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Abstract—Multisensory assessment of objects and textures is
ubiquitous in human lives. It has been shown that people can
optimally integrate tactile and visual cues to extract sensory
cues. It is less clear though how the congruence between tactile
and visual cues is perceived when people interact with everyday
objects such as fabrics. In this study, we investigate the human ac-
curacy to detect visuo-haptic discrepancy within common fabrics.
Participants had to detect the congruent one among two pairs
of visuo-haptic textures consisting in a visual texture projected
on a semi-mirror and a real texture underneath the visual one,
which could be touched but not seen. Overall, participants did
not accurately detect congruent visuo-haptic pairs and their
performance correlated with the average similarity between the
visual and tactile textures. Correlation analysis may suggest a
role of the coefficient of kinetic friction to detect the visuo-haptic
discrepancy.

Index Terms—Multisensory interaction, material perception

I. INTRODUCTION

When we see or explore a surface or an object, we encode
information that enables us to perceive and categorize that
surface or object. This information is usually provided by sev-
eral of our senses simultaneously. Indeed, texture perception
is successfully mediated by multiple sensory modalities such
as vision and touch [1], [2]. But the question arises as to
how information from these two modalities is processed to
generate the subjective perception of textures [3]. A number
of articles have focused on either visual texture perception
[4]–[6] or haptic texture perception [7]–[9] but the effects of
multisensory inputs on texture perception are less investigated,
although studies have been conducted on artificial stimuli [10]
and visuo-haptic illusions [11].

Several perceptual integration models have been proposed
to explain this process [12]. One model suggests the sum-
mative integration of information between sensory modali-
ties, which means that the final percept is the result of the
summation of the visual and haptic information. In another
model, which relies on sensory sharing, both visual and haptic
inputs contribute independently to the perception process. A
well-established model proposed by Ernst and Banks [13]
suggests that visuo-haptic integration follows the prediction
of a maximum likelihood integrator, which means that it is
performed in statistically optimal way. However, these models

focus on the perception of a specific feature and do not predict
the sensation of visuo-haptic congruence.

A frequently used strategy to investigate visuo-haptic inte-
gration is to create a sensory conflict. To do so, researchers
create tasks in which the visual information diverges slightly
from haptic information. This approach makes it possible to
estimate how the brain solves the challenge of integrating
conflicting inputs from distinct sensory channels and unravel
important sensory mechanisms like in [14] and [15].

In this study, by creating potential conflicts between tactile
and visual properties, we intend to highlight the sensory
interaction between visual and haptic cues that shape human
visuo-haptic perception of common real-world textures. Up to
now, perception of more natural materials has received less
attention and few studies have investigated texture perception
using material occurring in an everyday context [2] [16]
[17]. This may be related to the difficulty of quantifying and
modifying in a controlled manner the physical properties of
these natural materials. Nevertheless, studying visuo-haptic
perception of natural materials and textures is crucial since
a major research direction in haptics is the recreation of
texture on tactile displays. Indeed, various design methods
and actuation principles have been proposed [18], [19] but
it is not yet known how much accuracy is needed when the
tactile properties of a texture are recreated on a haptic device
and superposed on its visual representation. For example, it
has been shown that the brain is tolerant to a large amount of
redirection of the limbs in virtual reality [20], which enables
virtual environments that feel larger or with more objects than
their physical size.

Also, humans are very sensitive to tactile properties of
materials and previous work has shown that physical surface
properties impact inter-modal perceptual judgements [14] [21].
Thus, we also recorded the acceleration and contact force
induced during interaction with each of the textures of our
panel following the same approach as [16]. These measure-
ments enabled the comparison between the results from our
psychophysical experiments and the relevance of common
metrics in haptics such as the kinetic friction coefficient and
the vibration power.



(1) Hucktowel (2) Stretch Denim (3) Blue Denim (4) Denim (5) Wool Crepe

Fig. 1. Texture panel used in the experiments

II. METHODS

A. Participants

Two psychophysical experiments and a set of physical mea-
surements were conducted. In the first experiment, seven par-
ticipants (3 females, 4 males, mean age 24.5 years) performed
the task. The second experiment was conducted on sixteen
participants (6 females, 10 males, mean age 23.4 years). Three
people (1 female, 2 males, mean age 25.3 years) participated
in the physical measurements. None of them reported visual
disabilities or sensory-motor impairments that could impact
on visuo-tactile perception. The experimental procedures were
approved by the Ethics Council of Sorbonne University. All
participants gave informed consent and received financial
compensation for their participation.

