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Abstract

Consider a diffusion process X = (Xt)t∈[0,1] observed at discrete times and high frequency,
solution of a stochastic differential equation whose drift and diffusion coefficients are assumed to be
unknown. In this article, we focus on the nonparametric esstimation of the diffusion coefficient. We
propose ridge estimators of the square of the diffusion coefficient from discrete observations of X
and that are obtained by minimization of the least squares contrast. We prove that the estimators
are consistent and derive rates of convergence as the size of the sample paths tends to infinity, and
the discretization step of the time interval [0, 1] tend to zero. The theoretical results are completed
with a numerical study over synthetic data.

Keywords. Nonparametric estimation, diffusion process, diffusion coefficient, least squares con-
trast, repeated observations.
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1 Introduction

Let X = (Xt)t∈[0,1] be a one dimensional diffusion process with finite horizon time, solution of the
following stochastic differential equation:

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = 0 (1)

where (Wt)t≥0 is a standard Brownian motion. The drift function b and the diffusion coefficient
σ are assumed to be unknown Lipschitz functions. We denote by (Ft)t∈[0,1] the natural filtration
of the diffusion process X. The goal of the article is to construct, from N discrete observations
X̄j = (Xj

k∆n
)0≤k≤n, 1 ≤ j ≤ N with time step ∆n = 1/n, a nonparametric estimator of the square of

the diffusion coefficient σ2(.). We are in the framework of high frequency data since the time step ∆n

tends to zero as n tends to infinity. Furthermore, we consider estimators of σ2(.) built from a single
diffusion path (N = 1), and those built on N paths when N → ∞. In this paper, we first propose
a ridge estimator of σ2(.) on a compact interval. Secondly, we focus on a nonparametric estimation
of σ2(.) on the real line R. We measure the risk of any estimator σ̂2 of the square of the diffusion

coefficient σ2 by E
[
∥σ̂2 − σ2∥2n,N

]
, where ∥σ̂2−σ2∥2n,N := (Nn)−1

∑N
j=1

∑n−1
k=0

(
σ̂2(Xj

k∆)− σ2(Xj
k∆)
)2

is an empirical norm defined from the sample paths.
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Related works. There is a large literature on the estimation of coefficients of diffusion processes,
and we focus on the papers studying the estimation of σ2.

Estimation of the diffusion coefficient has been considered in the parametric case (see e.g. Genon-
Catalot & Jacod (1993), Jacod (1993), Genon-Catalot & Jacod (1994), Clement (1997), Genon-Catalot
et al. (1999), Gloter (2000), Sørensen (2002)). In the nonparametric case, estimators of the diffusion
coefficient from discrete observations are proposed under various frameworks.

First, the diffusion coefficient is constructed from one discrete observation of the diffusion pro-
cess (N = 1) in long time (T → ∞) (see e.g. Hoffmann (1999a), Comte et al. (2007), Schmisser
(2012), Schmisser (2019)), or in short time (T = 1) (see e.g. Genon-Catalot et al. (1992), Soulier
(1993), Hoffmann (1997), Florens (1998), Hoffmann (1999b)). Note that in short time (T < ∞), only
the diffusion coefficient can be estimated consistently from a single discrete path contrary to the drift
function whose consistent estimation relies on repeated discrete observations of the diffusion process
(see e.g. Comte & Genon-Catalot (2020a), Denis et al. (2021)). For the case of short time diffusion pro-
cesses (for instance T = 1), estimators of a time-dependent diffusion coefficients t 7→ σ2(t) have been
proposed. In this context, Genon-Catalot et al. (1992) built a nonparametric estimator of t 7→ σ2(t)
and studied its L2 risk using wavelets methods, Soulier (1993) studies the Lp risk of a kernel estima-
tor of σ2(t), and Hoffmann (1997) derived a minimax rate of convergence of order n−ps/(1+2s) where
s > 1 is the smoothness parameter of the Besov space Bs

p,∞([0, 1]) (see later in the paper). For the
space-dependent diffusion coefficient x 7→ σ2(x), a first estimator based on kernels and built from a
single discrete observation of the diffusion process with T = 1 is proposed in Florens-Zmirou (1993).
The estimator has been proved to be consistent under a condition on the bandwidth, but a rate of
convergence of its risk of estimation has not been established.

