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1282 Grissom Hall, School of Aeronautics and Astronautics, Purdue University, West 

Lafayette, IN 47907-1282

An analytical method that evaluates the evolution of stress and surface profile in fretting under the partial slip conditions is 
presented. The repeated slip occurring near the edges of contact generates wear that changes the contact geometry and 
contact stresses. The method is based on two scales of time: time for one cycle of the oscillating tangential force and time 
corresponding to the number of cycles. Archard’s wear law is used to evaluate wear and gap variation within the slip zones 
during one cycle. The governing integral equations are reduced to calculate the contact pressure after each cycle. Evolu-
tion of the contact characteristics (contact pressure and shear stress, contact width, gap and slip functions) in fretting is 
calculated using a stepwise procedure. It is shown that the size of stick zone does not change in wear process of bodies 
with similar elastic properties under the constant amplitude load conditions, and that an asymptotic solution corre-sponding 
to the number of cycles approaching to infinity exists. Analytical expressions for the asymptotic contact pressure, shear and 
tensile stress, and the gap function are pre-sented. It is proved that the asymptotic contact pressure and shear stress are 
singular at the ends of stick zone. Detailed results are given for two initial shapes of elastic indenter contacting with an 
elastic half-space: for the parabolic cylinder and for the indenter having a flat base with rounded edges. 

1 Introduction

Partial slip contacts occur in machine components under condi-

tions of small amplitude vibrations. Partial slip is characterized by

existence of stick and slip zones within the contact area. The

necessary condition to realize partial slip contact is Q,mP ,

where Q and P are the tangential and normal forces applied to the

components, and m is the friction coefficient.

If Q oscillates then repeating slip, which is opposite to the

tangential force direction, occurs within the slip zones. This small

scale repeated slip displacement is called fretting and it leads to

mechanical wear of the contacting bodies. Figure 1 represents the

traces through the contact width of the initial surface and the worn

surface after 86500 cycles in a fretting fatigue experiment con-

ducted during partial slip conditions. The traces of the pad profiles

show that a gap due to wear is formed near the ends of the contact

region. Note that wear at the trailing slip zone is considerably

more than wear at the leading edge because of the asymmetric

stress distribution induced by the bulk tensile load applied to the

specimen ~see Szolwinski and Farris @1#, Szolwinski et al. @2#, and

McVeigh et al. @3#!.
The shape variation of the interacting surfaces results in redis-

tribution of the contact pressure and a change of contact width. It
was shown by Rabinowicz @4# and Stowers and Rabinowicz @5#
that the wear rate is proportional to the contact pressure and the
relative sliding velocity. Thus, the redistribution of the contact
pressure in turn influences the wear rate in the slip zones.

The evolution of contact pressure due to wear in fretting was
considered by Johansson @6# using the finite element method to
perform the contact stress analysis. The time scale was discretized
to allow for the application of the shear stress, Q, as a function of
time. Archard’s wear equation was coded into the algorithm, and it
was assumed that all the wear particles leave the contact zone.
The results obtained by Johansson for the cylindrical indenter in-
dicate that the pressure distribution after a period of fretting dif-
fers considerably from the initial Hertz type pressure distribution.

Analytical investigations of wear contact problems which take
into account the irreversible change of surface geometry due to
wear were developed by Korovchinsky @7#, Galin @8#, Galin and
Goryacheva @9#, Goryacheva @10,11#, etc. All functions ~pressure
distribution, wear and elastic displacements of the surface, etc.! in
the wear contact problem are time-dependent and inter-connected.

In the present paper, an analytical model of wear contact prob-
lems is used to investigate the pressure and geometry evolution in
fretting under conditions of partial slip contact. Following Johans-
son @6#, it is assumed that the wear particles do not accumulate
between the contacting surfaces. The pressure evolution in wear
process is considered for two different shapes of the indenter, i.e.,
for the parabolic cylinder and for an indenter having a flat base
with rounded edges.

