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We present a novel, alternative framework for learning generative models with goal-conditioned reinforcement learning. We define two agents, a goal conditioned agent (GC-agent) and a supervised agent (S-agent). Given a user-input initial state, the GC-agent learns to reconstruct the training set. In this context, elements in the training set are the goals. During training, the S-agent learns to imitate the GC-agent while remaining agnostic of the goals. At inference we generate new samples with the S-agent. Following a similar route as in variational auto-encoders, we derive an upper bound on the negative log-likelihood that consists of a reconstruction term and a divergence between the GC-agent policy and the (goal-agnostic) S-agent policy. We empirically demonstrate that our method is able to generate diverse and high quality samples in the task of image synthesis.

Introduction

We consider the problem of learning a generative model. In recent years the study of generative models became a vast and prolific research field in the machine learning community. Because of their ability to capture important information about the distribution of the available data they have the capacity to generate new samples, thus emulating the nature of the training set. Generative models have shown outstanding results in applications such as speech generation (van den Oord et al., 2016) and high-quality image generation [START_REF] Brock | Large scale GAN training for high fidelity natural image synthesis[END_REF]Razavi et al., 2019). Recent examples of these models include Generative Adversarial Networks (GAN) (Goodfellow et al., 2014;[START_REF] Karras | Progressive growing of gans for improved quality, stability, and variation[END_REF][START_REF] Brock | Large scale GAN training for high fidelity natural image synthesis[END_REF], Variational Auto-Encoders (VAE) [START_REF] Jimenez Rezende | Stochastic backpropagation and approximate inference in deep generative models[END_REF][START_REF] Diederik | Auto-Encoding Variational Bayes[END_REF][START_REF] Van Den | Neural discrete representation learning[END_REF], Flow-based Models [START_REF] Dinh | Density estimation using real NVP[END_REF]Kingma and Dhariwal, 2018), Auto-regressive Models [START_REF] Mathieu Germain | Made: Masked autoencoder for distribution estimation[END_REF]Oord et al., 2016) and Diffusion Models (DM) [START_REF] Sohl-Dickstein | Deep unsupervised learning using nonequilibrium thermodynamics[END_REF]Ho et al., 2020;Nichol and Dhariwal, 2021;Song et al., 2021a).

Given a sample from the training set, Diffusion Models work by adding a small amount of Gaussian noise to the sample in some pre-defined amount of steps, denoted by H. This diffusion process yields a sequence of H intermediate representations, each of which have a larger amount of noise than the previous one. Note that by following this process, the last representation we obtain is a sample from a Gaussian distribution. The generative model is then obtained by learning how to reverse this diffusion process. Once trained, the model is able to generate new samples by applying the reverse diffusion process on gaussian noise. Recently, [START_REF] Sohl-Dickstein | Deep unsupervised learning using nonequilibrium thermodynamics[END_REF]; Ho et al. (2020); Nichol and Dhariwal (2021); [START_REF] Dhariwal | Diffusion models beat gans on image synthesis[END_REF] showed that DMs are competitive with GANs in the task of high-quality image synthesis. Interestingly, a dual view of DM (Ho et al., 2020) is the score-based generative model (Song and Ermon, 2019), where the generative model is the result of several steps of a Langevin dynamic [START_REF] Parisi | Correlation Functions and Computer Simulations[END_REF] following a score function. Such score function is learned beforehand in order to approximate the gradient of the log-likelihood. Although DMs are simple to train, they are slow to sample from (Ho et al., 2020) as the model in general requires a large number of steps H (H ≈ 1000) to be able to reconstruct the inputs. Several techniques have been proposed to overcome this issue, but they speed-up the sampling process in detriment of the output quality (Nichol and Dhariwal, 2021;Song et al., 2021a). This calls for approaches that naturally require less steps to generate samples.