Secondly, the diffusion coefficient is built in short time (T < ∞) from N repeated discrete observa-
tions with N → ∞. In Denis et al. (2022), a nonparametric estimator of σ2 is proposed from repeated
discrete observations on the real line R when the time horizon T = 1. The estimator has been proved
to be consistent with a rate of order N−1/5 over the space of Lipschitz functions.

Two main methods are used to build consistent nonparametric estimators of x 7→ σ2(x). The first
method is the one using kernels (see e.g. Florens (1998), Bandi & Phillips (2003), Renò (2006), Gourier-
oux et al. (2017), Schmisser (2019), Park & Wang (2021)), the other method consists in estimating σ2

as solution of a nonparametric regression model using the least squares approach. Since the diffusion
coefficient is assumed to belong to an infinite dimensional space, the method consists in projecting
σ2 into a finite dimensional subspace, estimating the projection and making a data-driven selection of
the dimension by minimizing a penalized least squares contrast (see e.g. Hoffmann (1999b), Hoffmann
(1999a), Schmisser (2012), Comte (2017), Schmisser (2019), Denis et al. (2022)).

Main contribution. In this article, we assume to have at our disposal N i.i.d. discrete observations
of length n of the diffusion process X. The main objectives of this paper are the following.

1. Construct a consistent and implementable ridge estimator of σ2 from a single diffusion path
(N = 1) using the least squares approach. We derive rates of convergence of the risk of estimation
of the ridge estimators built on a compact interval and on the real line R over a Hölder space,
taking advantage of the properties of the local time of the diffusion process, and its link with the
transition density.

2. We extend the result to the estimation of σ2 on repeated observations of the diffusion process
(N → ∞). We prove that the estimators built on a compact interval and on R are more
efficient considering their respective rates compared to nonparametric estimators built from a
single diffusion path.
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3. Focusing on the support of the diffusion coefficient, we consider an intermediate case between a
compact interval and R by proposing a ridge estimator of σ2 restricted to the compact interval
[−AN , AN ] where AN → ∞ as N → ∞. The benefit of this approach is that the resulting
projection estimator can reach a faster rate of convergence compared to the rate obtained on the
real line R.

4. Finally, we propose adaptive estimators of σ2 based on a data-driven selection of the dimension
through the minimization of the penalized least squares contrast in different settings.

We sum up below the rates of convergence (up to a log-factor) of the ridge estimators of σ2
|I with

I ⊆ R over a Hölder space defined in the next section with a smoothness parameter β ≥ 1.

Estimation interval N = 1 and n → +∞ N → +∞ and n → +∞

I = [−A,A], A > 0 n−β/(2β+1) (Nn)−β/(2β+1)

I = [−AN , AN ], AN −→
N→+∞

+∞ xxxx (Nn)−β/(2β+1), N ∝ n

I = R n−β/(4β+1)
(Nn)−β/(4β+1) + n−2

Table 1: Rates of convergence of the square root of the risk of estimation E
[∥∥∥σ̂2 − σ2

|I

∥∥∥2
n,N

]
of the

non-adaptive estimators σ̂2 of the square of the diffusion coefficient σ2
|I built from one diffusion path

(N = 1) on the left column, and from repeated observations of the diffusion process (N → ∞) on the
right column. For the precise results, see Sections 3 and 4.

Outline of the paper. In Section 2, we define our framework with the key assumptions on the
coefficients of the diffusion process ensuring for instance that Equation (1) admits a unique strong
solution. Section 3 is devoted to the non-adaptive estimation of the diffusion coefficient from one
diffusion path both on a compact interval and on the real line R. In Section 4, we extend the study
to the non-adaptive estimation of the diffusion coefficient from repeated observations of the diffusion
process. We propose in Section 5, adaptive estimators of the diffusion coefficient, and Section 6 complete
the study with numerical evaluation of the performance of estimators. We prove our theoretical results
in Section 8.

2 Framework and assumptions

Consider a diffusion process X = (Xt)t∈[0,1], solution of Equation (1) whose drift and diffusion coeffi-
cient satisfy the following assumption.

