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We study the steady states of the granular media equation (non linear partial differential equation) when the Laplacian intensity is sufficiently small. In particular, we show that under simple assumptions, each wells of the external force corresponds to a unique steady state. Moreover, if the initial distribution is sufficiently close to this steady state, the solution to the granular media equation weakly converges towards this stationary measure. Furthermore, we exhibit a rate of convergence of the first moment and in Wasserstein distance if a synchronization occurs. Finally, we extend the results to situations in which the initial entropy is not finite. To obtain these results, we take advantage from the associated McKean-Vlasov type stochastic differential equation (with the techniques that we developed previously for tackling its exit-problem) and we use WJ-inequality.

Introduction

The present work deals with the long-time behavior of the granular media equation in the one-dimensional case when interactive term is linear. Namely, we study the following non-linear Partial Differential Equation:

1 ∂ ∂t µ σ t (x) = σ 2 2 ∂ 2 ∂x 2 µ σ t (x) + ∂ ∂x µ σ t (x) ∇V (x) + α(x -m t (σ)) (1) 
where

m t (σ) := R xµ σ t (x)dx , (2) 
is the so-called first moment of the solution at time t. Let us point out that this equation is a transport one so that if µ σ 0 is non-negative, the same holds for µ σ t for any t ≥ 0. Also, due to the mass conservation (the quantity R µ σ t (dx) is a constant with respect to the time), if µ σ 0 is a probability measure, the same is true for µ σ t for any t ≥ 0. Consequently, we may interpret µ σ t as the probability measure of a random variable X σ t . Let us stress that the family of random variables (X σ t ) t≥0 is a stochastic process that satisfies the following Stochastic Differential Equation:

X σ t = X σ 0 + σB t - t 0 ∇V (X σ s )ds -α t 0 (X σ s -E[X σ s ])ds , (3) 
where B is a Brownian motion and X σ 0 is any random variable independent from B and with law µ σ 0 . In this paper, we will not discuss the link between Equations (1) and (3). Also, the well-posedness of these equations is not what we are concerned about. For the SDE, we refer to [START_REF] Herrmann | Large deviations and a Kramers' type law for self-stabilizing diffusions[END_REF][START_REF] Chaudru De Raynal | Strong well posedness of McKean-Vlasov stochastic differential equations with Hölder drift[END_REF] and for the PDE, we refer to [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non-uniformly convex case[END_REF][START_REF] José | Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates[END_REF] and references therein.

We point out that the general granular media equation is of the following form

∂ ∂t µ σ t (x) = σ 2 2 ∂ 2 ∂x 2 µ σ t (x) + ∂ ∂x µ σ t (x) ∇V (x) + ∇F * µ σ t (x) , (4) 
where F is a general function from R to itself and * is the convolution. Thus, the general SDE is of the form

X σ t = X σ 0 + σB t - t 0 ∇V (X σ s )ds - t 0 ∇F * µ X t (X σ s )ds , (5) 
where µ X t is the own law of the random variable X σ t . Concerning, the origin of this model, we refer to [START_REF] Chaintron | Propagation of chaos: a review of models, methods and applications. I. Models and methods[END_REF][START_REF] Chaintron | Propagation of chaos: a review of models, methods and applications[END_REF][START_REF] José | Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates[END_REF]. Let us just note that the SDE comes from mean-field system of interacting particles. Namely, for N ≥ 1, we consider the diffusion in the space R dN : X N,σ := (X 1,N,σ , • • • , X i,N,σ , • • • , X N,N,σ ) where each coordinate X i,N,σ is a diffusion in R d (in the general d-dimensional setting) satisfying the following SDE: 2

X i,N,σ t = X i,N,σ 0 + σB i t - t 0 ∇V (X i,N,σ s )ds - t 0 ∇F * η N,σ s X i,N,σ s ds , (6) 
with

η N,σ t := 1 N n j=1 δ X j,N,σ t .
Here, (B i ) are N independent Brownian motions and (X i,N,σ 0 ) i is a sequence of iid random variables independent from the Brownian motions and have common law µ σ 0 . Here, we Following the idea of [START_REF] Kac | Probability and related topics in physical sciences[END_REF], see for example [START_REF] Sznitman | Topics in propagation of chaos[END_REF][START_REF] Chaintron | Propagation of chaos: a review of models, methods and applications. I. Models and methods[END_REF][START_REF] Chaintron | Propagation of chaos: a review of models, methods and applications[END_REF] for surveys, the particles at time 0 are independent and this independence (chaos) propagates along time. As a consequence, by using a law of large number, one can show a coupling result between X σ and X 1,N,σ when N converges to infinity, provided that X 1,N,σ 0 = X σ 0 and B 1 = B. This leads to the McKean-Vlasov diffusion, see [START_REF] Mckean | A class of Markov processes associated with nonlinear parabolic equations[END_REF][START_REF] Mckean | Propagation of chaos for a class of non-linear parabolic equations[END_REF] for the seminal works. From these works, a huge number of authors have treated this propagation of chaos (see for example [Fun84, CF16, BT97, GP18, Ver06, DFL15]).

This diffusion is widely used in a large variety of sciences like in battery models ([DG12, GGM + 18, CDF + 22]), swarming models (

[CCH14]), optimization ([CCTT18]), social interaction ([CDPS10]), deep learning ([MMN18]), finance ([OkS16])...
The long-time behavior of the granular media equation is not a new subject and has been extensively investigated in the past decades. Let us mention some of the previous works.

