψi,j,k3|R0

}
(104)

Liα =
{
α1|R0

, α2|R0
, αi3|R0

}
(105)

Li,j,kl =
{
li,j,k11 , li,j,k12 , li,j,k21 , li,j,k22

}
(106)

Ψi,j
3 = cos

(
ψj2|R0

) sin
(
φ2|R0

− α2|R0

)
sin
(
φ2|R0

− αi3|R0

) (107)

CA0
6 =− sin

(
ψi,j2|R0

)
TS1

2|R0
+ sin

(
ψi,j,k3|R0

)
TS1

3|R0

+ F2xy|R0
sin
(
ψF2|R0

)
(108)

where F2xy|R0
, TS1

2|R0
and TS1

3|R0
are evaluated using

(15), (16), and the angles with

α2|R0
= 2φ1|R0

− α1|R0
+ π (109)

αi3|R0
= α30|R0

+ (1− i)π (110)

ψi,j1|R0
= ψi,j2|R0

(111)

ψi,j2|R0
= ψ20|R0

+ (1− j)π (112)

ψi,j,k3|R0
= (3− 2k) acos

(
Ψi,j

3

)
if
∣∣∣Ψi,j

3

∣∣∣ ≤ 1 (113)
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where

α30|R0
=φ2|R0

+ atan

2
F2xy|R0

F1xy|R0

sin (∆φR0) + tan (Γ0)(
2
F2xy|R0

F1xy|R0

cos (∆φR0) + 1
)


(114)

ψ20|R0
=atan

(
(1−Ψ2) T̄2xy|R0

−2F2 sin
(
ψF2|R0

)) (115)

Ψ2 =
sin
(
φ2|R0

− α2|R0

)2
sin
(
φ2|R0

− α30|R0

)2
+

(
F2

T̄2xy|R0

sin
(
ψF2|R0

))2

(116)

with ∆φR0
= φ2|R0

− φ1|R0
, Γ0 = φ1|R0

− α1|R0
and

T̄2xy|R0
=

F1xy|R0

2 cos
(
φ1|R0

− α1|R0

) . (117)

with F1xy|R0
evaluated using (14). Then, the lengths

Li,j,kl can be evaluated in R0 using parameters in Li,j,kα,ψ

and Section 7.4.1.

The proof of Theorem 9 is provided in Appen-
dices F.2 and F.4. Same remarks that for the areas A1
and areas A2 can be made.

Note that the Theorem 8 can be solve analytically.
In opposite, the solution of Theorem 9 will be found
numerically.

7.8 Evaluation of ψ2 in area A12 and
A22

This section summarize the calculation of the angle ψ2

in areas A12 and A22. The Definition 10 defines the
parameters in function of the areas, and Theorem 10
describes the calculation.

Definition 10. Let define the expression of parame-
ters Ai, Bi, Ci and Di for i ∈ {1, 2} in function of the
areas and referential.
(1) In area A12, A1, B1, C1 and D1 can be expressed

in R1 such that

if sin
(
α1|R1

)
6= sin

(
α2|R1

)
,

A1 =
cos
(
α1|R1

)
− cos

(
α2|R1

)
sin
(
α1|R1

)
− sin

(
α2|R1

) (118)

B1 = l2 cos
(
α3|R1

)
− sin

(
α3|R1

)
l2A1 (119)

C1 = l1 cos
(
α2|R1

)
− sin

(
α2|R1

)
l1A1 (120)

D1 = (yR1 − l0)A1 − xR1 (121)

else,

A1 =
sin
(
α1|R1

)
− sin

(
α2|R1

)
cos
(
α1|R1

)
− cos

(
α2|R1

) (122)

B1 = l2 sin
(
α3|R1

)
− cos

(
α3|R1

)
l2A1 (123)

C1 = l1 sin
(
α2|R1

)
− cos

(
α2|R1

)
l1A1 (124)

D1 = l0 + xR1
A1 − yR1

. (125)

(2) In area A22, A2, B2, C2 and D2 can be expressed
in R2 such that

if sin
(
α2|R2

)
6= sin

(
α3|R2

)
,

A2 =
cos
(
α3|R2

)
− cos

(
α2|R2

)
sin
(
α3|R2

)
− sin

(
α2|R2

) (126)

B2 = l1 cos
(
α1|R2

)
− sin

(
α1|R2

)
l1A2 (127)

C2 = cos
(
α2|R2

)
l2 − sin

(
α2|R2

)
l2A2 (128)

D2 = (yR2 − l0)A2 − xR2 (129)

else,

A2 =
sin
(
α3|R2

)
− sin

(
α2|R2

)
cos
(
α3|R2

)
− cos

(
α2|R2

) (130)

B2 = l1 sin
(
α1|R2

)
− cos

(
α1|R2

)
l1A2 (131)

C2 = l2 sin
(
α2|R2

)
− cos

(
α2|R2

)
l2A2 (132)

D2 = l0 + xR2A2 − yR2 . (133)

Theorem 10. Let’s define the areas Ai2 with i ∈
{1, 2} where Ai2∈ {A12,A22}. For areas Ai2, the pa-
rameter ψ2|Ri can be expressed in the referential Ri
such that

ψ2|Ri ∈ Sψ2

Sψ2 = {asin (Xk) |Xk ∈ SX , Xk /∈ C, |Xk| ≤ 1}
(134)

where SX is the set of solution of the polynomial

Li +KiX + JiX
2 + IiX

3 +HiX
4 = 0 (135)

where for Ai, Bi, Ci and Di defined in Definition 10,
one has
(1) If Bi 6= 0 and Ci 6= 0 ,

Hi = G2
i (136)

Ii = 2FiGi (137)

Ji = F 2
i + (CiDi)

2
+ 2EiGi (138)

Ki = 2EiFi (139)

Li = E2
i − (CiDi)

2 (140)

(2) If Bi = 0 and Ci 6= 0,

Hi = Ii = Ki = 0 (141)

Ji = −C2
i (142)

Li = C2
i −D2

i (143)
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(3) If Bi 6= 0 and Ci = 0,

Hi = Ii = 0 (144)

Ji = l21 (145)
Ki = −2l1z (146)

Li = z2 − l22
(

1− D2
i

B2
i

)
. (147)

The proves of Definition 10 and Theorem 10 are pro-
vided in Appendix E.

8 Resolution model in areas D1,
D2 and D3

Using a transformation of the referential, the solution
of system (7) in areas D (D1, D2 and D3) can be found
analytically. For that, the referential is transformed
using a translation and three rotations of R, described
in the subsection 8.2.

8.1 Force applied at stop S

Let’s define ~FS|R =
[
FSx|R FSy|R FSz|R

]T the
force at the stop S expressed as

~FS|R = ~F1|R in area D1 (148)
~FS|R = ~FΣ|R = ~F1|R + ~F2|R in area D2 (149)
~FS|R = ~F2|R in area D3. (150)

This force will be used in the resolution of the model.

8.2 Change of referential RD

In the areas D, all the elements are in contact with
a stop. Thus, the umbilical between the anchor and
the ROV becomes the triangle ASR with AS = l1 and
SR = l2. Moreover, there is a referential where the tri-
angle ASR and all forces applied on A, S and R can be
expressed in a 2D plan (O~x~y). This referential, named
RD, can be obtained by performing a translation and
three rotation of the referential R, as illustrated in
Figure 8. The Definition 11 defines the referential RD
associated to the resolution of the system in the areas
D1, D2 and D3.

Definition 11. The referential RD is defined as a
translation and three rotations of the referential R.
The vector of coordinate XR =

[
x y z

]T
R and

forces ~Fi|RD ∀i ∈ {1, 2, S} can be expressed in RD such
as

XRD = MD (XR − TR) (151)
~Fi|RD = MD

~Fi|R (152)

MD = MD(3)MD(2)MD(1) (153)

where TR =
[

0 l0 0
]T
R and

MD(1) =

 cos
(
µD(1)

)
− sin

(
µD(1)

)
0

sin
(
µD(1)

)
cos
(
µD(1)

)
0

0 0 1

 (154)

with µD(1) = −atan2
(
yRD(1)

, xRD(1)

)
and XRD(1)

=
XR + TR,

MD(2) =

 cos
(
µD(2)

)
0 sin

(
µD(2)

)
0 1 0

− sin
(
µD(2)

)
0 cos

(
µD(2)

)
 (155)

with µD(2) = atan2
(
zRD(2)

, xRD(2)

)
and XRD(2)

=
MD(1)XRD(1)

,

MD(3) =

 1 0 0
0 cos

(
µD(3)

)
− sin

(
µD(3)

)
0 sin

(
µD(3)

)
cos
(
µD(3)

)
 (156)

with µD(3) = −atan2
(
FSz|RD(3)

, FSy|RD(3)

)
and

~Fi|RD(3)
= MD(2)MD(1)

~Fi|R.
The parameters φi|RD and ψFi|RD defined in the ref-

erential RD can be expressed as

φi|RD = atan2
(
Fiy|RD , Fix|RD

)
(157)

ψFi|RD =
π

2
− acos

(
Fiz|RD
Fi

)
. (158)

The return in the referential R can be performed
using for example Definition 12. Remind that the ref-
erentialR is not direct, and so its transformation. This
explains the presence of the sign “-” in the angle of ro-
tations.

Definition 12. The return from referential RD to
the referential R can be obtained such as

XR = pinv (MD)XRD + TR (159)
~vi|R = pinv (MD)~vi|RD (160)

and the angles in R can be expressed as

αi|R = atan2
(
viy|R, vix|R

)
(161)

ψi|R = asin
(
viz|R

)
(162)

where the expression of ~vi has been described in Defi-
nition 5.

8.3 Solution in areas D
Due to the change of referentialRD, the system (7) can
be expressed in two dimensions. A first set of solutions
can so be defined using only the geometrical properties

19



Initial referential 1: Translation 2: Rotation around A~z

3: Rotation around A~y 4: Rotation around A~x

Figure 8: Transformations to pass from the referential R to the referential RD. After four transformations, one
observes the part ASR of the umbilical is contained inside the plan (O~x~y)RD .

of the system, described in Theorem 11. Since the
solution found is not unique, the dynamical properties
are added to find the current solution, as exposed in
Theorem 11. Both theorems provides an analytical
solution.

Theorem 11. In the referential RD, let’s define the
following system

xRD = l1 cos (γ) + l2 cos (β) (163)
yRD = l1 sin (γ) + l2 sin (β) . (164)

where (γ, β) are unknown parameters. The solutions
of (γ, β) associated to the system (163)-(164) are
(1) If xRD = 0 and yRD = 0, a solution is possible

only if l1 = l2. Then, one has Lγ,β =
{
γ̄, β̄

}
with

γ̄ = atan2 (FSy, FSx) and β̄ = π + γ̄.
(2) Else if xRD 6= 0, the solutions of the system are

contained in the set Lγ,β expressed as

Lγ,β = {Lγ,β (γ) / γ ∈ Lγ} (165)

where

Lγ,β (γ) =
{
{γ, β} |β ∈ Lβ (γ) , CD1 (γ, β) = 0

}
(166)

with CD1 (γ, β) is the following condition

CD1 (γ, β) = |yRD − (l1 sin (γ) + l2 sin (β))|
+ |xRD − (l1 cos (γ) + l2 cos (β))| (167)

and Lγ and Lβ are the following sets

Lγ =

{
γ̄|γ̄ ∈ LS1,

∣∣∣∣yRDl2 − l1
l2

sin (γ̄)

∣∣∣∣ ≤ 1

}
(168)

LS1 = {acos (sX) | s ∈ {−1, 1} , X ∈ LX} (169)

Lβ (γ̄) =

{
β̄, π − β̄ | β̄ = asin

(
yRD
l2
− l1
l2

sin (γ̄)

)}
(170)

with

if (y 6= 0) & (∆ ≥ 0)

LX =


{X1D, X2D} if (|X1D| ≤ 1) & (|X2D| ≤ 1)

{X1D} if (|X1D| ≤ 1) & (|X2D| > 1)

{X2D} if (|X1D| > 1) & (|X2D| ≤ 1)

∅ else
(171)

else if (y = 0)

LX =

{
{X3D} if (|X3D| ≤ 1)

∅ else
(172)

where ∆ = a2
Db

2
D −

(
1 + b2D

) (
a2
D − 1

)
, aD =

x2
RD

+y2
RD

+l21−l
2
2

2l1yRD
, bD =

xRD
yRD

, X3D =
x2
RD

+l21−l
2
2

2l1xRD
, and
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for k ∈ {1, 2}

XkD =
aDbD + sk

√
a2
Db

2
D − (1 + b2D) (a2

D − 1)

(1 + b2D)
(173)

with {s1, s2} = {−1, 1}.

The proof of Theorem 11 is provided in Ap-
pendix G.2. Note that Lγ,β correspond to the solu-
tions geometrically possible. If not solution in Lγ and
Lβ respected condition CD (γ, β), its means the con-
figuration is not possible.

From the solutions provide by Theorem 11, Theo-
rem 12 adds the constraints link to the PFS.

Theorem 12. Consider the system (7) with (x, y, z) ∈
C̄A,r and is inside the area D1, D2 or D3. Considering
the assumptions A1 to A8. In referential RD, let’s
define Lγ,β the set of solution defined in Theorem 11.
Then
(1) In area D1, α1|RD = γ, α2|RD = β, α3|RD = 0,

l11 = l1, l12 = 0, l21 = l2, l22 = 0, where (γ, β) ∈ Lγ,β
and respect the conditions ER = 0 and(

TS1
1|RD > 0

)
&
(
TS1

2|RD > 0
)

(174)(
~F1.
−→
AS > 0

)
if element 1 is not fixed (175)(

~F2.
−→
SR > 0

)
if element 2 is not fixed (176)

(2) In area D2,α1|RD = γ, α2|RD = 0, α3|RD = β,
l11 = l1, l12 = 0, l21 = 0, l22 = l2, where (γ, β) ∈ Lγ,β
and respect the conditions ER = 0 and(

TS1
1|RD > 0

)
&
(
TS1

3|RD > 0
)

(177)(
~F1.
−→
AS > 0

)
if element 1 is not fixed (178)(

~F2.
−→
SR < 0

)
if element 2 is not fixed (179)

(3) In area D3, α1|RD = 0, α2|RD = γ, α3|RD = β,
l11 = 0, l12 = l1, l21 = 0, l22 = l2, where (γ, β) ∈ Lγ,β
and respect the conditions ER = 0 and(

TS2
2|RD > 0

)
&
(
TS2

3|RD > 0
)

(180)(
~F1.
−→
AS < 0

)
if element 1 is not fixed (181)(

~F2.
−→
SR < 0

)
if element 2 is not fixed (182)

with
−→
AS =

−−→
AB1 +

−−→
B1S and

−→
SR =

−−→
SB2 +

−−→
B2R.

