
HAL Id: hal-04156847
https://hal.science/hal-04156847

Submitted on 9 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Using Canonical Codes to Efficiently Solve the
Benzenoid Generation Problem with Constraint

Programming
Xiao Peng, Christine Solnon

To cite this version:
Xiao Peng, Christine Solnon. Using Canonical Codes to Efficiently Solve the Benzenoid Generation
Problem with Constraint Programming. CP 2023 - 29th International Conference on Principles and
Practice of Constraint Programming, Aug 2023, Toronto (CA), Canada. �10.4230/LIPIcs.CP.2023.17�.
�hal-04156847�

https://hal.science/hal-04156847
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Using Canonical Codes to Efficiently Solve the
Benzenoid Generation Problem with Constraint
Programming
Xiao Peng
Univ Lyon, INSA Lyon, Inria, CITI, EA3720, 69621 Villeurbanne, France

Christine Solnon
Univ Lyon, INSA Lyon, Inria, CITI, EA3720, 69621 Villeurbanne, France

Abstract
The Benzenoid Generation Problem (BGP) aims at generating all benzenoid molecules that satisfy
some given properties. This problem has important applications in chemistry, and Carissan et al
(2021) have shown us that Constraint Programming (CP) is well suited for modelling this problem
because properties defined by chemists are easy to express by means of constraints. Benzenoids are
described by hexagon graphs and a key point for an efficient enumeration of these graphs is to be
invariant to rotations and symmetries. In this paper, we introduce canonical codes that uniquely
characterise hexagon graphs while being invariant to rotations and symmetries. We show that these
codes may be defined by means of constraints. We also introduce a global constraint for ensuring
that codes are canonical, and a global constraint for ensuring that a pattern is included in a code.
We experimentally compare our new CP model with the CP-based approach of Carissan et al (2021),
and we show that it has better scale-up properties.

2012 ACM Subject Classification Mathematics of computing → Graph enumeration; Computing
methodologies → Artificial intelligence

Keywords and phrases Benzenoid Generation Problem, Canonical Code, Hexagon Graph

Digital Object Identifier 10.4230/LIPIcs.CP.2023.17

Acknowledgements We want to thank authors of [3] who helped us reproduce their results.

1 Introduction

Benzenoids are hydrocarbon molecules whose carbon atoms are forming cycles of size 6,
i.e., hexagons. An important chemistry problem concerns the generation of all benzenoids
that satisfy some given properties [5]. This problem is called the Benzenoid Generation
Problem (BGP) in [2]. As benzenoids are regular tillings with hexagonal faces, they may be
represented by hexagon graphs such that a vertex is associated with every hexagonal face and
an edge with every pair of vertices corresponding to adjacent faces [1, 2]. For example, we
display in Figure 1 a benzenoid composed of five hexagonal faces and its associated hexagon
graph. These hexagon graphs are always connected.

Different benzenoids may be represented with isomorphic hexagon graphs. For example,
let us consider the hexagon graph displayed in Figure 1. The subgraph induced by c, d, and
e is isomorphic to the subgraph induced by a, c, and d whereas their associated molecules
are different because hexagons c, d, and e are not aligned whereas hexagons a, c, and d are
aligned. To overcome this problem, we take into account edge directions, considering the
six directions defined in Figure 1. In this case, the subgraph induced by c, d, and e is no
longer isomorphic to the subgraph induced by a, c, and d because edges (c, d) and (d, e) have
different directions (0 and 1), whereas edges (a, c) and (c, d) have the same direction (0).

To solve the BGP, we have to enumerate hexagon graphs that satisfy some given properties
and these properties are usually easily expressed by means of constraints (such as, for example,

© Xiao Peng and Christine Solnon;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles and Practice of Constraint Programming (CP 2023).
Editor: Roland H. C. Yap; Article No. 17; pp. 17:1–17:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.CP.2023.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


17:2 Using Canonical Codes to Efficiently Solve the BGP with CP

c

b

d

e

a
b

d

e

ca b

d

e

ca v
0

12

3

4

5

B G G

Figure 1 Example of benzenoid B and its associated hexagon graph G, and symmetrical graph
G. Right: Edge directions from a vertex v to each of its 6 possible neighbours.

the absence of cliques of order three, or the inclusion of some patterns). Two main approaches
may be used:

The dedicated approach of [1] uses canonical codes to represent hexagon graphs. These
codes are invariant to rotations and symmetries and they are used to decide whether
two graphs are isomorphic or not in linear time. However, these codes cannot represent
benzenoids with holes (called coronoids). Furthermore, this approach is not declarative
and it does not allow one to easily add constraints on the graphs to be enumerated.
The Constraint Programming (CP)-based approach of [2, 3] basically searches for all
connected subgraphs within an initial hexagon graph, and it is implemented in Choco [11]
using graph variables. Using CP allows one to easily add constraints and this approach is
able to generate all kinds of benzenoids, including coronoids. However, it is less efficient
than the dedicated approach.

In this paper, we introduce an approach which is both efficient and declarative: like [1], it
is based on canonical codes but these canonical codes can represent all benzenoids (including
coronoids); like [2, 3], it is based on CP so that one may easily add constraints to specify
structural properties. In Section 2, we introduce our new canonical code and study some of
its properties that are used to efficiently generate canonical codes with CP. In Section 3, we
extend canonical codes to the case where benzenoids are constrained to contain some given
patterns. In Section 4, we introduce CP models for solving BGPs. In Section 5, we report
experimental results and compare our approach with the CP-based approach of [2, 3].

Notations

Given two integer values i and j, we note [i, j] the set of all integer values ranging from i to j.
Given a hexagon graph G, we note G the symmetrical graph obtained by mirroring G with
respect to the x-axis, as displayed in Figure 1. Given a hexagon graph G = (V,E) and a subset
of vertices S ⊆ V , we note G↓S the subgraph of G induced by S, i.e., G↓S = (S,E ∩ S × S).

2 Representation of Hexagon Graphs with Canonical Codes

A key point for an efficient enumeration of hexagon graphs is to be invariant to rotations and
symmetries. For example, the graph displayed in Figure 1 is isomorphic to any other graph
obtained by rotating it of k ∗ 60◦ with k ∈ N and/or mirroring it with respect to the x-axis.
In [3], constraints are added to break these symmetries and avoid generating several times
the same graph. In this paper, we propose to use another approach based on canonical codes,
i.e., integer sequences that uniquely characterise graphs and that are invariant to rotations
and symmetries. We introduce our canonical code in Section 2.1. We study its properties in
Section 2.2. We compare it with related work in Section 2.3.