In this paper we adopt a reverse point of view: we learn how to transform an arbitrary fixed initial state into any sample of the training set using the Goal-Conditioned Reinforcement Learning (GCRL) framework [START_REF] Pack | Learning to achieve goals[END_REF][START_REF] Pong | Temporal difference models: Model-free deep RL for model-based control[END_REF]Andrychowicz et al., 2017;[START_REF] Schaul | Universal value function approximators[END_REF]. In GCRL the agent aims at a particular state called the goal. At each step, the environment yields a loss that accounts for "how far" the agent is from the goal it is targeting.

For example, the loss can be defined as the Euclidean distance between the current state and the goal. In the context of learning a generative model we consider the training set to be a set of goals. Intuitively, our learning procedure consists of training a family of goal-conditioned agents (GC-policy) that learn to reach the different elements in the training set by producing a trajectory of intermediate representations, departing from the fixed initial state. At the same time, we obtain the generative model by learning a mixture policy of these goal-conditioned policies where the goal is sampled uniformly at random from the training set. Concretely, the generative model approximates a policy that randomly picks a trajectory that departs from the fixed initial state and leads to an element of the training set. This can be cast as a supervised learning procedure. Note that the goal-conditioned agents are used for training only. At inference time, we generate trajectories with the mixture policy and collect the states reached at the final step. Such states are the new generated samples. Similar to variational inference [START_REF] Blei | Variational inference: A review for statisticians[END_REF], we derive a lower bound on the log-likelihood that consists of two terms. The first term measures how good the GC-policy is able to reconstruct the samples. The second term is a divergence term between the mixture policy and the GC-policy. We also provide empirical evidence that our method is able to effectively reconstruct the observed data and generate a rich variety of new samples in a small number of steps (H ≈ 16).

To summarize we highlight our main contributions:

• We bridge the gap between the fields of RL and generative models by introducing a novel framework that learns a generative model using GCRL. Although GCRL has been studied in similar contexts [START_REF] Tim Gj Rudner | Outcome-driven reinforcement learning via variational inference[END_REF][START_REF] Attias | Planning by probabilistic inference[END_REF], it is the first time to the best of our knowledge that RL is used as a building block for learning generative models. • We derive a lower bound on the log-likelihood that accounts for the reconstruction quality of the model. • We provide an empirical evaluation that compares our method to the Variational Auto-Encoder model. Comparisons to other generative models are left as future work.

Inference as Goal-Conditioned Reinforcement Learning

We assume that we have access to a training set { x 1 , . . . , x N } =: D ⊆ X of samples from some unknown distribution.

Our goal is to perform inference on this training set where the candidates probability distributions are the final state distribution of a policy in a certain episodic MDP.

Markov Decision Problem (MDP)

We consider a loss-free episodic MDP M = (X , Y, H, p) where X is the set of states (that also contains the training set D), Y the action set, H the number of steps, p h (x |x, y) is the transition probability from state x to state x by taking the action y at step h ∈ [H], where [H] := {1, . . . , H}.

Policy, reach probability and value function

A policy π is a collection of functions π h : X → ∆(Y) for all h ∈ [H],
where every π h maps each state to a probability distribution over actions.

Under policy π a trajectory is generated as follows: an initial state x 1 ∼ p 0 is sampled. Then for h ∈ [H], given the current sate x h , the agent samples an action y h ∼ π h (•|x h ) and the next state x h+1 ∼ p h (•|x h , y h ) is generated according to the transition probability. We denote by p π h (x) the probability to reach the state x in the MDP M at step h under the policy π. Similarly, we denote by p π (τ ) the probability distribution of a trajectory τ = x 1 , a 1 , . . . , x H , a H , x H+1 under the policy π. Given two policies π and π the Kullback-Leibler divergence between p π and p π is, by the chain rule,

KL(p π , p π ) = E π H h=1 KL π(x h ), π (x h ) ,
where E π is the expectation under p π .