The proof of Theorem 12 is provided in Ap-
pendix G.3.

9 Numerical resolution

To find a solution to Theorem 3 of Section 7, we pro-
pose to solve it numerically using a global optimization.
Note that a global optimization is required because the
system has a lot of local minimum due to the presence
of cos, sin and tan functions. In this section, some
comments are made to reduce the computation time
and outline some numerical problems which can occur.

1) In a numerical resolution, all conditions of form
X = 0 must be replaced by |X| < ε where 1 �
ε > 0. In our simulations, on takes ε = 0.01.

2) The Theorem 3 induces to test all α1 ∈ Λ with
Λ = [−π, π], which can induce a long computation
time. However, it can be observed that

• A global research on Λ = [−π, π] is required only
for the first estimation of the system and a first
value of α1. Then, if the new coordinates, forces
and cable length are close to the parameters of the
previous, Λ can be reduced to an interval Λk+1 =
α1 (k) + ω where ω =

[
− π

12 ,
π
12

]
or smaller, close

to the value α1 (k) found at the previous iteration
k. Note that in the case where the solution was
found in areas A21 or D3 where l11 = 0 and so α1

doesn’t exist, the optimization must be done for
parameter α2, because the value of α1 can change
abruptly when the area changes.

• Since the calculation for each α1 are independent,
these ones can be made in parallel.

3) In the numerical resolution, a solution of Theo-
rem 3 is valid if its energy EAmmin is bellow a defined
threshold η ≥ 0. The choice of η can be tricky be-
cause a too high threshold can admit a solution
in a zone where there should be none, and a too
small threshold can exclude solution where numer-
ical rounding would be too penalizing. η must be
found empirically. In our simulation, we choose
η = 0.1.

4) The method is very sensible to small the variation
of α1. A final accuracy of δα1 = 0.0001◦ is rec-
ommend for simulation. In our simulations, three
optimizations’ step were performed: a first loop
with an accuracy of δα1 = 0.01 is performed where
all local minimal are kept regardless of η, then a
second research around these local minimal with
a step of δα1 = 0.001, then a last step where the
minimal energy EAmmin and the threshold η are con-
sidered.
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Part V

Simulation, results,
conclusion
10 Simulations and results

10.1 Examples of system

Simulations have been performed with Matlab R2019b,
using the tool “parfor” with 4 workers (maximum of the
computer used) to obtain a low parallelization of the
operations.

In addition to the example in Figures 5 and 6, nine
examples of umbilical shape are illustrated in Fig-
ure 9 to show the possibilities and performances of the
model.

Sub-Figures 9(1) and (2) propose an exploration
close to the surface to avoid hull or underwater cavern
ceiling. Sub-Figures 9(4) and (5) propose an explo-
ration close to the seabed to avoid and dive between
obstacles such as rocks. Sub-Figure 9(6) adds presence
of underwater current, with a more realistic represen-
tation of sub-Figure 9(4) where the anchor can move
(here the “anchor” is a heavy ballast in the model).
This sub-figure illustrates also the main advantage of
using sliding element instead of fixed: the area marked
C* is inaccessible with a fixed ballast, but not with a
sliding ballast. Sub-Figures 9(3) and (9) use a mo-
torized element to create a vertical force, allowing to
explore a cavern in the wall. Finally, sub-Figures 9(7)
and (8) show illustration of area A0 with theoretical
forces, not necessarily useful or realistic in practice,
but showing the performance of the proposed model.

The configurations expressed in sub-Figures 9(1),
(2), (4), (5) and (6) have been tested experimentally
in pool, see Figure 10. Sliding elements were performed
using pulley with a neutral buoyancy. Results are de-
scribed in Section 10.2.1.

10.2 Results and comments

10.2.1 Experiments results and comparison
with previous models

Experimental results of configurations illustrated in
Figure 9(1), (4) and (6) are described in [27, 28]. Ex-
perimental results of configurations Figure 9(2) and
(5) are described in [26]. In these previous works,
each configuration had its own model, and their accu-
racy with reality has already been demonstrated. Tests
have been performed in a pool of size 3 m × 4 m, with
a depth of 3 m (not the pool where the photos were
taken).

Our new general model allows to find exactly the
same geometrical results as the previous work. The

main difference is that the computation time is lower
for the previous models, as the assumptions made in
these works allow simplifications that enable analyti-
cal resolution in all cases. It should be noted, however,
that most of these models cannot consider the presence
of horizontal underwater currents or three-dimensional
cases, and testing a new configuration would mean re-
doing a complete study of the system. Conversely, the
new general model enables us to calculate the cable
shape for all configurations using one or two elements.

10.2.2 A third element

A third element between R and the ROV can be con-
sidered if, like the anchor, its position relative to the
ROV remains fixed: its coordinates become those of
the ROV in the calculations. This can be used to offset
the cable attachment point, for example with a buoy
or ballast, for better diving between rocks.

10.2.3 Observations made

A hierarchy has been observed between the different
areas. First, when area A0 exists, this configuration
always has priority over all other areas. Then, the ar-
eas A (A11, A12, A21 and A22) have priority over the
areas D (D1, D2 and D3). We have tested this hi-
erarchy by prioritizing one solution over another, and
using the system energy in case of conflict between two
solutions inside areas A or inside areas D. Same results
have been observed that using only the system energy.
Couple with the graph theory, this hierarchy could be
an effective method to solve computation time by test-
ing first area A0, then areas A if no solution is found
and finally areas D. Unfortunately, no theoretical study
has been found to prove this hierarchy, so there’s no
guarantee of the reliability of this method.

10.2.4 Computation time

The computation time is proportional to the number of
areas to evaluate, thus we consider here configurations
with two sliding elements, i.e. with the more number of
areas. Between each iteration, a displacement of 0.5m
for a cable of L = 15m is performed. The system is
solved using resolution described in Part IV.

Past the first estimation of the system (see the nu-
merical implementation described in Section 9), the
computation time at each iteration is between 0.8s and
1.2s with Matlab R2019b and its tool “parfor” with
4 workers. This computation time is too long for a
real-time implementation. A possible way to further
speed up the real-time performance of our implemen-
tation would be transpiling the Matlab code to C++ or
Python. An implementation on GPU to obtain a bet-
ter calculation parallelization would strongly improve
computation time. Other methods of resolution using
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(1) 1 sliding ballast (2) 2 sliding ballasts (3) 1 sliding vertical thruster
~F1 = [0, 1, 0]

T ~F1 = [0, 1, 0]
T , ~F2 = 1

2
~F1, ~F1 = [−1, 0, 0]

T

l0 = 0, l1 = 10 l0 = 6, l1 = l2 = 10 l0 = 6, l1 = 9

(4) 1 sliding buoy (5) 2 sliding buoys (6) 1 fixed or sliding ballast, 1 sliding
~F1 = [0, −1, 0]

T ~F1 = [0, −1, 0]
T , ~F2 = 2~F1 buoy, both with horizontal current

l0 = l1 = 10 l0 = 10, l1 = 6, l2 = 4 ~F1 = [0.5, 2, 0]
T , ~F2 = [0.5, −1, 0]

T

l0 = 0, l1 = 10, l2 = 2
C*= F if fixed ballast,

C*=A11 if sliding ballast

(7) Theoretical configuration (8) Theoretical configuration (9) 1 sliding ballast,
to illustrate A0 with opposing forces to illustrate A0 with opposing forces 1 fixed vertical thruster
~F1 = [−1, 0, 0]

T , ~F2 = [0, 1, 0]
T ~F1 = [−1, 0.3, 0]

T , ~F2 = [1, 0.3, 0]
T ~F1 = [0, 1, 0]

T , ~F2 = [−3, 0, 0]
T

l0 = 6, l1 = 9, l2 = 6 l0 = 6, l1 = 9, l2 = 6 l0 = 6, l1 = 9, l2 = 6

Figure 9: Example of configurations possibles obtained with the proposed model. Areas possible/visible are noted
in the illustrations. Grey areas: theoretical obstacles to illustrate the main interest of the illustrated configuration.
In subfigure (1)-(3), only area A1 exist (with A11 = A12 because only one element). Note that it’s the ratio between
two lengths or distances that matters, not the unit.

23



Experiment of (1) Experiment of (2)
1 sliding ballast 2 sliding ballasts

Experiment of (4) Experiment of (5)
1 sliding buoy 2 sliding buoys

Experiment of (6) : 1 sliding ballast and 1 sliding buoy

Figure 10: Configurations exposed in Figure 9 tested in
pools. A robot BlueROV2 is used for the experiements.

for example finite element (with only two elements)
could also be proposed.

10.3 Limits of the method and
overview

The model provides a good vision of the system in
offline, allowing to build a umbilical equipment and
observe its behavior. The model has however some
limitations.

First, as already discuss in Section 10.2.4, the com-
putation time is actually the major weakness of our
method. Suggestions for improvement have been made
in Section 10.2.4.

The method is also limited to two elements: except
case exposed in Section 10.2.2, each element added
would multiple the number of possible areas by three,
making the solution too complex to found and/or none
efficient in calculation time.

More elements could be added with an more efficient
computation time by

• Use of a less general model, for example in 2D
and/or with elements having a specific orientation,
or using more fixed elements, like in [27, 26].

• Changing the method of resolution: solving the
problem with theorems exposed in Part IV may

be heavy for some areas. By retaining assumption
and properties proven in Part II, another type of
resolution such as finite-element might be more
efficient.

It can however be remark that in practice, install more
than two elements can be useless or more unstable.

Another practical problem is knowing the forces ap-
plied to the elements. While the forces of weight, buoy-
ancy or motorization are simple to know, it is more
complex to know the underwater currents of other ex-
ternal forces in practice. However, this problem is com-
mon to all umbilical models.

It can also be noted that the system is solved with
quasi-static equilibrium hypothesis. Solutions to re-
spect the hypotheses of quasi-static have been pro-
posed in Section 4.2 and a resolution of the system
in dynamic will be the subject of futures studied.

11 Conclusion
This paper presents a novel approach to passively man-
age the umbilical of an ROV by adding additional ele-
ments such as ballasts, buoys, or an oriented thruster.
The purpose is to stretch the umbilical in a controlled
manner, ensuring a predictable shape and preventing
entanglement with obstacles or itself. These elements
can either be fixed or move freely along the umbili-
cal, with stops in place to restrict constant contact.
Unlike previous studies, this proposal introduces a gen-
eral model capable of estimating the three-dimensional
shape of the umbilical regardless of the applied force’s
orientation, allowing to consider the presence of un-
derwater currents, passive or motorized elements on
the tether, and the inclusion or exclusion of a TMS.
The geometry and forces applied upon the umbilical
are calculated using a quasi-static assumption.

The model provides a good vision of the system, al-
lowing to build a umbilical equipment and observe its
behavior. Example of different set up, adapted to spe-
cific missions, are proposed and tested in pool. The
limits of the method have been discussed, specifically
the computation time which can be improved. Sugges-
tions for improvement have been made.

These improvements will be the subject of future
works. Future works will also study the dynamics in-
stead of a quasi-static equilibrium, with also variations
of the sea current and uncertainties on parameters. Fi-
nally, measurements at sea during a true mission will
be performed. the curvature of the cable will also be
taken into account.
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A Study of PFS

Consider a referential where |ψ1|, |ψ2|, |ψ3|, |ψF1| and
|ψF2| are different of π2 , so one has T1xy > 0, T2xy > 0,
T3xy > 0, F1xy > 0,F2xy > 0 with Tixy = cos (ψi)Ti
for i ∈ {1, 2, 3} and Fjxy = cos (ψFj)Fj for j ∈ {1, 2}.
Remark. A rotation of the referential R can be re-
quired to fulfill these conditions.

In the plan Oxy, (9) can be rewritten for i ∈ {1, 2}
as{
− cos (α1)T1xy + cos (α2)T2xy + F1xy cos (φ1) = 0

− sin (α1)T1xy + sin (α2)T2xy + F1xy sin (φ1) = 0

(183){
− cos (α2)T2xy + cos (α3)T3xy + F2xy cos (φ2) = 0

− sin (α2)T2xy + sin (α3)T3xy + F2xy sin (φ2) = 0

(184)
Let’s (183) and (184) in the following subsections.

A.1 Study of (183)

Consider first (183). Suppose in a first time that α1 /∈{
π
2 k|k ∈ Z

}
, thus cos (α1) 6= 0. The case cos (α1) = 0

is treated in Appendix A.1.1. From (183), one gets


T1xy = 1

cos(α1) (cos (α2)T2xy + F1xy cos (φ1))

0 = [− tan (α1) cos (α2) + sin (α2)]T2xy

+ [− tan (α1) cos (φ1) + sin (φ1)]F1xy

(185)

If α1 = φ1 + kπ with k ∈ Z, one has
[− tan (α1) cos (φ1) + sin (φ1)] = 0. Since T2xy > 0
and F1xy > 0, one must have α1 = α2 + k2π with
k2 ∈ Z to equilibrate the second line of (185). These
specific cases correspond to case where the cable is per-
fectly straight (α1 = α2) or perfectly folded (α1 =
α2 + π). Case α1 = α2 is excluded in most config-
uration by Definition 3. Case α1 = α2 + π induce
cos (α1) = − cos (α2) and sin (α1) = − sin (α2). From
(183), it leads to φ1 = α1. Then, it can be deduced
that T1xy = T2xy =

F1xy

2 .
Consider now we are not in these particulars case.

Then, one has

{
T1xy = 1

cos(α1) (cos (α2)T2xy + F1xy cos (φ1))

T2xy = − [− tan(α1) cos(φ1)+sin(φ1)]
[− tan(α1) cos(α2)+sin(α2)]F1xy

(186)

One gets

T1xy =
1

cos (α1)
(cos (α2)T2xy + F1xy cos (φ1)) (187)

and T2xy can be rewritten such as

T2xy = −

[
− sin(α1)

cos(α1) cos (φ1) + sin (φ1)
]

[
− sin(α1)

cos(α1) cos (α2) + sin (α2)
]F1xy

= − [− sin (α1) cos (φ1) + cos (α1) sin (φ1)]

[− sin (α1) cos (α2) + cos (α1) sin (α2)]
F1xy

= − sin (φ1 − α1)

sin (α2 − α1)
F1xy. (188)

From (186) and (188), one gets an expression of T1xy

and T2xy.
Since T1xy > 0 and T2xy > 0, let’s now study the

ratio T1xy

T2xy
:

T1xy

T2xy

=

1
cos(α1)

(
− sin(φ1−α1)

sin(α2−α1)F1xy cos (α2) + F1xy cos (φ1)
)

− sin(φ1−α1)
sin(α2−α1)F1xy

=
−1

cos (α1)

(
− cos (α2) +

sin (α2 − α1)

sin (φ1 − α1)
cos (φ1)

)
= −

(
− cos (α2) sin (φ1 − α1) + sin (α2 − α1) cos (φ1)

cos (α1) sin (φ1 − α1)

)
.