2 Problem Formulation

The two-dimensional contact problem illustrated in Fig. 2 for
two elastic bodies having undeformed shapes specified by the
functions z5 f 1(x) and z52 f 2(x) related to the system of coor-
dinates Oxz( f i(x)5 f i(2x)) is considered. The Oz axis coincides
with the axis of symmetry of the contacting bodies with normals
common to the two surfaces at O. The bodies are subjected to the
constant normal force P and the oscillating tangential force Q(t)

so that 2Q*<Q(t)<Q* and there is no moment.
The following condition is satisfied:

uQ*u,mP , (1)

Fig. 1 Profilometer traces of a fretting pad after 86500 cycles
in fretting fatigue experiment involving partial slip contact. The

applied loads were PÄ1.2Ã106 NÕm,Q*Ä3.7Ã105 NÕm.
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where m is the friction coefficient. It is observed in fretting fatigue
experiments that m increases with the number of cycles before
reaching a steady-state value for most of the fretting fatigue life.
In the model presented here we assume that m is constant ~steady-
state value! and that the static and kinetic coefficients of friction
are the same.

It follows from Eq. ~1! that this is a partial slip contact with a
central stick zone surrounded by two slip zones. Due to relative
displacements, wear of the contacting bodies occurs within the
slip zones. For different mechanisms of wear the wear rate,
]w/]t , is approximated by the following equation:

]w

]t
5Kwpa~x ,t !Vb~x ,t !, (2)

where p(x ,t) is pressure, V(x ,t) is sliding velocity, and Kw is
known as the wear coefficient.

In the problem under consideration

V~x ,t !5U]s~x ,t !

]t
U, (3)

where s(x ,t) is the slip at the point x for the instant t. It is deter-
mined by

s~x ,t !5H 0, if uxu,c~ t !,

~ux12ux2!2dx , if c~ t !<uxu<a~ t !,
(4)

where ux1 and ux2 are the tangential displacements of the contact
surfaces at the point x, dx is the relative tangential displacement of
the contacting bodies, c(t) is the size of the stick zone at the
instant t. It follows from Eqs. ~2!, and ~3! that for a5b51

]w

]t
5Kwp~x ,t !U]s~x ,t !

]t
U. (5)

cycle, and then from cycle to cycle using a stepwise procedure.
For the sake of simplicity of analysis we have assumed that the
wear constant, Kw , is independent of the amount of wear between
the contacting bodies ~constant with time!. It is shown in Section
5 that the asymptotic distributions of pressure, shear, and wear do
not depend on the wear constant Kw . Hence the rate of wear is
affected by Kw but not the magnitude of wear.

3 Wear During One Cycle

The value Dw(x ,N) denotes the increment of wear of both

bodies at the N th cycle. Thus the wear after N cycles is calculated
by

w~x ,N !5(
n51

N

Dw~x ,n !. (6)

The pressure at the N th cycle is denoted by p(x ,N), and the
contact half-width by a(N).

In partial contact wear occurs only in the slip zones. The sizes

of stick and slip zones change during a cycle. If Q5Q* the shear

stresses at the N th cycle are distributed according to the following
formula:

qN~x ,c*!5H mp~x ,N !2q*~x ,N !, if uxu,c*,

mp~x ,N !, if c*<uxu<a~N !,
(7)

where c* is the size of the stick zone. For contacting bodies of

similar materials ~E15E25E , v15v25v! the function q*(x ,N)
is determined from the equation:

E
2c*

c* q*~ t ,N !dt

x2t
5

pmE*

2
H8~x ,N !, uxu,c*, (8)

where E*5E/2(12v
2). The function H(x ,N) is the unloaded

gap between the bodies at the N th cycle. The function H8(x ,N) is
the derivative of the function H(x ,N) with respect to x.

If Q(t),Q* the half-width of the stick zone c(t) changes from

c* to a(N). During one cycle the time variation of the shear
contact stress qN depends on the function c(t), i.e., qN

5qN(x ,c(t)). The size of a stick zone c(t) is determined from the
equilibrium condition

Q~ t !5E
2a~N !

a~N !

qN~x ,c~ t !!dx . (9)

The value of slip at any point x(c(t)<uxu<a(N)) is determined
by

sN~x ,c~ t !!52

2

pE* E
2a~N !

a~N !

qN~x8,c~ t !!lnU x2x8

c~ t !2x8
Udx8.

(10)

Since sN(x ,c(t)) is a function of x and c, it follows from Eq.
~2! that

]w~x ,t !

