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Abstract. Coarse-grained descriptions of collective motion of flocking systems are often
derived for the macroscopic or the thermodynamic limit. However, the size of many real
flocks falls within ‘mesoscopic’ scales (10 to 100 individuals), where stochasticity arising
from the finite flock sizes is important. Previous studies on mesoscopic models have typically
focused on non-spatial models. Developing mesoscopic scale equations, typically in the
form of stochastic differential equations, can be challenging even for the simplest of the
collective motion models that explicitly account for space. To address this gap, here, we
take a novel data-driven equation learning approach to construct the stochastic mesoscopic
descriptions of a simple, spatial, self-propelled particle (SPP) model of collective motion. In
the spatial model, a focal individual can interact with k£ randomly chosen neighbours within an
interaction radius. We consider k = 1 (called stochastic pairwise interactions), k = 2 (stochastic
ternary interactions), and k equalling all available neighbours within the interaction radius
(equivalent to Vicsek-like local averaging). For the stochastic pairwise interaction model, the
data-driven mesoscopic equations reveal that the collective order is driven by a multiplicative
noise term (hence termed, noise-induced flocking). In contrast, for higher order interactions
(k > 1), including Vicsek-like averaging interactions, models yield collective order driven
by a combination of deterministic and stochastic forces. We find that the relation between
the parameters of the mesoscopic equations describing the dynamics and the population size
are sensitive to the density and to the interaction radius, exhibiting deviations from mean-
field theoretical expectations. We provide semi-analytic arguments potentially explaining
these observed deviations. In summary, our study emphasises the importance of mesoscopic
descriptions of flocking systems and demonstrates the potential of the data-driven equation
discovery methods for complex systems studies.

Submitted to: Phys. Biol.
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1. Introduction

Collective motion is a ubiquitous phenomenon in nature, observed across scales in a wide
variety of systems, from microscopic organisms, insects, fish, and mammals to human crowds
and even in synthetic active matter [1, [2, 3l]. Collective phenomena have been a matter of
investigation from the perspective of a range of disciplines beyond biology, including physics
and engineering [3, 4, 15,16} 7, 18, 9, [10]. A central question in the field of collective motion
is to understand how the simple individual behavioural rules translate to the self-organised
emergent dynamics of the group [} 3,11} [12].

To address this question, a classic and highly successful approach is that of individual-
based models, where one begins with simple rules for each individual. For instance, these
rules can describe how organisms align their direction of motion to that of their neighbours,
and are attracted and/or repelled by them [13, (14, [15} [16} [17, [18]. Moreover, these models
incorporate errors in the decision-making of organisms in the form of noise in their motion.
The resulting emergent properties of the groups are then studied by computer simulations. In
addition, one may analytically derive the coarse-grained description of the group properties or
order parameters, such as the group polarisation, which determines the degree of directional
alignment of the entire flock [[19} 120} 21, 22, [23]]. Unfortunately, deriving such coarse-grained
models is analytically difficult except for the simplest of models [24} 25, 26]. Besides, many
of the coarse-grained descriptions are accurate only when the number of individuals is very
large, where the stochastic fluctuations have a negligible effect on the group dynamics.

On the other hand, many real organisms form groups that can be relatively small to
medium-sized (10 to 100 individuals), an intermediate scale which we call the mesoscopic
scale. Many experimental studies of collective motion indeed consider group sizes in this
range [27, 28], 29, 30, 31, 132, 33]]. At these scales, individual-level stochasticity can have
observable effects at the group level, and the resulting group-level stochasticity can have
unusual effects on the nature of collective motion [34, [35, [36]]. This is best illustrated
with a recently studied example of collective motion in karimeen fish (Etroplus suratensis).
Here, each individual seems to copy one randomly chosen group member [28]. Under
the assumption of such a simple behavioural rule, the analytical model predicts that the
deterministic thermodynamic limit is a disordered phase, with no collective synchronised
movement. However, when the coarse-grained descriptions also include the noise arising
from finite size effects of the group sizes, the model predicts that collective order is possible
when group sizes are smaller than a threshold group size [37]. In other words, the schooling
of fish is a consequence of the noise associated with small-sized groups, and hence is
termed noise-induced schooling. Similarly, other group characteristics such as mechanical
properties [38, 39, 40, 41, 42] and cohesion have also been identified as a consequence
of stochastic effects [43, 44]. Intrinsic noise could also be important in evolutionary
dynamics that shapes collective motion of finite flocks [45, 46]. Therefore, characterising
the mesoscopic description is crucial to understanding the properties of collective motion and
the role of noise in finite-sized flocks [47, (37, [28]].

Our current understanding of the mesoscopic descriptions of collective behaviour is
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largely based on simple non-spatial models. Here, spatial correlations are absent or are
neglected, and every individual of the group is equally likely to interact with every other
individual of the group, an assumption equivalent to the mean-field approximation. For
example, theoretical studies of mesoscopic models of collective behaviour [47, 48| 49, |37,
28, 150]] ignore space (but see [S1, 43]]) and treat animal groups as well-mixed, i.e. any
individual may interact with any other group member with equal probability. Under such
assumptions, using van Kampen’s system size expansion, one derives Fokker-Plank and Itd
stochastic differential equations for a coarse-grained variable such as group polarisation (or
degree of consensus) [52, 53]. While this mean-field approach of starting with a well-
mixed, non-spatial system may be reasonable for small group sizes, as indeed confirmed by
experiments on karimeen fish [28]], it is unclear how it generalises to spatially explicit models
of collective motion. In the spatially explicit framework, one considers individuals as self-
propelled particles which interact only within a certain local radius. Furthermore, it is well
known that in flocking systems there could be density fluctuations in space as well as merge
and split dynamics of groups, meaning that individuals are not always uniformly spread in
space [54, 1, 155, 145]. This could also mean that individuals are more likely to interact with
some group members than with others depending on their position within the group. Hence,
it remains unclear whether the results of mesoscopic models with non-spatial approximation
apply to spatially explicit self-propelled particle models of collective motion.