(189)
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Put A = − cos (α2) sin (φ1 − α1) +
sin (α2 − α1) cos (φ1). It can be shown that

A =− cos (α2) [sin (φ1) cos (α1)− sin (α1) cos (φ1)]

+ [sin (α2) cos (α1)− sin (α1) cos (α2)] cos (φ1)

=− cos (α2) sin (φ1) cos (α1)

+ sin (α1) cos (α2) cos (φ1)

+ sin (α2) cos (φ1) cos (α1)

− sin (α1) cos (α2) cos (φ1)

= [sin (α2) cos (φ1)− cos (α2) sin (φ1)] cos (α1)

= cos (α1) sin (α2 − φ1) . (190)

Injecting (190) inside (189), one gets

T1xy

T2xy
= −

(
cos (α1) sin (α2 − φ1)

cos (α1) sin (φ1 − α1)

)
=

(
sin (φ1 − α2)

sin (φ1 − α1)

)
(191)

and since T1xy = cos (ψ1)T1 and T2xy = cos (ψ2)T2,
one has

T1

T2
=

cos (ψ2)

cos (ψ1)

(
sin (φ1 − α2)

sin (φ1 − α1)

)
(192)

Consider now the case where the element 1 is sliding
and not in contact with a stop. Thus, from Defini-
tion 2, T1 = T2 and so (192) becomes

sin (α2 − φ1) cos (ψ2) = sin (α1 − φ1) cos (ψ1) (193)

A.1.1 Particular case cos (α1) 6= 0

Consider now the particular case where α1 = sπ2 with
s ∈ {−1, 1}. From (183), one has{

0 = cos (α2)T2xy + F1xy cos (φ1)

0 = −sT1xy + sin (α2)T2xy + F1xy sin (φ1)
(194)

and so T2xy = F1xy
cos(φ1)
cos(α2) . Then, one gets from the

second line of (194)

−sT1xy + sin (α2)F1xy
cos (φ1)

cos (α2)
+ F1xy sin (φ1) = 0

F1xy [tan (α2) cos (φ1) + sin (φ1)] = sT1xy

Let’s now study the ratio T1xy

T2xy
:

T1xy

T2xy
= s

F1xy [tan (α2) cos (φ1) + sin (φ1)]

F1xy
cos(φ1)
cos(α2)

T1xy

T2xy
= s

sin (α2) cos (φ1) + cos (α2) sin (φ1)

cos (φ1)

T1xy

T2xy
= s

sin (α2 − φ1)

cos (φ1)

T1xy

T2xy
= s

sin (α2 − φ1)

cos
(
φ1 + sπ2 − s

π
2

) (195)

and since α1 = sπ2 , one gets

T1xy

T2xy
= −s sin (α2 − φ1)

sin
(
φ1 − α1 + sπ2

)
T1xy

T2xy
= −s2 sin (α2 − φ1)

sin (φ1 − α1)

T1xy

T2xy
=

sin (α2 − φ1)

sin (α1 − φ1)
(196)

which lead to the same result than (191).

A.2 Study of (184)

Consider now (184). Suppose in a first time that α3 /∈{
π
2 k|k ∈ Z

}
, thus cos (α3) 6= 0. The case cos (α3) = 0

can be solved following the same steps than in Ap-
pendix A.1.1. From (184), one gets


T3xy = 1

cos(α3) (cos (α2)T2xy − F2xy cos (φ2))

0 = [− sin (α2) + tan (α3) cos (α2)]T2xy

+ [− tan (α3) cos (φ2) + sin (φ2)]F2xy

Again, from the second line of (184), one deduce
than if α2 = φ2 + kπ with k ∈ Z, since T2xy > 0
and F2xy > 0, one must have α3 = α2 + k2π with
k2 ∈ Z. These specific cases correspond to case where
the cable is perfectly straight (α3 = α2) or perfectly
folded (α3 = α2+π). Case α2 = α3 is excluded in most
configuration by Definition 3. Case α3 = α2+π induces
cos (α3) = − cos (α2) and sin (α3) = − sin (α2). From
(184), it leads to φ2 = α2. Then, it can be deduced
that T2xy = T3xy =

F3xy

2 .
Consider first we are not in these particulars case.

Then, one has{
T3xy = 1

cos(α3) (cos (α2)T2xy − F2xy cos (φ2))

T2xy = −F2xy
[− tan(α3) cos(φ2)+sin(φ2)]
[tan(α3) cos(α2)−sin(α2)]

(197)
One gets

T3xy =
1

cos (α3)
(cos (α2)T2xy − F2xy cos (φ2)) (198)

and T2xy can be expressed such as

T2xy = −F2xy
[− tan (α3) cos (φ2) + sin (φ2)]

[tan (α3) cos (α2)− sin (α2)]

= −F2xy

[
− sin(α3)

cos(α3) cos (φ2) + sin (φ2)
]

[
sin(α3)
cos(α3) cos (α2)− sin (α2)

]
= −F2xy

[− sin (α3) cos (φ2) + cos (α3) sin (φ2)]

[sin (α3) cos (α2)− cos (α3) sin (α2)]

= −F2xy
sin (φ2 − α3)

sin (α3 − α2)
. (199)
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From (197) and (199), one gets an expression of T2xy

and T3xy.
Following the same steps than (189)-(192) in Sec-

tion A.1, one gets

T3

T2
=

cos (ψ2)

cos (ψ3)

(
sin (φ2 − α2)

sin (φ2 − α3)

)
(200)

Consider now the case where the element 2 is sliding
and not in contact with a stop. Thus, from Defini-
tion 2, one has T2 = T3 and (200) becomes

cos (ψ3) sin (φ2 − α3) = cos (ψ2) sin (φ2 − α2) (201)

A.3 Study of (183) and (184)
Suppose we are in configuration where (183) and (184)
are both valid, for example in the areas A0, A12 and
A22. Using the expression of T2xy in (188) and (199),
one get

sin (φ1 − α1)

sin (α1 − α2)
F1xy = F2xy

sin (φ2 − α3)

sin (α2 − α3)

F1xy

F2xy
sin (φ1 − α1) sin (α2 − α3) = sin (φ2 − α3) sin (α1 − α2) .

(202)

A.4 Calculation of T1, T2 and T3

In function of if systems (183) and (184) are valid or
not, the calculation of T1, T2 and T3 changes. This
section exposes the different case possible. In all case,
one has ∀i ∈ {1, 2, 3}

Ti =
Tixy

cos (ψi)
, (203)

F1xy = cos (ψF1)F1 and F2xy = cos (ψF2)F2.
Let’s find the expression of T1xy, T2xy and T3xy.

Note that all the particulars cases excluded in following
sections are grouped in Appendix A.4.5.

A.4.1 If system (183) is valid and (183) is not
valid (areas A11, D1)

Suppose here the case where the two elements are
not in contact, i.e. B1 6= B2. We exclude the case
α1 = α2 + k2π with k2 ∈ Z because it corresponds to
case where the cable is perfectly straight (α1 = α2) or
perfectly folded (α1 = α2 +π). Since sin (α2 − α1) 6= 0
and based one the steps described in Appendix A.1,
one has if α1 6= sπ2 with s ∈ {−1, 1}

T1xy =
1

cos (α1)
(cos (α2)T2xy + F1xy cos (φ1)) (204)

T2xy = − sin (φ1 − α1)

sin (α2 − α1)
F1xy (205)

and T3 does not exist.

A.4.2 If system (183) is not valid and (183) is
not valid (areas A21, D3)

Suppose here the case where the two elements are
not in contact, i.e. B1 6= B2. We exclude the case
α3 = α2 + k2π with k2 ∈ Z because it corresponds to
case where the cable is perfectly straight (α3 = α2) or
perfectly folded (α3 = α2 +π). Since sin (α2 − α3) 6= 0
and based one the steps described in Appendix A.2,
one has one has if α3 6= sπ2 with s ∈ {−1, 1}

T2xy = − sin (φ2 − α3)

sin (α3 − α2)
F2xy (206)

T3xy =
1

cos (α3)
(cos (α2)T2xy − F2xy cos (φ2)) (207)

and T1 does not exist.

A.4.3 Systems (183) and (183) are valid (areas
A0, A12, A22)

Suppose here the case where the two elements are not
in contact, i.e. B1 6= B2. We exclude the case α1 =
α2 + k2π with k2 ∈ Z because it corresponds to case
where the cable is perfectly straight (α1 = α2) or per-
fectly folded (α1 = α2 + π). Since |sin (α2 − α1)| 6= 0
and based one the steps described in Appendices A.1
and A.2, one has if α1 6= sπ2 with s ∈ {−1, 1}

T1xy =
1

cos (α1)
(cos (α2)T2xy + F1xy cos (φ1)) (208)

T3xy =
1

cos (α3)
(cos (α2)T2xy − F2xy cos (φ2)) .

(209)

with

T2xy =

{
− sin(φ1−α1)

sin(α2−α1)F1xy if areas A12 or A0
− sin(φ2−α3)

sin(α3−α2)F2xy if areas A22
(210)

A.4.4 Two elements in contact (area D2)

Consider now the case where the two elements are in
contact, i.e. B1 = B2. We exclude the case α1 = α3 +
k2π with k2 ∈ Z because it corresponds to case where
the cable is perfectly straight (α1 = α3) or perfectly
folded (α1 = α3 + π).

The system (10) can be rewrite such as{
− cos (α1)T1xy + cos (α3)T3xy + FΣx = 0

− sin (α1)T1xy + sin (α3)T3xy + FΣy = 0
(211)

Following the same step that (186)-(188) in Ap-
pendix A.1, one gets from (211)

T1xy =
1

cos (α1)
(cos (α3)T3xy + FΣx) (212)
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and

− sin (α1)

cos (α1)
(cos (α3)T3xy + FΣx)

+ sin (α3)T3xy + FΣy = 0

[cos (α1) sin (α3)− sin (α1) cos (α3)]T3xy

+ [FΣy cos (α1)− FΣx sin (α1)] = 0

T3xy = − FΣy cos (α1)− FΣx sin (α1)

[cos (α1) sin (α3)− sin (α1) cos (α3)]

T3xy =
FΣx sin (α1)− FΣy cos (α1)

sin (α3 − α1)
. (213)

and T2 does not exist.

A.4.5 Particular cases

In all previous configurations:
If not area D2:
In the case where α1 = α2 + k2π with k2 ∈ Z, one

has T1xy = T2xy =
F1xy

2 .
In the case where α3 = α2 + k2π with k2 ∈ Z, one

has T3xy = T2xy =
F3xy

2 .
If α1 = sπ2 , one has T2xy = F1xy

cos(φ1)
cos(α2) and T1xy =

sF1xy [tan (α2) cos (φ1) + sin (φ1)].
If α3 = sπ2 , one has T2xy = F2xy

cos(φ2)
cos(α2) and T3xy =

sF2xy [tan (α2) cos (φ2) + sin (φ2)].
If area D2:
In the case where α3 = α1 + k2π with k2 ∈ Z, one

has T3xy = T1xy =

√
F 2

Σx+F 2
Σy

2 .
If α1 = sπ2 , one has T3xy = FΣx

1
cos(α3) and T1xy =

s [sin (α3)T3xy + FΣy].

B Proof of length calculation

B.1 Area A2
In area A2, the length l11 and l12 are known. We
desire to find l21 and l22 is function of the angles.
Put a11 = cos (ψ1) sin (α1), a12 = cos (ψ2) sin (α2) and
a22 = cos (ψ3) sin (α3).

Suppose first a11 = a12. By injecting a11, a12 and
a22 in the second line of (7), one gets

y − l0 = a11l11 + a12 (l12 + l21) + a22l22

y − (l0 + a11l11 + a12l12) = a12 (l2 − l22) + a22l22

y − (l0 + a11l11 + a12 (l12 + l2)) = (a22 − a12) l22

l22 =
y − (l0 + a11l11 + a12 (l12 + l2))

a22 − a12
(214)

with l12 = l1 − l12.
Consider now first a11 = a12. By injecting a11, a12

and a22 in the first line of (7) and following the same
step than (214), one gets

l22 =
x− (b11l11 + b12 (l12 + l2))

b22 − b12
(215)

with b11 = cos (ψ1) cos (α1), b12 = cos (ψ2) cos (α2) and
b22 = cos (ψ3) cos (α3).

In both case, one has l21 = l2 − l21. Note that the
Definition 3 excludes the case a22 = a12 and b22 = b12

simultaneously in area A2.

B.2 Area A1
In area A1, the length l21 and l22 are known. We desire
to find l11 and l12 is function of the angles.

Suppose first a11 = a12. By injecting a11, a12 and
a22 in the second line of (7), one gets

y − l0 = a11l11 + a12 (l12 + l21) + a22l22

y − (l0 + a22l22 + a12l21) = a11l11 + a12 (l1 − l11)

y − (l0 + a22l22 + a12 (l21 + l1)) = (a11 − a12) l11

l11 =
y − (l0 + a22l22 + a12 (l21 + l1))

a11 − a12
(216)

Consider now first a11 = a12. By injecting a11, a12

and a22 in the first line of (7) and following the same
step than (214), one get

l11 =
x− (b22l22 + b12 (l21 + l1))

b11 − b12
. (217)

In both case, one has l12 = l1 − l12. Note that the
Definition 3 excludes the case a11 = a12 and b11 = b12

simultaneously in area A1, so there is always a solution.

B.3 Area A0
In opposite with areas A1 and A2, we have no specific
information on l11 and l22 in the area A0. Let’s start
using the result (214) of Appendix (B.1). Injecting
l12 = l1 − l12 in (214), one gets

l22 =
y − (l0 + a11l11 + a12 (l12 + l2))

a22 − a12

=
y − (l0 + a11l11 + a12 (l1 − l11 + l2))

a22 − a12

=
y − (l0 + (a11 − a12) l11 + a12 (l1 + l2))

a22 − a12

=
y − (l0 + a12 (l1 + l2))

a22 − a12
−
(
a11 − a12

a22 − a12

)
l11

= B11 − l11A11 (218)
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with A11 =
(
a11−a12

a22−a12

)
and B11 = y−(l0+a12(l1+l2))

a22−a12
.