]t
5Kwp~x ,t !U]s~x ,c !

]c
•

dc

dt
U. (11)

Integrating Eq. ~11! during the time Dt of one cycle and using the
mean value theorem, we obtain

Dw~x ,N !5KwE
~N21 !Dt

NDt

p~x ,t !U]s~x ,c !

]c
•

dc

dt
Udt

'2Kw p̃~x ,N !UE
x

c* ] s̃N~x ,c !

]c
dcU

52Kw p̃~x ,N !u s̃N~x ,c*!u

'Kw@p~x ,N21 !usN21~x ,c*!u

1p~x ,N !usN~x ,c*!u# uxu.c*, (12)

Fig. 2 Schematic of two-dimensional partial slip contact be-
tween two elastic bodies subject to a normal load and an oscil-
lating tangential force

Due to wear the shape of contacting bodies varies, which gives
rise to the redistribution of the contact stresses. Note that in the
problem under consideration there are two scales of time. The first
scale is connected with the time of one cycle. During one cycle
the redistribution of shear contact stress and variation of the stick
zone size take place in response to the variation of tangential force
Q(t). The redistribution of shear stress does not influence the
contact pressure for similar contacting bodies. For dissimilar ma-
terials the redistribution of the normal contact stress due to shear
stress is negligibly small. Taking also into account that the shape
variation is negligibly small in one cycle, it follows that the
changes of the contact pressure and the contact width are also
negligibly small in one cycle. The changes of these values are
connected with the second time scale which is the number of
cycles. In what follows the wear process is calculated first in one
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where p̃(x ,N) and s̃N(x ,c*) are values of pressure and slip at

some intermediate point of the N th cycle. The last relation is ob-
tained using the condition s̃N(x ,x)50, and also the assumption
that the function u s̃N(x ,c)u is the same during the loading and
unloading of the tangential force Q(t). The function Dw(x ,N)
determined by Eq. ~12! satisfies the condition

Dw~c*,N !5Dw~a~N !,N !50. (13)

We use this condition only at the right hand side of the contact
zone because the functions w(x ,N),p(x ,N),q(x ,c), etc. are
symmetric.

Thus to determine the increment of wear at the N th cycle we

must calculate the relative slip sN(x ,c*) corresponding to the

maximum tangential force Q*.

Calculation of the Function sN„x ,c*… at the N
th Cycle. The

function sN(x ,c*) is determined using Eq. ~10! as

sN~x ,c*!52

2

pE* E
2a~N !

a~N !

qN~x8,c*!lnU x2x8

c*2x8
Udx8, (14)

where qN(x ,c*) is given by Eq. ~7!. The function q*(x ,N) and

the size of stick zone c* can be found from the integral Eq. ~8!
and the conditions

E
2c*

c*
q*~x ,N !dx5mP2Q* (15)

and

q*~c*,N !50. (16)

Since the function H(x ,N) does not change inside the stick

zone uxu<c* during the wear process, i.e., H(x ,N)5H(x ,0)
5 f (x)5 f 1(x)1 f 2(x), and the system of Eqs. ~8!, ~15!, and ~16!
has a unique solution, the function q*(x ,N) and the width c* of

the stick zone do not change with time, i.e., q*(x ,N)5q*(x ,0)

5q*(x).
The solution of this system of equations can be written in the

following form:

q*~x !5

mE*A~c*2
2x2!

2p E
2c*

c* f 8~ t !dt

A~c*2
2t2!~ t2x !

, uxu<c*,

(17)

where the size of the stick zone c* is determined from the condi-
tion

2

mE*

2
E

2c*

c* Ac*2t

t1c*
f 8~ t !dt5mP2Q*. (18)

4 Contact Problem Solution for the N
th Cycle

It is assumed that all of the wear particles detached from the
surface leave the contact zone so that the shape of contacting
bodies varies. The unloaded gap H(x ,N) between the bodies after
N cycles is defined by the relationship

H~x ,N !5 f ~x !1w~x ,N !, (19)

where f (x)5 f 1(x)1 f 2(x) and the function w(x ,N) is determined

by Eq. ~6!. The contact condition for the N th cycle takes the form

uz1~x ,N !1uz2~x ,N !5D~N !2H~x ,N !, (20)

sure p(x ,N) and the elastic displacement uzi for a given instant in
time are related by an operator which is analogous to the operator
relating the pressure and elastic displacement in the corresponding
contact problem when wear does not occur. For a two-
dimensional contact problem for an elastic half-space, this relation
takes the form

uzi~x ,N !52

2~12v i
2!

pE i
E

2a~N !

a~N !

lnux2x8up~x8,N !dx81const.