Assumption 2.1. 1. There exists a constant L0 > 0 such that b and σ are L0−Lipschitz functions
on R.

2. There exist constants σ0, σ1 > 0 such that : σ0 ≤ σ(x) ≤ σ1, ∀x ∈ R.

3. σ ∈ C2 (R) and there exist C > 0 and α ≥ 0 such that:∣∣σ′(x)
∣∣+ ∣∣σ′′(x)

∣∣ ≤ C (1 + |x|α) , ∀x ∈ R.
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Under Assumption 2.1, X = (Xt)t∈[0,1] is the unique strong solution of Equation (1), and this
unique solution admits a transition density (t, x) 7→ pX(t, x). Besides, we draw from Assumption 2.1
that

∀q ≥ 1, E

[
sup
t∈[0,1]

|Xt|q
]
< ∞. (2)

2.1 Definitions and notations

We suppose to have at our disposal, a sample DN,n =
{
X̄j , j = 1, · · · , N

}
constituted of N indepen-

dent copies of the discrete observation X̄ = (Xk∆n)0≤k≤n of the diffusion process X where ∆n = 1/n
is the time-step. The objective is to construct, from the sample DN,n, a nonparametric estimator of
the square σ2 of the diffusion coefficient on an interval I ⊆ R. In the sequel, we consider two main
cases, the first one being the estimation of σ2 on the interval I from a single path (N = 1 and n → ∞).
For the second case, we assume that both N and n tend to infinity.

For each measurable function h, such that E
[
h2(Xt)

]
< ∞ for all t ∈ [0, 1], we define the following

empirical norms:

∥h∥2n := EX

[
1

n

n−1∑
k=0

h2 (Xk∆n)

]
, ∥h∥2n,N :=

1

Nn

N∑
j=1

n−1∑
k=0

h2
(
Xj

k∆n

)
. (3)

For all h ∈ L2(I), we have

∥h∥2n =

∫
I
h2(x)

1

n

n−1∑
k=0

pX(k∆n, x0, x)dx =

∫
I
h2(x)fn(x)dx,

where fn : x 7→ 1
n

∑n−1
k=0 pX(k∆n, x) is a density function. For the case of non-adaptive estimators of

σ2, we also establish bounds of the risks of the estimators based on the empirical norm ∥.∥n or the
L2−norm ∥.∥ when the estimation interval I is compact.

For any integers p, q ≥ 2 and any matrix M ∈ Rp×q, we denote by tM , the transpose of M .

2.2 Spaces of approximation

We propose projection estimators of σ2 on a finite-dimensional subspace. To this end, we consider for
each m ≥ 1, a m-dimensional subspace Sm given as follows:

Sm := Span (ϕℓ, ℓ = 0, · · · ,m− 1) , m ≥ 1 (4)

where the functions (ϕℓ, ℓ ∈ N) are continuous, linearly independent and bounded on I. Furthermore,
we need to control the ℓ2−norm of the coordinate vectors of elements of Sm, which leads to the following
constrained subspace,

Sm,L :=

{
h =

m−1∑
ℓ=0

aℓϕℓ,
m−1∑
ℓ=0

a2ℓ = ∥a∥22 ≤ mL, a = (a0, · · · , am−1) , L > 0

}
. (5)

Note that Sm,L ⊂ Sm and Sm,L is no longer a vector space. The control of the coordinate vectors
allows to establish an upper bound of the estimation error that tends to zero as n → ∞ or N,n → ∞.
In fact, we prove in the next sections that the construction of consistent estimators of σ2 requires the
functions h =

∑m−1
ℓ=0 aℓϕℓ to be bounded, such that

∥h∥∞ ≤ max
ℓ=0,...,m−1

∥ϕℓ∥∞ ∥a∥2.

This condition is satisfied for the functions of the constrained subspaces Sm,L with m ≥ 1. In this
article, we work with the following bases.
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[B] The B-spline basis This is an exemple of a non-orthonormal basis defined on a compact interval.
Let A > 0 be a real number, and suppose (without restriction) that I = [−A,A]. Let K,M ∈ N∗, and
consider u = (u−M , · · · , uK+M ) a knots vector such that u−M = · · · = u−1 = u0 = −A, uK+1 = · · · =
uK+M = A, and for all i = 0, · · · ,K,

ui = −A+ i
2A

K
.