Consider now the second line of (7) and put
b11 = cos (ψ1) cos (α1), b12 = cos (ψ2) cos (α2), b22 =
cos (ψ3) cos (α3). Then,

x = b11l11 + b12 (l12 + l21) + b22l22

x = b11l11 + b12 (l1 − l11 + l2 − l22) + b22l22

x− b12 (l1 + l2) = (b11 − b12) l11 + (b22 − b12) l22

Using (218), one gets

x− b12 (l1 + l2) = (b11 − b12) l11

+ (b22 − b12) (B11 − l11A11)

x− [b12 (l1 + l2) + (b22 − b12)B11]

= [(b11 − b12)− (b22 − b12)A11] l11

l11 =
x− (b12 (l1 + l2) + (b22 − b12)B11)

(b11 − b12)− (b22 − b12)A11
(219)

One can found l22 using (218) and (219), then l12

and l21 with l12 = l1 − l12 and l21 = l2 − l22

C Calculation in area A1

C.1 Referential R1

To find a solution in the area A1, we have observe that
the system is much more easier to solve if ψF1 = 0:
it will allow to simplify the system (9) to find a so-
lution for (201) independent of the elevation angles
ψ1 and ψ2. Thus, in this section, we decide to per-
form a rotation of the referential R around the ver-
tical axis O~y of an angle µ1 = atan2 (F1z, F1x) with
F1|R =

[
F1x F1y F1z

]T to obtain the referential
R1, whose the characteristics are described in the Def-
inition 4. In R1, one has ψF1|R1

= 0. Once a solution
will be found in R1, the angles and lengths will be
re-evaluated in R using for example Definition 5.

In this section, since all the calculations are per-
formed in R1 , the notations are lightened such that a
parameter βi|R1

is simply written βi.

C.2 Common angles in A1
In area A1, the element 1 is sliding such that it corre-
spond to the Definition 2 (1). Thus, one has T1 = T2

and from Theorem 1

cos (ψ1) sin (φ1 − α1) = cos (ψ2) sin (φ1 − α2) (220)

Moreover, since ψF1 = 0, the third line of system (9)
becomes

− sin (ψ1)T1 + sin (ψ2)T2 = 0

sin (ψ2) = sin (ψ1) (221)

Since ψ1 ∈
[
−π2 ,

π
2

]
and ψ2 ∈

[
−π2 ,

π
2

]
, it can be

deduced from (221) that in area A1:

ψ1 = ψ2. (222)

Injecting (222) inside(220), one has sin (φ1 − α1) =
sin (φ1 − α2), leading to two possible solutions: α1 =
α2 or

α1 − φ1 = π − (α2 − φ1)

α2 = −α1 + 2φ1 + π (223)

However, since ψF1 = 0, i.e. there is no force per-
pendicular to the plan for element 1, the only solution
respecting the condition of Definition 2 (1) is (223),
α1 = α2 corresponding to the case where the cables l12

and l21 form a straight line where the sliding element
cannot be immobilized, excluded by Definition 3 since
ψ1 = ψ2.

C.3 Calculation in area A11

In area A11, one has l22 = 0 and l21 = l2. Since
l22 = 0, the angle α3 and ψ3 are respectively merged
with angle α2 and ψ2 so

α2 = α3 (224)
ψ2 = ψ3. (225)

Thus, from the third line of (7), since l22 = 0, l21 =
l2 and ψ1 = ψ2 from (222), one gets

l11 sin (ψ1) + (l12 + l21) sin (ψ2) + l22 sin (ψ3) = z

(l11 + l12 + l21 + l22) sin (ψ2) = z

(l1 + l2) sin (ψ2) = z

sin (ψ2) =
z

(l1 + l2)
(226)

and since ψ2 ∈
[
−π2 ,

π
2

]
, one has

ψ2 = asin
(

z

l1 + l2

)
. (227)

The calculation of α1 can be performed as it will be
described in Appendix C.6.

C.4 Calculation in area A12

In area A12, one has l21 = 0 and l22 = l2.

C.4.1 Relation between α1 and α3

Let’s find first a relation between α1 and α3. Using
the PFD (9) for i = {1, 2} and following the steps
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described in Appendix (A), one gets the result (202)
in Appendix (A.3):

F1xy

F2xy
sin (φ1 − α1) sin (α2 − α3)

= sin (φ2 − α3) sin (α1 − α2) . (228)

Injecting (223) inside (228), one gets

F1xy

F2xy
sin (φ1 − α1) sin (−α1 + 2φ1 − α3)

= sin (φ2 − φ1 + φ1 − α3) sin (α1 − (−α1 + 2φ1))

F1xy

F2xy
sin (φ1 − α1) sin ((φ1 − α1) + (φ1 − α3))

= sin ((φ2 − φ1) + (φ1 − α3)) sin (2 (α1 − φ1))

F1xy

F2xy
sin (Γ1) sin (Γ1 + Ω1)

= − sin (∆φ+ Ω1) sin (2Γ1) (229)

where ∆φ = φ2 − φ1, Γ1 = φ1 − α1 and Ω1 = φ1 − α3

F1xy

F2xy
sin (Γ1) [sin (Γ1) cos (Ω1) + sin (Ω1) cos (Γ1)]

= − [sin (∆φ) cos (Ω1) + sin (Ω1) cos (∆φ)]

× 2 sin (Γ1) cos (Γ1)

tan (Γ1) + tan (Ω1)

= −2
F2xy

F1xy
[sin (∆φ) + tan (Ω1) cos (∆φ)]

2
F2xy

F1xy
sin (∆φ) + tan (Γ1)

= −
(

2
F2xy

F1xy
cos (∆φ) + 1

)
tan (Ω1)

Then, if ξ= 2F2xy

F1xy
cos (∆φ) + 1 6= 0 (as suppose by

Assumption A9), one gets

tan (Ω1) = −
2
F2xy

F1xy
sin (∆φ) + tan (Γ1)(

2
F2xy

F1xy
cos (∆φ) + 1

)
tan (φ1 − α3) = −

2
F2xy

F1xy
sin (∆φ) + tan (Γ1)(

2
F2xy

F1xy
cos (∆φ) + 1

)
tan (α3 − φ1) =

2
F2xy

F1xy
sin (∆φ) + tan (Γ1)(

2
F2xy

F1xy
cos (∆φ) + 1

) . (230)

From (230), one deduce α3 can take the two follow-
ing values:

α3 ∈ {α31, α32} (231)

with

α31 =φ1 + atan

2
F2xy

F1xy
sin (∆φ) + tan (Γ1)(

2
F2xy

F1xy
cos (∆φ) + 1

)
 (232)

α32 =φ1 + π + atan

2
F2xy

F1xy
sin (∆φ) + tan (Γ1)(

2
F2xy

F1xy
cos (∆φ) + 1

)
 .

(233)

C.4.2 Study of ψ2 and ψ3

Let’s study now the values of ψ2 and ψ3.

Calculation of ψ3 Considering the third line of sys-
tem (9) for i = 2 and remind that for j ∈ {1, 2, 3},
Tjxy = cos (ψj)Tj :

− sin (ψ2)T2 + sin (ψ3)T3 + F2 sin (ψF2) = 0

− sin (ψ2)
T2xy

cos (ψ2)
+sin (ψ3)

T3xy

cos (ψ3)
+F2 sin (ψF2) = 0

− tan (ψ2)T2xy + tan (ψ3)T3xy = −F2 sin (ψF2)

tan (ψ3)T3xy = tan (ψ2)T2xy − F2 sin (ψF2)

tan (ψ3) = tan (ψ2)
T2xy

T3xy
− F2 sin (ψF2)

T3z

tan (ψ3) = tan (ψ2) a1 + b1 (234)

with a1 =
T2xy

T3xy
and b1 = − F2

T3xy
sin (ψF2), where the

expression of T2xy and T3xy can be found in (210) and
(209) in Appendix A.1.

Since ψ3 ∈
[
−π2 ,

π
2

]
, one gets an evaluation of the

value of ψ3:

ψ3 = atan (tan (ψ1) a1 + b1) . (235)

Alternative calculation of cos (ψ3)
From the third line of (7), since l21 = 0, l22 = l2 and

ψ1 = ψ2 from (222), one gets

l11 sin (ψ1) + (l12 + l21) sin (ψ2) + l22 sin (ψ3) = z

(l11 + l12 + l21) sin (ψ2) + l2 sin (ψ3) = z

l1 sin (ψ2) + l2 sin (ψ3) = z

sin (ψ3) =
z − l1 sin (ψ2)

l2
(236)

Since ψ3 ∈
[
−π2 ,

π
2

]
, (236) leads to

cos (ψ3) =

√
1−

(
z − l1 sin (ψ2)

l2

)2

. (237)

This form will be used in the calculation of ψ2 in
next part below.
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Calculation of ψ2

We desire now to find an expression of ψ2 in function
only of α1, α2 and α3. a11, a12, a21 and a22 are defined
in Section 7.4.

Suppose first a11−a12 6= 0, so sin (α1)− sin (α2) 6= 0
since ψ1 = ψ2. From (41), one may write

l11 =

y − (l0 + cos (ψ3) sin (α3) l22 + cos (ψ2) sin (α2) (l21 + l1))

cos (ψ1) sin (α1)− cos (ψ2) sin (α2)
.

(238)

In area A12, one has l21 = 0, l22 = l2 and ψ1 = ψ2.
Using it, one gets

l11 =
y − (l0 + cos (ψ3) sin (α3) l22 + cos (ψ2) sin (α2) l1)

cos (ψ2) (sin (α1)− sin (α2))
(239)

Using it and l12 = l1− l11, the first line of system (7)
can be rewritten as

(l11 (cos (α1)− cos (α2)) + l1 cos (α2)) cos (ψ2)

+l2 cos (ψ3) cos (α3) = x
(240)

Injecting (239) inside (240), one gets

y − (l0 + cos (ψ3) sin (α3) l22 + cos (ψ2) sin (α2) l1)

cos (ψ2) (sin (α1)− sin (α2))

× (cos (α1)− cos (α2)) cos (ψ2)

+l1 cos (α2) cos (ψ2) + l2 cos (ψ3) cos (α3) = x

(y − l0 − cos (ψ3) sin (α3) l2 − cos (ψ2) sin (α2) l1)

×
(

cos (α1)− cos (α2)

sin (α1)− sin (α2)

)
+l1 cos (α2) cos (ψ2) + l2 cos (ψ3) cos (α3) = x

(y − l0) Â1 − cos (ψ3) sin (α3) l2Â1

− cos (ψ2) sin (α2) l1Â1 + l1 cos (α2) cos (ψ2)

+l2 cos (ψ3) cos (α3) = x
(241)

with Â1 =
(

cos(α1)−cos(α2)
sin(α1)−sin(α2)

)
. Then,[
(y − l0) Â1 − x

]
+
[
l1 cos (α2)− sin (α2) l1Â1

]
cos (ψ2)

+
[
l2 cos (α3)− sin (α3) l2Â1

]
cos (ψ3) = 0

D̂1 + Ĉ1 cos (ψ2) + B̂1 cos (ψ3) = 0 (242)

with

B̂1 = l2 cos (α3)− sin (α3) l2Â1 (243)

Ĉ1 = l1 cos (α2)− sin (α2) l1Â1 (244)

D̂1 = (y − l0) Â1 − x (245)

In the case where sin (α1) = sin (α2) (or numerically
close), the same steps can be followed as described in
Appendix C.4.3 to obtain

D̄1 + C̄1 cos (ψ2) + B̄1 cos (ψ3) = 0 (246)

with

Ā1 =
sin (α1)− sin (α2)

cos (α1)− cos (α2)
(247)

B̄1 = l2 sin (α3)− cos (α3) l2Ā1 (248)
C̄1 = l1 sin (α2)− cos (α2) l1Ā1 (249)
D̄1 = l0 + xĀ1 − y. (250)

Let introduce A1, B1, C1 and D1 where

if sin (α2) 6= sin (α1) , A1 = Â1

B1 = B̂1

C1 = Ĉ1

D1 = D̂1

else,A1 = Ā1

B1 = B̄1

C1 = C̄1

D1 = D̄1.

and so the general form

D1 + cos (ψ2)C1 + cos (ψ3)B1 = 0. (251)

Using (237) inside (251), one gets

C1 cos (ψ2) +B1

√
1−

(
z − l1 sin (ψ2)

l2

)2

= −D1

(252)

Following steps described in Appendix E, an expres-
sion of ψ2 in function of α1 can be found using (252)
and A1, B1, C1 and D1.

The calculation of α1 can be performed as it will be
described in Appendix C.6.

C.4.3 Sub-case sin (α1) = sin (α2)

Suppose now a11−a12 = 0 with α2 6= α1, so sin (α1) =
sin (α2) since ψ1 = ψ2. From (42), one may write

l11 =

x− (cos (ψ3) cos (α3) l22 + cos (ψ2) cos (α2) (l21 + l1))

cos (ψ1) cos (α1)− cos (ψ2) cos (α2)
(253)

In area A12, one has l21 = 0, l22 = l2. and ψ1 = ψ2.
Using it, one gets

l11 =
x− (cos (ψ3) cos (α3) l2 + cos (ψ2) cos (α2) l1)

cos (ψ2) (cos (α1)− cos (α2))
.

(254)
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The second line of system (7) can be rewritten as

l11 cos (ψ2) sin (α1) + l12 cos (ψ2) sin (α2)

+ l2 cos (ψ3) sin (α3) = y − l0. (255)

Using l12 = l1 − l11 and (254), (255) becomes(
x− (cos (ψ3) cos (α3) l2 + cos (ψ2) cos (α2) l1)

cos (ψ2) (cos (α1)− cos (α2))

)
× (cos (ψ2) sin (α1)− cos (ψ2) sin (α2))

+ l1 cos (ψ2) sin (α2) + l2 cos (ψ3) sin (α3) = y − l0

(x− (cos (ψ3) cos (α3) l2 + cos (ψ2) cos (α2) l1))

×
(

sin (α1)− sin (α2)

cos (α1)− cos (α2)

)
+ l1 cos (ψ2) sin (α2) + l2 cos (ψ3) sin (α3) = y − l0

xĀ1 − cos (ψ3) cos (α3) l2Ā1 − cos (ψ2) cos (α2) l1Ā1

+ l1 cos (ψ2) sin (α2) + l2 cos (ψ3) sin (α3) = y − l0

with Ā1 = sin(α1)−sin(α2)
cos(α1)−cos(α2) . Then,[

l0 + xĀ− y
]

+
[
l1 sin (α2)− cos (α2) l1Ā1

]
cos (ψ2)

+
[
l2 sin (α3)− cos (α3) l2Ā1

]
cos (ψ3) = 0

D̄1 + C̄1 cos (ψ2) + B̄1 cos (ψ3) = 0

where

Ā1 =

(
sin (α1)− sin (α2)

cos (α1)− cos (α2)

)
(256)

B̄1 = l2 sin (α3)− cos (α3) l2Ā1 (257)
C̄1 = l1 sin (α2)− cos (α2) l1Ā1 (258)
D̄1 = l0 + xĀ1 − y. (259)

From this point, using B̄1, C̄1, D̄1 instead of
B̂1, Ĉ1, D̂1, one can follow the steps described in Ap-
pendix C.4.1.