X. Peng and C. Solnon 17:3

Algorithm 1 BFSG(v0, v1)

Input: A hexagon graph G and an initial edge (v0, v1) of G
Output: The code associated with a BFS of G started from (v0, v1)

1 rotate G so that the direction of edge (v0, v1) is equal to 0
2 for each vertex vi of G do initialise num[vi] to −1;
3 set num[v0] to 0 and initialise a counter c to 1
4 let q be an empty FIFO queue; add v0 in q
5 initialise code to an empty sequence
6 while q is not empty do
7 remove from q its oldest vertex vi

8 for each edge (vi, vj) of G taken by order of increasing direction do
9 if num[vj ] < 0 then

10 add vj in q
11 set num[vj ] to c and increment c
12 add num[vi] and the direction of edge (vi, vj) at the end of code

13 return code

a:0 c:1

b:2

d:3

e:4

0

1

0

1

c:0 a:1d:2

b:3e:4

0

5

3

4

e:4

d:3

c:0 b:1

a:2

0

1

4

5

e:0 d:1

c:2

b:3 a:4

0

5

4 5

Ex1: (v0, v1) = (a, c) Ex2: (v0, v1) = (c, a) Ex3: (v0, v1) = (c, b) Ex4: (v0, v1) = (e, d)

code = 00 01 10 31 code = 00 03 05 24 code = 00 01 04 35 code = 00 15 24 25

Figure 2 Examples of runs of BFSG(v0, v1) when G is the graph of Figure 1 and (v0, v1) is equal
to (a, c) for Ex1, (c, a) for Ex2, (c, b) for Ex3, and (e, d) for Ex4. For each vertex vi ∈ {a, b, c, d, e},
we display vi : num[vi] in circles. Each edge (vi, vj) used lines 10-12 is displayed in bold and its
direction is displayed on top of it (the initial edge (v0, v1) is displayed in green).

2.1 Definition of Canonical Codes
Given a hexagon graph G with n+ 1 vertices, a code is a sequence of n couples of integer
values which is associated with a Breadth First Search (BFS) of G starting from a given
initial edge (v0, v1), as described in Algorithm 1. The initial edge is used to define the
orientation of the graph (line 1): we always consider the orientation such that v1 is on the
right of v0. This allows us to be invariant to rotations.

I Example 1. We display in Figure 2 different runs of BFS on the hexagon graph of Figure 1,
starting from different edges. In Ex1, we start from edge (a, c) which already has direction 0
so that we do not have to rotate the graph. When starting from edge (c, a) (resp. (c, b) and
(e, d)), we have to rotate the graph of 180◦ (resp. 240◦ and 60◦).

BFS assigns a different number num[vi] to each vertex vi corresponding to the order
vertices are discovered: v0 is numbered with 0 (line 3) and when a vertex vj is reached for

CP 2023



17:4 Using Canonical Codes to Efficiently Solve the BGP with CP

c:0 a:1d:2

b:3e:4

0

1

3

2

code = 00 01 03 22

Figure 3 Run of BFS
G

(c, a) where G is the graph symmetrical to the graph G of Figure 1.

the first time it is numbered with the next non-assigned value c (line 11). Each time the
search discovers a new vertex vj using an edge (vi, vj), num[vi] and d(vi, vj) are added at
the end of the code, where d(vi, vj) is the direction of edge (vi, vj) (line 12).

I Example 2. In Figure 2 (Ex1), we illustrate a run of BFSG(a, c) when G is the graph of
Figure 1. In this case, the code is 00 01 10 31: the first couple is 00 because vertex 1 (c) has
been reached from vertex 0 (a) and d(a, c) = 0; the second couple is 01 because vertex 2 (b)
has been reached from vertex 0 (a) and d(a, b) = 1; the third couple is 10 because vertex 3
(d) has been reached from vertex 1 (c) and d(c, d) = 1; the fourth couple is 31 because vertex
4 (e) has been reached from vertex 3 (d) and d(d, e) = 1.

Note that the loop lines 8-12 considers edges outgoing from vi by order of increasing
directions. This ensures that we always compute the same code provided that the direction
of the first edge (v0, v1) is fixed to 0.

Given a code p1d1 p2d2 . . . pndn computed from a graph with n + 1 vertices, we can
draw this graph, starting from vertex number 0: for each i ∈ [1, n], pi gives the number of
the predecessor of vertex number i and di gives the direction of the edge (pi, i). Once all
vertices have been drawn, missing edges can be added as every vertex is connected to all its
neighbours. For example, in Ex1, we add an edge between vertices 1 and 2 because they
have neighbour positions.

There exist different possible codes for a given graph. Each code corresponds to a different
BFS starting from a different initial edge (v0, v1). We define a total order on the set of all
possible codes that may be associated with a given graph by considering a lexicographic
order. Among all the possible codes for a graph, the smallest one according to this order is
called the canonical code of this graph and it is unique.

So far, our canonical code is invariant to rotations but not to symmetries. To become
invariant to symmetries, we must also compute all codes starting from all possible edges
while considering the symmetrical graph G. This leads us to the following definition.

I Definition 3 (Canonical code cc(G)). The canonical code of a hexagon graph G = (V,E)
is: cc(G) = min{BFSG(v0, v1),BFSG(v0, v1) : (v0, v1) ∈ E} when considering a lexicographic
order to compare codes.

I Example 4. The smallest code that may be computed for the graph G of Figure 1
is BFSG(c, b), displayed in Figure 2. However, if we consider the symmetrical graph G,
BFSG(c, a) is smaller than BFSG(c, b) (see Figure 3). This code is the smallest one for both
G and G, i.e., cc(G) = 00 01 03 22.

2.2 Properties of Canonical Codes
The next two theorems are used to efficiently enumerate canonical codes with CP in Section 4.

I Theorem 5. Given a code p1d1 p2d2 . . . pndn, we have:
Property a: ∀i ∈ [1, n− 1], pi ≤ pi+1;



X. Peng and C. Solnon 17:5

Property b: ∀i ∈ [1, n− 1], (pi = pi+1)⇒ (di < di+1).

Proof. Property a is a consequence of the fact that (i) q is a FIFO queue, (ii) vertices are
added in q by order of increasing number, and (iii) when a vertex vi is removed from q we
add to code all couples pidi such that pi = num[vi] and the vertex at direction di from vi is
not yet numbered. Hence, all couples added to code during one iteration of the loop lines
6-12 have the same value for pi. Property b is a straightforward consequence of the fact that
the loop lines 8-12 considers edges by order of increasing directions. J

I Theorem 6. Let c = p1d1 p2d2 . . . pndn be a canonical code. For each i ∈ [1, n− 1], the
prefix ci = p1d1 p2d2 . . . pidi of c is also a canonical code.

Proof. Let G and Gi be the graphs associated with c and ci, where each vertex is numbered
with num[vi]. As ci is a prefix of c, Gi is the subgraph of G induced by the vertices
numbered from 0 to i. Let us assume that ci is not canonical, i.e., there exists another code
c′i = p′1d

′
1 p
′
2d
′
2 . . . p

′
id
′
i that is smaller than ci while representing the same subgraph Gi. Let

(v0, v1) be the edge of Gi such that c′i = BFSGi(v0, v1) (resp. c′i = BFSGi
(v0, v1) if c′i is

computed in the symmetrical graph). Let c′ = BFSG(v0, v1) (resp. c′ = BFSG(v0, v1)) be
the code obtained by performing a search of G (resp. G) that starts from the same initial
edge as the one used to obtain c′i. Let j be the smallest vertex number for which c′ and c′i
have different values, i.e., ∀k < j, vertex number k has the same edges in both G and Gi,
whereas vertex number j has more edges in G than in Gi. More precisely, let S (resp. Si) be
the set of edges outgoing from j in G (resp. Gi). We have Si ⊂ S as Gi is a subgraph of G.
We have to distinguish two different cases.
Case 1: the largest edge direction in Si is equal to the largest edge direction in S. In this

case, c′ is smaller than c′i because the sequence of couples associated with the successors
of j in c′ is necessarily smaller than the sequence of couples associated with the successors
of j in c′i (e.g., if edge directions in Si are {1, 5} whereas edge directions in S are {1, 2, 5},
then j1 j2 j5 < j1 j5).