One calls B-spline functions, the piecewise polynomial functions (Bℓ)ℓ=−M,··· ,K−1 of degree M , associ-
ated with the knots vector u (see Györfi et al. (2006), Chapter 14). The B-spline functions are linearly
independent smooths functions returning zero for all x /∈ [−A,A], and satisfying some smoothness con-
ditions established in Györfi et al. (2006). Thus, we consider approximation subspaces SK+M defined
by

SK+M = Span {Bℓ, ℓ = −M, · · · ,K − 1}

of dimension dim(SK+M ) = K+M , and in which, each function h =
∑K−1

ℓ=−M aℓBℓ is M−1 times contin-
uously differentiable thanks to the properties of the spline functions (see Györfi et al. (2006)). Besides,
the spline basis is included in the definition of both the subspace Sm and the constrained subspace Sm,L

(see Equations (4) and (5)) with m = K+M and for any coordinates vector (a−M , . . . , aK−1) ∈ RK+M ,

K−1∑
ℓ=−M

aℓBℓ =
m−1∑
ℓ=0

aℓ−MBℓ−M .

The integer M ∈ N∗ is fixed, while K varies in the set of integers N∗. If we assume that σ2 belongs to
the Hölder space ΣI(β,R) given as follows:

ΣI(β,R) :=
{
h ∈ C⌊β⌋+1(I),

∣∣∣h(ℓ)(x)− h(ℓ)(y)
∣∣∣ ≤ R|x− y|β−l, x, y ∈ I

}
,

where β ≥ 1, ℓ = ⌊β⌋ and R > 0, then the unknown function σ2
|I restricted to the compact interval I can

be approximated in the constrained subspace SK+M,L spanned by the spline basis. This approximation
results to the following bias term:

inf
h∈SK+M,L

∥h− σ2
|I∥

2
n ≤ C|I|2βK−2β (6)

where the constant C > 0 depends on β,R and M , and |I| = sup I − inf I. The above result is a
modification of Lemma D.2 in Denis et al. (2021).

[F] The Fourier basis The subspace Sm can be spanned by the Fourier basis

{fℓ, ℓ = 0, . . . ,m− 1} = {1,
√
2 cos(2πjx),

√
2 sin(2πjx), j = 1, ..., d} with m = 2d+ 1.

The above Fourier basis is defined on the compact interval [0, 1]. The definition can be extended to any
compact interval, replacing the bases functions x 7→ fℓ(x) by x 7→ 1/(max I − min I)fℓ(

x−min I
max I−min I ).

We use this basis to build the estimators of σ2 on a compact interval I ⊂ R.
Define for all s ≥ 1 and for any compact interval I ⊂ R, the Besov space Bs

2,∞(I) which is a space
of functions f ∈ L2(I) such that the ⌊s⌋th derivative f (⌊s⌋) belongs to the space Bs−⌊s⌋

2,∞ (I) given by

Bs−⌊s⌋
2,∞ (I) =

{
f ∈ L2(I) and

w2,f (t)

ts−⌊s⌋ ∈ L∞(I ∩ R+)

}
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where for s − ⌊s⌋ ∈ (0, 1), w2,f (t) = sup
|h|≤t

∥τhf − f∥2 with τhf(x) = f(x − h), and for s − ⌊s⌋ = 1,

w2,f (t) = sup
|h|≤t

∥τhf + τ−hf − 2f∥2. Thus, if we assume that the function σ2
|I belongs to the Besov

space Bs
2,∞, then it can be approximated in a constrained subspace Sm,L spanned by the Fourier basis.

Moreover, under Assumption 2.1 and from Lemma 12 in Barron et al. (1999), there exists a constant
C > 0 depending on the constant τ1 of Equation (12), the smoothness parameter s of the Besov space
such that

inf
h∈Sm,L

∥∥∥h− σ2
|I

∥∥∥2
n
≤ τ1 inf

h∈Sm,L

∥∥∥h− σ2
|I

∥∥∥2 ≤ C
∣∣∣σ2

|I

∣∣∣2
β
m−2β (7)

where |σ2
|I |s is the semi-norm of σ2

|I in the Besov space Bs
2,∞(I).