Upper bound the negative log-likelihood We assume as probabilistic model for the training set the reach probability of the last step p π H+1 (•) parameterized by the policy π. We then want to find the policy that minimizes the negative log-likelihood of the training set L(π) where

L(π) := 1 N x∈D log 1 p π H+1 ( x) .
Solving this optimization problem is difficult because the probability p π H+1 ( x) is typically intractable. Similarly to variational inference [START_REF] Blei | Variational inference: A review for statisticians[END_REF], we will instead minimize an upper bound on the negative log-likelihood. For a fixed element x ∈ D, conditioned on the state-action pair (x H , y H ) it holds that

log 1 p π H+1 ( x) = -log E π p H ( x|x H , y H ) ≤ min π E π log 1 p H ( x|x H , y H ) + KL(p π , p π ) . (1) 
Equation ( 1) follows from the variational formula for the moment generating function (see Lemma 1 in Appendix B) and it defines an upper-bound on the negative log-likelihood of x.

We can then define a surrogate loss parameterized by a policy π and a family of goal-conditioned policies (π x ) x∈D , indexed by an element of the training set as:

L ub (π, (π x ) x∈D ) := 1 N x∈D E π x log 1 p H ( x|x H , y H ) + KL(p π x , p π ) . (2) 
Using the fact that L ub is an upper-bound on the loss L our problem becomes:

min π L(π) ≤ min π min (π x ) x∈D L ub (π, (π x ) x∈X ) = min π 1 N x∈D min π x E π x log 1 p H ( x|x H , y H ) + KL(p π x , p π ) .
At a high level the minimization of L ub goes as follows. For each point x ∈ D in the training set with goal-conditioned RL we learn a policy π x not too far from π that leads to x with high probability. Simultaneously we train the policy π to reproduce trajectories from the policies π x .

Inner minimization: goal-conditioned RL If we fix the policy π and a state x ∈ D in the training set then solving (1) is equivalent to solving a regularized goal-conditioned RL problem. That is, we want to find a policy π x close to π that lead to the goal x with high probability. Let

x h (x, y) :=    log 1 p H ( x|x, y) if h = H 0 otherwise , (3) 
be a loss function parameterized by the goal x, and let M x = (X , Y, H, p, x ) be an MDP. Then the minimization of (1) is equivalent to solving the MDP M x regularized by the policy π. Precisely, we have

min π x E π x log 1 p H ( x|x H , y H ) +KL(π x , p π ) = min π x V π x , x + KL(π x , p π ) ,
where V π x , x is the value of the goal-conditioned policy π x in the MDP M x . Although this goal-conditioned RL problem has already been studied by [START_REF] Tim Gj Rudner | Outcome-driven reinforcement learning via variational inference[END_REF] and [START_REF] Attias | Planning by probabilistic inference[END_REF], it is the first time to the best of our knowledge that this formulation is used as an intermediate task to build a generative model. The link with variational inference is clear: we seek a policy π that approximates well the posterior distribution of a trajectory generated by π conditioned on the fact that this trajectory reaches the goal x.

Outer minimization: supervised learning Now, if we fix the family of goal-conditioned policies, minimizing the surrogate loss L ub (•, (π x ) x∈D ) over the policy π amounts to minimizing a convex combination of Kullback-Leibler divergences

arg min π L ub (π, (π x ) x∈D ) = arg min π 1 N x∈D KL(p π x , p π ) (4) 
This optimization problem can be efficiently solved with supervised learning. First, we sample goals according the the empirical distribution of the training set. Then, for each goal, we generate a trajectory with the goal-conditioned policy, and collect state-action pairs. We then use these state-action pairs to supervise the policy π.

Variational agent In the sequel we call the pair (π, (π x ) x∈D ) a variational agent (V-agent) made of π a supervised agent (S-agent) and (π x ) x∈D a goal-conditioned agent (GC-agent).

Algorithm

In this section we describe a particular instanciaton of MDP and V-agent and introduce an algorithm to learn the Vagent. In what follows we assume the space of states and actions are both the real d-space X = R d , Y = R d , for some dimension d.

Instanciation

We first describe a particular MDP and family of variational agents. The action, i.e. the selected proposal, is scaled by some rate α h and added to the previous state. For a fixed sequence of actions the proposal network is differentiable. Therefore we can backpropagate the loss from the last state to the initial state once the sequence of actions is determined.