(21)

If f 1(x) and f 2(x) are smooth functions the unknown contact
width a(N) is obtained at each instant of time from the condition

p~a~N !,N !50. (22)

The contact pressure p(x ,N) also satisfies the equilibrium condi-
tion

E
2a~N !

a~N !

p~x ,N !dx5P . (23)

For any cycle, the gap between the bodies can be calculated
using the following relationship:

H~x ,N !5H~x ,N21 !1Dw~x ,N !. (24)

Substituting Eqs. ~21!, and ~24!, into Eq. ~20! gives

2

2

pE* E
2a~N !

a~N !

lnux2x8up~x8,N !dx81Dw~x ,N !

5D~N !2H~x ,N21 !, uxu<a~N !. (25)

At x5a(N), Eq. ~25! takes the form

2

2

pE* E
2a~N !

a~N !

lnua~N !2x8up~x8,N !dx8

5D~N !2H~a~N !,N21 !. (26)

Subtracting Eq. ~26! from Eq. ~25! and taking into account Eq.
~12! gives

2

pE* E
2a~N !

a~N !

lnUa~N !2x8

x2x8
Up~x8,N !dx81Kwus~x ,N !up~x ,N !

5H~a~N !,N21 !2H~x ,N21 !

2Kwus~x ,N21 !up~x ,N21 !, uxu<a~N !, (27)

where s(x ,N)[sN(x ,c*), and p(x ,N) is the symmetric function
satisfying Eqs. ~22! and ~23!.

Equation ~27!, using Eqs. ~19!, ~24!, and ~25!, can also be writ-
ten as

2

pE* E
2a~N !

a~N !

lnUa~N !2x8

x2x8
Up~x8,N !dx81w~x ,N !

5 f ~a~N !!2 f ~x !. (28)

Eqs. ~22!, ~23!, and ~27! ~or ~28!! are used to determine the
contact pressure p(x ,N) and the contact half-width a(N) at the

N th cycle. The functions H(x ,N21), w(x ,N21) and s(x ,N
21) are found based on the known function p(x ,N21) at the
(N21)th cycle.

The wear w(x ,N), the shear stress q(x ,N), the slip s(x ,N),

and the gap H(x ,N) between contacting bodies at the N th cycle
are calculated from Eqs. ~6! and ~12!, ~7!, ~14!, and ~19! ~or ~24!!,
respectively. Then the stress component sx(x ,N) at z50 can be
calculated using the formula ~see Muskhelishvili @12#!:

sx~x ,N !52p~x ,N !1

2

p E
2a~N !

a~N ! q~x8,N !dx8

x82x
. 2`,x,1` .

(29)

where uz1 , uz2 are the normal displacements of the contacting 
bodies due to their deformations and D(N) is the approach of the 
bodies.

We assume that the irreversible surface displacement w(x ,N) 
due to wear is small, and comparable to the elastic displacement

uzi  (i51,2). Hence, the boundary conditions are posed on unde-
formed surfaces, neglecting both the elastic displacement uzi  and 
the surface wear w(x ,N). Under this assumption the contact pres-
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5 Asymptotic Analysis

As the gap between contacting surfaces increases, the contact
pressure p(x ,N) within the slip zones tends to zero as N→` . It

also follows from Eq. ~14! that sN8 (x ,c*) is a discontinuous func-

tion at x5c*; therefore, the functions Dw8(x ,N) and H8(x ,N)

~see Eq. ~24!! are also discontinuous at x5c*.
Thus, as N→` the contact pressure approaches zero within the

slip zones, and it tends to the following function inside the stick

zone uxu<c* ~see Muskhelishvili @12#!:

p`~x !5

E*

2pA~c*2
2x2!

E
2c*

c* A~c*2
2t2! f 8~ t !dt

t2x

1

P

pA~c*2
2x2!