Without confining potential V , we refer to [START_REF] Benachour | Nonlinear self-stabilizing processes. II. Convergence to invariant probability[END_REF]. In the mentioned above article, the authors have been able to show that the law of X σ t does weakly converge as time goes to infinity to the unique invariant probability measure with zero expectation. To do so, they took advantage of convexity by Bakry-Emery criterion and a stochastic comparison lemma. They first proved that starting from a symmetrical law, it does converge weakly towards the unique symmetrical steady state. Then, they generalized with a self-stabilizing diffusion starting from a non symmetrical law.

By assuming uniform convexity on V and on F , the authors in [BCCP98, CMV03] obtained a convergence and an explicit rate of convergence notably by using the dissipation of the entropy dissipation. In [START_REF] Malrieu | Logarithmic Sobolev inequalities for some nonlinear PDE's[END_REF][START_REF] Malrieu | Convergence to equilibrium for granular media equations and their Euler schemes[END_REF], Malrieu took advantage of the convexity by Logarithmic Sobolev Inequalities.

The coupling method explained previously has been used providing that the potentials are convex without being uniformly convex. Thus, in [START_REF] Cattiaux | Probabilistic approach for granular media equations in the non-uniformly convex case[END_REF], Cattiaux, Guillin and Malrieu obtained a uniform with respect to the time propagation of chaos and by using Sobolev inequality, they showed the convergence in long-time towards the unique steady state.

Let us stress that in any of the aforementioned articles, the steady state is unique. However, we have studied the invariant probability measures of the self-stabilizing diffusions in [HT10a, HT10b, HT12, Tug14a, Tug14b] (see also [START_REF] Liu | Phase transitions for a class of time-inhomogeneous diffusion processes[END_REF] for a rewriting of [START_REF] Tugaut | Phase transitions of McKean-Vlasov processes in doublewells landscape[END_REF]) and in the non-convex case, providing that the diffusion coefficient is small enough, there is non-uniqueness of the stationary measures with total mass equal to one. See also [START_REF] Dawson | Critical dynamics and fluctuations for a mean-field model of cooperative behavior[END_REF] for a peculiar case.

The only works dealing with the long-time convergence when there is nonuniqueness of the steady states are [START_REF] Tugaut | Convergence to the equilibria for self-stabilizing processes in double-well landscape[END_REF][START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R dconvergence[END_REF][START_REF] Tamura | On asymptotic behaviors of the solution of a nonlinear diffusion equation[END_REF]. In [START_REF] Tugaut | Convergence to the equilibria for self-stabilizing processes in double-well landscape[END_REF], we restricted ourselves to the specific one-dimensional case and in [START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R dconvergence[END_REF], we study the general dimensional case. In [START_REF] Tamura | On asymptotic behaviors of the solution of a nonlinear diffusion equation[END_REF], Tamura proved that there was convergence towards an invariant probability measure providing that the initial law is sufficiently close to this steady state. An exponential rate of convergence is also stated. However, it is with a fixed diffusion coefficient equal to √ 2. Moreover, the rate of convergence as the "sufficiently close to" is not quantified at all. In [START_REF] Tugaut | Convergence to the equilibria for self-stabilizing processes in double-well landscape[END_REF][START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R dconvergence[END_REF], the only assumptions are the ones ensuring the existence of the process and the ones ensuring the finiteness of the entropy (since we used entropy, these are natural assumptions).

More recently, some uniform propagation of chaos has been obtained in the non-convex case in [START_REF] Eberle | Reflection couplings and contraction rates for diffusions[END_REF][START_REF] Durmus | An elementary approach to uniform in time propagation of chaos[END_REF]. And, in [START_REF] Guillin | Uniform long-time and propagation of chaos estimates for mean field kinetic particles in non-convex landscapes[END_REF], Guillin and Monmarché have proved an exponential decay in the non-convex case providing that there is a unique steady state that is the diffusion coefficient σ is sufficiently large.

In [START_REF] Tugaut | Captivity of the solution to the granular media equation[END_REF], we have been able to find a sufficient condition for ensuring that the limiting probability is a given steady state. Namely, if the initial law is compactly supported in the deterministic basin of attraction of the small-noise limit of the steady state, then for sufficiently small diffusion coefficient, the solution to the granular media equation does converge to this steady state.

In the present work, we will go further in the one-dimensional case. We will remove any non-sharp assumption on the parameter α. First, we will extend the result of [START_REF] Herrmann | Non-uniqueness of stationary measures for self-stabilizing processes[END_REF][START_REF] Tugaut | Self-stabilizing processes in multi-wells landscape in R dinvariant probabilities[END_REF] and we will prove that there exists an invariant probability measure near any minimizer satisfying the assumptions (A -1) and (A -2), see below. We will then established the local uniqueness of this steady state. Following the idea used in [START_REF] Tugaut | A simple proof of a Kramers' type law for self-stabilizing diffusions in double-wells landscape[END_REF] for proving result on the asymptotic of first exit-time, we will prove that starting sufficiently close from the steady state ensures that the solution to the granular media equation converges to it. This may be seen as a small-noise extension of [START_REF] Tamura | On asymptotic behaviors of the solution of a nonlinear diffusion equation[END_REF]. Moreover, we establish a rate convergence. Finally, we also prove that this rate is independent from the diffusion coefficient α providing that α is large enough.