A particular MDP We present a specific MPD M = {X , Y, H, p} parameterized by a sequence of rates (α h ) h∈[H] and a variance σ 2 . The initial state is fixed, e.g. x 1 is the mean of the elements in D. The first H -1 transition are deterministic. Precisely for h ∈ [H -1], given the state x h and action y h the next state x h+1 is

x h+1 = x h + α h y h . (5) 
The last transition probability distribution is a Gaussian distribution of variance σ 2 , that is p

H (•|x H , y H ) = N (x H + α H y H , σ 2 ).
Note that in this case the goal-conditioned loss is proportional to the mean square error between the last state and the goal

x h (x, y) = 1{h = H} x + α h y -x 2 2 /(2σ 2 ).
A family of variational agents As mentioned earlier a V-agent is made of a GC-agent and a S-agent. We only consider agents with policy given by a mixture of A Dirac probability distributions for some fixed A ∈ N. That is, given a step and a state (and a goal for the GC-agent) the agent samples an index a h ∈ [A] that we call selection.

The agent also samples a vector of actions (z h,a ) a∈[A] ∈ Y A , that we call proposals, from the collection of Dirac distributions. Then, the action is given by the proposal that corresponds to the selected index y h = z h,a h . Note that, since the Kullback-Leibler divergence between two Dirac distribution with different supports diverges, in order to maintain the loss L ub defined in (2) finite the GC-agent and the S-agent should share the same proposals. In particular, the proposal function of the GC-agent that maps the step, state and goal to the collection of proposal is independent of the goal since it is the case for the proposal function of the GC-agent. We use GCRL to learn to select the best proposal among the A proposals. In other words, we represent the action to be taken by its index a h ∈ [A]. This allows us to operate on a discrete space of actions. Intuitively, the agent learns to map samples from the underlying distribution of the data to sequences of indexes representing the selected actions at each step. The proposal function is fit to provide proposals that approach the agent to the goals, see below. Therefore, the MDP is non-stationary as the proposals change during the learning. By sharing the proposal function between both agents and representing actions by their indexes, we traded a GCRL task with continuous action space for a (non-stationary) GCRL task with discrete action space.

Remark 1 We use this particular class of policies for the CG and S-agent: a mixture of Dirac distributions that allows us to represent a highly multi-modal distribution in few steps (provided that the rates α h are large enough). Note that if one were to use the class of Gaussian probability distributions instead to model the policy, one would need much more steps to model a multi-modal distribution. Crucially, it would be harder to "branch out" to several different specific states from the current state by only adding Gaussian noise, as the model would be prone to mode collapse. . Typically for the S-prop-net θ we choose a U-Net architecture [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] whereas the S-select-net φ and GC-select-Qnet ψ are simple convolutional neural networks. See Appendix B for more details.

Unfolding the proposal network Note that once a sequence of selections (a 1 , . . . , a H ) is fixed, the last state (or more precisely, the state's mean) of a trajectory generated with actions y h = S-prop-net θ (x h , h, a h ) from the proposal network and the aforementioned selections is a differential function of the weights θ. To see this one just needs to unfold (5) trough the steps h ∈ [H], see Figure 1. We denote by S-prop-net θ,U (a 1 , . . . , a H ) = x H +α H y H the unfolded network that maps a sequence of selections to the mean of the state at step H + 1 when the actions are obtained with the S-agent proposal network.

Training

The learning procedure of the V-agent is split into two parts: trajectories are sampled with the GC-agent (and the proposal from the S-agent) to reconstruct a goal sampled at random from the training set. Then these trajectories are used to learn the different networks that parameterized the GC-agent and the S-agent. In particular the GC-agent is learned with the DQN algorithm 1 [START_REF] Mnih | Playing atari with deep reinforcement learning[END_REF].

Memory We use three replay buffers, one for each network. The replay buffer R GC-select associated with the GC Q-values network GC-select-Qnet, that will be fed with transitions. The replay buffer R S-select associated with the S-agent selection network S-select-net. And the replay buffer R S-prop of the S-agent proposal network S-prop-net.