In the present work, we construct a mesoscopic description of a self-propelled particle
model of collective motion with spatially-explicit local interactions. Our spatial model is
based on the classic Vicsek model but with two key differences: (i) the update rules are
asynchronous, i.e. each individual updates its heading direction at random time points,
independently from other individuals and (ii) we introduce a parameter k fixing the number
of neighbours with which a focal individual interacts to align its direction of motion.
This simpler version of the classic Vicsek model [15] is inspired from studies on animal
collective motion, which demonstrate that many species may not be averaging over all of
their local neighbours. Instead, they are likely to follow only a few of their neighbours,
with various studies showing that it may be as small as one or two random (or influential)
neighbours [28] 29, 30, 31} 32, 56, 157, 158, 159]. Furthermore, computational studies have
demonstrated that the cognitive load to monitor the movements of a large number of
neighbours is high, and they suggest that animals focus their attention on a small set of
influential neighbours [60, 61} 62]. Local interaction with a few neighbours is cognitively
feasible and is sufficient to maintain cohesion and order in the swarm [62, |63, [64]].

At the mesoscopic regime, where one wishes to capture both deterministic and stochastic
aspects of the dynamics, stochastic differential equations (SDEs) provide a good modelling
framework to describe the group dynamics. Unfortunately, for spatial models such as ones
considered in this paper, analytically deriving mesoscale SDEs starting from the individual-
level interactions is a difficult endeavour. We circumvent this difficulty using a data-
driven equation learning approach. This state-of-the-art method enables the construction
of dynamical system models from the high-resolution time series of a system variable (e.g.,
order parameter of collective motion) [63, 66, 67]. Here, the goal is to directly discover
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the governing SDEs, starting from observed (or simulated) time series, while incorporating
physical constraints imposed by the symmetries of the system. The output of such an analysis
is an interpretable SDE, capturing both deterministic and stochastic aspects of the dynamics,
with minimum bias of the researcher modelling the data.

This paper is structured as follows. We begin with a brief review of a class of
models of collective movement that ignore spatial locations of individuals in Section [2] The
mesoscale SDEs for these models have been studied previously. In Section [3, we describe a
generalization of these models, where interactions are localized in space, whose mesoscale
descriptions are hitherto unknown. We also describe the data-driven equation discovery
approach that we adopt to obtain mesoscale SDEs from these spatially explicit models. In
Section [4] we discuss the results of the equation-discovery procedure—namely, mesoscopic
SDE:s for the spatially explicit models—highlighting similarities as well as differences from
the non-spatial models. Finally, we conclude the manuscript with a brief discussion of the
results and a few concluding remarks.

The main new findings of our study of the spatial models are:

e Stochastic pairwise interaction in the local neighbourhood can maintain high group
polarisation, but only in small group sizes, via intrinsic noise-induced schooling.

e Higher order positive interactions (i.e., interacting with two or more neighbours,
including Vicsek-like averaging) in the local neighbourhood can also drive schooling,
but they can persist even at the macroscopic limit. This type of schooling is primarily
explained via deterministic forcing terms, and is thus different from the noise-induced
schooling driven by pairwise stochastic interactions.

e While the above two qualitative results are broadly consistent with the mean-field theory
(MFT) based on non-spatial models, the data-derived mesoscopic equations do deviate
from the MFT for the following features:

A) MFT predicts that the deterministic drift term is independent of the population size
N. However, in the spatial model, the numerical coefficients of the data-derived drift
function of the spatially explicit model do exhibit a dependence on N.

B) MFT predicts that the diffusion (the strength of noise) is inversely proportional to V.
However, in the spatial model, this scaling relationship is sensitive to the radius of
the local interaction and deviates from the MFT; especially for small to intermediate
group sizes. We provide semi-analytical arguments for these observed deviations.

2. A brief review of non-spatial mesoscopic models of collective movement

We first briefly review the analytical models of mesoscopic descriptions of non-spatial
flocking models, where the spatial structure is either not considered at all, or where
spatial correlations between individuals are completely neglected. In such cases, mesoscale
descriptions for small-sized flocks with simple interaction models may be derived
analytically [37,147]. In typical flocking models, individuals interact only with those within
a certain metric or topological neighbourhood. However, in a non-spatial model, a focal
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individual interacts with individuals from anywhere in the flock, irrespective of its distance
from it. Hence, the spatially extended nature of the flocking system becomes irrelevant.
While such non-spatial interactions may be far from reality, these models provide a good
starting point for analytical derivations of mesoscale dynamics, giving us a baseline theoretical
expectation to study the impact of an actual embedding space on the dynamics of the group.

We review the results of non-spatial models of flocks in a two-dimensional space from
Jhawar et al [28]]. In this approach, the system is fully characterized in terms of the orientation
of each individual i, denoted as e; = (cos 6;,sin 6;), where 6; represents the heading angle
of the individual. Individuals update their orientations at each time-step based on some
interaction rules, as described below. For a group of N individuals, the level of order in
the group can be characterized using a polarisation order parameter, defined as:

1 N
m(¢) :N;ei(t). ey

At mesoscopic scales—unlike in the thermodynamic limit—the inherent stochasticity in the
dynamics becomes significant due to the finite number of individuals [68]. An accurate
description of the system at the mesoscale should account for these stochastic effects.
Therefore, we use the framework of stochastic differential equations (SDEs). Our goal is to
describe the time-evolution of the order parameter m using a stochastic differential equation
of the following form, interpreted in an Itd sense,

m(z) = f(m) + /G (m) -7 (2). @)
Here, f is a vector function called the drift or the force, and characterises the deterministic
structure of the dynamics, e.g, the existence and stability of equilibrium points in the absence
of the noise term. The function G, called the diffusion, is a symmetric matrix function,
and captures the stochastic fluctuations in the dynamics. The noise term 1 (¢) ~ .4°(0,1)
is a Gaussian white noise vector. The square root in Eq. [2|is a matrix square root, i.e. VG
represents the symmetric matrix g such that gg” = g> = G. The functions f and G characterise
the dynamics in the following way: at time ¢, m(¢) is a random vector with mean f(m(z))
and covariance matrix G(m(z))—that is, f characterises the mean behaviour of m while G
characterises the fluctuations. When G is a constant matrix with no dependence on m, the
noise is said to be additive or state-independent. When G depends on m the noise is said to
be multiplicative or state-dependent.
We consider a simple class of models, where individuals can update their orientation in
the following ways:

e Spontaneous turning: at a rate rg, an individual may spontaneously turn and choose a
random direction, i.e., the new heading angle 6; is drawn uniformly in [—7, 7).