Case 2: the largest edge direction in Si is smaller than the largest edge direction in S. In
this case, either c′i is a prefix of c′ (if j is the greatest vertex with an outgoing edge), or
c′ is smaller than c′i (e.g., if edge directions in Si are {1, 2} whereas edge directions in S
are {1, 2, 5}, j1 j2 j5 < j1 j2 k because k > j, as stated in Property a).

In both cases, this implies that c′ < c which contradicts the fact that c is canonical. J

Computational complexity. The canonical code of a graph with n vertices is computed
in O(n2): BFS is run twice for each edge and the number of edges is in O(n) as a vertex
cannot have more than six neighbours; the time complexity of BFS is O(n) as the loop lines
6-12 is iterated n times and the loop lines 8-12 is iterated at most six times.

We may speed-up the computation by avoiding some calls to BFS. To this aim, we
display in Figure 4 the 13 different possible patterns for the neighbourhood of a vertex v
(up to rotations). For each pattern Pi such that v has ki successors, every code computed
by BFS with v0 = v starts with a prefix 0d1 0d2 . . . 0dki

, and we give below the smallest
possible prefix composed of 2ki integers, denoted πi, the set S of edges (v, vk) of G such that
BFSG(v, vk) starts with πi, and the set S of edges (v, vk) of G such that BFSG(v, vk) starts
with πi (these edges are highlighted in Figure 4).
π6 = 00 01 02 03 04 05 S = {(v, vi) : i ∈ [1, 6]} S = {(v, vi) : i ∈ [1, 6]}
π5 = 00 01 02 03 04 S = {(v, v1)} S = {(v, v5)}
π4 = 00 01 02 03 S = {(v, v1)} S = {(v, v4)}
π3+1 = 00 01 02 04 S = {(v, v1)} S = {(v, v3)}
π2+2 = 00 01 03 04 S = {(v, v1), (v, v3)} S = {(v, v2), (v, v4)}

CP 2023



17:6 Using Canonical Codes to Efficiently Solve the BGP with CP

v6v5

v4

v3 v2

v1v

P6 v5

v4

v3 v2

v1v

P5

v4

v3 v2

v1v

P4
v4

v3 v2

v1v

P3+1 v4

v3

v2

v1v

P2+2

v3 v2

v1v

P3

v3

v2

v1v

P2+1a
v3

v2

v1v

P2+1b v3

v2

v1v

P1+1+1

v2

v1v

P2

v2

v1v

P1+1a

v2 v v1

P1+1b

v v1

P1

Figure 4 Different neighbourhood patterns for a vertex v. We highlight in blue (resp. green
and red) every edge (v, vk) such that BFSG(v, vk) (resp. BFS

G
(v, vk) and both BFSG(v, vk) and

BFS
G

(v, vk)) starts with the smallest possible prefix.

π3 = 00 01 02 S = {(v, v1)} S = {(v, v3)}
π2+1a = 00 01 03 S = {(v, v1)} S = ∅
π2+1b = 00 01 03 S = ∅ S = {(v, v2)}
π1+1+1 = 00 03 05 S = {(v, v1), (v, v2), (v, v3)} S = {(v, v1), (v, v2), (v, v3)}
π2 = 00 01 S = {(v, v1)} S = {(v, v2)}
π1+1a = 00 02 S = {(v, v1)} S = {(v, v2)}
π1+1b = 00 03 S = {(v, v1), (v, v2)} S = {(v, v1), (v, v2)}
π1 = 00 S = {(v, v1)} S = {(v, v1)}

I Example 7. Let us consider the graph G of Figure 1. The pattern of vertex a in G is
P2 (with a = v, c = v1, and b = v2). Therefore, the smallest possible code computed with
v0 = a starts with the prefix π2 = 00 01, and the two codes that start with this prefix are
BFSG(a, c) and BFSG(a, b). Also, the pattern of vertex c in G is P2+1b (with c = v, a = v2,
b = v1, and d = v3). Therefore, the smallest possible code computed with v0 = c starts with
the prefix π2+1a = 00 01 03, and the only code that starts with this prefix is BFSG(c, a).

To further reduce the number of searches, we define a total order among patterns.

I Definition 8. [Order between patterns] Let Pi and Pj be two patterns (as listed in Figure 4),
and let πi1 and πj1 be the sequences obtained by adding “1” at the end of πi and πj , respectively.
We define Pi < Pj (resp. Pi = Pj) if πi1 is lexicographically smaller than (resp. equal to)
πj1. We obtain the following order:

P6 < P5 < P4 < P3+1 < P3 < P2+2 < P2+1a = P2+1b < P2 < P1+1+1 < P1+1a < P1+1b < P1

Given two vertices vi and vj , if the pattern of vi is smaller than the pattern of vj , then
we know that every code computed from vi is smaller than every code computed from vj .
Hence, to compute the canonical code of a hexagon graph G, we first search for the smallest
pattern Pk in G. Then, for each vertex vi such that the pattern of vi in G is equal to Pk, we
compute all codes from the starting edges highlighted in Figure 4. Finally, we return the
smallest computed code.

I Example 9. Let us consider the graph G of Figure 1. The pattern of vertex a (resp. b, c,
d, and e) is P2 (resp. P2, P2+1b, P1+1a, and P1). The smallest pattern is P2+1b. Therefore,



X. Peng and C. Solnon 17:7

the canonical code is obtained by running BFSG(c, a), and it is useless to run BFSG or BFSG

from any other edge.

Note that this does not change the time complexity as in the worst case we may have
O(n) vertices with a smallest pattern. For example, when we have an horizontal chain of
vertices, all vertices have pattern P1+1b, except the two endpoints which have pattern P1. In
this case, we must run BFSG and BFSG for every edge outgoing from vertices with pattern
P1+1b (i.e., all vertices but the two endpoints).

2.3 Comparison with other canonical codes
In the general case, building the canonical code of a graph is a problem which is not known
to be in P nor to be NP-complete (it is isomorphic-complete). There exist rather efficient
algorithms such as Nauty [9], but these algorithms have an exponential time complexity in
the worst case. Canonical codes are widely used in graph mining tools such as gSpan [12] or
Gaston [10]. When graphs are embedded in a 2D space, canonical codes may be computed
in polynomial time [8]. These canonical codes may be simplified when considering grid
graphs such that all faces are squares [6]. Canonical codes defined in [12, 10, 6] share some
similarities with our canonical codes as they are computed by performing graph traversals
and assigning numbers to vertices according to the order of discovery. However, in [12, 10, 6],
traversals are Depth First Searches (DFSs). Performing BFSs instead of DFSs allows us to
avoid some calls to BFS (as explained in Section 2.2). It also allows us to exploit properties
a and b to define codes by means of constraints (see Section 4).

In [1], canonical codes are introduced for benzenoid structures. These codes only describe
boundary cycles and assume that there is no hole within these cycles, thus preventing the
representation of coronoids. Our codes fully describe hexagon graphs, including vertices
inside the boundary cycle and, therefore, we can represent coronoids.