C.5 Particular case 2F2xy

F1xy
cos (∆φ)+1 = 0

To avoid the singularity 2
F2xy

F1xy
cos (∆φ) + 1 = 0, the

elements must respect the condition

cos (∆φ) 6= − cos (ψF1)F1

2 cos (ψF2)F2
. (260)

Note that ψF1|R1
= 0. Thus (260) is always satisfy

in R1 if

1 <

∣∣∣∣ F1

2 cos (ψF2)F2

∣∣∣∣ , (261)

and (261) is always true if

1 <
F1

2F2
. (262)

C.6 Calculation of α1

Based on the system (7), let’s define the three equa-
tions

EX = (l11 cos (α1) cos (ψ1) + (l12 + l21) cos (α2) cos (ψ2)

+l22 cos (α3) cos (ψ3)− x)
2 (263)

EY = (l11 sin (α1) cos (ψ1) + (l12 + l21) sin (α2) cos (ψ2)

+l22 sin (α3) cos (ψ3)− y + l0)
2 (264)

EZ = (l11 sin (ψ1) + (l12 + l21) sin (ψ2)

+l22 sin (ψ3)− z)2 (265)

Following steps described in Appendix B.2, the first
or the second line of (7) is used to find an expression
of l11 and l12 in function of α1. Thus, the expression
of l11 and l12 make automatically EX or EY equal to
zero. Then, the third line of (7) is used to find an
expression of ψ2 and ψ3 in both areas A11 and A12,
see Appendices C.3 and C.4.2, thus value of ψ2 and ψ3

make also automatically EZ equal to zero.
Then, using the first or second line of (7) and inject-

ing inside

• (222)-(223)-(224)-(225)-(227) for area A11,

• (222)-(223)-(231)-(252)-(235) for area A12,

a solution of α1 can be found. Since EZ and EX or
EY are equal to zero, the same solution can be found
by solving the following equation (266):

0 = E2
X + E2

Y + E2
Z . (266)

In practice, this solution will be found numerically
using an optimization: using (266) allows to tests the
proposed solution of α1 independently of the expres-
sion of l11, l12, ψ2 or ψ3.

Moreover, the solution must respect the following
conditions:

1. The evaluation of the lengths must be bounded
such that (l11, l12) ∈ [0, l1]

2 and (l21, l22) ∈ [0, l2]
2

;

2. The evaluation of the forces must be strictly pos-
itive:

• if area A11, TS1
1 > 0 and TS1

2 > 0,

• if area A12, TS1
1 > 0, TS1

2 > 0 and TS1
3 > 0.

3. The Definition 2 is respected for the two elements,
i.e.

• the element 1 is sliding so ~F1.
−−→
B1A < 0 and

~F1.
−−→
B1S < 0, where ~F1.

−−→
B1A < 0 is equivalent

to ~F1.
−−→
AB1 > 0;

• if the element 2 is not fixed:
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– in area A11, the element 2 is in contact
with R, so ~F2.

−−→
B2S < 0, which is equiva-

lent to ~F2.
−−→
SB2 > 0;

– in area A12, the element 2 is in contact
with S, so ~F2.

−−→
B2R < 0,

where
−−→
AB1,

−−→
B1S,

−−→
SB2 and

−−→
B2R have been expressed

in Section 4.1.

D Calculation in area A2

D.1 Referential R2

To find a solution in the area A2, we have observe that
the system is much more easier to solve if ψF2 = 0:
it will allow to simplify the system (9) to find a so-
lution for (201) independent of the elevation angles
ψ2 and ψ3. Thus, in this section, we decide to per-
form a rotation of the referential R around the ver-
tical axis O~y of an angle µ2 = atan2 (F2z, F2x) with
F2|R =

[
F2x F2y F2z

]T to obtain the referential
R2, whose the characteristics are described in the Def-
inition 4. In R2, one has ψF2|R2

= 0. Once a solution
will be found in R2, the angles and lengths will be
re-evaluated in R using for example Definition 5.

In this section, since all the calculations are per-
formed in R2 , the notations are lightened such that a
parameter βi|R2

is simply written βi.

D.2 Common angles in A2
In area A2, the element 2 is sliding such that it corre-
spond to the Definition 2 (1). Thus, one has T2 = T3

and from Theorem 1

cos (ψ2) sin (φ2 − α2) = cos (ψ3) sin (φ2 − α3) . (267)

Moreover, since ψF2 = 0, the third line of system (9)
for i = 2 becomes

− sin (ψ2)T2 + sin (ψ3)T3 = 0

sin (ψ2) = sin (ψ3) (268)

Since ψ2 ∈
[
−π2 ,

π
2

]
and ψ3 ∈

[
−π2 ,

π
2

]
, it can be

deduced from (268) that in area A2:

ψ3 = ψ2. (269)

Injecting (269) inside(267), one has sin (φ2 − α2) =
sin (φ2 − α3), leading to two possible solutions: α2 =
α3 or

α2 − φ2 = π − (α3 − φ2)

α3 = −α2 + 2φ2 + π (270)

However, since ψF2 = 0, i.e. there is no force per-
pendicular to the plan for element 2, the only solution

respecting the condition of Definition 2 (1) is (270),
α2 = α3 corresponding to the case where the cables l12

and l21 form a straight line where the sliding element
cannot be immobilized, excluded by Definition 3 since
ψ3 = ψ2.

D.3 Calculation in area A21
In area A21, one has l11 = 0 and l12 = l1. Since
l11 = 0, the angle α1 and ψ1 are respectively merged
with angle α2 and ψ2 so

α2 = α1 (271)
ψ1 = ψ2 (272)

Thus, from the third line of (7), since l11 = 0, l12 = l1
and ψ2 = ψ3 from (269), one gets

l11 sin (ψ1) + (l12 + l21) sin (ψ2) + l22 sin (ψ3) = z

(l11 + l12 + l21 + l22) sin (ψ2) = z

(l1 + l2) sin (ψ2) = z

sin (ψ2) =
z

(l1 + l2)
(273)

and since ψ2 ∈
[
−π2 ,

π
2

]
, one has

ψ2 = asin
(

z

l1 + l2

)
. (274)

The calculation of α1 can be performed as it will be
described in Appendix D.5.

D.4 Calculation in area A22
In area A22, one has l11 = l1 and l12 = 0.

D.4.1 Relation between α1 and α3

Let’s find first a relation between α1 and α3. Using the
PFD (9) for i ∈ {1, 2} and following the steps described
in Appendix (A), one gets the result (202) in Appendix
(A.3):

F1xy

F2xy
sin (φ1 − α1) sin (α2 − α3)

= sin (φ2 − α3) sin (α1 − α2) . (275)

Injecting (270) inside (275), one gets

F1xy

F2xy
sin (φ1 − φ2 + φ2 − α1) sin (−α3 + 2φ2 + π − α3)

= sin (φ2 − α3) sin (α1 − (−α3 + 2φ2 + π))

F1xy

F2xy
sin ((φ2 − α1)− (φ2 − φ1)) (− sin (2 (φ2 − α3)))

= sin (φ2 − α3) (− sin (π − [(α1 − φ2)− (φ2 − α3)]))
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F1xy

F2xy
sin ((φ2 − α1)− (φ2 − φ1)) sin (2 (φ2 − α3))

= sin (φ2 − α3) sin ((α1 − φ2)− (φ2 − α3))

F1xy

F2xy
sin (Γ2 −∆φ) sin (2Ω2) = sin (Ω2) sin (−Γ2 − Ω2)

(276)

where ∆φ = φ2 − φ1, Γ2 = φ2 − α1, Ω2 = φ2 − α3.
Then

F1xy

F2xy
[sin (Γ2) cos (∆φ)− sin (∆φ) cos (Γ2)]

× 2 sin (Ω2) cos (Ω2)

= − sin (Ω2) [sin (Γ2) cos (Ω2) + sin (Ω2) cos (Γ2)]

2
F1xy

F2xy
[sin (Γ2) cos (∆φ)− sin (∆φ) cos (Γ2)]

= − [sin (Γ2) + tan (Ω2) cos (Γ2)]

2
F1xy

F2xy
[tan (Γ2) cos (∆φ)− sin (∆φ)]

= − [tan (Γ2) + tan (Ω2)]

tan (Ω2) =

−
(

2
F1xy

F2xy
[tan (Γ2) cos (∆φ)− sin (∆φ)] + tan (Γ2)

)

tan (φ2 − α3) =

−
(

2
F1xy

F2xy
[tan (Γ2) cos (∆φ)− sin (∆φ)] + tan (Γ2)

)

tan (α3 − φ2) =2
F1xy

F2xy
[tan (Γ2) cos (∆φ)− sin (∆φ)]

+ tan (Γ2)

tan (α3 − φ2) =2
F1xy

F2xy
[tan (Γ2) cos (∆φ)− sin (∆φ)]

+ tan (Γ2) . (277)

From (277), one deduce α3 can take the two follow-
ing values α3k for k ∈ {1, 2} with

α3k =φ2 + π (k − 1)

+ atan
(

2
F1xy

F2xy
[tan (Γ2) cos (∆φ)− sin (∆φ)]

+ tan (Γ2)) (278)

Note that from (270), α2 can take two values based
on α3.

D.4.2 Study of ψ1 and ψ2

Let’s study now the values of ψ1 and ψ2.

Calculation of ψ1

Considering the third line of system (9) for i = 1
and remind that for j ∈ {1, 2, 3}, Tjxy = cos (ψj)Tj :

− sin (ψ1)T1 + sin (ψ2)T2 + F1 sin (ψF1) = 0

− sin (ψ1)
T1xy

cos (ψ1)
+ sin (ψ2)

T2xy

cos (ψ2)
+ F1 sin (ψF1) = 0

− tan (ψ1)T1xy + tan (ψ2)T2xy + F1 sin (ψF1) = 0

tan (ψ1) = tan (ψ2)
T2xy

T1xy
+

F1

T1xy
sin (ψF1)

tan (ψ1) = tan (ψ2) a2 + b2 (279)

where a2 =
T2xy

T1xy
and b2 = − F1

T1xy
sin (ψF1), where the

expression of T1xy and T2xy can be found in (204) and
(210) in Appendix A.1.

Since ψ1 ∈
[
−π2 ,

π
2

]
, one gets an evaluation of the

value of ψ1:

ψ1 = atan (tan (ψ2) a2 + b2) . (280)

Alternative calculation of cos (ψ1)
From the third line of (7), since l11 = l1, l12 = 0 and

ψ2 = ψ3 from (269), one gets

l11 sin (ψ1) + (l12 + l21) sin (ψ2) + l22 sin (ψ3) = z

l1 sin (ψ1) + (l21 + l22) sin (ψ2) = z

sin (ψ1) =
z − l2 sin (ψ2)

l1
. (281)

Since ψ1 ∈
[
−π2 ,

π
2

]
, (281) leads to

cos (ψ1) =

√
1−

(
z − l2 sin (ψ2)

l1

)2

. (282)

This form will be used in the calculation of ψ1 in
next part below.

Calculation of ψ2

We desire now to find an expression of ψ2 in function
only of α1, α2 and α3. a11, a12, a21 and a22 are defined
in Section 7.4.

Suppose first a22−a12 6= 0, so sin (α3)− sin (α2) 6= 0
since ψ3 = ψ2. From (43), one may write

l22 =

y − (l0 + cos (ψ1) sin (α1) l11 + cos (ψ2) sin (α2) (l12 + l2))

cos (ψ3) sin (α3)− cos (ψ2) sin (α2)
.

(283)
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In area A22, one has l11 = l1, l12 = 0 and ψ3 = ψ2.
Using it, one gets

l22 =

y − (l0 + cos (ψ1) sin (α1) l1 + cos (ψ2) sin (α2) l2)

cos (ψ2) (sin (α3)− sin (α2))
.

(284)

and the first line of system (7) can be rewritten as

l1 cos (ψ1) cos (α1) + (l2 − l22) cos (ψ2) cos (α2)

+l22 cos (ψ3) cos (α3) = x

l1 cos (ψ1) cos (α1) + l2 cos (ψ2) cos (α2)

+l22 cos (ψ2) (cos (α3)− cos (α2)) = x (285)

Injecting (284) inside (285), one gets

l1 cos (ψ1) cos (α1) + l2 cos (ψ2) cos (α2)

+

(
y − (l0 + cos (ψ1) sin (α1) l1 + cos (ψ2) sin (α2) l2)

cos (ψ2) (sin (α3)− sin (α2))

)
× cos (ψ2) (cos (α3)− cos (α2)) = x

l1 cos (ψ1) cos (α1) + l2 cos (ψ2) cos (α2)

+ [y − (l0 + cos (ψ1) sin (α1) l1 + cos (ψ2) sin (α2) l2)]

×
(

cos (α3)− cos (α2)

sin (α3)− sin (α2)

)
= x

l1 cos (ψ1) cos (α1) + l2 cos (ψ2) cos (α2)

+ (y − l0) Â2 − cos (ψ1) sin (α1) l1Â2

− cos (ψ2) sin (α2) l2Â2 = x (286)

with Â2 =
(

cos(α3)−cos(α2)
sin(α3)−sin(α2)

)
. Then

(y − l0) Â2 − x

+ cos (ψ1)
[
l1 cos (α1)− sin (α1) l1Â2

]
+ cos (ψ2)

[
cos (α2) l2 − sin (α2) l2Â2

]
= 0

D̂2 + cos (ψ1) B̂2 + cos (ψ2) Ĉ2 = 0 (287)

with

B̂2 = l1 cos (α1)− sin (α1) l1Â2 (288)

Ĉ2 = cos (α2) l2 − sin (α2) l2Â2 (289)

D̂2 = (y − l0) Â2 − x (290)

In the case where sin (α3) = sin (α2) (or numerically
close), the same steps can be followed as described in
Appendix D.4.3 to obtain

D̄2 + cos (ψ1) B̄2 + cos (ψ2) C̄2 = 0 (291)

with

Ā2 =

(
sin (α3)− sin (α2)

cos (α3)− cos (α2)

)
(292)

B̄2 = l1 sin (α1)− cos (α1) l1Ā2 (293)
C̄2 = l2 sin (α2)− cos (α2) l2Ā2 (294)
D̄2 = l0 + xĀ2 − y. (295)

Finally, the case α3 = α2 is excluded by Definition 3
because ψ2 = ψ3.