Sample trajectory

We first sample a goal x uniformly at random from the training set D. Then a trajectory is generated with the GC-agent as follows. At step h, given the current state x h , we pick a selection index a h ∈ arg min GC-select-Qnet ψ,a (x h , h, x). The action y h = S-prop-net θ (x h , h, a h ) is the output of S-agent proposal network that corresponds to the index a h . The next state x h+1 is given by ( 5) and the GC-agent receives a loss h = x h (x h , y h ). The observed transition is stored in the replay-buffer R S-prop of the GC-agent, as well as the selection (x h , h, a h ) in the selection replay-buffer R S-select of the S-agent. Once the horizon is reached we record the 1. Precisely, in the experiments we use the Double-DQN algorithm (Hasselt et al., 2016) with Dueling Q-Network [START_REF] Wang | Dueling network architectures for deep reinforcement learning[END_REF].

selections and the goal ({a 1 , . . . , a h }, x) in the proposal replay-buffer R S-prop of the S-agent. See Algorithm 1 for a detailed description.

Algorithm 1 Sample-trajectory 1: Sample uniformly at random goal x from the train set D.

2: Get initial state x 1 .

3: for h ∈ [H] do Generate trajectory with the GC-agent.

4:

Get selection a h ∈ arg min a∈[A] GC-select-Qnet ψ,a (x h , h, x)

We can add an exploration malus.

5:

Get action y h = S-prop-net θ (x h , h, a h ).

6:

Observe next state x h+1 = x h + α h y h .

7:

Get loss h = x h (x h , y h ).

8:

Record transition (x h , h, a h , x h+1 , h , x) in R GC-select and selection (x h , h, a h ) in R S-select . 9: end for 10: Record trajectory selections ({a 1 , . . . , a H }, x) in R S-prop .

Update The GC-agent is learned with the DQN algorithm [START_REF] Mnih | Playing atari with deep reinforcement learning[END_REF]. Thus we need to define a target Q-values network parameterized by the weights ψ target . At a high level we use the target Q-values network GC-select-Qnet ψ target and the transitions stored in the replay buffer R GC-select to compute new targets via the optimal Bellman equations. Then the GC-agent Q-values network GC-select-Qnet ψ is trained to fit these targets by gradient descent on the mean squared error. Note that the targets weights are updated as an exponential moving average of the weights ψ target ← ρψ + (1 -ρ)ψ target for some parameter ρ ∈ (0, 1). The update of the S-agent is simpler. The S-agent selection network is trained to reproduce the selections picked by the GC-agent by minimizing the cross-entropy loss between the selections from the replay-buffer R S-select and its prediction. The S-agent unfolded proposal network S-prop-net θ,U is trained to map the sequence of selections stored in the replay-buffer R S-prop to the associated goals. Thus the weights θ are updated by gradient descent on the mean square error between the output of S-prop-net θ,U evaluated on the selections and the goal, see Figure 1. A complete description is provided in Algorithm 2.

Exploration For the exploration we do not rely on the by default ε-greedy mechanism. As a matter of fact, it is not clear how this exploration technique would interact with the learning of the proposal network which is based on the trajectories generated by the GC-agent. Instead we propose to add a penalty to the Q-values. This penalty is defined as the logarithm of the probability of the S-agent policy. That is, for some parameter κ > 0,

a h ∈ arg min a∈[A] GC-select-Qnet ψ,a (x h , h, x) + κ log S-select-net φ,a (x h , h) .
This will encourage the agent to take the selections that have not been used. Note that this penalty does not interfere with the policy of the GC agent systematically picking the same indexes for a specific goal as long as the other indexes are used for other goals.