B. Stimuli

We used a panel of texture stimuli which included a variety
of everyday fabrics: stretch denim, hucktowel, denim, wool
crepe and blue denim (see Fig 1). Each surface is a 10x3
cm rectangle mounted onto a piece of wood by means of
double-sided adhesive tape. The thickness of each sample
(surface plus wood plate) is approximately 1.5 cm. A picture
of each texture was taken and used as visual stimuli in the
experiments. To generate still photographs of all textures,
we placed individual fabric on a white cloth. The photos
were taken at a distance similar to the distance between
the participant and the haptic textures on the visuo-haptic
workbench. Post-processing images centering of the textures
and cropping to a size of 1100 x 290 pixels was done using
Processing v3.5.4 .

C. Apparatus

The stimuli were presented in a visuo-haptic workbench (see
Fig.2) consisting of a 24” screen (BenQ 3D monitor, 1920 x
1080 pixel), a semi-reflexive mirror (3mm thick semi-mirror
Groglass 50/50) and a texture holder (24x2x2 cm). The screen
was located nearly 10 cm above the reflective surface and
tilted at 45 degrees. Participants watched the visual stimuli
reflection of the screen across the semi-reflective surface and
manipulated the textures below it, such as the reflected image
fell upon the real texture from their point of view. The mirror
prevented them from seeing their hands and the real stimuli.
A few practice trials were provided so that the participants
could get used to the setup and place their hands in the
correct position. The position and size of the visual textures
corresponded to those of the real ones.

Fig. 2. A. Schematic representation of the visuo-haptic workbench. B. Actual
experimental setup. Participant viewed the projection (4) of the visual stimuli
displayed on the screen (1) across the semi reflective mirror (2). They were
asked to touch the haptic stimuli placed on the textures holder below (3).

D. Procedure

Experiment 1.
The first experiment was divided into two parts. In the

first part, participants completed a purely haptic discrimination
task of a set of textures in the form of a three-alternative
forced-choice task. During the haptic experiment, they were
seated in front of three textures selected from the panel (see
Fig.1) placed on a rigid support behind a black divider, so
that they could touch them without seeing them. Two textures
(wool crepe and stretch denim) were selected as references
based on preliminary experimental results. For each trial, one
of the two references was selected. The experimenter then
positioned three textures on the support: two of them being
the chosen reference and its duplicate, the third being one of
the remaining textures of the panel. Each participant performed
85 trials, with an equal number of trials for each reference.

In the second part, only two texture from the initial panel
were presented. The participants were asked to compare them
and rate the haptic similarity on a 9-point Likert scale ranging
from 1 (completely dissimilar) to 9 (completely similar).



Fig. 3. A. Experiment 1: Mean of the success rate across all the participant for each haptic combination for each reference B. Experiment 2: Mean of the
success rate across all the participants for each visuo-haptic combination and for each visual reference. Error bars represent the standard deviation. In Fig
3.A, asterisks indicate significance using Tukey’s multiple comparison test and in Fig 3.B, they indicate significance of the one sample Wilcoxon test against
chance level with *p<0.05, **p<0.005 and ***p<0.0005.

All 25 possible pairs were presented. The experience in its
totality was carried out in one session lasting 60 minutes for
each participant.

Experiment 2.
The second experiment was also divided into two parts.

The first part consisted of a two-alternative forced choice
paradigm. In this experiment, participants were standing in
front of the visuo-haptic workbench (See Fig.2). For each
trial, two surfaces selected from the panel were placed on the
texture holder and two visual textures were displayed on the
screen. Regarding visual textures, we chose to work only with
two textures from our panel: wool crepe and stretch denim,
which were already used in the previous experiment. For each
trial, one of these two textures was chosen as reference. The
position of each surface of the pair was randomly selected
for each trial. As for the haptic textures, one matched the
visual reference chosen for this trial and the other was chosen
randomly among the remaining textures. Participant observed
the projection of the visual textures displayed across the semi-
reflective mirror and freely touched the haptic textures below.
They were asked to find the congruent visuo-haptic texture
among the two presented, knowing that only one of the two
was matching. There were a total of 85 trials (5 training + 10
repetitions of each possible visuo-haptic pair).