. (30)

This formula is valid because the gap function has the discontinu-

ous derivative at the point x5c*. The pressure, given by the
function ~30! within the stick zone, and equal to zero outside the
stick zone, exactly satisfies Eqs. ~22!, ~23!, and ~28!. The pressure,
p`(x), is the asymptotic solution of these system of equations.

The asymptotic shear stress q`(x) is determined from the con-

dition s8(x)50 if uxu<c*. For similar materials it can be written
in the form

E
2c*

c* q`~ t !dt

x2t
50, uxu,c*. (31)

The solution of Eq. ~31! satisfying the equilibrium condition

E
2c*

c*
q`~ t !dt5Q*

is

q`~x !5

Q*

pA~c*2
2x2!

, uxu,c*. (32)

The half-width c* of the stick zone in Eqs. ~30! and ~32! is de-
termined from Eq. ~18!.

It should be noted that the asymptotic complementary function

q *̀(x) which is

q *̀~x !5mp`~x !2q`~x !

5

mE*

2pA~c*2
2x2!

E
2c*

c* A~c*2
2t2! f 8~ t !dt

t2x

1

mP2Q*

pA~c*2
2x2!

, uxu,c*, (33)

coincides with the function q*(x) ~see Eq. ~17!!, and satisfies the
following conditions:

q *̀~x !5q*~x !.0, xP~2c*,c*!

q *̀~2c*!5q *̀~c*!50.

Using Eq. ~32! we can reduce the asymptotic slip function to

s`~x !52

2Q*

p2E*
ln

Ax2
2c*2

1x

x
, c*<x<a` . (34)

Substitution of the asymptotic pressure p`(x) into Eq. ~28!
gives the following expression to calculate the asymptotic wear
distribution within the following slip zones:

w`~x !5 f ~a`!2 f ~x !2

2

pE* E
2c*

c*
lnUa`2x8

x2x8
Up`~x8!dx8,

c*<x<a` . (35)

The asymptotic stress component sx
`(x) at z50 is determined

by the following expression reduced from Eqs. ~29!, ~31!, and
~32!

sx
`~x !55

2Q*

pAx2
2c*2

, if 2`,x,2c*

2p`~x !, if 2c*,x,c*

2

2Q*

pAx2
2c*2

, if c*,x,` .

(36)

Note that the last expression has been obtained under the assump-
tion that contacting components are elastically similar. It shows

that the asymptotic function sx
`(x) is discontinuous at x52c*,

z50.

6 Method of Calculation

The following dimensionless parameters and functions are in-
troduced:

p̄~ x̄ ,N !5

2

pE*
p~ x̄R ,N !, q̄*~ x̄ !5

2

pmE*
q*~ x̄R !,

K̄w5

pmE*

2
Kw , P̄5

2P

pRE*
, Q̄5

2

pmRE*
~mP2Q*!,

x̄5

x

R
, ā5

a

R
, c̄5

c

R
, (37)

H̄~ x̄ ,N !5

H~ x̄R ,N !

R
, s̄~ x̄ ,N !5

s~ x̄R ,N !

R
,

f̄ ~ x̄ !5

f ~ x̄R !

R
, w̄~ x̄ ,N !5

w~ x̄R ,N !

R
,

where R is some scale distance specified for each particular
problem.

Since the function p(x ,N) is symmetric the following relation
is valid:

E
2a~N !

a~N !

lnU x2x8

a~N !2x8
Up~x8,N !dx8

5E
0

a~N !

lnU x2
2x8

2

a2~N !2x8
2Up~x8,N !dx8.

Using this relation, we reduce Eqs. ~22!, ~23!, and ~28! to the
following dimensionless system of equations:

E
0

a~N !

lnUa2~N !2x8
2

x̄2
2x8

2 U p̄~x8,N !dx81w̄~ x̄ ,N !

5 f̄ ~ ā~N !!2 f̄ ~ x̄ !, u x̄u< ā~N !