Inference

To obtain as sample from the learned model one just needs to generate a trajectory using the S-agent. Note that at inference time we do not use the GC-agent, and that the selections are entirely made by the S-agent selection network S-select-net φ . It is important to point out that once the S-agent proposal network is fixed the number of possible samples generated by the model is finite and upper-bounded by A H . For a reasonably small choice of A and H this upper-bound is very large and not restrictive. Observe that this model thus produces a discrete representation of the input. Discrete latent representations have been explored by [START_REF] Van Den | Neural discrete representation learning[END_REF]. The only source of randomness in the model comes from sampling a selection from the S-agent selection network S-select-net φ . A detailed sampling procedure is provided in Algorithm 3 Update S-select-net φ with one step of gradient,

∇ φ 1 |BS-select| (x,h,a)∈B S-select -log S-select-net φ,a (x, h) . 8: end if 9: if time to update GC-select-Qnet ψ then 10: Sample a batch B GC-select in R GC-select 11:
for (x, h, a, x , , x) ∈ B GC-select do 12:

Compute target

q target (h, x , , x) = + min b GC-select-Qnet ψ target ,b (x , h + 1, x)
13:

end for 14:

Update GC-select-Qnet ψ with one step of gradient,

∇ ψ 1 |BGC-select| (x,h,a,x , , x)∈B GC-select GC-select-Qnet ψ,a (x, h, x) -q target (h, x , , x) 2 2 .
15:

if time to update GC-select-Qnet ψ target then 16:

Update target Q-values weights ψ target ← ρψ + (1 -ρ)ψ target . 17:

end if 18: end if Algorithm 3 Sample 1: Get initial state x 1 . 2: for h ∈ [H] do
Generate trajectory with the S-agent.

3:

Get selection a h ∼ S-select-net ψ (x h , h).

4:

Get action y h = S-prop-net θ (x h , h, a h ).

5:

Observe next state x h+1 = x h + α h y h . 6: end for 7: Return the last state x H+1 .

Experiments

We empirically assess the quality of our method on the task of image reconstruction and generation. Note that our goal here is to validate experimentally our new approach rather than providing a new state of the art method. To that end we conducted experiments on two publicly available datasets, namely Fashion-MNIST [START_REF] Xiao | Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms[END_REF] and MNIST [START_REF] Deng | The mnist database of handwritten digit images for machine learning research[END_REF]. In what follows we describe the experimental setup and present the results.

Setup

We compare our method with two types of generative models, Variational Auto-Encoders and Diffusion Models. For the VAE baselines we use a convolutional VAE architecture with the state-of-the-art hyperparameters as Subramanian (2020). For the DM baselines we use the publicly available implementation by Song et al. (2021b) 2 to run experiments. In particular, we fix the number of time-steps to 1000 and the forward diffusion process hyperparameters as in Ho et al. (2020). For the sake of comparison we parameterize the reverse process with the same architecture as in our method, that is, a four-layers U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] where each layer consists of convolution layers followed by group normalization and a ReLU activation function. To model time-steps we do as follows: At each time-step t ∈ [0, . . . , 1000] we use an embedding layer to compute an embedding the size of the image. We then reshape and concatenate this embedding as a set of extra channels to the input image.

For training our method we generated goal-conditioned trajectories as described in Section 3. We fixed the horizon H = 16 and the number of proposed actions per step A = 16. The sequence or rates (α h ) h∈[H] is defined such that α h = 1/h for h = 1, . . . , H. Similar to DMs, we parameterize the agents' proposal network with a four-layers U-Net, where the dependence on the current step h is also modeled with an embedding layer. Both the GC-agent and S-agent selection networks are parameterized as Convolutional Neural Networks with three blocks each. Further details on the architecture of our model and the baselines can be found in Appendix B. The rest of hyperparameters are chosen as follows: The exploration parameter is defined as κ = 0.05, and ρ = 0.06. We fixed the initial state to zero. The models were optimized using Adam optimizer [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] with a learning rate fixed to 0.0001. All models were trained until convergence.