e Stochastic pairwise interaction model (k = 1 interacting neighbour): at a rate ry, an
individual may choose a random individual from the entire group, and copy its direction.

e Stochastic ternary interaction model (k = 2 interacting neighbours): at a rate rp, in a
group of 3 individuals (picked at random from the population), the most misaligned
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individual takes the direction of one of the other two. This is a simplified version of
alignment rules than what is seen in typical SPP models, adopted primarily to facilitate
analytical coarse-graining.

Note that the orientation changes occur asynchronously across the individuals, at random
time points determined by the corresponding rates ry, r; and r,. For the above class of models,
analytical derivations of the mesoscale SDEs exist in the literature [28, 47].

For a pairwise interaction model with only spontaneous turns (rp) and pairwise
interactions (r}), the mesoscale SDE takes the form [28]]:

_ 2
m:—r0m+\/r0+rl(]1\[ m| )I-n(t). 3)

The drift term of this equation, —rym, is linear (like the force of a spring) and would alone
lead to an exponential decay with time of m(¢) to 0. Therefore, in the macroscopic limit
N — oo, the system is in a disordered state. However, the strength of the diffusion term
becomes larger for smaller N. Further, it is maximum at m = 0, and decreases as |m| increases.

Consequently, the system exhibits an order, i.e., a high polarisation with |m| approaching
values close to 1, when the system size is less than a typical group size N, [28, 47, 37], where
N, ~ ri/ryp and ry < r; (a regime that we will consider hereafter).

For a ternary interaction model with only spontaneous turns and stochastic ternary
interactions (and no pairwise interactions), the mesoscale SDE has the form [37, 28]]:

ro+r(1—mf?)

N I-n(). )
The drift term here is cubic and has a stable manifold at [m| = /1 — ry/r» when r, > rg. The
diffusion term is similar to the one present in the pairwise interaction model, and is maximum
at m = 0. Here, in the macroscopic limit N — oo, the disordered state is unstable when the
ternary interaction rate is higher than the spontaneous turning rate (i.e. r, > rp). Thus, unlike

m= —r0m+r2(1 — |m|2)m+ \/

the stochastic pairwise model, one can achieve the ordered state by the deterministic forces
alone. We also note that the drift term here is reminiscent of the deterministic terms typically
employed in the (simpler) field theories of Vicsek-class of models [[1].

Finally, we note that the mean-field mesoscopic theory for the pairwise interaction and
ternary interaction models predicts that the drift term is independent of the group size N,
whereas the diffusion term scales inversely with N. We refer to this the scaling relationships
for drift and diffusion functions.

Recall that these SDEs were derived for the nonspatial model where every individual is
equally likely to interact with every other individual at all times. This assumption is strictly
equivalent to the mean-field assumption, which neglects correlations between agents. In the
next section, we introduce a simple spatial extension of the above interaction models, and
introduce a data-driven approach to directly obtain mesoscopic SDEs from model simulations.
One of our main motivations is to assess which features of the non-spatial model survive in
the presence of local interactions and, possibly, strong correlations between agents.
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3. Spatially explicit models and the data-driven equation discovery method

A. Local alignment models with asynchronous update rules for collective motion

We develop a simple flocking model by modifying the well known Vicsek model of collective
motion [15]. In our model, each agent is characterised by its orientation, e; = (cos 6;,sin 6;),
position x; and moves at a constant speed, v. Agents move within a box of length L with
periodic boundary conditions, and we update the positions of agents every A¢. Recent studies
have emphasised the role of the probabilistic nature of animal interactions on collective
motion [69, 70, 44]]. We incorporate this via asynchronous interactions among agents and
choice of neighbours [70], as described below.

Analogous to the non-spatial models from the previous section, the agents in the spatial
model also update their orientation by spontaneous turns, or by interacting with other
individuals. The spontaneous turn event is identical to the one in the non-spatial model, where
the individual spontaneously chooses a random direction, 6; <— 11 where n ~ Unif[—x, 7],
with a rate ry. In addition, an agent may also align with its neighbour(s) within an interaction
radius R. We then define three models in analogy with the non-spatial models of the previous
section (see also the top row panels of Fig.[I):

(1) Local stochastic pairwise interaction model (k = 1 interacting neighbour): at a rate ry,
the focal agent copies the direction of a randomly chosen neighbour from the set of
neighbours that are within the interaction radius.

(i) Local stochastic ternary interaction model (k = 2 interacting neighbours): at a rate
ra, the focal individual takes the average direction of two randomly chosen neighbours
within the interaction radius.

(ii1) Local averaging model (k = ALL interacting neighbours): at a rate r4, the focal agent
takes the average direction of all neighbours within the interaction radius.

For each of the interaction models described above, the other two interactions are
absent for that model. Similar to the non-spatial models, these alignment interactions
happen asynchronously and stochastically, with rates ry (spontaneous turns), r; (pairwise),
rp (ternary), and ry4 (averaging). The reader might notice that the local averaging model
is simply an asynchronous counterpart of the classic Vicsek model [15]. In these models,
probabilistic interaction rules are implemented asynchronously across individuals, as opposed
to synchronous updates at each time-step like in the Vicsek model. We choose this
asynchronous variant instead of the classic Vicsek model since arguably, asynchronous
updates are biologically more realistic. Furthermore, several previous studies have derived the
underlying SDE for simple non-spatial pairwise and ternary stochastic models, like the ones
presented in the previous section [47, 37,48l 49]. Therefore, an asynchronous counterpart of
the Vicsek model facilitates direct comparisons with the non-spatial models.