2E
0

ā~N !

p̄~ x̄ ,N !dx̄5 P̄ , p̄~ ā~N !,N !50, (38)

where

w̄~ x̄ ,N !5K̄w@ u s̄~ x̄ ,N !u p̄~ x̄ ,N !1u s̄~ x̄ ,N21 !u p̄~ x̄ ,N21 !#

1w̄~ x̄ ,N21 !, w̄~ x̄ ,0!50, N51,2, . . . (39)

s̄~ x̄ ,N !5H 0, if 0< x̄, c̄*

E
0

ā~N !

lnU c̄*2
2x8

2

x̄2
2x8

2 Uq̄~x8,N !dx8, if c̄*< x̄< ā~N !

(40)
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q̄~ x̄ ,N !5H p̄~ x̄ ,N !2 q̄*~ x̄ !, if 0< x̄, c̄*

p̄~ x̄ ,N !, if c̄*< x̄< ā~N !.
(41)

The function q̄*( x̄) and the parameter c̄* are determined from the
system of equations:

E
0

c̄*
lnU c̄*2

2x8
2

x̄2
2x8

2 Uq̄*~x8!dx85 f̄ ~ c̄*!2 f̄ ~ x̄ !, 0< x̄< c̄*,

2E
0

c̄*
q̄*~ x̄ !dx̄5Q̄ , q̄*~ c̄*!50 (42)

The parameters K̄w , P̄ , and Q̄ are given.
A stepwise procedure is used to calculate the evolution of con-

tact characteristics due to wear. At each step the contact half-
width is divided by n nodes ~which are not necessary equidistant!
and the function p̄( x̄ ,N) is approximated by the linear function
p(t) between each two nodes, i.e.,

p~ t !5p j1

p j112p j

t j112t j

~ t2t j!, t j<t<t j11 , j51,2, . . . n ,

05t1,t2, . . . ,tn,tn115a , p j5p~ t j!, pn115p~a !50.
(43)

Substitution of Eq. ~43! into Eq. ~38! and integration of the linear
functions between the nodes analytically reduces the integral
equation to a system of linear equations. The size of the contact

zone at the N th cycle is determined from Eq. ~38! by iteration. The
functions s̄( x̄ ,N21), w̄( x̄ ,N21) and p̄( x̄ ,N21) are known
from the previous (N21)th step. The solution of the system gives
the dimensionless contact pressure p̄( x̄ ,N) and shear stress
q̄( x̄ ,N), the dimensionless wear w̄( x̄ ,N), the dimensionless slip

function s̄( x̄ ,N), and the contact half-width a(N) at each N th

cycle.

7 Results and Discussion

The algorithm described above was used to calculate the shape
variation and the contact stress evolution in the fretting process. In
numerical calculations the following values of the dimensionless

parameters were taken: K̄w50.0495, P̄50.631•1025, Q̄50.788

•1026 or Q̄50.310•1025. It follows from Eq. ~37! that

Q*/(mP)512Q̄/ P̄ . Thus, for the cases under consideration

Q*/mP is 0.875 and 0.509. These correspond to recent
experiments @2#.

Two different initial shapes of the indenter were considered.

Wear in the Hertz Contact With Partial Slip. The shape of
the parabolic cylinder is described by the function f (x)

5x2/(2R). In dimensionless form this function is f̄ ( x̄)5 x̄2/2.
The results of calculations of the contact pressure and shear

stress for Q̄50.788•1026 and Q̄50.310•1025 are presented in
Fig. 3. Here and in what follows the left side of the figures cor-

responds to Q̄50.788•1026 and the right side corresponds to Q̄

force Q*(Q*,mP), i.e., decrease of the value of Q̄ , increases
the size of the slip zones and the gap between surfaces formed in
the wear process. The contact stress within the stick zone after a
number of cycles is larger for a higher value of the tangential
force.

Note that for the case under consideration Eqs. ~17! and ~18!
can be reduced to the following expressions:

q*~x !5

mE*

2R
Ac*2

2x2, uxu,c*, (44)

c*2
5

4R~mP2Q*!

mpE*
. (45)

The increase of the gap between the contacting bodies within the
slip zones in the wear process explains the decrease of the contact
stress there.

Equations ~30! and ~35! lead to the following analytical expres-
sions for the asymptotic pressure in contact of the elastic cylinder
and the elastic half-space

p`~x !5

1

A~c*2
2x2!