3 Canonical Codes in Case of Required Patterns

Many BGPs involve enumerating hexagon graphs that contain some given patterns, where
patterns both specify mandatory and forbidden vertices [3]. More precisely, a pattern is
defined by a couple (P, F ) such that P is a hexagon graph that specifies mandatory vertices,
and F is a set of couples that specify forbidden vertex positions, i.e., for each couple
(pi, di) ∈ F , vertex pi must not have an outgoing edge in direction di.

I Example 10. The pattern (P, F ) displayed in Figure 5 has four mandatory vertices in grey
and one forbidden vertex in red. (P, F ) occurs twice in G as P is isomorphic to G↓{d,a,b,c}
(resp. G↓{g,d,a,f}) and a has no outgoing edge in direction 1 (resp. a has no outgoing edge in
direction 1 when rotating G so that G↓{g,d,a,f} has the same orientation as P ).

To efficiently generate graphs that contain a pattern, the idea is to constrain canonical
codes to start with this pattern so that all generated graphs contain it by construction. We
introduce this new canonical code in Section 3.1, and we study its properties in Section 3.2.

3.1 Definition of P-canonical codes
To ensure that codes start with the canonical code of a given pattern (P, F ), we perform
BFSs of G and G from a given P-sequence that corresponds to an occurrence of (P, F ) in G
or G. More precisely, this P-sequence is defined as follows.

CP 2023



17:8 Using Canonical Codes to Efficiently Solve the BGP with CP

d

b

c

a

g

f e

Hexagon graph G

d : 2

b : 1

c : 3

a : 0

g : 6

f : 4 e : 5

x3

4 5

1

Run of P-BFSG(〈a, b, d, c〉)
Code = 00 02 11 04 05 23

d : 3

b : 0

c : 2

a : 1

g : 6

f : 5e : 4

x 0

55

1

Run of P-BFS
G

(〈b, a, c, d〉)
Code = 00 02 11 05 15 30

2

1

3

0

x

1

Pattern (P, F ):
- P is displayed in grey
- F = {(0, 1)} is in red
cc(P ) = 00 02 11
P is isomorphic to G↓{g,d,a,f}

and G↓{d,a,b,c}

d : 1

b : 5

c : 6

a : 0

g : 3f : 2

e : 4

x

3

4

5

1

Run of P-BFSG(〈a, d, f, g〉)
Code = 00 02 11 03 04 56

d : 0

b : 5

c : 6

a : 1

g : 2 f : 3

e : 4

x

5

0

4

1

Run of P-BFS
G

(〈d, a, g, f〉)
Code = 00 02 11 10 15 54

Figure 5 Left: Example of hexagon graph G and pattern (P, F ). Right: To compute ccP,F (G),
we run P-BFSG (resp. P-BFS

G
) with the P-sequences 〈a, b, d, c〉 and 〈a, d, f, g〉 (resp. 〈b, a, c, d〉 and

〈d, a, g, f〉). The P-canonical code of G is ccP,F (G) = 00 02 11 03 04 56.

I Definition 11 (P-sequence of (G,P, F )). Let G be a hexagon graph with n vertices, and
(P, F ) be a pattern with 1 < k < n mandatory vertices. A P-sequence of (G,P, F ) is a
sequence s = 〈v0, v1, . . . , vk−1〉 of k vertices of G such that
(i) the subgraph of G induced by {v0, . . . , vk−1}, i.e., G↓s, is isomorphic to P ;
(ii) ∀(pi, di) ∈ F , G↓s has no outgoing edge from the vertex corresponding to pi in direction

di when rotating G so that G↓s and P have the same orientation;
(iii) the code returned by BFSG↓s

(v0, v1) is canonical;
(iv) for each i ∈ [0, k − 1] the number assigned by BFSG↓s

(v0, v1) to vi is equal to i, i.e.,
num[vi] = i at line 13 of Algorithm 1.

Each P-sequence corresponds to an occurrence of (P, F ) in G, and (P, F ) may occur more
than once in G. To compute all P-sequences of (G,P, F ), we iterate on each edge of G and
try to build a P-sequence that starts with this edge using Algorithm 2: given the canonical
code c of P , an edge (v0, v1) of G, and a set F of forbidden positions, seq(G, v0, v1, c, F )
returns the P-sequence of (G,P, F ) that starts with 〈v0, v1〉 if it exists, and it returns null
otherwise. To build the P-sequence, it uses the canonical code c to associate vertices of G to
vertex numbers used in the canonical code: for each vertex number i ∈ [0, k − 1], vertex[i]
is the vertex of G that corresponds to i, and for each couple pidi in the canonical code, we
ensure that vertex i in P corresponds to the vertex of G that is at direction di from vertex [pi],
if it exists (line 5); if it does not exist, then there is no P-sequence that starts from (v0, v1)
and we return null (line 4). When a P-sequence is completed, we check that there are no
vertices at forbidden positions (line 6).

To be invariant to symmetries, we must also compute all P-sequences of (G,P, F ) by
running seq(G, v0, v1, c, F ) for each edge (v0, v1) of G.



X. Peng and C. Solnon 17:9

Algorithm 2 seq(G, v0, v1, c, F )

Input: A hexagon graph G, an edge (v0, v1) of G, the canonical code
c = p1d1 . . . pk−1dk−1 of a pattern P , and the set F = {(p′1, d′1), . . . , (p′f , d′f )}
of forbidden vertices

Output: A P-sequence of (G,P, F ) starting with 〈v0, v1〉, or null if such a P-sequence
does not exist

1 rotate G so that the direction of edge (v0, v1) is equal to 0
2 vertex[0]← v0; vertex[1]← v1
3 for i ∈ [2, k − 1] do
4 if vertex[pi] does not have an outgoing edge in direction di then return null;
5 vertex[i]← vertex at direction di from vertex[pi]
6 if ∃(p′i, d′i) ∈ F s.t. vertex[p′i] has an outgoing edge in direction d′i then return null;
7 return 〈vertex[0], vertex[1], . . . , vertex[k − 1]〉

I Example 12. Let us consider the graph G and the pattern (P, F ) of Figure 5. The canonical
code of P is 00 02 11, and it may be computed either by BFSP (0, 1) or by BFSP (1, 0) because
P is symmetrical. Also, this pattern is isomorphic to two subgraphs of G. Hence, the four
runs of seq that return a P-sequence corresponding to an occurrence of (P, F ) are:

seq(G, a, b, 00 02 11, {(0, 1)}) = 〈a, b, d, c〉 corresponding to 0 = a, 1 = b, 2 = d, 3 = c;
seq(G, b, a, 00 02 11, {(0, 1)}) = 〈b, a, c, d〉 corresponding to 0 = b, 1 = a, 2 = c, 3 = c;
seq(G, a, d, 00 02 11, {(0, 1)}) = 〈a, d, f, g〉 corresponding to 0 = a, 1 = d, 2 = f, 3 = g;
seq(G, d, a, 00 02 11, {(0, 1)}) = 〈d, a, g, f〉 corresponding to 0 = d, 1 = a, 2 = g, 3 = f .