The models have the following parameters: the number of agents N, the simulation area
L x L, the local radius of social interaction R, the spontaneous turning rate ry, the pairwise
alignment interaction rate ri, the ternary alignment interaction rate rp, and the rate r4 of
local-averaging among all neighbours within a radius R. We choose N in the range 5 — 80,
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Figure 1. Schematic illustration of the simulation model (top row: a-c) and the data-
driven SDE discovery procedure (bottom row: d-g). Top Row: Schematic of the three
local-alignment interaction models of collective motion, with asynchronous update rules.
Individuals interact and align their direction of motion with others present in a circle of radius
of interaction R, (a) with only one randomly chosen neighbour (k = 1), (b) with two randomly
chosen neighbours (k = 2) and (c) with all neighbours in the circle (k =ALL). Bottom row: (d)
and (e) We simulate the model for a sufficiently long time and generate time series of the order
parameter — group polarisation m. (f) We compute jump moments and use symmetry to obtain
drift and diffusion functions; we then obtain interpretable analytical functions and an SDE via
sparse regression [[65]. (g) A sample visualisation of SDE via drift and diffusion functions.

which covers the typical range of experimental studies. When we vary N, we consider two
scenarios: a constant simulation arena size, for which we choose L = 5; and a constant density
case, for which the density p = N/L? is fixed to be 1.2 particles per unit area. For most
of our study, we fix R = 1. But to investigate the effect of R, we also study simulations
with R = 1.5 and 2 (see Results section). The interaction rates were chosen so that, for
N = 30, the average magnitude of the polarisation across the 3 models was approximately
lm| ~ 0.8. With these considerations, we choose r; = 1.5, r, = 1, and r4 = 1.22, and
the corresponding spontaneous turning rates for the three models were rop = 0.014, 0.049,
and 0.15, respectively. The movement speed v was fixed as 0.2. We reiterate that when
we consider a given interaction model, the other interaction rates are zero: for example,
for the ternary interaction model, the pairwise and average copying rules are absent. Each
simulation begins with random orientation of individuals placed roughly at the centre of the
L x L continuous two-dimensional space. The simulations continue for a duration of 10° time
units, with asynchronous update rules [71,[72]. We assume periodic boundary conditions.
Note that the models considered here do not incorporate attraction, and hence do not
explicitly enforce cohesion. This is a conscious choice, since we are interested in isolating the
effect of spatial interactions on the mesoscale behaviour—introducing attraction could affect
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the polarization dynamics in nontrivial ways, and is a subject for future work. Nevertheless,
the specific values of parameters chosen, along with the periodic boundary conditions ensure
that the group remains largely cohesive. Further, we highlight that models studied in the
paper are different from other models in the literature in several important ways. First, we use
asynchronous update rules which contrasts with the classic Vicsek or Couzin models where
the movement updates are synchronous. Second, the SDEs studied are in the mesoscopic
regime, where the finite number of individuals results in multiplicative noise, whose effect
cannot be ignored; contrast this with hydrodynamic models of collective movement typically
found in the physics literature, which are valid only in the large-N limit, where the noise is
additive, or absent altogether [2,20]. Third, as we show below, the multiplicative noise in our
models is an emergent property at the group level. The randomness present at the individual
level is state-independent, in contrast with other models with multiplicative noise, where even
the individual-level noise is multiplicative [43].

B. Data-driven approach for deriving mesoscopic descriptions

To describe the mesoscale dynamics of the different spatial models under study, we use a
data-driven model discovery framework. Starting from a real or simulated time series, this
approach enables us to discover a governing model that describes the dynamics of the time-
series. In this study, the goal is to discover stochastic differential equations that govern the
polarization dynamics of the respective SPP models.

The general procedure consists of the following steps (see Fig.[I))):

e First, we generate simulated trajectories using the spatial models described above.

e Next, we quantify the dynamics of the system using an appropriate order parameter,
which characterizes the state of the system. In our case, the order parameter of interest
is the group polarisation (m(z), as defined in Eq|[I).

e Finally, using a data-driven procedure, we find an appropriate stochastic differential
equation model to describe the dynamics of the order parameter, which we describe
below in more detail.

Briefly, given the polarisation time series m(¢), sampled at some finite sampling time At,
the first jump moment is an estimate of the drift, f [73]:

f(m) = i (m(r + Ar) —m(t))m(t):m : (5)
Once f is estimated, the diffusion can be estimated from the residuals as follows:

r(m) = (m(z +Ar) —m(r) —f(m(2)) - M)y ) (6)

G(m) = ir(m) -r(m)”. (7)

Typically, f and G are estimated by using non-parametric methods, such as binwise
averaging or kernel estimates [50, [74]. Here, to obtain interpretable representations of f and
G, we employ sparse polynomial regression to represent f and G as polynomial function [66].
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Naively, one could represent f and G as component-wise as polynomial functions in my, m.
However, to obtain even more parsimonious representations, one can take advantage of the
inherent symmetries of m. Specifically, since the individuals do not have a preferred direction
in any of the models, m must exhibit rotational and mirror symmetry—the drift and diffusion
functions should respect these symmetries. Therefore, the drift function can be expressed
as a function of m and |m|, while the diffusion function can be expressed as a function of
mm’ and |m|. Thus, we express the discovered drift functions as a vector ‘polynomial’ with

terms m, jm|m, m|?m, ..., and the diffusion functions as a matrix polynomial with terms
I, )m|I, jm%I, ..., mm”, jmmm” jm|>mm” ..., utilising the identity that (mm?)"+1) =
im|*"mm’ .

The equation discovery procedure aims to represent f and G as a sparse combination of
the above terms. An algorithm called STLSQ (sequentially thresholded least squares) [66] is
used for sparse regression: the procedure involves iteratively fitting a regression model and
eliminating terms that have fitted coefficients below a certain threshold. For more details on
the regression procedure, see refs. [65, 60].