In the second part, participant rated the similarity of the
visual and haptic feedback using a 9-point Likert scale.
The experimenter placed only one texture on the texture
holder and only one visual texture was displayed. All 25
possible combinations were presented. Participant freely
explored the haptic texture and verbally gave a similarity
rating ranging from 1 (completely dissimilar) to 9 (completely
similar). The experience 2 in its totality was carried out in one
session lasting between 60 and 90 minutes for each participant.

Physical measurements.
Each surface was successively placed on a texture holder

which was positioned on top of a force sensor (Nano17, ATI
Inc.). The sensor was screwed to an aluminium base that was
attached to a stationary table. A mono-axial accelerometer
(352A24, PCB Piezotronics) was glued to the fingernail of the
subject and the cable was taped on the hand. The accelerometer
and force data were acquired by a DAQ card (USB-6343, NI
Inc).

Each participant slid their index finger on the surface
ten times from left to right. The participants were asked to
synchronize their sliding speed with the speed of a visual cur-
sor displayed on a screen (7”HDMI Touchscreen, DFRobot)
positioned in front of the experimental setup. The sliding speed
was fixed at 50 mm/s. The measurements were carried out
independently of the behavioural experiments.

III. RESULTS

A. Experiment 1

We tested participants’ ability to discriminate between dif-
ferent textures using only haptic information. We calculated
the success rate for each combination and for each reference
across all participants.

To simplify the analysis, we focused on the overall suc-
cess rate for each combination (see Fig.3.A). An ANOVA
statistical analysis and post-hoc testing highlighted significant
differences in term of success rate for each combination beside
blue denim - denim and hucktowel - wool crepe when the
haptic reference was the stretch denim (One-Way ANOVA: F
= 45.7, p = 0.001 and Tukey’s multiple comparison test). No
significant difference was found when wool crepe was used as
haptic reference.



B. Experiment 2

In order to assess participants’ capacity to find the congruent
visuo-haptic texture, the success rate for each participant
and for each visuo-haptic combination was calculated. To
simplify the analysis, we focused on the overall success
rate for each combination and for each visual reference. An
ANOVA statistical analysis showed an impact of the haptic
reference on the participants’ score when the reference was
stretch denim (One-Way ANOVA: F = 2.89, p = 0.043) but
not when the reference was wool crepe (One-way ANOVA,
F = 0.231, p = 0.874). A Bonferroni-corrected one sample
Wilcoxon signed rank test was performed to assess whether
detection of discrepancy was above chance-level for the tested
visuo-haptic comparisons. Results showed that the discrepancy
was significantly recognized only for the hucktowel when
the reference stimulus was wool crepe (W = 94, p = 0.043)
and the wool crepe when reference was stretch denim (W =
109, p = 0.02). Overall, performance at visuo-haptic detection
was almost at chance level within the panel of textures (see
Fig.3.B).

We also checked whether there was a significant change in
terms of success rate over the time course of the experiment
(between the two blocks). However, no significant learning
effect was observed (Two-Way ANOVA: F = 2.81, p = 0.095).
We then analyzed the similarity ranking obtained in both
experiments. We converted the similarity ranking of each
participant into normalized dissimilarities by subtracting them
from nine and then dividing by eight. To facilitate the analysis,
we looked at the average dissimilarity for each combination.
A significant correlation was found between the visuo-haptic
dissimilarities and the success rate (Pearson correlation, p =
0.012) and between the haptic dissimilarities and the success
rate (Pearson correlation, p = 0.016). The results are plotted in
Fig.4. These results suggest an influence of haptic differences
on the visuo-tactile perception of textures.

C. Correlation with physical measurements

Following the work from [16], we focused on two differ-
ent physical metrics: the kinetic friction coefficient and the
vibration power during sliding. Previous studies have showed
the link between kinetic friction coefficient and the stickiness
of the surfaces s well as between vibration power and the
perceptual roughness of the surface [22] [23].