Note that for all β ≥ 1, the Hölder space ΣI(β,R) and the Besov space Bβ
2,∞ satisfy:

L∞(R) ∩ ΣI(β,R) ⊂ Bβ
∞,∞(I) ⊂ Bβ

2,∞(I)

(see DeVore & Lorentz (1993), Chap. 2 page 16 ). As a result, we rather consider in the sequel the
Hölder space ΣI(β,R) which can also be approximated by the Fourier basis.

[H] The Hermite basis The basis is defined from the Hermite functions (hj , j ≥ 0) defined on R
and given for all j ≥ 0 and for all x ∈ R by:

hj(x) = cjHj(x), where Hj(x) = (−1)j exp

(
x2

2

)
dj

dxj

(
e−x2/2

)
and cj =

(
2jj!

√
π
)−1/2

.

The polynomials Hj(x), j ≥ 0 are the Hermite polynomials, and (hj , j ≥ 0) is an orthonormal basis of
L2(R). Furthermore, for all j ≥ 1 and x ∈ R, |hj(x)| ≤ c|x| exp(−c0x

2) for x2 ≥ (3/2)(4j + 3) where
c, c0 > 0 are constants independent of j (see Comte & Genon-Catalot (2020b), Proof of Proposition
3.5). We use the Hermite basis in the sequel for the estimation of σ2 on the real line R.

If one assumes that σ2 belongs to the Sobolev space W s
fn
(R, R) given for all s ≥ 1 by

W s
fn(R, R) :=

{
g ∈ L2(R, fn(x)dx), ∀ ℓ ≥ 1, ∥g − gℓ∥2n ≤ Rℓ−s

}
where for each ℓ ≥ 1, gℓ is the L2(R, fn(x)dx)−orthogonal projection of g on the ℓ−dimensional vector
space Sℓ spanned by the Hermite basis. Consider a compact interval I ⊂ R and the following spaces:

W s(I,R) :=

g ∈ L2(I),

∞∑
j=0

js ⟨g, ϕj⟩2 ≤ R

 ,

W s
fn(I,R) :=

{
g ∈ L2(I, fn(x)dx), ∀ ℓ ≥ 1, ∥g − gℓ∥2n ≤ Rℓ−s

}
where (ϕj)j≥0 is an orthonormal basis defined on I and for all ℓ ≥ 1, gℓ is the orthogonal projection of
g onto Sℓ = Span(hj , j ≤ ℓ) of dimension ℓ ≥ 1 (see e.g. Comte & Genon-Catalot (2021)). Then, for
all g ∈ W s(I,R), we have

g =
∞∑
j=0

⟨g, ϕj⟩ϕj and ∥g − gℓ∥2 =
∞∑

j=ℓ+1

⟨g, ϕj⟩2 ≤ ℓ−s
∞∑

j=ℓ+1

js ⟨g, ϕj⟩2 ≤ Rℓ−s.

We have W s
fn
(I,R) = W s(I,R) as the empirical norm ∥.∥n and the L2−norm ∥.∥ are equivalent. The

space W s
fn
(R, R) is an extension of the space W s

fn
(I,R) wher I = R and (ϕj)j≥0 is the Hermite basis.

6



Remark 2.2. The B-spline basis is used for the estimation of σ2 on a compact interval on one side
(N = 1 and N > 1), and on the real line on the other side restricting σ2 on the compact interval
[− log(n), log(n)] for N = 1, or [− log(N), log(N)] for N > 1, and bounding the exit probability of the
process X from the interval [− log(N), log(N)] (or [− log(n), log(n)]) by a negligible term with respect
to the estimation error. In a similar context, the Fourier basis is used as an othonormal basis to built
nonparametric estimators of σ2 on a compact interval and on R, both for N = 1 and for N > 1.
The main goal is to show that, in addition to the spline basis which is not orthogonal, we can built
projection estimators of σ2 on orthonormal bases that are consistent. The advantage of the Hermite
basis compared to the Fourier basis is its definition on the real line R. As a result, we use the Hermite
basis to propose for N > 1, a projection estimator of σ2 whose support is the real line R.