Let introduce A2, B2, C2 and D2 where

if sin (α3) 6= sin (α2) , A2 = Â2

B2 = B̂2

C2 = Ĉ2

D2 = D̂2

else,A2 = Ā2

B2 = B̄2

C2 = C̄2

D2 = D̄2.

and so the general form

D2 + cos (ψ1)B2 + cos (ψ2)C2 = 0. (296)

Using (282) inside (296), one gets

C2 cos (ψ2) +B2

√
1−

(
z − l2 sin (ψ2)

l1

)2

= −D2

(297)

Following steps described in Appendix E, an expres-
sion of ψ2 in function of α1 can be found using (297)
and A2, B2, C2 and D2.

The calculation of α1 can be performed as it will be
described in Appendix D.5.

D.4.3 Sub-case sin (α3) = sin (α2)

Suppose now a22−a12 = 0 with α2 6= α3, so sin (α3) =
sin (α2) since ψ3 = ψ2. From (44), one may write

l22 =

x− (cos (ψ1) cos (α1) l11 + cos (ψ2) cos (α2) (l12 + l2))

cos (ψ3) cos (α3)− cos (ψ2) cos (α2)
.

(298)

In area A22, one has l11 = l1, l12 = 0 and ψ3 = ψ2.
Using it, one gets

l22 =
x− (cos (ψ1) cos (α1) l1 + cos (ψ2) cos (α2) l2)

cos (ψ2) (cos (α3)− cos (α2))
.

(299)
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and the second line of system (7) can be rewritten as

l1 cos (ψ1) sin (α1) + (l2 − l22) cos (ψ2) sin (α2)

+ l22 cos (ψ2) sin (α3) = y − l0

l1 cos (ψ1) sin (α1) + l2 cos (ψ2) sin (α2) (300)
+ l22 cos (ψ2) (sin (α3)− sin (α2)) = y − l0

Injecting (299) inside (300), one gets

x− (cos (ψ1) cos (α1) l1 + cos (ψ2) cos (α2) l2)

cos (ψ2) (cos (α3)− cos (α2))

× cos (ψ2) (sin (α3)− sin (α2))

+ l1 cos (ψ1) sin (α1) + l2 cos (ψ2) sin (α2) = y − l0

(x− (cos (ψ1) cos (α1) l1 + cos (ψ2) cos (α2) l2))

×
(

sin (α3)− sin (α2)

cos (α3)− cos (α2)

)
+ l1 cos (ψ1) sin (α1) + l2 cos (ψ2) sin (α2) = y − l0

(− cos (ψ1) cos (α1) l1 − cos (ψ2) cos (α2) l2) Ā2

+ l1 cos (ψ1) sin (α1) + l2 cos (ψ2) sin (α2)

= y − l0 − xĀ2 (301)

with Ā2 =
(

sin(α3)−sin(α2)
cos(α3)−cos(α2)

)
. Then[

l0 + xĀ2 − y
]

+ cos (ψ1)
[
l1 sin (α1)− cos (α1) l1Ā2

]
+ cos (ψ2)

[
l2 sin (α2)− cos (α2) l2Ā2

]
= 0

D̄1 + cos (ψ1) B̄2 + cos (ψ2) C̄2 = 0 (302)

where

B̄2 = l1 sin (α1)− cos (α1) l1Ā2 (303)
C̄2 = l2 sin (α2)− cos (α2) l2Ā2 (304)
D̄2 = l0 + xĀ2 − y. (305)

From this point, using B̄2, C̄2, D̄2 instead of
B̂2, Ĉ2, D̂2, one can follow the steps described in Ap-
pendix D.4.1.

D.5 Calculation of α1

Based on the system (7), let’s define the three equa-
tions

EX = (l11 cos (α1) cos (ψ1) + (l12 + l21) cos (α2) cos (ψ2)

+l22 cos (α3) cos (ψ3)− x)
2 (306)

EY = (l11 sin (α1) cos (ψ1) + (l12 + l21) sin (α2) cos (ψ2)

+l22 sin (α3) cos (ψ3)− y + l0)
2 (307)

EZ = (l11 sin (ψ1) + (l12 + l21) sin (ψ2)

+l22 sin (ψ3)− z)2 (308)

Following steps described in Appendix B.1, the first
or the second line of (7) is used to find an expression
of l11 and l12 in function of α1. Thus, the expression
of l11 and l12 make automatically EX or EY equal to
zero. Then, the third line of (7) is used to find an
expression of ψ2 and ψ1 in both areas A21 and A22,
see Appendices D.3 and D.4.2, thus value of ψ2 and ψ1

make also automatically EZ equal to zero.
Then, using the first or second line of (7) and inject-

ing inside

• (269)-(270)-(271)-(272)-(274) for area A21,

• (269)-(270)-(278)-(280)-(297) for area A22,

a solution of α1 can be found. Since EZ and EX or
EY are equal to zero, the same solution can be found
by solving the following equation (309):

0 = E2
X + E2

Y + E2
Z . (309)

In practice, this solution will be found numerically
using an optimization: using (309) allows to tests the
proposed solution of α1 independently of the expres-
sion of l11, l12, ψ1 or ψ2.

Moreover, the solution must respect the following
conditions:

1. The evaluation of the lengths must be bounded
such that (l11, l12) ∈ [0, l1]

2 and (l21, l22) ∈ [0, l2]
2

;

2. The evaluation of the forces must be strictly pos-
itive:

• if area A21, TS1
2 > 0 and TS1

3 > 0,
• if area A22, TS1

1 > 0, TS1
2 > 0 and TS1

3 > 0.

3. The Definition 2 is respected for the two elements,
i.e.

• the element 2 is sliding so ~F2.
−−→
B2S < 0 and

~F2.
−−→
B2R < 0, where ~F2.

−−→
B2S < 0 is equivalent

to ~F2.
−−→
SB2 > 0;

• if the element 1 is not fixed:
– in area A21, the element 1 is in contact

with A, so ~F1.
−−→
B1S < 0;

– in area A22, the element 1 is in contact
with S, so ~F1.

−−→
B1A < 0, which is equiva-

lent to ~F1.
−−→
AB1 > 0,

where
−−→
AB1,

−−→
B1S,

−−→
SB2 and

−−→
B2R have been expressed

in Section 4.1.

E Study of ψ2 in area A12 and
A22

Consider the parameter Ai, Bi, Ci andDi for i ∈ {1, 2}
where i = 1 in area A12 and i = 2 in area A22. Let’s
find a solution of ψ2 for areas A12 and A22.
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E.1 General case: Bi 6= 0 and Ci 6= 0

Consider first the general case where Bi 6= 0 and Ci 6=
0. From (252) in area A12 or (297) in area A22, one
has

Ci cos (ψi)+Bi

√
1−

(
z − l1 sin (ψi)

l2

)2

= −Di (310)

√
1−

(
z − l1 sin (ψi)

l2

)2

= − (Ci cos (ψi) +Di)

Bi
(311)

which lead to

1−
(
z − l1 sin (ψi)

l2

)2

=
(Ci cos (ψi) +Di)

2

B2
i

l22 −
(
z2 − 2l1z sin (ψi) + l21 sin (ψi)

2
)

=
l22
B2
i

(
C2
i cos (ψi)

2
+ 2CiDi cos (ψi) +D2

i

)

l22 − z2 + 2l1z sin (ψi)− l21 sin (ψi)
2

=
l22
B2
i

C2
i cos (ψi)

2
+ 2CiDi

l22
B2
i

cos (ψi) +
l22
B2
i

D2
i .

(312)

Let’s put X = sin (ψi) and remark that cos (ψi) =√
1−X2 since ψi ∈

[
−π2 ,

π
2

]
. Thus, (312) becomes

l22 − z2 + 2l1zX − l21X2

=
l22
B2
i

C2
i

(
1−X2

)
+ 2CiDi

l22
B2
i

√
1−X2

+
l22
B2
i

D2
i

[
l22 − z2 − l22

B2
i

(
C2
i +D2

i

)]
+ (2l1z)X

+

(
l22
B2
i

C2
i − l21

)
X2

= 2CiDi
l22
B2
i

√
1−X2

1

2

[(
l22 − z2

) B2
i

l22
−
(
C2
i +D2

i

)]
+

(
l1
B2
i

l22
z

)
X

+
1

2

(
C2
i −

B2
i

l22
l21

)
X2

= CiDi

√
1−X2

Ei + FiX +GiX
2 = CiDi

√
1−X2 (313)

where

Ei =
1

2

[(
l22 − z2

) B2
i

l22
−
(
C2
i +D2

i

)]
(314)

Fi = l1
B2
i

l22
z (315)

Gi =
1

2

(
C2
i −

B2
i

l22
l21

)
(316)

The equality (313) can be squared up to obtain

Ei + FiX +GiX
2 = CiDi

√
1−X2(

Ei + FiX +GiX
2
)2

= (CiDi)
2 − (CiDi)

2
X2

E2
i + F 2

i X
2 +G2

iX
4 + 2EiFiX

+ 2EiGiX
2 + 2FiGiX

3

= (CiDi)
2 − (CiDi)

2
X2

(
E2
i − (CiDi)

2
)

+ (2EiFi)X

+
(
F 2
i + (CiDi)

2
+ 2EiGi

)
X2

+ (2FiGi)X
3 +

(
G2
i

)
X4 = 0

Li +KiX + JiX
2 + IiX

3 +HiX
4 = 0 (317)

where

Hi = G2
i (318)

Ii = 2FiGi (319)

Ji = F 2
i + (CiDi)

2
+ 2EiGi (320)

Ki = 2EiFi (321)

Li = E2
i − (CiDi)

2 (322)

(317) is a polynomial of degree 4, which can be
solved to find the solution of X = sin (ψi). For SX
the set of real solutions of (317), the solution of ψi is
inside the set Sψi such that

ψi ∈ Sψi
Sψi = {asin (Xk) |Xk ∈ SX , Xk /∈ C, |Xk| ≤ 1} .

(323)

If Sψi is not a singleton, the true solution of ψi will
be found with a test in the same time that the value
of α1.

E.2 Case Bi = 0 and Ci 6= 0

If Bi = 0, (310) becomes

Ci cos (ψi) = −Di. (324)
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To obtain a common form between all the sub-case
of this study, we put (324) on the following form:

Ci cos (ψi) = −Di

C2
i cos (ψi)

2
= D2

i

C2
i

(
1− sin (ψi)

2
)

= D2
i

−C2
iX

2 +
(
C2
i −D2

i

)
= 0

with X = sin (ψi) and one can define a 4-degree poly-
nomial Li +KiX + JiX

2 + IiX
3 +HiX

4 = 0 where

Hi = Ii = Ki = 0 (325)

Ji = −C2
i (326)

Li = C2
i −D2

i (327)

and the solution of ψi can be found as exposed in Ap-
pendix E.1.

E.3 Case: Bi 6= 0 and Ci = 0

If Ci = 0, (310) becomes

Ci cos (ψi) +Bi

√
1−

(
z − l1 sin (ψi)

l2

)2

= −Di√
1−

(
z − l1 sin (ψi)

l2

)2

= −Di

Bi
.

(328)

The equality (328) can be squared up to obtain

1−
(
z − l1 sin (ψi)

l2

)2

=
D2
i

B2
i

z2 − 2l1z sin (ψi) + l21 sin (ψi)
2

= l22

(
1− D2

i

B2
i

)
[
z2 − l22

(
1− D2

i

B2
i

)]
− 2l1zX + l21X

2 = 0 (329)

with X = sin (ψi). To take the same form that the
solution found in Appendix E.1, one can define a 4-
degree polynomial

Li +KiX + JiX
2 + IiX

3 +HiX
4

where

Hi = 0 (330)
Ii = 0 (331)

Ji = l21 (332)
Ki = −2l1z (333)

Li = z2 − l22
(

1− D2
i

B2
i

)
(334)

and the solution of ψi can be found as exposed in Ap-
pendix E.1.

F Calculation in area A0

F.1 Referential R0

The two elements are sliding in the area A0. Thus, sim-
ilarly to area A1 and A2, we have observe that the sys-
tem is much more easier to solve if ψF1 = 0 or ψF2 = 0
to simplify the system (9) and find a solution for (201)
independent of the elevation angles ψ1 and ψ2. Since
choosing between the referential R1 and R2 exposed
in Appendix F and D doesn’t matter much, we decide
to perform a rotation of the referential R around the
vertical axis O~y of an angle µ1 = atan2 (F1z, F1x) with
F1|R =

[
F1x F1y F1z

]T to obtain the referential
R0, similar to the referentialR1. The characteristics of
the referential R0 are described in the Definition 4. In
R0, one has ψF1|R0

= 0. Once a solution will be found
in R0, the angles and lengths will be re-evaluated in R
using for example Definition 5.

In this section, since all the calculations are per-
formed in R0 , the notations are lightened such that a
parameter βi|R0

is simply written βi.

F.2 Relation between α1, α2 , ψ1 and ψ2

In area A0, the element 1 is sliding such that it corre-
spond to the Definition 2 (1). Thus, one has T1 = T2

and from Theorem 1

cos (ψ1) sin (φ1 − α1) = cos (ψ2) sin (φ1 − α2) (335)

Moreover, since ψF1 = 0, the third line of system (9)
becomes

− sin (ψ1)T1 + sin (ψ2)T2 = 0

sin (ψ2) = sin (ψ1) (336)

Since ψ1 ∈
[
−π2 ,

π
2

]
and ψ2 ∈

[
−π2 ,

π
2

]
, it can be

deduced from (336) that in area A0:

ψ1 = ψ2. (337)

Injecting (337) inside(335), one has sin (φ1 − α1) =
sin (φ1 − α2), leading to two possible solutions: α1 =
α2 or

α1 − φ1 = π − (α2 − φ1)

α2 = −α1 + 2φ1 + π (338)

However, since ψF1 = 0, i.e. there is no force per-
pendicular to the plan for element 1, the only solution
respecting the condition of Definition 2 (1) is (338),
α1 = α2 corresponding to the case where the cables l12

and l21 form a straight line where the sliding element
cannot be immobilized, excluded by Definition 3 since
ψ1 = ψ2.