If G contains only |m|-terms, G is a diagonal matrix and the diffusion is isotropic for
all values of m. Non-zero off-diagonal entries in G, which in turn causes the diffusion to
be anisotropic, can only appear as scalar multiples of mm’ (see above). For the models
considered here, the contribution of mm’ terms is negligible, and can be ignored.

It is worth highlighting that the equation discovery procedure is different in spirit from
simple parametric model fitting: unlike the latter case, one does not specify a model (i.e
an equation) whose parameters needs to be learned—the algorithm discovers an appropriate
model, informed by data and guided by symmetries and constrains inherent to the system.

4. Results

A. Contrast between collective motion from local stochastic pairwise interactions and
higher-order interactions

In Fig.[2] we display results for three key interaction models of the spatially explicit alignment
model — stochastic pairwise, stochastic ternary and Vicsek-like local averaging. We have
considered a small group size of N = 30 to illustrate the novel features of mesoscopic
dynamics. In Fig. 2] the time series of panels (a, e, i) and histogram of panels (b, f, j) of
the order parameter, i.e., the group polarisation m, show that all three models can exhibit
collective motion with high directional alignment between agents. However, the underlying
dynamical equations reveal interesting contrasts.

For the stochastic pairwise interaction model (k = 1), our data-driven discovery method
yields a linear drift (Fig. k) and a quadratic diffusion (Fig. 2d). The corresponding
mesoscopic equation for the group polarisation is

m=—am-+/a, —azlm|*I-n(z), (8)

where we interpret the SDE in the [t6-sense, 1n(t) is a standard Gaussian white noise, and
ai,a», and a3 are parameter related to the interaction rates. The values of the coefficients
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Figure 2. Estimated mesoscopic SDEs qualitatively differ between stochastic pairwise
and higher-order interactions. Top row (a, e, i): Sample time series of group polarisation
for the three interaction models. Second row (b, f, j): Histograms of the net polarisation, |m)|.
We consider parameters such that all interaction models show a high degree of polarisation.
Third row (c, g, k): The estimated drift functions via jump moments are qualitatively different
between pairwise stochastic (linear) and higher-order interactions (cubic or cubic-like with
three roots). The insets show a slice along the m, axis of the x-component f;, i.e. fi(my,0).
Fourth row (d, h, i): The estimated diffusion functions are all qualitatively similar. Insets
show a slice along the x-axis, i.e. Gyy(my,0). The bottom row equations show the estimated
mesoscopic equations as interpretable SDEs. Parameters: N =30, L =5, R =1 for
all three interaction models. Estimated coefficients of SDEs: Local stochastic pairwise:
a; = —0.11,a, = 0.023,a3 = 0.022. Local stochastic ternary: by = 0.081,b, = 0.120,b3 =
0.016,b4 = 0.013. Local averaging: ¢; =0.171,¢c, = 0.251,¢3 = 0.012, ¢4 = 0.009.
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depend on the model parameters, and the values for a typical case with N =30, R =1 are
reported in the legend of Fig. As expected, this equation has the same form as the
analytically derived mean-field theoretical SDE for the non-spatial flocking model presented
in [50]. This SDE suggests that, in the absence of noise, the system reaches the equilibrium
m = 0 and hence becomes disordered. However, the strength of the multiplicative noise is
maximum when the system is in the disordered state. Furthermore, the discovered coefficients
ai, ap, az are such that the strength of the stochasticity is sufficiently high. In such cases,
as reported in previous studies [47, 37, 28], the stochasticity pushes the system away from
the disorder, towards the order, leading to a noise-induced high polarisation in this model.
Therefore, the mesoscopic dynamics of the spatially explicit system with local pairwise
interactions is qualitatively similar to the mesoscopic SDE of the corresponding non-spatial
system (Eq. [3).

In contrast, we find that the mesoscopic description of the local stochastic ternary
interactions (k = 2) is of the form:

1 = (b —bym|*)m+ /b3 — by/m|21- (1), 9)

where the mathematical symbols follow the same definitions as before. The drift term is
a cubic function (Fig. [2lg), whereas the diffusion term is a quadratic function (Fig. [2h).
Moreover, we note that b; > 0 (see caption of Fig @] for the estimated values); thus, in the
deterministic limit, the disordered equilibrium state m = 0 is an unstable state whereas the
ordered equilibirum corresponding to |m| = /b /b, is stable. Thus, the collective motion
with high polarisation is primarily driven by the drift or deterministic term. Therefore, the
collective motion in ternary interaction systems can be fundamentally different from the
corresponding term of the stochastic pairwise interaction system. All these observations are
also true for the mesoscopic dynamics of the non-spatial ternary interactions, whose governing
equation is given by Eq.[] In other words, the mesoscopic dynamics of the spatial system with
local ternary interactions are qualitatively similar to the corresponding non-spatial system.
However, there are important deviations in how the diffusion term G(¢) scales with N—a
point that we explore in detail in Section dC|

Finally, the mesoscopic description for the Vicsek-like local-averaging interaction model
(k= ALL) has a qualitatively similar drift and diffusion as the stochastic ternary interaction
system (see panels (k) and (1) in Fig. [2)), with the mathematical form

1 = (c; —com>)m+ /c3 — csm 2T -0 (2). (10)

with ¢; > 0 (see the caption of Fig[2|for the estimated values); thus, like the stochastic ternary
model described above, the ordered collective motion here too is driven primarily by the
deterministic forces. Technically, higher order polynomials (higher than cubic) can also give
a good fit for the drift function during the sparse regression. However, the higher-order terms
do not change the number roots or the qualitative nature of the drift function in comparison
to a cubic drift. Therefore, we constrain the fitting to cubic polynomials in our final fit, which
gives the most parsimonious explanation for the qualitative shape and the stability structure
of the drift function.
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Figure 3. Consistency of the estimated SDE models. The data-driven mesoscale SDEs
(Eqns B{IO0) produce dynamics that closely match the actual mesoscale dynamics of the SPP
models. The panels compare the distribution of the polarisation (a, ¢, d) and the autocorrelation
functions of the polarisation (b, d, f) obtained from time series for the three SPP models and
for their corresponding SDE.