Remark 2.3. Denote by M, the set of possible values of the dimension m ≥ 1 of the approximation
subspace Sm. If (ϕ0, · · · , ϕm−1) is an orthonormal basis, then for all m,m′ ∈ M such that m < m′,
we have Sm ⊂ Sm′. For the case of the B-spline basis, one can find a subset K ⊂ M of the form

K = {2q, q = 0, · · · , qmax}

such that for all K,K ′ ∈ K, K < K ′ implies SK+M ⊂ SK′+M (see for example Denis et al. (2021)).
The nesting of subspaces Sm, m ∈ M is of great importance in the context of adaptive estimation of
the diffusion coefficient and the establishment of upper-bounds for the risk of adaptive estimators.

In the sequel, we denote by [F], [H] and [B] the respective collection of subspaces spanned by the
Fourier basis, the Hermite basis and the B-spline basis.

2.3 Ridge estimators of the square of the diffusion coefficient

We establish from Equation (1) and the sample DN,n the regression model for the estimation of σ2.
For all j ∈ [[1, N ]] and k ∈ [[0, n− 1]], define

U j
k∆n

:=

(
Xj

(k+1)∆n
−Xj

k∆n

)2
∆n

.

The increments U j
k∆n

are approximations in discrete times of d⟨X,X⟩t
dt since, from Equation (1), one has

d ⟨X,X⟩t = σ2(Xt)dt. From Equation (1), we obtain the following regression model,

U j
k∆n

= σ2(Xj
k∆n

) + ζjk∆n
+Rj

k∆n
, ∀(j, k) ∈ [[1, N ]]× [[0, n− 1]]

where U j
k∆n

is the response variable, ζjk∆n
and Rj

k∆n
are respectively the error term and a negligible

residual whose explicit formulas are given in Section 8.
We consider the least squares contrast γn,N defined for all m ∈ M and for all function h ∈ Sm,L by

γn,N (h) :=
1

Nn

N∑
j=1

n−1∑
k=0

(
U j
k∆ − h(Xj

k∆n
)
)2

. (8)

For each dimension m ∈ M, the projection estimator σ̂2
m of σ2 over the subspace Sm,L satisfies:

σ̂2
m ∈ argmin

h∈Sm,L

γn,N (h). (9)

Indeed, for each dimension m ∈ M, the estimator σ̂2
m of σ2 given in Equation (9) satisfies σ̂2

m =∑m−1
ℓ=0 âℓϕℓ, where

â = (â0, · · · , âm−1) := argmin
∥a∥22≤mL

∥U− Fma∥22 (10)
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with tU =
(
U1
0 , . . . , U

1
(n−1)∆n

, . . . , UN
0 , . . . , UN

(n−1)∆n

)
and the matrix Fm is defined as follows

Fm :=
(
t(ϕℓ(X

j
0), . . . , ϕℓ(X

j
(n−1)∆n

))
)
0≤ℓ≤m−1

1≤j≤N

∈ RNn×m.

The vector of coefficients â is unique and called the ridge estimator of a because of the ℓ2 constraint
on the coordinate vectors (see Hastie et al. (2001) Chap. 3 page 61).

3 Estimation of the diffusion coefficient from a single diffusion path

This section focuses on the nonparametric estimation of the square of the diffusion coefficient σ2 on
an interval I ⊆ R when only a single diffusion path is observed at discrete times (N = 1). It is proved
in the literature that one can construct consistent estimators of the diffusion coefficient from one path
when the time horizon T is finite (see e.g. Hoffmann (1999b)). Two cases are considered. First, we
propose a ridge estimator of σ2 on a compact interval I ⊂ R, say for example I = [−1, 1]. Secondly,
we extend the study to the estimation of σ2 on the real line I = R.

3.1 Non-adaptive estimation of the diffusion coefficient on a compact interval

In this section, we consider the estimator σ̂2
m of the compactly supported square of the diffusion

coefficient σ2
|I on the constrained subspaces Sm,L from the observation of a single diffusion path.