Results

To compare our method with the baselines we collect the following quantities: Mean Squared Error (MSE) loss between the test set and the test set reconstruction (Rec.), Fréchet Inception Distance (FID) [START_REF] Heusel | Gans trained by a two time-scale update rule converge to a local nash equilibrium[END_REF] between the test set and its reconstruction (Rec.), and FID of randomly generated samples with respect to the training set (Samples). For the VAE, a random sample can be generated by feeding a sample from an isotropic Gaussian distribution (the prior of the VAE latent space) to the decoder. To sample from the trained DMs we used the sampling method described by Song et al. (2021b). For our method, random samples are generated as described in Section 3.3. We then generated trajectories where the selected actions were given by the GC-agent, in order to reconstruct the items in the batch (center). Finally, we randomly generated 100 images with the S-agent (right). A qualitative analysis of the generated samples (right) shows that our generative model is able to produce a broad variety of images.

Dataset

We report our results in Table 1. We first note that our method outperforms the VAE baseline in terms of MSE and FID by a large margin in both, test sample reconstruction and randomly generated images. Our model lags behind DMs in terms of FID in both settings, reconstruction and randomly generated samples. This difference might be explained by the fact that we chose a very small horizon (H = 16). Exploring other values for H is left as future work.

Our results confirm that the proposed model is not only able to accurately reconstruct the input but it is also able to randomly generate a rich variety of images.In Figure 2 we show two randomly generated trajectories, that is, trajectories produced by the S-agent, for the trained models in MNIST and Fashion-MNIST datasets. A qualitative inspection of the reconstructed images and generated samples in Figure 3 shows that our model effectively captures the underlying distribution of the data.

Conclusion and Discussion

We introduced a novel framework to learn generative models based on goal-conditioned reinforcement learning. The main idea of this work is to consider the elements of the training set as being generated by an agent that reaches those states after a fixed number of steps. We then learn a mixture policy that approximates a family of goal-conditioned agents that are trained to generate trajectories that lead to the training points. Following this line of reasoning we derived an upper-bound for the negative log-likelihood consisting of two terms. A reconstruction error term that measures the reconstruction quality of the goal-conditioned policy, and a divergence term that encourages the mixture policy to remain close to the family of goal-conditioned agents. Our experiments demonstrate that our method is able to effectively reconstruct the training set and generate a rich variety of outputs in the task of image synthesis.

There are some aspects of the algorithm we presented that are yet to be explored. Regarding the use of GCRL to parameterize a generative model an interesting research direction could be to explore whether Hindsight Experience Replay (Andrychowicz et al., 2017) or a variant of it could contribute to obtaining a more effective GC-agent in terms of reconstruction loss. We empirically showed that our method needs significantly less steps to reach the goals than DMs without compromising the sample quality (in terms of FID score). A more thorough comparative study of the required number of steps by DMs and our method would be of interest. Also, note that we have not use the stateof-the-art architectures for DMs nor for our algorithm due to time and resource constraints. Studying and comparing DMs and our method with more sophisticated models, and on bigger datasets, is left as future work.

We believe that the framework we introduced could be useful for a broad scope of tasks. In particular, there are applications where the space of actions is inherently discrete. For instance, in molecule design one could consider adding atoms and bonds to be the space of actions. In this case one can dispense with a proposal function, and construct a model that only needs to learn to select the right actions. Addressing this task is an interesting research direction.
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Figure 1 :

 1 Figure1: Generation of a trajectory with the GC-agent for a sample of MNIST: At a step h, given a state the GC-agent select one of the proposals provided by the S-agent. The action, i.e. the selected proposal, is scaled by some rate α h and added to the previous state. For a fixed sequence of actions the proposal network is differentiable. Therefore we can backpropagate the loss from the last state to the initial state once the sequence of actions is determined.

Algorithm 2

 2 Update 1: if time to update S-prop-net θ then 2: Sample a batch B S-prop in R S-prop 3: Update S-prop-net θ with one step of gradient, ∇ θ 1 |BS-prop| ({a 1 ,...,a H }, x)∈B S-prop S-prop-net θ,U (a1, . . . a H ) -x if 5: if time to update S-select-net φ then 6: Sample a batch B S-select in R S-select 7:

Figure 2 :

 2 Figure 2: Four trajectories generated by the S-agent for MNIST (left) and Fashion-MNIST (right). Note that all trajectories depart from the same initial state. The source or randomness comes from the selection function of the agents.