We pause here to raise a minor point: In this study, the parameter regimes considered for
the individual-based models are such that the average polarisation is high (see Section 3]A).
Consequently, the corresponding parameters of Eqs. BH{I0] are such that b; > 0 and ¢; > 0,
rendering the disordered state unstable. At low densities or high rate of spontaneous turning,
the individual based model and the corresponding mesoscopic descriptions can give rise to
disordered dynamics; the disordered state, however, is not the focus of this study.

B. Diagnostics of the discovered models

We now test if the equations that we discovered via the data-driven method capture features
of the data from the spatially explicit model. We simulate the discovered equations Eqs. [SHI0]
using the Euler-Maruyama numerical integration scheme for Ito SDEs. In Fig. [3|top row, we
find that the histogram of the order parameter for the three spatial models and the histogram for
the corresponding SDE model match reasonably well. Next, as shown in Fig. [3] bottom row,
the autocorrelation function of the order parameter also shows strong consistency between the
original, individual-based simulations and the SDE simulations.

Finally, we also check the model consistency, as proposed by [50]. From the simulated
time series generated from the original SDE estimates, we perform the data-driven estimation
procedure again to re-estimate the SDE. Indeed, the re-estimated SDEs match the original
estimates for each of the models. Therefore, we conclude that the data-driven discovery
method has yielded reasonable mesoscopic SDEs for all the three spatial interaction models.
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C. Deviations of the discovered models from their non-spatial counterparts

In the previous sections, we have observed that the discovered SDEs for both the pairwise and
stochastic models are qualitatively similar to their non-spatial counterparts (compare Eq 3| to
Eq[§ and Eq [ to Eq[9H{I0). However, we observe a deviation from the non-spatial results in
how the parameters in the SDEs change as the number of individuals in the group increases.
Specifically, recall that the mesoscopic theory of the non-spatial systems predicts that the drift
term does not depend on the N, while the diffusion term is inversely proportional to N (see
Eq. [3H4). In our spatially explicit model with local interactions, we test this prediction about
the scaling relationships of the mean-field mesoscopic theory.

We study the effect of group size on the discovered SDEs when N is varied in two
different ways. The first way, which is reminiscent of how real-world experiments are done,
is to vary N while keeping the arena size L constant. This approach means that the density of
particles will increase with NV, which makes it hard to disentangle the effect of N from density
effects. As an alternative, we can vary N and L by keeping the density p = N/L? constant.
This approach helps us to separate the effect of N from the effect of density variations. We
report results from both of these approaches.

Effect of the group size on the drift term. In the non-spatial model, the drift term is
independent of the group size. However, for the spatial models, we find that the coefficients
of the drift term vary as a function of the group size and the density (see Fig. d)). For any
fixed value of N, the drift coefficients approach the mean-field values as the interaction radius
R increases. In fact, for R > L/ /2, the model converges to the non-spatial model, and the
coefficients converge to the mean-field limit.

We speculate that this dependence on N is due to the fact that the effective interaction
rates in the spatial models vary as a function of N and R: this is consistent with the observation
that the drift term for the pairwise interaction model—which in theory depends only on the
stochastic turning rate rp—stays independent of N for the spatial models. Below, we propose
a scaling argument in order to interpret the variation of the effective parameters of the SDE
models as a function of N, the density p, and the interacting radius R.

Effect of the group size on the diffusion term. In Fig.[5| we explore the diffusion term, and
in particular its maximum value reached at m = 0, G,(0,0) = G,,(0,0) (the maxima of the
parabolas in the panels (a) to (f) of Fig. [5} see also Egs. [SHI0). Again, we either increase
N while keeping the simulation arena size L = 5 fixed, or increase N while keeping the
density p = N/L?> = 1.2 fixed. As expected from the non-spatial models, the strength of the
diffusion decreases with increasing N. However, the decay of the diffusion seems to deviate
from the simple 1/N scaling predicted by the non-spatial models, even suggesting a possible
asymptotic power-law decay G, ~ N, with an exponent z which could depend on p and/or
R. Moreover, as R increases, the 1/N decay is ultimately recovered.

Although anomalous exponents cannot be readily excluded, it is possible to understand
the complex behaviour observed in Fig. [5] by exploiting a scaling argument describing the
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Figure 4. Dependence of the deterministic drift f(m) on N and R. In panels (a) to (f), the
drift term, fy(m), is plotted as a function of m, for the three models (same dependence for
fy(m) as a function of my, by isotropy). (a-c) Dependence of the drift function on N for the
three different models, when R is constant (R = 1). Deviating form the mean-field theory, the
drift functions change with varying N. (d-f) Dependence of the drift function on the radius of
interaction, R. As R increases, the drift functions converge to the mean-field limit (R = o).
Panels (g) to (1) show the coefficients of the drift function for the 3 models (see Eqs. :
—a, for the pairwise model in (g, j), b; > 0 and —b, < 0 in (h, k) for the ternary model, ¢; > 0
and —c2 < 0 in (i, 1) for the local-averaging model.In (g, h, i), NV is increased while keeping
the box size L = 5 constant, and in (j, k, 1), N and L are increased simultaneously such that
the density p = N/L? = 1.2 remains constant. For each condition in panels (g) to (1), the drift
parameters are plotted for 3 different interaction radii, R = 1.0, 1.5 and 2.0.
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Figure 5. Dependence of the diffusion term G(m) on Nand R. In panels (a) to (f), the
diffusion, Gy(m) = G,,(m), is plotted as a function of |m| for the three models, presenting
the inverse parabolic form of Eqgs. BHE Panels (a, b, ¢) and (d, e, f) illustrate the dependence
of the diffusion on N (for R = 1) and on R (for N = 30), respectively. In panels (g) to (1), the
maximum diffusion strength, G.(0,0) = G,,(0,0), is plotted as a function of N for the three
models. In (g, h, i), N is increased while keeping the box size L = 5 constant. In (j, k, 1), N
and L are increased simultaneously such that the density p = N/L?> = 1.2 remains constant.
For each condition, Gy,(0,0) is plotted for 3 different interaction radii, R = 1.0, 1.5 and 2.0.
The full lines correspond to the fit to the scaling ansatz of Eq.[T1] which explains the above
results in terms of a cross-over between a mean-field and a non-mean-field regime. Overall,
the values of the mean number of agents in the interaction circle of radius R, Ny, = TpR2,
span the interval 0.6—40. The dotted grey lines corresponds to the prediction of the mean-field