All other runs of seq return null.
In Figure 6, the graphG has only one P-sequence for pattern P (i.e., seq(G, 0, 1, cc(P ), F ) =

〈0, 1, 2, 3〉). seq(G, 2, 4, cc(P ), F ) = null because G already has a vertex at direction 4 from
2 when rotating G so that the direction of edge (2, 4) is equal to 0.

Given a hexagon graph G and a P-sequence s = 〈v0, v1, . . . , vk−1〉, we define an algorithm,
called P-BFSG(s), which performs a BFS of G that starts from s, and which is obtained
from Algorithm 1 by replacing lines 3 and 4 by the following lines:

display the canonical code of G↓s
let q be an empty FIFO queue
for i ∈ [0, k − 1] do set num[vi] to i, and add vi in q
initialise the counter c to k

These lines ensure that the code returned by P-BFS starts with the canonical code
of the pattern associated with s so that this pattern is included in the returned code by
construction. The numbers assigned to the vertices of s correspond to those assigned by
BFS when computing the canonical code of the pattern and we add the vertices of s in q to
ensure that these vertices are treated first.

The P-canonical code of (G,P, F ) is the smallest code obtained from any P-sequence.

I Definition 13 (P-canonical code (ccP,F (G)). The P-canonical code of G = (V,E) with
respect to a pattern (P, F ) is ccP,F (G) = min {P-BFSG(s) : s ∈ S} ∪ {P-BFSG(s) : s ∈ S}
where

S = {seq(G, v0, v1, cc(P ), F ) : (v0, v1) ∈ E ∧ seq(G, v0, v1, c, F ) 6= null},
S = {seq(G, v0, v1, cc(P ), F ) : (v0, v1) ∈ E ∧ seq(G, v0, v1, c, F ) 6= null}.

CP 2023



17:10 Using Canonical Codes to Efficiently Solve the BGP with CP

F = {(0, 4)}

0 1

2

3

x

0

1

3
4 0 1

2

3

45

x

0

1

3

12

4

0 1

2

3

4

x

x

0

1

3

5

4

4

cc(P ) = 00 01 03 ccP,F (G) = 00 01 03 21 22 ccP,F (G↓{0,1,2,3,4}) = 00 01 03 15

Figure 6 Example of P-canonical code with a non P-canonical prefix. Left: Pattern (P, F ).
Middle: Graph G. Right: G↓{0,1,2,3,4}. The prefix 00 01 03 21 of ccP,F (G) corresponds to G↓{0,1,2,3,4}
and it is not P-canonical as ccP,F (G↓{0,1,2,3,4}) is smaller.

I Example 14. Let us consider the graph G and the pattern (P, F ) of Figure 5. As seen in
Example 12, there are four different candidate P-sequences s from which we may compute a
code. We display in Figure 5 the runs of P-BFS from these four P-sequences.

3.2 Properties of P-canonical codes
The time complexity for computing ccP,F (G) when G has n vertices, P has k vertices (with
k < n), and F has f couples is O(n(n+ f)):

the canonical code of P is computed in O(k2);
Algorithm 2 is in O(k + f), and it is called O(n) times to build all P-sequences;
P-BFS is in O(n) and it is called once per P-sequence, i.e., O(n) times.

Properties of Theorem 5 are no longer valid as illustrated in Figure 5: the code returned
by P-BFSG(〈a, d, f, g〉) does not satisfy Property a as p3 = 1 and p4 = 0; the code returned
by P-BFSG(〈d, a, g, f〉) does not satisfy Property b as p3 = p4 = 1 whereas d3 = 1 and
d4 = 0. This comes from the fact that the canonical code of P is inserted at the beginning of
the sequence, before starting the search. If a vertex of G corresponding to a pattern vertex
has some extra edges outgoing from it in G but not in P , then the integer couple associated
with this edge is added after cc(P ) and it may violate Properties a or b. However, we can
easily show that these properties are satisfied in the second part of the code, corresponding
to the vertices that do not correspond to pattern vertices, i.e., given a code p1d1 . . . pndn

returned by P-BFSG(〈v0, . . . , vk−1〉), we have:
Property a’: ∀i ∈ [k, n− 1], pi ≤ pi+1;
Property b’: ∀i ∈ [k, n− 1], (pi = pi+1)⇒ (di < di+1).

When there are no forbidden vertices (i.e., F = ∅), Theorem 6 is still valid, i.e., every
prefix of a canonical code is also canonical (the proof is similar to the proof of Theorem 6
and it is omitted due to space limits).

However, this theorem is no longer valid whenever F 6= ∅, i.e., the prefix of a P-canonical
code may not be P-canonical, as shown in the following example.

I Example 15. In Figure 6, the occurrence of (P, F ) in G corresponds to G↓{0,1,2,3}. The
prefix 00 01 03 21 of ccP,F (G) is not P-canonical: this prefix corresponds to G↓{0,1,2,3,4} and
(P, F ) occurs twice in it (once in G↓{0,1,2,3} with the forbidden vertex displayed in brown,
and once in G↓{0,1,2,4} with the forbidden vertex displayed in red). If we extend G↓{0,1,2,3,4}
by adding a vertex on the brown position, we obtain the graph G that contains only one



X. Peng and C. Solnon 17:11

occurrence of (P, F ) and whose P-canonical code starts with a prefix greater than 00 01 03
15. If we extend G↓{0,1,2,3,4} by adding a vertex on the red position, we obtain another graph
(not isomorphic to G) that also contains only one occurrence of (P, F ).

This example shows us that a non P-canonical code may be extended to a P-canonical
code. This comes from the fact that a pattern may have more occurrences in the graph
associated with a prefix of a code c than in the graph associated with c, due to forbidden
vertices. However, when the pattern is symmetrical (including its forbidden vertices), we
may discard some non P-canonical codes. More precisely, we define below the dominated
codes that may be discarded because they cannot be extended to P-canonical codes.

I Definition 16. (Dominated code) Let (P, F ) be a symmetrical pattern, G = (V,E) be
a hexagon graph that contains at least one occurrence of (P, F ), and W ⊂ V be a subset
of vertices such that G↓W is isomorphic to P . Let C be the set of codes computed from
a P-sequence s = 〈v0, v1, . . . , vk〉 such that (v0, v1) is an edge of G↓W . A code c ∈ C is
dominated if there exists another code c′ ∈ C such that c′ < c.

I Theorem 17. For each P-canonical code c and each prefix c′ of c, c′ is not dominated.

Proof. This is a straightforward consequence of the fact that all P-sequences that start
from an edge (v0, v1) of G↓W correspond to different automorphisms of (P, F ) and are
interchangeable. J

I Example 18. In Figure 5, (P, F ) is symmetrical. The dominated codes are P-BFSG(〈b, a,
c, d〉) (when W = {a, b, c, d}) and P-BFSG(〈d, a, g, f〉) (when W = {a, d, f, g}. However, we
cannot discard P-BFSG(〈a, b, d, c〉) (though it is larger than P-BFSG(〈a, d, f, g〉) as it may
lead to a P-canonical code if a vertex is added on the forbidden position for W = {a, d, f, g}.

4 CP Models for Enumerating Hexagon Graphs

As hexagon graphs may be uniquely represented with canonical codes, we solve BGPs by
enumerating canonical codes, and we propose to use CP to achieve this enumeration as this
allows us to easily add constraints on the structures. In Section 4.1, we introduce a first CP
model for enumerating consistent codes. In Section 4.2, we introduce a global constraint for
ensuring that codes are canonical. In Section 4.3, we introduce a CP model for enumerating
all structures that contain some given patterns.