Since the interval I ⊂ R is compact, the immediate benefit is that the density function fn defined
from the transition density of the diffusion process X̄ = (Xk∆) is bounded from below. In fact, there
exist constants τ0, τ1 ∈ (0, 1] such that

∀x ∈ I, τ0 ≤ fn(x) ≤ τ1, (11)

(see Denis et al. (2021)). Thus, for each function h ∈ L2(I),

τ0∥h∥2 ≤ ∥h∥2n ≤ τ1∥h∥2 (12)

where ∥.∥ is the L2−norm. Equation (12) allows to establish global rates of convergence of the risk of
the ridge estimators σ̂2

m of σ2
|I with m ∈ M using the L2−norm ∥.∥ which is, in this case, equivalent

with the empirical norm ∥.∥n.
To establish an upper-bound of the risk of estimation that tends to zero as n tends to infinity, we

need to establish equivalence relations between the pseudo-norms ∥.∥n,1 (N = 1) and ∥.∥X on one side,
and ∥.∥X and the L2−norm ∥.∥ on the other side, where the random pseudo-norm ∥.∥X is defined for
each function h ∈ L2(I) by

∥h∥2X :=

∫ 1

0
h2(Xs)ds. (13)

Define for x ∈ R, the local time Lx of the diffusion process X = (Xt)t∈[0,1] by

Lx = lim
ε→0

1

2ε

∫ 1

0
1(x−ε,x+ε)(Xs)ds. (14)

In general, the local time of a continuous semimartingale is a.s. càdlàg (see e.g. Revuz & Yor (2013)).
But, for diffusion processes and under Assumption 2.1, the local time Lx is bicontinuous at any point
x ∈ R (see Lemma 8.5 in Section 8). Furthermore, we obtain the following result.

Lemma 3.1. Under Assumption 2.1, and for any continuous and integrable function h, it yields,

8



1.
∫ 1
0 h(Xs)ds =

∫
R h(x)Lxdx.

2. For all x ∈ R, E(Lx) =
∫ 1
0 pX(s, x)ds.

In Lemma 3.1, we remark that there is a link between the local time and the transition density of the
diffusion process. Thus, if we consider the pseudo-norm ∥.∥X depending on the process X = (Xt)t∈[0,1]
and given in Equation (13), and using Lemma 3.1, we obtain that,

E
[
∥h∥2X

]
=

∫
R
h2(x)E [Lx] dx =

∫
R
h2(x)

∫ 1

0
pX(s, x)dsdx ≥ τ0∥h∥2. (15)

where
∫ 1
0 pX(s, x)ds ≥ τ0 > 0 (see Denis et al. (2021), Lemma 4.3 ), and ∥h∥2 is the L2−norm of h.

Theorem 3.2. Set L = log(n). Suppose that σ2 is approximated in one of the collections [B] and [F].
Under Assumption 2.1, it yields

E
[∥∥∥σ̂2

m − σ2
|I

∥∥∥2
n,1

]
≤ 3 inf

h∈Sm,L

∥∥∥h− σ2
|I

∥∥∥2
n
+ C

(
m

n
+

m2γ+1 log(n)

nγ/2
+∆2

n

)
E
[∥∥∥σ̂2

m − σ2
|I

∥∥∥2
n

]
≤ 34τ1

τ0
inf

h∈Sm,L

∥∥∥h− σ2
|I

∥∥∥2
n
+ C ′

(
m

n
+

m2γ+1 log(n)

nγ/2
+∆2

n

)
where the number γ > 1 comes from the use of the Hölder inequality. The constant C > 0 depends on
σ1 and the constant C ′ > 0 depends on σ1, τ0 and τ1.

We observe that the upper-bound of the risk of estimation of σ̂2
m is composed of the bias term,

which quantifies the cost of approximation of σ2
|I in the constrained space Sm,L, the estimation error

O(m/n) and the cost of the time discretization O(∆2
n) are established on a random event in which

the pseudo-norms ∥.∥n,1 and ∥.∥X are equivalent, and whose probability of the complementary times∥∥∥σ̂2
m − σ2

|I

∥∥∥2
∞

is bounded by the term O
(
m2γ+1 log(n)

nγ/2

)
(see Lemma 8.9 and proof of Theorem 3.2).