(non-spatial) models.
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cross-over between a mean-field regime when the interaction radius R > R.(N) and a regime
when the mean-field results do not strictly apply, for R < R.(N). Here, R.(N) is a cross-over
length separating these two regimes, and for a given density p, R.(N) is expected to increase
with N. Yet, in both regimes, we will now show that our data are compatible with a diffusion
term scaling like 1/N. In fact, unless extremely long-ranged correlations are present (e.g.,
decaying as a small enough power-law of the distance between two agents), the law of large
numbers ensures that the diffusion terms should decay like 1/N.

Let us consider the rescaled diffusion, g = N X G(0,0), which should be a function of
N (as evident from Fig. |S) and of the dimensionless combination Ny, = 7rpR2. Nt can be
simply interpreted as the expected number of agents in the interaction circle of radius R. We
propose the scaling form

g(PR%,N) = gmr — (gmr — r0)A(PR?)B(R*/R2(N)), (11)

where A and B are 2 functions that we will strongly constrain hereafter. g\ is the value taken
by g for the mean-field case corresponding to the limit Ny — oo (i.e., R — o0 or p — o).
For instance, in the mean-field model with pairwise interactions, we have gmp = ro + 11 (see
Eq. [3), whereas in the mean-field model with ternary interactions, we have gmr = ro + 2
(see Eq. . First, for Ny — 0 (i.e., R =0 or p — 0), the agents are not interacting,
so that g(0,N) = ryp. Plugging this result in Eq. imposes A(0) x B(0) = 1, and we
can take A(0) = B(0) = 1 in all generality. Moreover, from the above definition of the
crossover length R., one should recover the mean-field result when R > R,, and Eq.
imposes lim,_,..B(#) = 0. Finally, at fixed p and R and in the limit N — oo, we have
B(R*/R%(N)) — B(0) = 1, and the rescaled diffusion becomes independent of N and takes
the asymptotic form

g(PR? %) = gmr — (gmr — 0)A(PR?). (12)
Hence, the function A encodes the dependence of the rescaled diffusion on pR?, in the N — oo
limit. Of course, if we now take the limit pR> — oo, g(pR?,0) must go to gmr, and Eq.
imposes lim,, . A(u) = 0.

In order to fit the results of Fig. [5] by exploiting Eq. [I1] and using as few fitting
parameters as possible, we assume simple forms of the functions A and B, compatible with the
constraints that we obtained above. For the pairwise model and ternary models, we have used
A(u) = exp(—au) and B(u) = exp(—bu), where a and b are model-dependent fitting constants.
In addition, we have assumed a natural power law growth, R.(N) ~ N /2 /+/P. for the cross-
over length. Interestingly, our fitting procedure resulted in the same & ~ 0.8 for both models.
The reduced variable R? /R%(N) appearing in Eq. [11|can be rewritten as

R>  7wpR® Nint

RIN) ~ mpRE(N) ~ N%
The model is effectively in the mean-field regime only when R > R.(N), i.e., Nipt > N¢,
and the diffusion term then behaves like G(0,0) = gmp/N. Otherwise, for R < R.(N) (or
equivalently, Ni, < N%), we have G,(0,0) = g(pR?,o0)/N, where g(pR?,) is given by
Eq. Finally, for the model where the focal agent interacts with all other agents in the

(13)
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interacting circle, we find o ~ 0.4, about half the value of the exponent for the binary and
ternary interaction models.

The result of our fitting procedure is presented in Fig. [5] and shows a fair agreement
between the model simulations and the scaling ansatz of Eq.|1 1| and without too much effort in
optimising the functional form of A and B to improve the fit (to keep as few fitting parameters
as possible), which would anyway require to explore much larger values of N and a wider
range of Np. Again, the main purpose of this section was to make plausible the fact the
diffusion scales like 1/N, and that the complex behaviour of the diffusion observed in Fig.
can be interpreted by a scaling argument as a cross-over between a mean-field regime and a
non mean-field regime.

5. Discussion

In this manuscript, we obtained mesoscopic (i.e. small-group sized) descriptions of a simple
spatially-explicit local-alignment-based model of collective motion. To do so, we adopted a
novel data-driven equation discovery approach [66} 65]. For the class of spatial models we
considered, a focal individual interacts with k& randomly chosen neighbours within a radius
R. Our results reveal broad consistency between the mean-field theory and the spatially
explicit models. However, a novel finding of our analysis is that the scaling relationship
between the diffusion term or strength of noise G, and the group size N for spatial models can
depart substantially from the mean-field theory. In particular, the considered range of N and
Nint = TpR? (the mean number of agents in the interaction circle of radius R) appears to have
a strong impact on the scaling of the diffusion G.

Our study offers insights on the collective motion of small to intermediate-sized animal
groups, which have not been emphasised well enough in the literature. Much of the physics
literature has focused on the thermodynamic or macroscopic limit [3} 1,19, 20]. In contrast,
we focus on understanding mesoscale descriptions of biologically inspired variants of a
classic collective motion model, with group polarisation as the order parameter of interest.
The data-driven mesoscopic description of the order parameter yields stochastic differential
equations, containing deterministic (called drift) and stochastic (called diffusion) terms. The
analysis of these terms reveals that the nature of collective order at the mesoscale arising
from stochastic pairwise interactions (k = 1 in our model) and stochastic ternary/higher-
order interactions (i.e., kK > 2 in the model) are fundamentally different. More specifically,
we find that the stochastic pairwise interactions can lead to ordered collective motion at
mesoscopic scales; this is due to intrinsic noise, i.e., noise arising from finite-sized systems.
Earlier theoretical studies have also emphasised the role of noise in creating new states [34].
Reynolds et. al. [41} 42] later confirmed these predictions empirically. While these studies
included multiplicative noise at the individual level, it only arises at the group level in our
case. In contrast, for stochastic ternary or the higher order interaction models, including the
Vicsek averaging interactions, the collective order is driven by the deterministic terms in the
mesoscopic description; hence, the role of noise is secondary. These results of the spatially-
explicit model with local interactions are broadly consistent with the previous mean-field
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theories and simulations of the collective behaviour models that ignore spatial effects.