Two cases must now be considered: ψF2 = 0 and
ψF2 6= 0. The two cases will be studied in the next
sections.
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F.3 Case 1: ψF2 = 0

Consider first the specific case where ψF2 = 0. In area
A0, the element 2 is sliding such that it correspond to
the Definition 2 (1). Thus, one has T2 = T3 and from
Theorem 1

cos (ψ2) sin (φ2 − α2) = cos (ψ3) sin (φ2 − α3) . (339)

Moreover, if ψF2 = 0, the third line of system (9)
for i = 2 becomes

− sin (ψ2)T2 + sin (ψ3)T3 = 0

sin (ψ2) = sin (ψ3) (340)

Since ψ2 ∈
[
−π2 ,

π
2

]
and ψ3 ∈

[
−π2 ,

π
2

]
, it can be

deduced from (340) that in area A0:

ψ3 = ψ2. (341)

Injecting (341) inside(339), one has sin (φ2 − α2) =
sin (φ2 − α3), leading to two possible solutions: α2 =
α3 (exclude by Definition 3 since ψ3 = ψ2) or

α2 − φ2 = π − (α3 − φ2)

α3 = −α2 + 2φ2 + π (342)

From (336) and (341), one deduces that

ψ1 = ψ2 = ψ3. (343)

Using it inside the third line of (7), one gets

l11 sin (ψ1) + (l12 + l21) sin (ψ2) + l22 sin (ψ3) = z

(l11 + l12 + l21 + l22) sin (ψ1) = z

sin (ψ1) =
z

(l1 + l2)
(344)

Let’s find first a solution to α1. Using the PFD (9)
for i ∈ {1, 2} and following the steps described in
Appendix (A), one gets the result (202) in Appendix
(A.3):

F1xy

F2xy
sin (φ1 − α1) sin (α2 − α3)

= sin (φ2 − α3) sin (α1 − α2) . (345)

In a first time, we inject (338) in (345). Following
steps described in Appendix C.4.1 for area A12, one
gets

F1xy

F2xy
sin (Γ1) sin (Γ1 + (φ1 − α3))

= − sin (φ2 − α3) sin (2Γ1) (346)

with ∆φ = φ2 − φ1 and Γ1 = φ1 − α1.

Combining now (338) and (342), one gets

α3 = −α2 + 2φ2 + π

= − (−α1 + 2φ1 + π) + 2φ2 + π

= α1 + 2 (φ2 − φ1)

= α1 + 2∆φ. (347)

Injecting (347) inside (346), one has

F1xy

F2xy
sin (Γ1) sin (Γ1 + (φ1 − α3))

= sin (φ2 − α3) sin (−2Γ1)

F1xy

F2xy
sin (Γ1) sin (φ1 − α1 + φ1 − (α1 + 2∆φ))

= sin (φ2 − (α1 + 2∆φ)) sin (−2Γ1) (348)

Let’s study first the sub-case where sin (∆φ) = 0 in
Appendix F.3.1 before study the general case in Ap-
pendix F.3.2.

F.3.1 Case sin (∆φ) = 0

Consider first the case where ∆φ = πk with k ∈ Z, i.e.
sin (∆φ) = 0. One has from (347) that α1 = α3. (342)
becomes

F1xy

F2xy
sin (Γ1) sin (2 (φ1 − α1)) = sin (φ2 − α1) sin (−2Γ1)

F1xy

F2xy
sin (Γ1) sin (2 (φ1 − α1)) = sin (φ2 − α1) sin (−2Γ1)

F1xy

F2xy
sin (Γ1) sin (2Γ1) = sin (φ2 − φ1 + φ1 − α1)

× sin (−2Γ1)

F1xy

F2xy
sin (Γ1) =− sin (∆φ+ Γ1) .

Let’s define s ∈ {−1, 1} with s = −1 if ∆φ = 0,
s = 1 else. one has

F1xy

F2xy
sin (Γ1) = s sin (Γ1)

F1xy = sF2xy

cos (ψF1)F1 = s cos (ψF2)F2

and since we are in R0 = R1 (so ψF1 = 0) and in the
specific case where ψF2 = 0, one has

F1 = sF2. (349)

Since F1 > 0 and F2 > 0, case s = −1 is impossible,
(349) proves that the area A0 doesn’t exist when ∆φ =
0, corresponding to φ2 = φ1. Since ψF1 = ψF2 = 0,
one deduce area A0 is not possible when ~F1

‖~F1‖ =
~F2

‖~F2‖
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or simply ~F1 = ~F2. Moreover, (349) show that the area
A0 doesn’t exist when sin (∆φ) = 0 and F1 6= F2. Since
case ∆φ = 0 is already treated, it corresponding here
to ∆φ = π ⇔ φ2 = π − φ1 i.e. when

~F1

‖~F1‖ = − ~F2

‖~F2‖
and F1 6= F2.

Consider case where F1 = F2 and ∆φ = πk ∀k ∈ Z∗:
one has α1 = α3 = −α2 from (338) and (347), and
ψ1 = ψ2 = ψ3 from (343). Thus, one gets from the
first line of system (7):

x = l11 cos (α1) cos (ψ1) + (l12 + l21) cos (α2) cos (ψ2)

x = (l11 + l12 + l21 + l22) cos (α1) cos (ψ1)

cos (α1) =
x

(l1 + l2) cos (ψ1)
(350)

where the value of ψ1 is known using (344). The sign
of α1 can be deduced from the second line of (7).

F.3.2 Case sin (∆φ) 6= 0

Suppose now ∆φ 6= πk with k ∈ Z, so sin (∆φ) 6= 0.
(348) becomes

F1xy

F2xy
sin (Γ1) sin (2φ1 − 2α1 − 2φ2 + 2φ1)

= sin (φ2 − α1 − 2φ2 + 2φ1) sin (−2Γ1)

F1xy

F2xy
sin (Γ1) sin (−2α1 − 2φ2 + 4φ1)

= sin (−α1 − φ2 + 2φ1) sin (−2Γ1)

F1xy

F2xy
sin (Γ1) sin (2 (−α1 − φ2 + 2φ1))

= sin (−α1 − φ2 + 2φ1) sin (−2Γ1)

2
F1xy

F2xy
sin (Γ1) sin (−α1 − φ2 + 2φ1)

× cos (−α1 − φ2 + 2φ1)

= −2 sin (−α1 − φ2 + 2φ1) sin (Γ1) cos (Γ1)

F1xy

F2xy
cos ((φ1 − α1)− (φ2 − φ1)) = − cos (Γ1) (351)

and by using ∆φ = φ2−φ1 and Γ1 = φ1−α1, one gets

F1xy

F2xy
cos (Γ1 −∆φ) = − cos (Γ1)

F1xy

F2xy
[cos (Γ1) cos (∆φ)

+ sin (Γ1) sin (∆φ)] = − cos (Γ1)

cos (∆φ) + tan (Γ1) sin (∆φ) = −F2xy

F1xy

tan (Γ1) =−
F2xy

F1xy
+ cos (∆φ)

sin (∆φ)

tan (φ1 − α1) =−
F2xy

F1xy
+ cos (∆φ)

sin (∆φ)

tan (α1 − φ1) =

F2xy

F1xy
+ cos (∆φ)

sin (∆φ)
. (352)

From (352), one deduces α1 can take only two values
α1k for k ∈ {1, 2} where

α1k = φ1+π (k − 1)+atan

 F2xy

F1xy
+ cos (∆φ)

sin (∆φ)

 (353)

As shown in this Appendix, others angles can be de-
duced with α1 and the lengths lij , (i, j) ∈ {1, 2}2 can
be found following steps described in Appendix B.3.
The valid value of α1 between the two solutions pro-
posed by (353) can be found by evaluating the other
parameters and keeping the only solution respecting
the conditions (l11, l12) ∈ [0, l1]

2, (l21, l22) ∈ [0, l2]
2,

T1 > 0, T2 > 0, T3 > 0 and the conditions of Defini-
tion 2:

• the element 1 is sliding, so ~F1.
−−→
B1A < 0 and

~F1.
−−→
B1S < 0,

• the element 2 is sliding, so ~F2.
−−→
B2S < 0 and

~F2.
−−→
B2R < 0,

where
−−→
AB1,

−−→
B1S,

−−→
SB2 and

−−→
B2S have been expressed

in Section 4.1.

F.4 Case 2: ψF2 6= 0

If ψF2 6= 0, from the third line of system (9) for i = 2
and in opposite with (340) of the case 1 developed in
Appendix F.3, one has sin (ψ3) 6= sin (ψ2). Let’s so
find an expression for the parameters based on this
condition.

F.4.1 Relation between α1 and α3

Let’s find first a relation between α1 and α3. Using
the PFD (9) for i = {1, 2} and following the steps
described in Appendix (A), one gets the result (202)
in Appendix (A.3):

F1xy

F2xy
sin (φ1 − α1) sin (α2 − α3)

= sin (φ2 − α3) sin (α1 − α2) . (354)

Then, since the referential R0 respect the same con-
dition than the referential R1, we can follow the same
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step than in Appendix C.4.1 for area A12 and find the
relation

tan (Ω1) = −
2
F2xy

F1xy
sin (∆φ) + tan (Γ1)(

2
F2xy

F1xy
cos (∆φ) + 1

) . (355)

if ξ= 2F2xy

F1xy
cos (∆φ) + 1 6= 0, so Assumption A9 is re-

spected.
From (355), one deduce α3 can take the two follow-

ing values α3k for k ∈ {1, 2} with

α3k =φ2 + π (k − 1) + α30

with

α30 = atan

2
F2xy

F1xy
sin (∆φ) + tan (Γ1)(

2
F2xy

F1xy
cos (∆φ) + 1

)
 (356)

F.4.2 Study of ψ2 and ψ3

In area A0, the element 2 is sliding such that it corre-
spond to the Definition 2 (1). Thus, one has T2 = T3

and from Theorem 1

cos (ψ3) = cos (ψ2)
sin (φ2 − α2)

sin (φ2 − α3)
. (357)

Moreover, if ψF2 6= 0, the third line of system (9)
with i = 2 becomes

− sin (ψ2)T2 + sin (ψ3)T3 + F2 sin (ψF2) = 0

(− sin (ψ2) + sin (ψ3))T2 = −F2 sin (ψF2)
(358)

Remind that for i ∈ {1, 2, 3}, Tixy = cos (ψi)Ti.
Thus, 358 becomes

sin (ψ3) = − F2

T2xy
sin (ψF2) cos (ψ2) + sin (ψ2) . (359)

Using (188) in Appendix A and 338, T2xy can be
expressed in R0 as

T̄2xy|R0
= − sin (φ1 − α1)

sin (α2 − α1)
F1xy

= − sin (φ1 − α1)

sin (−α1 + 2φ1 + π − α1)
F1xy

= − sin (φ1 − α1)

sin (2 (φ1 − α1) + π)
F1xy

=
sin (φ1 − α1)

sin (2 (φ1 − α1))
F1xy

=
sin (φ1 − α1)

2 sin (φ1 − α1) cos (φ1 − α1)
F1xy

=
F1xy

2 cos (φ1 − α1)
(360)

so depend only of the angle α1. With (360) to evaluate
T̄2xy|R0

, let’s back to359.
By squaring the two sides of 359 and since

sin (ψ3)
2

= 1− cos (ψ3)
2, one gets

1− cos (ψ3)
2

=

(
F2

T̄2xy|R0

sin (ψF2)

)2

cos (ψ2)
2

+ sin (ψ2)
2

− 2
F2

T̄2xy|R0

sin (ψF2) cos (ψ2) sin (ψ2) . (361)

Using now (357), (361) can be expressed only with
ψ2:

1− cos (ψ2)
2 sin (φ2 − α2)

2

sin (φ2 − α3)
2

=

(
F2

T̄2xy|R0

sin (ψF2)

)2

cos (ψ2)
2

+
(

1− cos (ψ2)
2
)

− 2
F2

T̄2xy|R0

sin (ψF2) cos (ψ2) sin (ψ2)

[
1− sin (φ2 − α2)

2

sin (φ2 − α3)
2 −

(
F2

T̄2xy|R0

sin (ψF2)

)2
]

cos (ψ2)
2

= −2
F2

T̄2xy|R0

sin (ψF2) cos (ψ2) sin (ψ2)

[
1− sin (φ2 − α2)

2

sin (φ2 − α3)
2 −

(
F2

T̄2xy|R0

sin (ψF2)

)2
]

cos (ψ2)

= −2
F2

T̄2xy|R0

sin (ψF2) sin (ψ2) (362)

Since sin (ψF2) 6= 0, (362) becomes

tan (ψ2) =

[
1− sin(φ2−α2)2

sin(φ2−α3)2 −
(

F2

T̄2xy|R0

sin (ψF2)
)2
]

−2 F2

T̄2xy|R0

sin (ψF2)
.

(363)
Remind that α3 ∈ {α31, α32} with α31 = α30

and α32 = α30 + π. Since sin (φ2 − α30 + π)
2

=

sin (φ2 − α30)
2, one may write

tan (ψ2) =

[
1− sin(φ2−α2)2

sin(φ2−α30)2 −
(

F2

T̄2xy|R0

sin (ψF2)
)2
]

−2 F2

T̄2xy|R0

sin (ψF2)
.

(364)
and one ha ψ2 ∈ {ψ21, ψ22} where ψ2k can be expressed
as

ψ2k = (k − 1)π

+ atan


[
1− sin(φ2−α2)2

sin(φ2−α30)2 −
(

F2

T̄2xy|R0

sin (ψF2)
)2
]

−2 F2

T̄2xy|R0

sin (ψF2)

 .

(365)
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Then, ψ3 can be obtain using (357) such as

ψ3 ∈
{{

Si,jψ3
/ j ∈ {1, 2}

}
/ i ∈ {1, 2}

}
(366)

Si,jψ3
= {ψ30 (ψ2j , α3i, k) | k ∈ {1, 2} ,∣∣∣∣cos (ψ2j)

sin (φ2 − α2)

sin (φ2 − α3i)

∣∣∣∣ ≤ 1

}
(367)

where

ψ30 (ψ2, α3, k) = (3− 2k) acos
(

cos (ψ2)
sin (φ2 − α2)

sin (φ2 − α3)

)
(368)

Note there is two solutions for ψ2, so four possible
solutions for ψ3. Since α3 has also two solutions, one
may have four possible solutions for ψ2 and eight for
ψ3.

F.4.3 Calculation of α1

Following steps described in Appendix B.3, the first
and the second lines of (7) are used to find an expres-
sion of l11 and l12 in function of α1. Then, using the
last line of (7) and injecting inside (337)-(338)-(356)-
(365)-(366) and the expression T̄2xy|R0

=
F1xy

2 cos(φ1−α1)

for T2xy, several solutions of α1 can be found (since
there is several solution for some parameters like ψ2

or ψ3). The current solution of α1 can be found by
evaluating the other parameters and keeping the only
solution respecting the following conditions:

1. The evaluation of the lengths must be bounded
such that (l11, l12) ∈ [0, l1]

2 and (l21, l22) ∈ [0, l2]
2

.

2. The evaluation of the forces must be strictly pos-
itive: TS1

1 > 0, TS1
2 > 0 and TS1

3 > 0.

3. − sin (ψ2)TS1
2 + sin (ψ3)TS1

3 + F2xy sin (ψF2) = 0
where TS1

2xy is evaluated using (19) and not (360).