FE*

4R
~c*2

22x2!1

P

p
G , uxu,c*,

(46)

where p`(x)>0 since the following condition holds:

c*2
,a~0 !5

4PR

pE*
,

and the asymptotic wear distribution is

Fig. 3 Evolution of contact pressure and shear stress due to
wear in a partial slip contact between a cylindrical indenter and
a half-space. Note that the right halves of the graphs corre-

spond to Q̄Ä3.104Ã10À6 and the left halves to Q̄Ä7.88Ã10À7.
The stresses are symmetric about the xÄ0 line.

50.310•1025. The results indicate that the pressure ~see Fig. 
3~a!! changes essentially during the wear process. It increases 
within the stick zone and decreases inside the slip zones where the 
wear occurs. The large peak of the pressure occurs at the ends 
6c* of the stick zone after 10,000 cycles. The shear stress within 
the contact exhibits similar behavior as shown in Fig. 3~b!.

The evolution of the gap and slip functions is presented in Fig. 
4. Figure 4~a! illustrates the gap variation due to wear, i.e., the 
wear displacements of both contacting bodies. The maximum 
wear displacements take place in the middle points of the slip 
zones. The absolute values of the derivatives of the wear function 
at the end c* of the slip zone increase during the wear process. 
The relative slip ~see Fig. 4~b!! increases during the wear process.

Comparison of the results for different values of tangential 
loads makes it possible to conclude that increase of the tangential
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w`~x !5

2P

pE*
ln

x1Ax2
2c*2

c*
2

x

2R
Ax2

2c*. c*<x<a`

(47)

The asymptotic value a` is determined from the condition

w`~a`!50 (48)

Integrating Eq. ~47! gives the total wear if N→`

W`52E
c*

a`

w`~x !5S a`
2

3R
1

c*2

6R
2

2P

pE*
DAa`

2
2c*2. (49)

The asymptotic solutions for N→` are presented in the figures
in dimensionless form by dotted lines.

Note that the pressure distributions for different numbers of
cycles presented in Fig. 3~a! are in good agreement with the pres-
sure evolution function obtained by Johansson @6# for the follow-
ing data:

R52.8 m. P53.1•106 N/m Q*50.875 mP ,

m50.4, Kw57•10213 m2/N, E52.05•1011 N/m2, v50.3

The above value of the wear constant, Kw , was adopted by Jo-
hansson from measurements made by Toth @13#. The values of

dimensionless parameters K̄w and P̄ can be calculated from Eqs.
~38! for the above data. A careful comparison of the contact pres-
sure results obtained by the method presented here to the graph
produced by Johansson for N516,000 revealed that there is a 15
percent difference between the two approaches.

Figure 5 illustrates the evolution of the contact half-width a(N)
in wear process at various values of tangential loads. The
asymptotic values of a` are calculated from Eqs. ~47! and ~48!.
For the parameters under consideration they are ā`50.0052 at

Q̄50.788•1026 and ā`50.0042 at Q̄53.104•1026. Figure 5 de-

picts that increasing of the wear coefficient Kw decreases the
run-in stage of wear process, i.e., the time corresponding to the

large value of the function a8(N).
The evolution of the distribution of the sx stress component in

wear process for two different tangential loads is illustrated by
Figs. 6~a! and 6~b!. As the number of cycles increases the sx

distribution tends to the asymptotic curve calculated from Eq. ~37!
which predicts the discontinuity of the sx component at x5

2c*, z50. Recent work correlates this stress component with
fatigue life @1–3#.

Fig. 4 Evolution of gap and slip functions due to wear in par-
tial slip contact between a cylindrical indenter and a half-space.

The right halves of the graphs correspond to Q̄Ä3.104Ã10À6

and the left halves to Q̄Ä7.88Ã10À7.

Fig. 5 Evolution of the half-contact width due to wear in partial
slip contact between a cylindrical indenter and a half-space

Fig. 6 Evolution of tensile stress due to wear in partial slip

contact between a cylindrical indenter and a half-space for Q̄

Ä3.104Ã10À6 „a… and Q̄Ä7.88Ã10À7 „b…
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Wear Due to the Contact Between an Elastic Indenter With
a Flat Base and Rounded Edges and an Elastic Half-
Plane. The shape of the elastic indenter with a flat base within
the region uxu<d is described by the function:

f ~x !55
~x1d !2

2R
, if 2a~N !<x,2d

0, if 2d<x,d

~x2d !2

2R
, if d<,a~N !