We stress that our work can be applied for more general case. In particular, we think at reflected McKean-Vlasov diffusions ([Szn84, DW98, AdRR + 22] for self-stabilizing diffusions), Vlasov-Fokker-Planck diffusions ([BGM10, DT16, DT18]) or coupled non-linear diffusions ([DT20]).

To prove our results, we will use stochastic analysis as well as Laplace method and WJ inequality (see [START_REF] Bolley | Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations[END_REF][START_REF] Bolley | Uniform convergence to equilibrium for granular media[END_REF]). We point out that we also use Poincaré inequality. To do so, we apply either Muckenhoupt theorem (see [ABC + 00]) or the main result in [START_REF] Bakry | A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case[END_REF].

Let us now mention some of the tools that we will use. We will consider the following operator from R to the set of probability measures on R:

Π σ (m)(x) := exp -2 σ 2 V (x) + α 2 x 2 -αmx R exp -2 σ 2 V (y) + α 2 y 2 -αmy dy . (7) 
We put

m(µ) := R xµ(dx) . (8) 
Let us stress that the main idea of [START_REF] Herrmann | Non-uniqueness of stationary measures for self-stabilizing processes[END_REF][START_REF] Tugaut | Phase transitions of McKean-Vlasov processes in doublewells landscape[END_REF] is to remark that any steady state µ σ is such that

µ σ = Π σ (m(µ σ )). Ψ σ (m) := R x exp -2 σ 2 V (x) + α 2 x 2 -αmx dx R exp -2 σ 2 V (x) + α 2 x 2 -αmx dx , (9) 
and

χ σ (m) := Ψ σ (m) -m = R x exp -2 σ 2 V (x) + α 2 x 2 -αmx dx R exp -2 σ 2 V (x) + α 2 x 2 -αmx dx -m . ( 10 
)
We will also study the zero-noise limit of these functions:

Ψ 0 (m) := lim σ→0 Ψ σ (m) , χ 0 (m) := lim σ→0 χ σ (m) .
The paper is organized as follows. We finish introduction by putting the assumptions and some examples. Then, in a second section, we state the main results (theorems plus corollaries and proofs of the corollaries). In Section 3, we prove Theorem 2.1. In Section 4, we prove Theorem 2.2 and in Section 5, we give the proof of Theorem 2.3. Last, we gather some results on Laplace method in an annex.

We now give the main assumptions of the present work. We start by giving the assumptions on the confining potential:

Assumptions on V (V-1) Regularity: V ∈ C ∞ (R, R); (V-2) Multi-well landscape: V is a multi-well potential. The equation V (x) =
0 admits a finite number of solution and each solution a is such that V (a) = 0;

(V-3) Minimal growth: there exist two constants C 4 , C 2 > 0 such that ∀x ∈ R, V (x) ≥ C 4 x 4 -C 2 x 2 ;
(V-4) Convexity at infinity:

lim x→±∞ V (x) = +∞; (V-5) Polynomial growth: The growth of V is at most polynomial that is there exist q ∈ N * and C q > 0 such that |V (x)| ≤ C q 1 + x 2q .
Let us stress that we do not assume that the number of bottoms is exactly two, like we assumed in [START_REF] Herrmann | Non-uniqueness of stationary measures for self-stabilizing processes[END_REF][START_REF] Herrmann | Stationary measures for self-stabilizing processes: asymptotic analysis in the small noise limit[END_REF][START_REF] Herrmann | Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the smallnoise limit[END_REF]. Also, V is not necessarily even. Moreover, V may not be convex, oppositely to what have been done in [START_REF] Tugaut | Phase transitions of McKean-Vlasov processes in doublewells landscape[END_REF].

Assumptions on the point a

The point a is assumed to satisfy the two following assumptions.

(A-1) We assume that a is a minimizer of V , that is V (a) = 0 and V (a) > 0;

(A-2) Also, for any x = a, we have

W a (x) > W a (a) where W a (x) := V (x) + α 2 (x -a) 2 .
Let us stress that Assumption (A -1) will be partially relaxed. Also, by (A -2), we do not assume that α is such that W a is convex. Indeed, W a may not be convex. In the same vein, we do not assume that W a is such that (x -a)W a (x) ≥ ρ|x -a| 2 for some ρ > 0; what we assumed in [START_REF] Tugaut | Captivity of the solution to the granular media equation[END_REF].

Example 1.1. Let us take V (x) := x 4 4 -x 2 2 .
Then, for any α > 0, -1 and 1 satisfy the assumptions.

Example 1.2. Let us now take V (x) := x 4 4 + x 3 3 -x 2 2 .
Then, with any α > 0, the critical point a -:= -1+ satisfies the assumptions.

Assumptions on the initial law µ σ 0 (M-1) The 8q 2 -th moment of the measure µ σ 0 is finite;

(M-2) The probability measure µ σ 0 admits a C ∞ -continuous density u σ 0 with respect to the Lebesgue measure. And, the entropy R u σ 0 log(u σ 0 ) is finite.

In the following, we will apply the main theorem in [START_REF] Tugaut | Convergence to the equilibria for self-stabilizing processes in double-well landscape[END_REF]. Thus, we require similar assumptions: the finiteness of a given moment and the finiteness of the entropy. Let us mention that (M -2) will be relaxed in some corollaries.

Main results

In this section, we first give the statements of the theorems then we derive immediate corollaries with their proofs. Proofs of the theorems are postponed in Sections 3, 4 and 5. In the following, W 2 stands for the Wasserstein distance.