4.1 CP Model for Enumerating Consistent Codes
We say that a code is consistent if there exist a hexagon graph G and an edge (v0, v1) of G
such that BFSG(v0, v1) or BFSG(v0, v1) return this code. Obviously, the code must satisfy
Properties a and b listed in Theorem 5. However, this is not enough because we must also
ensure that all vertices have different positions in the plane. To this aim, we associate 2D
coordinates with vertices. We assume that all edges have a length equal to two and that
vertex 0 has coordinates (0, 0). For every other vertex i, its coordinates depend on the
coordinates of its predecessor pi and the direction di of edge (pi, i): if the coordinates of pi

are (x, y) and di = 0 (resp. 1, 2, 3, 4, and 5), then vertex i is at coordinates (x+ 2, y) (resp.
(x+ 1, y +

√
3), (x− 1, y +

√
3), (x− 2, y), (x− 1, y −

√
3), and (x+ 1, y −

√
3)).

I Example 19. Let us consider the code 00 02 24. Vertex 1 is at coordinates (2, 0) (because
the edge that reaches 1 from 0 has direction 0), vertex 2 is at coordinates (1,

√
3) (because the

CP 2023



17:12 Using Canonical Codes to Efficiently Solve the BGP with CP

edge that reaches 2 from 0 has direction 1), and vertex 3 is at coordinates (0, 0) (because the
edge that reaches 3 from 2 has direction 4). As vertices 0 and 3 have the same coordinates,
this code is not consistent.

For each vertex i ∈ [1, n], our CP model uses four integer variables xi, yi, pi, di:
xi is the abscissa of i, and its domain is D(xi) = [−2n, 2n];
yi is the ordinate of i divided by

√
3, and its domain is D(yi) = [−n, n];

pi is the vertex which has discovered i, and its domain is D(pi) = [0, i− 1] (pi < i because i
cannot be discovered by a vertex j which has not yet been discovered);

di is the direction of edge (pi, i), and its domain is D(di) = [0, 5].
For vertex 0, we define x0 = 0, y0 = 0, p0 = −1, and d0 = −1. The code associated with
these variables is p1d1 . . . pndn

To ensure the consistency of the generated codes, we post the following constraints:
C1: all vertices have different coordinates, i.e., ∀i, j ∈ [0, n], i 6= j ⇒ xi 6= xj ∨ yi 6= yj ;
C2: Properties a and b (defined in Theorem 5) are satisfied, i.e.,
∀i ∈ [1, n− 1], pi ≤ pi+1 ∧ pi = pi+1 ⇒ di < di+1;

C3: For each edge (pi, i), coordinates of i and pi are consistent with direction di, i.e.,
∀i ∈ [1, n], (di, xi, xpi

, yi, ypi
) ∈ T where T is the table defined as follows:

T = {(0, x+ 2, x, y, y) : x ∈ [−2n, 2n− 2], y ∈ [−n, n]}
∪ {(1, x+ 1, x, y + 1, y) : x ∈ [−2n, 2n− 1], y ∈ [−n, n− 1]}
∪ {(2, x− 1, x, y + 1, y) : x ∈ [−2n+ 1, 2n], y ∈ [−n, n− 1]}
∪ {(3, x− 2, x, y, y) : x ∈ [−2n+ 1, 2n], y ∈ [−n, n]}
∪ {(4, x− 1, x, y − 1, y) : x ∈ [−2n+ 1, 2n], y ∈ [−n+ 1, n]}
∪ {(5, x+ 1, x, y − 1, y) : x ∈ [−2n, 2n− 1], y ∈ [−n+ 1, n]}.

4.2 Global Constraint for Ensuring Canonicity
We must ensure that codes are canonical to become invariant to rotations and symmetries.
To this aim, we introduce a new global constraint defined below.

I Definition 20. Given an integer value n ≥ 1 and a tuple of four integer variables
(pi, di, xi, yi) for each i ∈ [1, n], the constraint canonical({(pi, di, xi, yi) : i ∈ [1, n]}) is
satisfied if the code p1d1 . . . pndn is canonical.

To propagate this constraint, we maintain a vector pat such that, for each vertex i, pat[i]
is equal to the current pattern of i (with respect to the edges that have been added so far).
We also maintain a matrix M such that for each vertex i and each direction d ∈ [0, 5], M [i][d]
is either equal to the vertex at direction d from i, if such a vertex exists, or to -1 otherwise.
pat and M are updated each time a new couple (pi, di) is instantiated. This may be done in
constant time by exploiting vertex coordinates.

We trigger a failure whenever there is a vertex i > 0 such that pat[i] < pat[0], as we have
seen in Section 2.2 that the pattern of i cannot be smaller than the pattern of 0 (according
to the order of Definition 8).

Also, we trigger a failure whenever assigned variables define a code prefix which is not
canonical, because Theorem 6 tells us that a non-canonical prefix cannot be extended to a
canonical code. More precisely, when all variables that occur in a code prefix p1d1 . . . pkdk

with k ≤ n are assigned, we check that this prefix is canonical and, if it is not the case, we
trigger a failure. To check whether a prefix is canonical or not, we try to build smaller codes



X. Peng and C. Solnon 17:13

by running BFS from other edges than (0, 1). We limit the number of BFSs to be performed
by exploiting patterns, as explained in Section 2.2.

Finally, we ensure that the degree of every vertex is upper bounded by a value g which
depends on pat[0]: g = 5 when pat[0] = P5; g = 4 when pat[0] ∈ {P4, P3+1, P3, P2+2};
g = 3 when pat[0] ∈ {P2+1a, P2+1b, P2, P1+1+1}; g = 2 when pat[0] = P1+1; and g = 1 when
pat[0] = P1. When the degree of a vertex i reaches g, we remove i from the domain of every
non-assigned variable pk in order to prevent i from having more outgoing edges than g.

4.3 CP Model for Enumerating Graphs with a Given Pattern
Given a pattern (P, F ) with m mandatory vertices, the CP model for enumerating all graphs
with n+ 1 > m vertices that contain (P, F ) uses four integer variables xi, yi, pi, and di for
each vertex i ∈ [0, n], like in Section 4.1. However, for each pattern vertex i ∈ [0,m− 1], we
assign the variables xi, yi, pi, and di according to the canonical code cc(P ).

I Example 21. For the pattern P displayed in Figure 6, we set x0 = y0 = 0, p1 = p2 = p3 =
0, d1 = 0, d2 = 1, d3 = 3, x1 = 2, y1 = 0, x2 = 1, y2 = 1, x3 = −2, and y3 = 0.

Like in Section 4.1, we post constraint C1 to ensure that all vertices have different
coordinates. We modify constraint C2 as Properties of Theorem 5 are satisfied only for
vertices that are not in the pattern, i.e., ∀i ∈ [m,n− 1], pi ≤ pi+1 ∧ pi = pi+1 ⇒ di < di+1.
We post constraint C3 but with a modified table T ′ to ensure that no vertex is at a forbidden
position. More precisely, we compute the set XF of coordinates of forbidden positions in F
and define T ′ from table T as follows: T ′ = {(d, x, x′, y, y′) ∈ T : (x, y) 6∈ XF ∧ (x′, y′) 6∈ XF }.