4. The Definition 2 is respected for the two elements,
i.e.

• The element 1 is sliding, so ~F1.
−−→
B1A < 0 and

~F1.
−−→
B1S < 0,

• The element 2 is sliding, so ~F2.
−−→
B2S < 0 and

~F2.
−−→
B2R < 0.

Remind that
−−→
AB1,

−−→
B1S,

−−→
SB2 and

−−→
B2R have been ex-

pressed in Section 4.1. In practice, the solution of α1

will be found numerically.

G Calculation in area D

G.1 Referential RD

In the areas D (D1, D2 and D3), all the elements are
in contact with a stop. Thus, the umbilical between

the anchor and the ROV becomes the triangle ASR
with AS = l1 and SR = l2. Let’s define the force ~FS|R
applied at the point S such as

~FS|R = ~F1|R in area D1 (369)
~FS|R = ~FΣ|R = ~F1|R + ~F2|R in area D2 (370)
~FS|R = ~F2|R in area D3 (371)

The triangle ASR can be expressed in a 2D plan
(O~x~y) by performing the following four transforma-
tions of the referential R, illustrated in Figure 8:

1. R → RD(1): a translation of the referential is
performed to center the anchor A at the origin of
the new referential RD(1), i.e. to obtain ARD(1)

=
(0, 0, 0)RD(1)

:

XRD(1)
= XR − TR (372)

~Fi|RD(1)
= ~Fi|R (373)

with i ∈ {1, 2, S}, XR =
[
x y z

]T
R and TR =[

0 l0 0
]T
R. Note the forces stay unchanged.

2. RD(1) → RD(2): a rotation around the
lateral axis (A~z)RD(1)

of an angle µD(1) =

−atan2
(
yRD(1)

, xRD(1)

)
is performed to align

−→
ARD(2) with the horizontal plan, i.e. to obtain
−→
ARD(2)∥∥∥−→ARD(2)

∥∥∥ . (A~z)RD(2)
= 0:

XRD(2)
= MD(1)XRD(1)

(374)
~Fi|RD(2)

= MD(1)
~Fi|RD(1)

(375)

MD(1) =

 cos
(
µD(1)

)
− sin

(
µD(1)

)
0

sin
(
µD(1)

)
cos
(
µD(1)

)
0

0 0 1

 .
(376)

Note that the sign “-” in the angle of rotation µD(1)

is due to the fact the referential R is not direct,
and so RD(1). One has also ARD(1)

= ARD(2)
and

(A~z)RD(1)
= (A~z)RD(2)

.

3. RD(2) → RD(3): a rotation around the ver-
tical axis (A~y)RD(2)

of an angle µD(2) =

atan2
(
zRD(2)

, xRD(2)

)
is performed to put RD(3)

on the horizontal axis (A~x)RD(3)
, i.e. to obtain

−→
ARD(3)∥∥∥−→ARD(3)

∥∥∥ = (1, 0, 0)RD(3)
:

XRD(3)
= MD(2)XRD(2)

(377)
~Fi|RD(3)

= MD(2)
~Fi|RD(2)

(378)

MD(2) =

 cos
(
µD(2)

)
0 sin

(
µD(2)

)
0 1 0

− sin
(
µD(2)

)
0 cos

(
µD(2)

)
 .
(379)
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Note that ARD(2)
= ARD(3)

and (A~y)RD(2)
=

(A~y)RD(3)
.

4. RD(3) → RD. From the previous steps, the
edge S is the only one which is not necessary in-
side the plan (O~x~y)RD(2)

. Its position depends

of the orientation of the force ~FS|RD(3)
applied

at the point S. In the case where the orienta-
tion of this force is contained in a plan, S will
be in the same plan. Thus, a rotation around
the vertical axis ARD(3)

~x of an angle µD(3) =

−atan2
(
FSz|RD(3)

, FSy|RD(3)

)
is performed to put

SD in the plan (O~x~y)RD , i.e.
−→
ASD∥∥∥−→ASD∥∥∥ . (A~z)RD = 0:

XRD = MD(3)XRD(3)
(380)

~Fi|RD = MD(3)
~Fi|RD(3)

(381)

MD(3) =

 1 0 0
0 cos

(
µD(3)

)
− sin

(
µD(3)

)
0 sin

(
µD(3)

)
cos
(
µD(3)

)
 .
(382)

Note that ARD(3)
= ARD and (A~x)RD(3)

=

(A~x)RD . Again, the sign “-” in µD(3) is due to the
fact the referential R is not direct, and so RD(1),
RD(2) and RD(3).

All the transformations performed below can be sum-
marize as following:

XRD = MD (XR + TR) (383)
~Fi|RD = MD

~Fi|R (384)

MD = MD(3)MD(2)MD(1) (385)

where the calculation of MD required the calculation
of XD(1), XD(2) and ~FS|RD(3)

.
Once a solution will be found in RD, the angles and

length will be re-evaluated in R using for example Def-
inition 12.

In this section, since all the calculations are per-
formed in RD , the notations are lightened such that
a parameter βi|RD is simply written βi.

G.2 Geometrical model in areas D

Due to the change of referential, the system (7) can
be expressed in two dimensions with l0 = 0, so z = 0,
ψ1 = ψ2 = ψ3 = 0. Moreover, since AS = l1 and
SR = l2, one may rewrite (7) as

x = l1 cos (γ) + l2 cos (β) (386)
y = l1 sin (γ) + l2 sin (β) (387)

where

γ = α1 β = α2 in area D1,
γ = α1 β = α3 in area D2,
γ = α2 β = α3 in area D3.

Note that l11, l12, l21 and l22 are already known in
function of the area, see Section 5. Let’s find the value
of γ and β. Moreover:

• In area D1, since l22 = 0, one can take α3 = 0.

• In area D2, since l12 = l21 = 0, one can take
α2 = 0.

• In area D3, since l11 = 0, one can take α1 = 0.
Note that since its value is not important, one can
also take α1 = −α2 +2φ1 +π as in area A1 or A0,
because if the element 1 moves to make l11 6= 0,
the configuration will be in area A1 or A0.

G.2.1 Case y 6= 0

Consider the case where y 6= 0, one has

x = l1 cos (γ) + l2 cos (β) (388)
y = l1 sin (γ) + l2 sin (β) (389)

From (389), one gets

sin (β) =
y

l2
− l1
l2

sin (γ) . (390)

Consider now (388):

x− l1 cos (γ) = l2 cos (β)

(x− l1 cos (γ))
2

= l22 cos (β)
2

x2 − 2xl1 cos (γ) + l21 cos (γ) = l22

(
1− sin (β)

2
)
(391)

Injecting (390) inside (391), one obtains

x2 − 2xl1 cos (γ) + l21 cos (γ)

= l22

(
1−

(
y

l2
− l1
l2

sin (γ)

)2
)

x2 − 2xl1 cos (γ) + l21 cos (γ)
2

= l22 −
(
y2 − 2yl1 sin (γ) + l21 sin (γ)

2
)

x2 + y2 − 2xl1 cos (γ) + l21 − l22
= 2yl1 sin (γ) . (392)

Since y 6= 0, (392) becomes

sin (γ) =
x2 + y2 − 2xl1 cos (γ) + l21 − l22

2yl1

sin (γ) =
x2 + y2 + l21 − l22

2yl1
− x

y
cos (γ)
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sin (γ) = aD − bD cos (γ) (393)

with aD =
x2+y2+l21−l

2
2

2yl1
and bD = x

y . Put X = cos (γ).
Taking the square of (393), one can be deduce that

sin (γ)
2

= (aD − bD cos (γ))
2

1−X2 = (aD − bDX)
2

1−X2 = a2
D − 2aDbDX + b2DX

2

0 = a2
D − 1− 2aDbDX +

(
1 + b2D

)
X2

0 = CD −BDX +ADX
2 (394)

with CD = a2
D − 1, BD = 2aDbD and AD = 1 + b2D.

Let define the determinant ∆ such as

∆ = B2
D − 4ADCD

= 4
(

(aDbD)
2 −

(
1 + b2D

) (
a2
D − 1

))
.

If ∆ < 0, there is not solution and so the configu-
ration is not possible. Else, two solutions of (394) are
possible

X1D =
BD −

√
B2
D − 4ADCD

2AD

=
aDbD −

√
a2
Db

2
D − (1 + b2D) (a2

D − 1)

(1 + b2D)
(395)

and

X2D =
aDbD +

√
a2
Db

2
D − (1 + b2D) (a2

D − 1)

(1 + b2D)
(396)

Remind X = cos (γ), so X1D is valid only if |X1D| ≤
1, same for X2D if |X2D| ≤ 1. Let’s note LX the list
of valid solution of (394) such that

LX =


{X1D, X2D} if (|X1D| ≤ 1) & (|X2D| ≤ 1)

{X1D} if (|X1D| ≤ 1) & (|X2D| > 1)

{X2D} if (|X1D| > 1) & (|X2D| ≤ 1)

∅ else
(397)

From (390) and (393), note that the solution must
also respected the condition Ca1 ≤ 1 where

Ca1 =

∣∣∣∣ yl2 − l1
l2

sin (γ)

∣∣∣∣ (398)

Thus, we define the list of valid solution Lγ such
that

γ ∈ Lγ (399)

where

Lγ = {γ̄|γ̄ ∈ LS1, Ca1 (γ̄) ≤ 1} , (400)
LS1 = {acos (sX) | s ∈ {−1, 1} , X ∈ LX} . (401)

Moreover, (390) allows to obtain Lβ the set of solu-
tion of β such that

β ∈ Lβ (402)

where for each γ, there is two solutions for β:

Lβ =
{
β̄, π − β̄ | β̄ ∈ LS2

}
(403)

LS2 =

{
asin

(
y

l2
− l1
l2

sin (γ̄)

)
| γ̄ ∈ Lγ

}
. (404)

The choice of γ and β will be discussed in Ap-
pendix G.3 in the case where Lγ and Lβ are not sin-
gleton.

G.2.2 Case x 6= 0 and y = 0

In the particular case where y = 0, one has

x = l1 cos (γ) + l2 cos (β) (405)
0 = l1 sin (γ) + l2 sin (β) (406)

From (406), one gets

sin (β) = − l1
l2

sin (γ) (407)

Consider now (405):

x− l1 cos (γ) = l2 cos (β) . (408)

It can be deduce that

(x− l1 cos (γ))
2

= l22 cos (β)
2

x2 − 2xl1 cos (γ) + l21 cos (γ)
2

= l22

(
1− sin (β)

2
)
(409)

Injecting (407) inside (409), one obtains

x2−2xl1 cos (γ)+l21 cos (γ)
2

= l22

(
1−

(
− l1
l2

sin (γ)

)2
)

x2 − 2xl1 cos (γ) + l21 cos (γ)
2

= l22 − l21 sin (γ)
2

x2 + l21 − l22 = 2xl1 cos (γ) (410)

Since x 6= 0, (410) becomes

cos (γ) =
x2 + l21 − l22

2xl1
. (411)

Put X3D =
x2+l21−l

2
2

2xl1
. Remark (411) provides a valid

solution only if |X3D| ≤ 1.

LX =

{
{X3D} if (|X3D| ≤ 1)

∅ else

Note that from (408) the solution must respected
Ca1 ≤ 1 (defined in (398) with y = 0). Thus, we define
the list of valid solution Lγ2 such that

γ ∈ Lγ (412)
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where

Lγ = {γ̄|γ̄ ∈ LS1, Ca1 (γ̄) ≤ 1} , (413)
LS1 = {acos (sX) | s ∈ {−1, 1} , X ∈ LX} . (414)

Moreover, (390) allows to obtain Lβ the set of solu-
tion of β such that

β ∈ Lβ (415)

where

Lβ =
{
β̄, π − β̄ | β̄ ∈ LS2

}
(416)

LS2 =

{
asin

(
y

l2
− l1
l2

sin (γ̄)

)
| γ̄ ∈ Lγ

}
. (417)

Remark the results has the same form that in Ap-
pendix G.2.1. The choice of γ and β will be discussed
in Appendix G.3 in the case where Lγ and Lβ are not
singleton.

G.2.3 Case x = 0 and y = 0

If x = 0 and y = 0, one has

0 = l1 cos (γ) + l2 cos (β) (418)
0 = l1 sin (γ) + l2 sin (β) (419)

and so one gets

cos (β) =
l1
l2

cos (γ) (420)

l1 sin (γ) = −l2 sin (β) . (421)

From (421), one can express

l21 sin (γ)
2

= l22 sin (β)
2

l21 sin (γ)
2

= l22

(
1− cos (β)

2
)

l21 sin (γ)
2

= l22 − l21 cos (γ)
2

l21 − l22 = 0 (422)

Thus, a solution exist only if l1 = l2, else the con-
figuration is impossible. If l1 = l2, one can deduce
from (420)-(421) that γ = π + β. Moreover, from
the PFS, the orientation is the same of Fs, so one has
γ = atan2 (FSy, FSx).

G.3 Solution of γ and β

From Appendix G.2, two sets Lγ and Lβ of possible
solutions of γ and β has been defined. If in the case
where these sets are not singleton, the current solution
can be find by choosing the set (γ, β) respecting the
following geometrical condition:

0 = |x− (l1 cos (γ) + l2 cos (β))|
+ |y − (l1 sin (γ) + l2 sin (β))| . (423)

Moreover, since several areas D can have a valid geo-
metrical solution for the same coordinate (x, y, z) (sev-
eral triangles are possible between A and R), the solu-
tion must also respect the following conditions based
on the forces applied on the system and the properties
of the sliding element (Definition 2):

1. The evaluation of the forces must be strictly pos-
itive:

• if area D1, TS1
1 > 0 and TS1

2 > 0;

• if area D2, TS1
1 > 0 and TS1

3 > 0 ;

• if area D3, TS2
2 > 0 and TS2

3 > 0 ;

where TS1
1 , TS1

2 and TS1
3 are evaluated using (16)

2. The Definition 2 is respected for the two elements,
i.e.

• if area D1:

– if element 1 is not fixed, ~F1.
−→
AS > 0,

– if element 2 is not fixed, ~F2.
−→
SR > 0.

• if area D2:

– if element 1 is not fixed, ~F1.
−→
AS > 0,

– if element 2 is not fixed, ~F2.
−→
SR < 0.

• if area D3:

– if element 1 is not fixed, ~F1.
−→
AS < 0,

– if element 2 is not fixed, ~F2.
−→
SR < 0.

with
−→
AS =

−−→
AB1 +

−−→
B1S and

−→
SR =

−−→
SB2 +

−−→
B2R

where
−−→
AB1,

−−→
B1S,

−−→
SB2 and

−−→
B2R have been ex-

pressed in Section 4.1.

If not solution of Lγ and Lβ respected the previous
conditions, its means the configuration is not possible.
Else, a solution is found analytically.
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