Theorems

First theorem concerns the existence and the local uniqueness of a steady state around a point a satisfying assumptions (A).

Theorem 2.1. Under assumptions (V ) and (A), we can find κ 0 > 0 such that for any κ ∈ (0; κ 0 ), there exists σ 0 (κ) for which for any σ ∈ (0; σ 0 (κ)), Equation (1) admits a unique invariant probability measure (steady state with total mass equal to 1) µ σ satisfying W 2 (µ σ ; δ a ) < κ.

Let us point out that Theorem 2.1 does not imply the uniqueness of the invariant probability measure. It implies that there is a unique one close to δ a for the Wasserstein distance.

We stress that assumption (A -2) is necessary. Indeed, let us consider a family (µ σ ) σ>0 of steady states with total mass equal to 1 such that for σ vanishing, W 2 (µ σ ; δ a ) tends to 0; with W a (a) ≥ W a (a ) for some a = a. Then, due to the implicit equation satisfied by any invariant probability measure, namely

µ σ = Π σ (m(µ σ )) , taking σ towards 0 yields δ a = lim σ→0 Π σ (a) .
However, since a is not the unique global minimizer of W a (and in fact it may also not be a global minimizer), we can prove easily by Laplace method (see Lemma A.2) that Π σ (a) does converge towards a measure different from δ a .

As a consequence, Assumption (A -2) is mandatory, not for technical reasons, but for ensuring the result.

We can also wonder if assumption (A -1) is necessary. In fact, in the paper, we work with a minimizer of the potential V . However, if a is a local maximizer, the result still holds. The proof of Theorem 2.1 would be slightly different (instead of being decreasing, the auxiliary functions would be increasing, see Section 3.1). We here choose to present it in the case where a is a minimizer despite we could have proven it for a local maximizer.

Theorem 2.2. Under the assumptions (V ) and (A), with κ 0 such as in Theorem 2.1, there exists κ σ ∈ (0; κ 0 ) such that 1. For any measure µ 0 satisfying (M ) and W 2 (µ σ ; µ 0 ) < κ σ then, the solution µ σ t to Equation (1) starting from µ 0 weakly converges towards µ σ as t tends to infinity. 2. Moreover, the first moment of µ σ t converges towards the first moment of µ σ with the following rate of convergence :

R xµ σ t (dx) - R xµ σ (dx) ≤ K(σ) exp -C(σ) √ t ,
where K(σ) and C(σ) are positive constants.

As in the previous theorem, we can wonder if the assumptions are sharp. First, to ensure the existence and the local uniqueness of such a steady state µ σ for σ small enough, Assumption (A -2) can not be removed. Let us look at Assumption (A -1). We will not discuss on the case V (a) = 0. Indeed, here, we prefer to present a prototypical case where the second derivative of V in the critical points is never degenerate. Thus, the question becomes: can we extend Theorem 2.2 to the case where V (a) < 0 that is if a is a local maximizer? We negatively answer to the question. Indeed, in the one-dimensional setting, since V is convex at infinity, any local maximizer is in the boundary of the basins of attraction of two local minimizers. So, if we consider a measure µ 0 satisfying Assumptions (M ) and compactly supported in the interior of the basin of attraction of a local minimizer b, we can easily prove that it will weakly converge, as t goes to infinity, to a steady state near δ b . For sufficiently large α ≥ α c , this statement has been established in [START_REF] Tugaut | Captivity of the solution to the granular media equation[END_REF]. Now, we will discuss about the rate of convergence. In [KK12], a similar rate of convergence has been founded for self-attracting diffusion. We point out that this paper is the very first one to provide a rate of convergence when there is non uniqueness of the steady states with total mass equal to 1. However, we strongly believe that we could take advantage of Muckenhoupt theorem or of the works [START_REF] Bolley | Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations[END_REF][START_REF] Bolley | Uniform convergence to equilibrium for granular media[END_REF] to obtain an exponential rate of convergence.

Finally, the positive constants K(σ) and C(σ) do depend on σ. However, we could easily prove that in the strictly synchronized case that is when α > θ = sup R -V , the constant C(σ) can be taken equal to α -θ. Also, by looking in a deeper way on the proof of Theorem 2.2, K(σ) can be made independent from the diffusion coefficient. As it was not the purpose of this paper, we left the proof of that assertion to the reader.

In Theorem 2.2, we have obtained a first step to completely describe the basins of attraction of the different steady states for the granular media equation. Moreover, we have been the first to obtain a rate of convergence in the case where there are several steady states. Indeed, in [START_REF] Guillin | Uniform long-time and propagation of chaos estimates for mean field kinetic particles in non-convex landscapes[END_REF], they have a better rate albeit they assume that there is a unique steady state which means that the diffusion coefficient is sufficiently high.

We stress that we do believe in an exponential decay of Wasserstein distance between the solution to the granular media equation and its limiting steady state. Up to now, we are not able to obtain it.

We now go beyond to obtain a convergence in Wasserstein distance towards the unique local steady state with total mass equal to 1 ; albeit in the strictly synchronized case.

Theorem 2.3. We take the assumptions of Theorem 2.2 in force. We also assume that α > θ = sup R -V . Then, we have the following limit:

W (µ σ t ; µ σ ) ≤ K exp -C √ t ,
where K and C are positive constants.

We stress that the work of Tamura ([Tam84]) would imply an exponential convergence if one would extend it to a general diffusion coefficient.

Corollaries

We now give immediate corollaries related to Theorems 2.2 and 2.3.