We calculated the kinetic friction from the force signals. The
signal were first low-pass filtered with a cut-off frequency of
1 kHz to match with human perception, then they were seg-
mented into 10 segments. Each segment represents one finger
sliding on the surface. For each segment, the kinetic friction
coefficient was calculated by fitting a Coulomb friction model
to the tangential and normal forces. The friction coefficient
for each surface was obtained by computing the mean friction
coefficient across the ten strokes of a given participant, and
then by averaging the obtained coefficients across participants.

The vibration power was calculated from the acceleration
signals. The signals were detrended, low-pass filtered with cut-
off frequency of 1 kHz and segmented into 10 segments. Each

Fig. 4. A. Correlation between the overall success rate for each visuo-
haptic combination and the average visuo-haptic dissimilarities. B. Correlation
between the overall success rate for each visuo-haptic combination and the
average haptic dissimilarities. The combinations for which reference was the
stretch denim are represented with blank circles and the combinations for
which reference was the wool crepe are represented with full circles.

segmented signal was band-pass filtered between 20 Hz and
400 Hz, and then the power spectrum was calculated.

TABLE I
KINETIC FRICTION COEFFICIENT AND VIBRATION POWER CALCULATED

FOR EACH SURFACE

Textures Kinetic friction coefficient Vibration power
(Unitless) (g2)

Huck towel 0.512 8.687× 10−4

Stretch Denim 0.483 4.016× 10−4

Blue Denim 0.490 5.768× 10−4

Denim 0.482 7.312× 10−4

Wool crepe 0.466 1.024× 10−4

The friction coefficient and the vibration power for each
surface are reported in Table I. We compared the com-
puted metrics with the psychophysical data. We calculated
the difference in friction coefficient between the reference
and compared haptic texture for each pair presented in the
Experiment 2 and compared it to the previously calculated
success rate (see Fig.5). No significant correlation was found
between the success rate and the difference in kinetic fric-



Fig. 5. A. Correlation between the average success rate for each combination
presented in the experiment 2 and the difference of kinetic friction coefficient.
B. Correlation between the overall success rate for each combination presented
in the experiment 2 and the difference of vibration power. The combinations
for which reference was the stretch denim are represented with blank circles
and the combinations for which reference was the wool crepe are represented
with full circles.

tion coefficient within a pair of haptic textures (Spearman
correlation, p = 0.054). Similarly, no correlation was found
between the success rate in experiment 2 and the vibration
power (Spearman correlation, p = 0.623).

IV. DISCUSSION AND CONCLUSION

In the present study, we investigated how visual and haptic
information mediate the subjective perception of visuo-haptic
textures. More precisely, we studied the judgements of visuo-
haptic congruence by introducing small or large tactile dis-
crepancies between the two modalities. Despite our panel of
textures being quite similar, participants could easily sense
the tactile differences between textures except when asked to
distinguish denim types.

Performance was poorer in the visuo-haptic discrimina-
tion task, close to the chance level (see Fig.3). Detecting
discrepant from congruent texture information across two
sensory modalities does appear to be a complex task for
humans. On one hand, these results suggest distinct tactile
and visual representations of textures. They are in line with
studies that have compared visual and touch recognition with a

bimodal condition without observing bimodal performance to
be superior to either single mode condition [24] [25]. On the
other hand, the significant correlation between the averaged
visuo-haptic dissimilarities and the average success rate (See
Fig.4) does suggest that humans have a representation of how
the visual and tactile feeling of a texture should relate, which is
in line with perception arising from multisensory integration.

The analysis of two metrics that have already been consid-
ered for visuo-haptic perception of textures showed no clear
impact on congruence perception. Vibration power did not
correlate with the capacity to notice the discrepancy while
the kinetic friction coefficient showed a marginal correlation.
Although the coefficient of kinetic friction are quite close in
the panel, the maximum difference being less than 0.05, it is
still possible that this cue is used since touch is especially
sensitive to frictional cues [26]. Therefore, it is possible that
discrepant tactile textures with larger differences in friction
will be detected more easily.

Overall, perception of visuo-haptic congruence is a hard
task for humans. Thus, it is probably possible to use the
tolerance to differences between the haptic component of a
texture and its visual representation to efficiently design simple
yet effective haptic feedback. This could enable to introduce
compelling visuo-haptic feedback in displays without the
difficult challenge of rendering the entire complexity of natural
haptic interactions.

V. ACKNOWLEDGEMENT

This study was supported by Sorbonne université and the
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