Figure 3 :

 3 Figure 3: Reconstruction and generation of images. We sampled a batch of 100 images from the MNIST test set (left).We then generated trajectories where the selected actions were given by the GC-agent, in order to reconstruct the items in the batch (center). Finally, we randomly generated 100 images with the S-agent (right). A qualitative analysis of the generated samples (right) shows that our generative model is able to produce a broad variety of images.
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 5 Figure 5: Selection network architecture for the GC-agent and S-agent with batch size 128 and selection size A = 16.

Table 1 :

 1 

		Method	MSE		FID
			Rec.	Rec. Samples
		VAE	.13	45.09	60.06
	Fashion-MNIST	DM	-	-	9.63
		Us	.10	39.10	47.74
		VAE	.12	16.49	27.96
	MNIST	DM	-	-	1.94
		Us	.06	7.77	19.46

Evaluation of VAE, DM, and our model by MSE between the test set and test sample reconstruction, FID (lower is better) between test set and test sample reconstruction, and FID of randomly generated samples with respect to the training set.

  Figure 4: Proposal network architecture (shared between both agents) with batch size 128 and number of steps H = 16.
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Appendix A. Derivations of Section 2

In this appendix we detail the missing derivations of Section 2.

Lemma 2 For any policy π, state x,

Proof Thanks to the Donsker-Varadhan's formula [START_REF] Donsker | Asymptotic evaluation of certain markov process expectations for large time[END_REF]) it holds

where ∆(Traj) is the set of probability distributions supported on the trajectory τ = (x 1 , y 1 , . . . , x H , y H ) up to step H with x h ∈ X and y h ∈ Y. Restricting the infimum to probability distributions q = p π induced by some policy π allows us to conclude.

Appendix B. Network architectures

In this appendix we describe the architecture of the proposal, Q-value and selection networks.

B.1 Proposal network

The proposal network is parameterized as a four-layer U-Net 3 . Each layer has two blocks consisting of a convolution layer followed by group normalization and a ReLU activation function.

The different networks used in our model also depends on discrete time-step h ∈ [H]. We incorporate this information in the model as follows. At each time-step h the proposal network receives an input of the form (x h , h, a h ). The current state x h is of shape w × t × c, where w is the width, t is the height, and c is the number of channels (for example, c = 3 for RGB images). The selected index a h indicates which of the A available proposals is to be chosen at the current time-step h. We first calculate an embedding h a,h representing h and a through an Embedding layer to obtain a tensor the same size as x h . We then concatenate x h and h a,h on the channel axis to obtain a tensor of shape w × t × 2c that is fed to the U-Net. Finally, the U-Net outputs the tensor x h+1 of shape w × t × c. This process is described as follows h a,h = Ah + a h a,h = Emb(h a,h )

where [•, •] represents concatenation of 3D tensors on the channel axis. At each pass the network generates the proposal that corresponds to the specified index. The output of each pass will then have the same shape as the inputs. We provide a detailed architecture of the network in Figure 4.

Note that, with this embedding of the time-step and selection the proposal network can memorize at most H × A distinct images. Thus combining proposals by choosing the selections in a trajectory is essential to be able to model a rich distribution.

B.2 Selection network

The selection network architecture is the same for both agents. It consists of three blocks of convolution layers followed by a group normalization and a ReLU activation function. The network outputs a tensor of size batch size× A corresponding to the selected actions for each element in the batch. The embedding of the time-step follows the same method as in the proposal network. Figure 5 presents a sketch of the architecture we used for our experiments. The batch size was set to 128, proposal size A = 16 and number of steps H = 16.

B.3 Q-value selection network

The architecture of the Q-value network is the same as the one of the selection network except for the last layer where the output is not normalized to obtain a probability distribution. For the last layer we use a Dueling Network architecture [START_REF] Wang | Dueling network architectures for deep reinforcement learning[END_REF].

3. The U-Net implementation is publicly available at https://github.com/milesial/Pytorch-UNet.