First corollary is an extension of the main result in [START_REF] Tugaut | Captivity of the solution to the granular media equation[END_REF]. Indeed, if the coefficient α is sufficiently large (not necessarily large enough to ensure the synchronization), we have been able to prove that under easily checked assumptions on the initial probability measure, the solution to Equation (1) does converge towards a given invariant probability measure. Here, we will show that the assumption on the coefficient α may be relaxed.

First, we introduce some important domain. For ρ > 0, by S ρ (a), we denote the path-connected subset containing a of

x ∈ R : (x -a)V (x) ≥ ρ(x -a) 2 .
Corollary 2.4. We take the assumptions of Theorem 2.2 in force. Then, for any compact subset K of the interior of S ρ (a), there exists σ K such that any σ < σ K satisfies that if µ 0 is compactly supported in K then µ σ t weakly converges towards µ σ as t goes to infinity. [START_REF] Tugaut | Captivity of the solution to the granular media equation[END_REF] is that it is sharp with respect to α. Indeed, in [START_REF] Tugaut | Captivity of the solution to the granular media equation[END_REF], we assumed that W a (x)(x-a) > ρ 0 |x-a| 2 ; which immediately requires the potential W a to have a unique minimizer that is a. In Corollary 2.4, the potential W a may admit several wells. Nevertheless, the above corollary is, up to our knowledge, only holding in the one-dimensional setting.

Main difference with

Proof. Under assumptions of Theorem 2.2, we can apply [Tug21, Lemma 4.2.]. Thus, there exists T κ such that for σ small enough, W 2 (δ a ; µ σ t ) ≤ κ 16 . As W 2 (δ a ; µ σ a ) tends to 0 as σ goes to 0, we deduce W 2 (µ σ a ; µ σ t ) < κ 10 for σ small enough. Thus, we can apply Theorem 2.2.

Next corollary aims to relax the assumptions on the initial measure.

Corollary 2.5. We still assume the sets of Assumptions (V ) and (A). Also, the initial measure is µ 0 := δ x0 where x 0 is in the interior of S ρ (a). Then, 1. The solution µ σ t to Equation (1) starting from µ 0 weakly converges towards µ σ as t tends to infinity. 2. Furthermore, there exist two positive constants K and C only depending on

σ such that |m(µ σ t ) -m(µ σ )| ≤ Ke -C √ t . 3. If moreover, α > θ = sup R -V .
Then, we have the following limit:

W (µ σ t ; µ σ ) ≤ K exp -C √ t ,
where K and C are positive constants.

We point out that taking an initial measure as a Dirac one obviously violates the assumption (M -2).

Proof. There exists γ > 0 such that (x 0 -4γ; x 0 + 4γ) is included in the interior of S ρ (a). We now put Y + 0 a random variable which follows the uniform law on [x 0 +2γ; x 0 +3γ]. We denote by µ + this uniform law. Then, almost surely, Y + 0 > x 0 . In particular, E[Y + 0 ] > x 0 . We apply Corollary 2.4. Then, we know that µ +,σ t weakly converges towards µ σ , where µ +,σ t is the solution to Equation (1) starting at µ + . In particular, the cumulative distribution function of µ +,σ t tends to the one of µ σ . We consider the two following stochastic differential equations

X t = X 0 + σB t - t 0 V (X s )ds -α t 0 (X s -m 1 (s))ds , and 
Y + t = Y + 0 + σB t - t 0 V (Y + s )ds -α t 0 (Y + s -m + 1 (s))ds ,
where m + 1 (s) is the first moment of Y + s . By T 0 , we denote the first time that m + 1 (t) ≤ m 1 (t). We know that this time is positive. Then, for any t ≤ T 0 , we have X t < Y + t almost surely then we deduce that for any t ≥ 0, we have m + 1 (t) ≥ m 1 (t) and thus almost surely, X t < Y + t for any t ≥ 0. As a consequence, for any x ∈ R, we have the inequality:

P(X t ≤ x) ≥ P(Y + t ≤ x) .
We deduce that lim sup t→+∞ P(X t ≤ x) ≥ µ σ (] -∞; x]) .

In the same vein, using Y - 0 with uniform law on (x 0 -3γ; x 0 -2γ), we can prove:

lim inf t→+∞ P(X t ≤ x) ≤ µ σ (] -∞; x]) .
Therefore, µ σ t weakly converges towards µ σ . This concludes the proof of the first point.

The rate of convergence is proven similarly by applying Theorem 2.2 and Theorem 2.3 to the law of Y + t , where t is sufficiently large to ensure that W 2 (L(Y + t ); µ σ ) < κ σ . Obviously, we also apply the theorems to the law of Y - t , where t is sufficiently large to ensure that W 2 (L(Y - t ); µ σ ) < κ σ .

Consequence of the results in exit-time

As another point of discussion, let us point out that this result would allow us to obtain the Kramers'type law for the first exit-time from some domains; in the one-dimensional setting. Indeed, we have seen in Corollary 2.5 that we can apply Theorem 2.2 and Theorem 2.3 to the case where the initial measure is a Dirac one. Then, we can apply the procedure in [START_REF] Herrmann | Large deviations and a Kramers' type law for self-stabilizing diffusions[END_REF][START_REF] Tugaut | A simple proof of a Kramers' type law for self-stabilizing diffusions[END_REF] since we have a convergence towards an invariant probability measure with an explicit rate of convergence which does not depend on the diffusion coefficient if the synchronization α > θ holds. However, in [START_REF] Tugaut | A simple proof of a Kramers' type law for self-stabilizing diffusions in double-wells landscape[END_REF], such a result has already been obtained for the exit-time.