Our analysis also reveals departures between the mean-field theory and spatial models
when we consider the scaling relationships of the mesoscopic equations, i.e. how the drift
and diffusion terms depend on the population size N. Mean field theory predicts that the drift
term must be independent of N. For our spatial model, although the qualitative nature (i.e.,
functional form) of the drift is independent of N, we find that the quantitative features of
the data-derived drift term do depend on N. Mean-field theory also predicts that diffusion G
is inversely proportional to the population size N. In contrast, we find that this relationship
follows an apparent power-law G ~ N~ * for arange of N and Ny, where z can be substantially
smaller than 1 when the radius of local interaction is small. We introduced a simple scaling
argument which interprets this phenomenon as a cross-over between a non mean-field regime
(when Ny < N%) and a mean-field regime (when Ny, > N%). Ultimately, for a given density
and radius R, and hence Ny, = 7pR?, our analysis indeed suggests that G ~ g(Np) /N scales
like 1/N like in the mean-field models, albeit with a constant g(Np,) depending on Npy.

The above results could be discussed in light of empirical results of karimeen (Etroplus
suratensis) 28] where authors found that z = 1 well approximates the data, for a range of
group sizes (15 to 60). Real fish are naturally extended in space, and they do not interact
with all neighbours. Hence, it is interesting that these empirical data match the simpler
mean-field theoretical expectation rather than the prediction of our spatially explicit model!
We speculate two possible reasons for the empirical finding: First, it is possible that the
radius of interactions among fish is already large enough for to converge to the mean-field
expectations. A second possibility is that the Vicsek class of models are too simplistic for real-
world applications. We add that these two possibilities are not necessarily mutually exclusive.
We stress that further studies — via simulations, theory, and real-data analysis — are needed to
understand how space and the complexity of interactions among agents affect the deviations
from the mean-field mesoscopic theory.

We now ask if the stochastic pairwise copying of neighbours —i.e., interacting with only
one neighbour at a time — over a period of time can be approximated as locally averaging.
Both our mean field mesoscopic theory and data-driven mesoscopic equations clearly show
that stochastic pairwise (k = 1 in our model) and higher-order interactions (k > 2) are
fundamentally different. The drift term for the stochastic pairwise is linear with disorder
as the stable equilibrium; any observed collective order, therefore, is noise-induced. In the
macroscopic limit (N — o), this system admits only disorder. On the other hand, the drift term
for the higher-order interactions is cubic, resulting in an unstable disordered state (m = 0) and
a stable ordered state (jm| ~ 1) when the rate of ternary interactions are higher than the rate
of spontaneous turning. In the macroscopic limit (N — o), this system admits order, which
is typical of the Vicsek-class of collective motion models. Thus, the collective order in this
model is primarily driven by deterministic forces. Hence, the governing equations and the
dynamics of collective motion driven by stochastic pairwise and higher-order interactions are
not equivalent either at the microscopic or at the group level.

Finally, we make remarks about inferring local interactions among organisms based
on the data-driven characterisation of the group-level dynamics captured as a stochastic
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differential equation, as suggested by [S0]. This is an attractive proposition, since it is really
difficult, if not impossible, to infer the local interactions that an organism follows from group-
level data [75]], like time series for the group polarisation [28, 58]. Based on the fact that drift
functions are qualitatively different between stochastic pairwise and higher-order interactions,
we may be able to distinguish between these two possibilities even if we only have group-
level mesoscopic equations. However, our analysis suggests that ternary and local-averaging
(involving multiple, time varying number of interactions) both yield qualitatively similar drift
function. Hence, there are fundamental limits to what we can infer about local interactions
based on mesoscopic equations alone.

6. Concluding remarks

Deriving mean-field descriptions of collective systems is a non-trivial undertaking, even for
highly simplified theoretical models. At mesoscopic scales, where one needs to incorporate
finite-size effects and stochasticity, deriving mean-field models by hand becomes prohibitive
even for relatively simple models. Therefore, we propose a data-driven approach to discover
the mesoscopic SDE models directly from simulated data. As we showed in this manuscript,
even for a relatively simple class of collective motion models that accounted only for
alignment interactions, we discovered some deviations from the mean-field theory. Real
animal groups likely exhibit additional interactions, such as attraction and repulsion, and may
have more complex interaction mechanisms. There are several models in the literature that
aim to capture more realistic animal behaviour [[16},29,[76|77,[78]]. For such models, we argue
that there is a massive potential to discover the mesoscopic equations for a variety of both toy
models of collective motion as well as models of collective motion that account for detailed
behaviours of the organisms. Indeed, for real-world systems, the data-derived stochastic
dynamical equation is a powerful approach that may uncover the role of deterministic and
stochastic forces in shaping the collective dynamics. Our approach is general enough to
be applied to both real datasets and complicated models of collective motion, although
care should be taken in choosing appropriate order parameter and the functional forms for
the mesoscopic equations, and eventually, in interpreting the results. While we focused
on stochastic dynamics of group polarisation with no external perturbations, it would be
interesting to apply the equation-discovery approaches to study responses of groups to
perturbations [[10}38], for example, mimicking predatory attack or other biologically relevant
scenarios. We hope our study inspires development of further theory, simulations as well as
real data applications of these broad ideas.

Code availability

The code for the agent-based model simulations (MATLAB) and the data-driven SDE
discovery pipeline (Python) are available on the GitHub repository: https://github.com/
tee-lab/data-driven-mesoscale-sde. (DOI: https://doi.org/10.5281/zenodo.
8088825)
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