(50)

The results of calculations for this indenter and the same values of

the dimensionless parameters K̄w , P̄ , Q̄ , and d̄5d/R50.002 are
presented in Figs. 7, 8, 9, and 10. Note that the initial contact
stress distributions differ from the Hertzian case. However, the
main features of stress evolution due to the wear process are simi-
lar. The large peaks of the contact stresses occur at the ends of the

stick zones as the cycles progress. Note, that the point x5c*

always is outside the flat zone uxu<d , i.e., c*.d . The contact
pressure distribution tends to the asymptotic solution which fol-
lows from Eq. ~30!:

p~y !5

E*c*~11y2!

2pR~12y2!
FdA12d2

1

2PR

E*c*2

1arccos dS 12

8y2

~11y2!2D
12y

12y2

~11y2!2 ln U~y01y !~12yy0!

~y02y !~11yy0!
U

1d
12y2

11y2 lnU y0
2
2y2

12y2y0
2UG , uy u<1 (51)

where

d5

d

c*
, y5tanS 1

2
arcsin

x

c*D , y05tanS 1

2
arcsin

d

c*D .

The plots of the function p̄( x̄)52p( x̄R)/pE* calculated from
Eq. ~51! are shown in Fig. 7~a! by dotted lines. The asymptotic
values of shear contact stress, gap, and slip functions are also

Fig. 7 Evolution of contact pressure and shear stress due to
wear in partial slip contact between a flat indenter with rounded
edges and a half-space. The right halves of the above graphs

correspond to Q̄Ä3.104Ã10À6 and the left halves to Q̄Ä7.88

Ã10À7.

Fig. 8 Evolution of gap and slip functions due to wear in par-
tial slip contact between a flat indenter with rounded edges and
a half-space. The right halves of the above graphs correspond

to Q̄Ä3.104Ã10À6 and the left halves to Q̄Ä7.88Ã10À7.

Fig. 9 Evolution of the half-contact width due to wear in partial
slip contact between a flat indenter with rounded edges and a
half-space
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analytical estimates used in this work there is no necessity to
artificially increase the wear coefficient to decrease the simulated
number of cycles.

The analytical study of the governing equations made it pos-
sible to conclude that

1 the size of the stick zone does not change from cycle to cycle
under constant load conditions

2 the asymptotic solution exists as the number of cycles tends
to infinity

The analytical expressions for the asymptotic contact stresses
~normal and shear!, the stress component sx at z50 and the wear
distribution within the slip zones have been presented. It was
shown that asymptotic contact zone coincides with the stick re-
gion, and asymptotic contact pressure and shear stress are singular
at the ends of the stick zone. The asymptotic pressure, shear, and
gap function distributions do not depend on the wear constant but
depend on the applied loads and the initial gap function between
the contacting bodies.

The contact stress and gap evolution were calculated for two
initial shapes of indenter contacting with an elastic half-space; i.e.,
for the parabolic cylinder and for an indenter having a flat base
with rounded edges.

The results of calculation show that the contact stresses change
essentially due to wear in both cases. The gap function has a
discontinuous derivative at the boundary of stick and slip zones
due to wear of contacting surfaces within slip zones. The pressure
and shear stress increase at these points and tend to infinity. The
contact stresses outside the stick zone tend to zero.

The contact stress concentration at the boundary of the stick
and slip zones results in increasing of the tensile stress at these
points and in transition of the point of maximum tensile stress
from the end of the contact to the boundary between stick and slip
zones. Based on the approach formulated by Szolwinski and Far-
ris @1# crack nucleation for a small number of cycles would occur
at the edge of contact while the nucleation for a larger number of
cycles would occur at the stick/slip boundary. Also note that wear
causes the contact size to grow. Thus, post-mortem observation of
the crack location does not necessarily correspond to the relative
position of the crack from the edge of contact at the time of crack
nucleation.

The existence of a third body consisting of detached wear par-
ticles must influence on the stress evolution in the wear process.
This problem needs to be formulated and studied in future.
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