3 Proof of Theorem 2.1

We have proved in [START_REF] Herrmann | Non-uniqueness of stationary measures for self-stabilizing processes[END_REF] (when V has two wells and is symmetrical) and in [Tug14a, Proposition 1.2.] (when V is a polynomial function) that µ σ is a steady state of (1) if and only if there exists m(σ) ∈ R such that

µ σ = Π σ (m(σ)) ,
where the operator Π σ has been introduced in (7) and m(σ) is such that

m(σ) = Ψ σ (m(σ)) ,
where the function Ψ σ has been defined in (9). Namely, m(σ) is a zero of χ σ (see (10)). We point out that here, V is not necessarily a polynomial function and it may have several other wells. Also, it is not assumed that V is even.

Nevertheless, it is an easy exercise left to the reader to prove that the same method applies to the present setting.

Proof of the existence

To prove the existence result, we will show that χ σ admits a zero m(σ) which converges towards a as σ goes to 0. To do so, we apply Remark A.3 to the potential V m defined as V m (x) := V (x) + α 2 x 2 -αmx. Here, m is a real such that V m admits a unique global minimizer x m . We obtain:

R xe -2Vm (x) σ 2 dx R e -2Vm(x) σ 2 dx -x m = - V (3) (x m ) 4(α + V (x m )) 2 σ 2 + o(σ 2 ) .
To ensure the uniqueness of the global minimizer, we remark that when m = a, this holds due to (A -2). Continuity achieves to prove the uniqueness of x m for m ∈ [a -κ; a + κ] with sufficiently small κ > 0.

We now compute x m from the fact that it is a critical point of V m :

V m (x m ) = 0 .
By the very definition of the potential V m , we get:

V (x m ) + αx m -αm = 0 .
As m is close to a, we can write

V (x m ) = V (a)(x m -a) + o(x m -a) so that x m = a + α α + V (a) (m -a) + o(m -a) .
We obtain:

ψ σ (a + κ) = a + α α + V (a) κ - V (3) (a) 4(α + V (a)) 2 σ 2 + o(κ) + o(σ 2 ) .
Consequently, if σ 2 is sufficiently small with respect to κ, we have:

χ σ (a + κ) = - V (a) α + V (a) κ + o(κ) ,
We also have

χ σ (a -κ) = V (a) α + V (a) κ + o(κ) . Thus, χ σ (a -κ)χ σ (a + κ) = -V (a) α+V (a) 2 κ 2 + o(κ 2
). This is negative provided that κ is small enough. This implies the existence of a zero m(σ) of χ σ in the interval [a -κ; a + κ].

We now remark by (12):

W 2 (δ a ; Π(m(σ))) 2 = R (x -a) 2 Π(m(σ))(dx) = R x 2 e -2V m(σ) (x) σ 2 dx R e -2V m(σ) (x) σ 2 dx -2aΨ σ (m(σ)) + a 2 = x 2 m(σ) -2am(σ) + a 2 + O(σ 2 ) = a + α α + V (a) (m(σ) -a) + o(m(σ) -a) 2 -2am(σ) + a 2 + O(σ 2 ) = - 2V (a) α + V (a) a(m(σ) -a) + o(m(σ) -a) + O(σ 2 ) .
We conclude by taking m(σ) -a = o(κ 2 ): for any κ > 0 sufficiently small, as soon as σ 2 is small enough, there exists a steady state µ σ a to Equation (1) such that W 2 (δ a ; µ σ a ) ≤ κ.

Proof of the uniqueness

We now prove the uniqueness. To do so, it is sufficient to prove that d dm χ σ (m) < 0 for m ∈ [a-κ 0 ; a+κ 0 ]; κ 0 being sufficiently small. We first take the derivative of χ σ and we obtain:

χ σ (m) = 2α σ 2 Var (Π σ (m)) -1 .
We now apply the approximation (14):

χ σ (m) = 2α σ 2 σ 2 2 1 α + V (x m ) + o(σ 2 ) -1 = - V (x m ) α + V (x m ) + o(1) . For m ∈ [a -κ 0 ; a + κ 0 ] with κ 0 sufficiently small, x m = Ψ 0 (m) is such that V (x m ) > 0. Thus, χ σ is decreasing on [a -κ 0 ; a + κ 0 ]
. This achieves to prove the uniqueness of the steady state κ 0 -close to δ a .

4 Proof of Theorem 2.2

Proof of the first point: weak convergence

Let us consider κ < min{1; κ 0 }.