Finally, we post a global constraint to ensure that the generated codes are P-canonical.
This constraint is defined as follows.

I Definition 22. Given the canonical code cc(P ) of a pattern P with m vertices, an integer
value n > m and a tuple of four integer variables (pi, di, xi, yi) for each i ∈ [1, n], the
constraint P-canonicalcc(P )({(pi, di, xi, yi) : i ∈ [1, n]}) is satisfied if the code p1d1 . . . pndn

is P-canonical.

To propagate this constraint, we cannot trigger a failure whenever assigned variables
define a code prefix which is not P-canonical as we have seen in Section 3.2 that Theorem 6
is no longer valid. However, we exploit Theorem 17 to trigger a failure whenever the current
prefix is dominated. Also when all pi and di variables are assigned, we check that the code is
P-canonical and trigger a failure whenever this is not the case.

Some BGPs involve enumerating graphs that contain two given patterns (P, F ) and
(P ′, F ′). Without loss of generality, we assume that #P ≥ #P ′ where #G denotes the
number of vertices of a graph G. In this case, we post the constraint P-canonicalcc(P ) to
ensure that all generated codes contain pattern (P, F ) by construction. To ensure that the
graph G associated with the generated code also contains pattern (P ′, F ′), we post a global
constraint that ensures that G↓[k,#G] contains an occurrence of (P ′, F ′), where k = #P
whenever the two patterns must be disjoint, whereas k = 0 otherwise. This constraint is
defined below.

IDefinition 23. Given a pattern (P, F ), two integer values k and n such that k+#P ≤ n, and
a tuple of two integer variables (pi, di) for each i ∈ [0, n], the constraint subgraphP,k({(pi , di) :
i ∈ [0 ,n]}) is satisfied if there exists S ⊆ [k, n] such that G↓S is isomorphic to P and there
is no vertex at a forbidden position.

CP 2023



17:14 Using Canonical Codes to Efficiently Solve the BGP with CP

We have implemented a very basic propagator for this constraint: it is not propagated dur-
ing the search, and we only check that it is entailed when all variables have been assigned. This
is done by searching for an edge (v0, v1) of G↓[k,n] such that seq(G↓[k,n], v0, v1, cc(P ′), F ′) 6=
null. If we do not find such an edge, then the constraint is not satisfied; otherwise we have
found an occurrence of (P ′, F ′) in G↓[k,n].

5 Experimental Evaluation

In this section, we experimentally evaluate our approach on four different BGPs (see [2, 3, 4]
for more details):
BGP1 enumerates hexagon graphs without single vertex holes (where a single vertex hole is

a position without vertex which is surrounded by a cycle of 6 vertices);
BGP2 enumerates catacondensed graphs, i.e., hexagon graphs without single vertex holes

and without cliques of order 3;
BGP3 enumerates hexagon graphs without single vertex holes and that contain a given

pattern (taken in the list of eight patterns used in [3] and recalled in Appendix A);
BGP4 enumerates hexagon graphs without single vertex holes and that contain two given

patterns (taken in the list of eight patterns used in [3] and recalled in Appendix A) so
that the two patterns are not overlapping. (In [3], a variant is considered where patterns
may share vertices; we do not display results for this variant as the conclusions are very
similar.)

For each problem, the number n of vertices is given, and we report results for n ∈ [2, 10].
We consider the CP models described in Section 4, implemented in Choco [11], is available

at https://gitlab.inria.fr/xipeng/bgp. To forbid single vertex holes, we exploit pat
and M data structures. To forbid cliques of order 3, we ensure that, for each vertex i,
pat[i] ∈ {P1+1+1, P1+1a, P1+1b, P1} as all other patterns contain a clique of order 3.

Our approach, denoted CCode, is compared with the CP-based approach of [3], de-
noted BenzAI, and we used the Choco implementation available at https://github.com/
benzAI-team/BenzAI. We do not compare our approach with the dedicated approach of [1]
as it cannot enumerate hexagon graphs with holes (for BGP1, this approach finds less
solutions than our approach), and it is not possible to add extra constraints in a declarative
way so that it cannot be used to solve BGP2, BGP3, or BGP4 without modifying the code,
or performing a post-processing to remove solutions that do not satisfy the extra constraints.

All experiments are carried out on an Intel Core Xeon E5-2623v3 of 3.0GHz×16 with
32GB of RAM.

In Table 1, we report CPU times of BenzAI and CCode on BGP1 and BGP2. For
BGP1, BenzAI is faster when n ≤ 3, but CCode is faster when n ≥ 4 and when n = 10 it
is 824 times as fast. For BGP2, BenzAI is faster when n ≤ 7, but CCode is faster when
n ≥ 8 and when n = 10 it is 93 times as fast. In Table 2, we report CPU times of BenzAI
and CCode on BGP3 and BGP4. CCode is always faster. When n = 9, it is 78 (resp. 136)
times as fast as BenzAI for BGP3 (resp. BGP4). When n = 10, BenzAI is not able to solve
any of the 8 (resp. 36) instances of BGP3 (resp. BGP4) within one hour whereas CCode
never exceeds 71s.

6 Conclusion

We have introduced a new canonical code for representing hexagon graphs while being
invariant to rotations and symmetries. This canonical code is the smallest code associated

https://gitlab.inria.fr/xipeng/bgp
https://github.com/benzAI-team/BenzAI
https://github.com/benzAI-team/BenzAI


X. Peng and C. Solnon 17:15

Table 1 Results of BenzAI and CCode for BGP1 and BGP2. For each n ∈ [2, 10] and each
problem, we report the number of solutions (#sol) and the time in seconds of BenzAi and CCode.

BGP1 BGP2
#sol BenzAI CCode #sol BenzAI CCode

n = 2 1 0.00 0.01 1 0.01 0.01
n = 3 3 0.00 0.01 2 0.01 0.01
n = 4 7 0.05 0.03 5 0.01 0.02
n = 5 22 0.05 0.11 12 0.01 0.07
n = 6 81 0.14 0.22 36 0.07 0.15
n = 7 331 0.67 0.30 118 0.20 0.28
n = 8 1436 19.58 1.08 412 3.88 0.40
n = 9 6510 392.24 4.66 1492 19.78 2.21
n = 10 30129 22874.00 25.16 5587 732.75 7.90

Table 2 Results of BenzAi and CCode for BGP3 and BGP4. For each n ∈ [2, 10] and each
problem, we report the number of instances (#i) and the average, maximum and minimum time in
seconds over these instances for BenzAI and CCode. We report ’-’ when all runs exceed 3600s.