We start from W 2 (µ 0 ; µ σ a ) < κ 20 , and from W 2 (δ a ; µ σ a ) < κ 20 , if σ is small enough. Thus, we have:

W 2 (µ 0 ; δ a ) < κ 16
if κ is small enough. We now consider the associated McKean-Vlasov diffusion to the Equation (1). Namely, let X 0 be a random variable with law µ 0 . Then, the associated process (X σ t ) t satisfies the following Stochastic Differential Equation:

X σ t = X 0 + σB t - t 0 ∇V (X σ s )ds -α t 0 (X σ s -E [X σ s ]) ds .
Then, we have:

E (X 0 -a) 2 ≤ κ 32 .
We deduce by Markov inequality:

P X 0 < a -κ 4 ≤ κ 32 (κ 4 ) 2 = κ 24 .
We now introduce the linear diffusion Xσ solution to the following Stochastic Differential Equation:

Xσ t = X0 + σB t - t 0 V ( Xσ s )ds -α t 0 Xσ s -(a -κ) ds ,
where X0 follows the law Π σ (a -κ). This implies L( Xσ t ) = Π σ (a -κ) for any t ≥ 0. Consequently, E[ Xσ t ] = Ψ σ (a -κ) for any t ≥ 0. However, E[X 0 ] ≥ a-κ 16 > a-κ since κ < 1. We introduce the deterministic time

t σ (κ) := inf {t ≥ 0 : E[X t ] ≤ a -κ} .
We immediately deduce that for any t ∈ [0; t σ (κ)], if X 0 (ω) ≥ X0 (ω), then X t (ω) ≥ Xt (ω). We now put A := ω : X 0 (ω) ≤ X0 (ω) . Taking t ∈ [0; t σ (κ)] yields

E[X t ] ≥ E[ Xt ] + E X t -Xt 1 A ≥ ψ σ (a -κ) -2M P(A) , where M := sup t≥0 max E[X 2 t ]; E[ X2 0 ]
since the law of Xt does not depend on t. Due to [HIP08, Proposition 2.13], M is finite.

We remark

P(A) =P(X 0 ≤ X0 ) =P(X 0 ≤ X0 ≤ a -κ 2 ) + P(X 0 ≤ X0 , X0 > a -κ 2 )
≤P(X 0 < a -κ 4 ) + P( X0 > a -κ 2 ) , since κ < 1.

First term is less than κ 24 . Second one tends to 0 when σ tends to 0 for κ small enough. Indeed,

E[ X0 ] = Ψ σ (a -κ) -→ Ψ 0 (a -κ) = a - α α + V (a) κ + o(κ) .
Also, Var[ X0 ] goes to 0 as σ goes to 0. As a consequence, we have:

P(A) ≤ κ 16 .
We get

E[X t ] ≥ a - α α + V (a) κ + o(κ) + o(σ 2 ) -2M κ 8 > a -κ ,
if κ and σ are small enough. Consequently, t κ (σ) = +∞ which means that for any t ≥ 0, we have E[X t ] > a -κ. We can prove similarly that for any t ≥ 0, we have E[X t ] < a + κ. Thus, we deduce that for any t ≥ 0, the following holds:

E[X t ] ∈ [a -κ; a + κ] .
Now, since there is a unique invariant probability measure at κ-distance W 2 from δ a , applying main theorem in [START_REF] Tugaut | Convergence to the equilibria for self-stabilizing processes in double-well landscape[END_REF] yields that µ σ t weakly converges towards this given steady state.

Proof of the second point: rate of convergence of the first moment

To obtain the rate of convergence, we consider the linear diffusion

Xt = X 0 + σB t - t 0 V ( Xs )ds -α t 0 Xs -(m(σ) -κ) ds ,
where m(σ) is such that Π σ (m(σ)) = µ σ a ; the unique steady state close to δ a .

We know that L( Xt ) converges towards Π σ (m(σ) -κ). Furthermore, we have E[X t ] ≥ E[ Xt ]. Indeed, we know that E[X t ] > m(σ) -κ for sufficiently small σ. We also have rate of convergence due to Muckenhoupt theorem, see [ABC + 00]:

W 2 (L( Xt ); Π σ (m(σ) -κ)) ≤ e -C(σ)t W 2 (L( X0 ); Π σ (m(σ) -κ)) ,
where C(σ) may depend on σ.

Remark 4.1. We point out that if the synchronization occurs, that is if α > θ := sup R -V , then C(σ) may be taken equal to α-θ > 0 and thus it is uniform with respect to σ > 0.

As a consequence,

E[X t ] ≥E[ Xt ] ≥ R xΠ σ (m(σ) -κ)(dx) -e -C(σ)t W 2 (L( X0 ); Π σ (m(σ) -κ)) .
As W 2 (L( X0 ); δ a ) ≤ κ and as W 2 (δ a ; Π σ (m(σ) -κ)) -→ 0 as σ goes to zero, we deduce that for sufficiently small σ, we have:

E[X t ] ≥ Ψ σ (m(σ) -κ) -2κe -C(σ)t .
However, for κ small,

Ψ σ (m(σ) -κ) = m(σ) - α α + V (a) κ + o(κ) .
We then take T

1 := -1 C(σ) log 8 α+V (a) V (a)
and we get for sufficiently small κ:

E[X t ] -m(σ) ≥ -δκ , for any t ≥ T 1 . Here, δ := α+ V (a) 2
α+V (a) < 1. Now, we can apply the previous reasoning with m(σ)-δκ to get the existence of T 2 such that

E[X t ] -m(σ) ≥ -δ 2 κ , for any t ≥ T 2 . We have T 2 = T 1 -1 C(σ) log 8 α+V (a) V (a) δ = 2T 1 -1 C(σ) log(δ). More generally, for any l ∈ N * , if we put T l = l(l+1) 2 T 1 -l-1 C(σ) log(δ), then for any t ≥ T l , we have E[X t ] -m(σ) ≥ -δ l κ .
We can prove in the same way that for any t ≥ T l , we have

E[X t ] -m(σ) ≤ δ l κ . Consequently, for any t ∈ [T l ; T l+1 ], we have |E[X t ] -m(σ)| < δ l κ . However, T l = T1 2 l 2 + o(l 2 ) so lim l→∞ l √ T l = 2
T 1 =: 2C 1 and for any l, for any t ∈ [T l ; T l+1 ]:

|E[X t ] -m(σ)| < κ exp -l log 1 δ .
Thus, for sufficiently large l ≥ l 0 , we have for any t ∈ [T l ; T l+1 ]:

|E[X t ] -m(σ)| < κe -C √ t ,
where C := C 1 log 1 δ . We now take

K := max{κ; sup t≤T l 0 |E[X t ] -m(σ)| e C √ t } .
We immediately obtain:

|E[X t ] -m(σ)| < Ke -C √ t ,
for any t ≥ 0. This achieves the proof.

Remark 4.2. We point out that if the synchronization occurs, that is if α > θ := sup R -V , then l 0 does not depend on σ. Indeed, the inequality

exp -l log 1 δ ≤ e -C √ T l+1
is satisfied as soon as

l 2 -1 - 1 3(α -θ) log(δ) l - 1 6 > 0 .
Consequently, the quantity K also is uniform with respect to σ.

Proof of Theorem 2.3

We here take advantage of functional inequalities and of the synchronization.

By applying [BGG13, Proposition 1.1] and [BGG12, Lemme 2.5], we have the following inequality:

d dt 1 2 W 2 2 (µ σ a ; µ σ t ) ≤ - R (V (τ t (x)) -V (x))(τ t (x) -x)µ σ a (dx) - 1 2 R 2 (F (τ t (x) -τ t (y)) -F (x -y)) ((τ t (x) -τ t (y)) -(x -y)) µ σ a (dx)µ σ a (dy) ,
where x → τ t (x) is the optimal coupling for µ σ t with µ σ a by Brenier theorem. Here, F (x) = αx so we immediately have

d dt 1 2 W 2 2 (µ σ a ; µ σ t ) ≤ -(α -θ)W 2 2 (µ σ a ; µ σ t ) + α (m t (σ) -m(σ)) 2 ,
where m t (σ) is the first moment of µ σ t and m(σ) is the one of µ σ a . However, by Theorem 2.2, we have the inequality

(m t (σ) -m(σ)) 2 ≤ K 2 e -2C √ t .
We then get the following estimate:

W 2 2 (µ σ a ; ν σ t ) ≤ W 2 2 (µ σ a ; ν σ 0 ) + αK 2 t 0 e -2C √ s+2(α-θ)s ds e -2(α-θ)t

By Lemma A.1, we deduce

lim sup t→+∞ e 2C √ t W 2 2 (µ σ a ; ν σ t ) ≤ αK 2 2(α -θ) ,
which achieves the proof.

Remark 5.1. By Remark 4.2, the coefficient K does not depend on σ.

A Laplace method

In this section, we give some crucial lemma about Laplace's method.

Let us point out that these results are not new and correspond to the ones of Annex A in [START_REF] Herrmann | Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the smallnoise limit[END_REF][START_REF] Herrmann | Non-uniqueness of stationary measures for self-stabilizing processes[END_REF]. We put it for completeness. Also, the notations in the present paper and in [START_REF] Herrmann | Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the smallnoise limit[END_REF][START_REF] Herrmann | Non-uniqueness of stationary measures for self-stabilizing processes[END_REF] are slightly different and may lead to confusion so we rewrite it. Lemma A.2. Let U and G be two C ∞ (R)-continuous functions. We define U µ := U + µG for the parameter µ belonging to some compact interval I of R.

We assume that U µ (t) ≥ t 2 for |t| larger than some R independent of µ and that U µ admits a unique global minimum at x µ with U µ (x µ ) > 0. Then, for any n ≥ 1, the following asymptotic result holds as σ tends to 0: 

where the estimate is uniform with respect to the parameter µ as σ → 0. Here,

U k = U (k) µ (x µ ).
Proof. We apply [HT10a, Lemma A.3] with f m := 0 and := σ 2 .

Remark A.3. Let V be a C ∞ (R)-continuous functions. We define V m (x) := V (x) + α 2 x 2 -αmx for the parameter m belonging to some compact interval I of R. We assume that V (x) ≥ x 2 for |x| larger than some R. Also, V m admits a unique global minimum at x m with V m (x m ) > 0. Then, for any n ≥ 1, the following asymptotic result holds as σ tends to 0: 

R x 2 e -2Vm(x) σ 2 dx R e -2Vm (x) σ 2 dx -x 2 m = - 1 2(α + V (x m )) x m V (3) (x m ) α + V (x m ) -1 σ 2 + o(σ 2 ), (12) and 
Proof. It is a straightforward consequence of Lemma A.2.

  First, we remind [HT12, Lemma A.1].Lemma A.1. Let M > 0. Let us assume that U is C 2 ([M, ∞[)-continuous, U (x) = 0 and U (x) > 0 for all x ∈ [M, ∞[ and lim x→∞ U (x) (U (x)) 2 = 0. If x → e -U (x) is integrable on R then: +∞ x e -U (t) dt ≈ e -U (x) U (x) and x M e U (t) dt ≈ e U (x) U (x) as x → ∞ .Now, we give a simplification of[START_REF] Herrmann | Non-uniqueness of stationary measures for self-stabilizing processes[END_REF] Lemma A.3].

  n + 1 σ 2 + o(σ 2 ),

-

  x m = -V (3) (x m ) 4(α + V (x m )) 2 σ 2 + o(σ 2 ) . (x m ) + o(σ 2 ) .
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