BGP3 BGP4
n #i BenzAI CCode #i BenzAI CCode

avg max min avg max min avg max min avg max min
2 2 0.02 0.02 0.02 0.01 0.01 0.00 0 — — — — — —
3 6 0.02 0.03 0.01 0.00 0.01 0.00 0 — — — — — —
4 7 0.03 0.04 0.02 0.00 0.02 0.00 3 0.07 0.16 0.02 0.01 0.03 0.00
5 8 0.05 0.07 0.01 0.01 0.07 0.00 11 0.06 0.20 0.04 0.01 0.06 0.00
6 8 0.38 0.43 0.23 0.03 0.15 0.00 23 1.41 2.51 0.93 0.02 0.16 0.01
7 8 0.95 1.06 0.79 0.13 0.35 0.01 29 3.78 5.42 2.30 0.10 0.50 0.01
8 8 20.33 23.84 13.94 0.73 1.61 0.04 34 65.06 83.21 50.28 0.49 1.69 0.03
9 8 306.30 399.25 75.05 3.94 10.52 0.23 35 400.51 574.15 226.87 2.94 10.85 0.20
10 8 - - - 34.60 69.75 2.20 36 - - - 24.19 71.03 1.61

CP 2023



17:16 Using Canonical Codes to Efficiently Solve the BGP with CP

with a BFS of the graph, and we have shown how to define codes by means of constraints,
thus allowing us to generate all consistent codes with CP. We have shown that every prefix
of a canonical code is canonical and this property allows us to trigger a failure whenever the
current code prefix is not canonical.

We have also shown how to efficiently enumerate all codes that start with a given prefix,
thus ensuring that a given pattern is included in the generated graphs. However, in this case
it may happen that the prefix of a canonical code is no longer canonical, due to the fact that
patterns may specify forbidden vertices. In this case, we exhibit a weaker property which
allows us to filter some codes that cannot be extended to a canonical code.

We have experimentally compared our approach with the CP-based approach of [3], and
we have shown that it scales much better, especially when there are a lot of solutions to
enumerate.

As our approach is based on CP, new properties that must be satisfied by the generated
graphs are defined in a declarative way by means of constraints. To this aim, the user
has access to four variables for each vertex i, i.e., pi, di, xi, and yi. In some cases, it
may be convenient to be able to add constraints on vertex patterns. This is the case, for
example, for forbidding cliques of order 3 (in BGP2). In our first implementation, which is a
proof of concept, the pattern of a vertex is maintained with a backtrackable data structure
(using IStateInt Choco objects). As future work, we plan to introduce integer variables that
represent patterns in order to allow the user to easily define new constraints on patterns.

We also plan to improve the propagation of the global constraint subgraph in order to
detect some inconsistencies earlier: we could adapt Algorithm 2 (seq) in order to search
for the largest sequence in polynomial time, and trigger a failure whenever the size of this
sequence plus the number of non assigned vertices is smaller than n.

Finally, we would like to extend our approach to other kinds of graphs such as grid graphs
(where vertices are associated with square faces instead of hexagonal faces), for example. We
hope this will pave the way for new applications of CP such as, for example, applications
that search for patterns in cellular automata as in [7].

References
1 Gunnar Brinkmann, Gilles Caporossi, and Pierre Hansen. A constructive enumeration of

fusenes and benzenoids. J. Algorithms, 45(2):155–166, 2002.
2 Yannick Carissan, Denis Hagebaum-Reignier, Nicolas Prcovic, Cyril Terrioux, and Adrien Varet.

Using constraint programming to generate benzenoid structures in theoretical chemistry. In
Helmut Simonis, editor, Principles and Practice of Constraint Programming - 26th International
Conference, CP, volume 12333 of Lecture Notes in Computer Science, pages 690–706. Springer,
2020.

3 Yannick Carissan, Denis Hagebaum-Reignier, Nicolas Prcovic, Cyril Terrioux, and Adrien Varet.
Exhaustive generation of benzenoid structures sharing common patterns. In Laurent D. Michel,
editor, 27th International Conference on Principles and Practice of Constraint Programming,
CP, volume 210 of LIPIcs, pages 19:1–19:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

4 Yannick Carissan, Denis Hagebaum-Reignier, Nicolas Prcovic, Cyril Terrioux, and Adrien
Varet. How constraint programming can help chemists to generate benzenoid structures and
assess the local aromaticity of benzenoids. Constraints An Int. J., 27(3):192–248, 2022.

5 S. J. Cyvin, J. Brunvoll, and B. N. Cyvin. Search for concealed non-kekulean benzenoids and
coronoids. Journal of Chemical Information and Computer Sciences, 29(4):236–244, 1989.

6 Romain Deville, Élisa Fromont, Baptiste Jeudy, and Christine Solnon. Grima: A grid
mining algorithm for bag-of-grid-based classification. In Antonio Robles-Kelly, Marco Loog,



X. Peng and C. Solnon 17:17

Battista Biggio, Francisco Escolano, and Richard C. Wilson, editors, Structural, Syntactic, and
Statistical Pattern Recognition - Joint IAPR International Workshop, S+SSPR, Proceedings,
volume 10029 of Lecture Notes in Computer Science, pages 132–142, 2016.

7 Romain Deville, Élisa Fromont, Baptiste Jeudy, and Christine Solnon. Mining frequent patterns
in 2d+t grid graphs for cellular automata analysis. In Pasquale Foggia, Cheng-Lin Liu, and
Mario Vento, editors, Graph-Based Representations in Pattern Recognition - 11th IAPR-TC-15
International Workshop, GbRPR 2017, Anacapri, Italy, May 16-18, 2017, Proceedings, volume
10310 of Lecture Notes in Computer Science, pages 177–186, 2017.

8 Stéphane Gosselin, Guillaume Damiand, and Christine Solnon. Efficient search of combinatorial
maps using signatures. Theor. Comput. Sci., 412(15):1392–1405, 2011.

9 Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, II. J. Symb. Comput.,
60:94–112, 2014.

10 Siegfried Nijssen and Joost N. Kok. The gaston tool for frequent subgraph mining. In
Proceedings of the 2nd International Workshop on Graph-Based Tools, GraBaTs 2004, Rome,
Italy, October 2, 2004, volume 127 of Electronic Notes in Theoretical Computer Science, pages
77–87. Elsevier, 2004. doi:10.1016/j.entcs.2004.12.039.

11 C. Prud’homme, J.-G. Fages, and X. Lorca. Choco Documentation. TASC, INRIA Rennes,
LINA CNRS UMR 6241, COSLING S.A.S., 2016. URL: http://www.choco-solver.org.

12 Xifeng Yan and Jiawei Han. gspan: graph-based substructure pattern mining. In 2002
IEEE International Conference on Data Mining, 2002. Proceedings., pages 721–724, 2002.
doi:10.1109/ICDM.2002.1184038.

A Patterns used in BGP3 and BGP4

The eight patterns used in BGP3 and BGP4 are displayed below (mandatory and forbidden
vertices are displayed in black and red, respectively).

CP 2023

http://dx.doi.org/10.1016/j.entcs.2004.12.039
http://www.choco-solver.org
http://dx.doi.org/10.1109/ICDM.2002.1184038

	1 Introduction
	2 Representation of Hexagon Graphs with Canonical Codes
	2.1 Definition of Canonical Codes
	2.2 Properties of Canonical Codes
	2.3 Comparison with other canonical codes

	3 Canonical Codes in Case of Required Patterns
	3.1 Definition of P-canonical codes
	3.2 Properties of P-canonical codes

	4 CP Models for Enumerating Hexagon Graphs
	4.1 CP Model for Enumerating Consistent Codes
	4.2 Global Constraint for Ensuring Canonicity
	4.3 CP Model for Enumerating Graphs with a Given Pattern

	5 Experimental Evaluation
	6 Conclusion
	A Patterns used in BGP3 and BGP4