The next result proves that the risk of estimation can reach a rate of convergence of the same order
than the rate established in Hoffmann (1999b) if the parameter γ > 1 is chosen such that the term
O(m2γ+1 log(n)/nγ/2) is of the same order than the estimation error of order m/n. Note that the risk∥∥∥σ̂2

m − σ2
|I

∥∥∥2
n

is random since

∥∥∥σ̂2
m − σ2

|I

∥∥∥2
n
= EX

[
1

n

n−1∑
k=0

(σ̂2
m − σ2

|I)(Xk∆)

]

and the estimator σ̂2
m is built from an independent copy X̄1 of the discrete times process X̄. Thus, the

expectation E relates to the estimator σ̂2
m.

Corollary 3.3. Suppose that σ2 ∈ ΣI(β,R) with β > 3/2, and γ = 2(2β + 1)/(2β − 3). Assume that
Kopt ∝ n1/(2β+1) for [B] (mopt = Kopt +M), and mopt ∝ n1/(2β+1) for [F]. Under Assumptions 2.1,
it yields,

E
[∥∥∥σ̂2

mopt
− σ2

|I

∥∥∥2
n,1

]
= O

(
log(n)n−2β/(2β+1)

)
E
[∥∥∥σ̂2

mopt
− σ2

|I

∥∥∥2
n

]
= O

(
log(n)n−2β/(2β+1)

)
.

Note that we obtain the exact same rates when considering the risk of σ̂2
mopt

defined with the
L2−norm equivalent to the empirical norm ∥.∥n. Moreover, these rates of convergence are of the same
order than the optimal rate n−s/(2s+1) established in Hoffmann (1999b) over a Besov ball.
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3.2 Non-adaptive estimation of the diffusion coefficient on the real line

In this section, we propose a ridge estimator of σ2 on the real line R, built from one diffusion path. In
this context, the main drawback is that the density function fn : x 7→ 1

n

∑n−1
k=0 pX(k∆, x) is no longer

lower bounded. Consequently, the empirical norm ∥.∥n is no longer equivalent to the L2−norm ∥.∥ and
the consistency of the estimation error is no longer ensured under the only assumptions made in the
previous sections. Consider the truncated estimator σ̂2

m,L of σ2 given by

σ̂2
m,L(x) = σ̂2

m(x)1σ̂2
m(x)≤

√
L +

√
L1σ̂2

m(x)>
√
L. (16)

Thus, the risk of the ridge estimator σ̂2
m,L is upper-bounded as follows:

E
[∥∥σ̂2

m,L − σ2
∥∥2
n,1

]
≤ E

[∥∥(σ̂2
m,L − σ2)1[− log(n),log(n)]

∥∥2
n,1

]
+ E

[∥∥(σ̂2
m,L − σ2)1[− log(n),log(n)]c

∥∥2
n,1

]
≤ E

[∥∥(σ̂2
m,L − σ2)1[− log(n),log(n)]

∥∥2
n,1

]
+ 4 log2(n) sup

t∈[0,1]
P(|Xt| > log(n)).

The first term on the r.h.s. is equivalent to the risk of a ridge estimator of σ2 on the compact interval
[− log(n), log(n)]. The second term on the r.h.s. is upper-bounded using Lemma 8.4. We derive below,
an upper-bound of the risk of estimation of σ̂2

m.

Theorem 3.4. Suppose that L = log2(n). Under Assumption 2.1, it yields,

E
[∥∥σ̂2

m,L − σ2
∥∥2
n,1

]
≤ inf

h∈Sm,L

∥h− σ2∥2n + C

√
mq log2(n)

n

where C > 0 is a constant, q = 1 for the collection [B], and q = 2 for the collection [F].

We first remark that the upper-bound of the risk of the truncated estimator of σ2 differs with
respect to each of the chosen bases. This contrast comes from the fact that the Fourier basis {fℓ, ℓ =
0, . . . ,m− 1} and the spline basis {Bℓ−M , ℓ = 0, . . . ,m− 1} satisfy

m−1∑
ℓ=0

fℓ(x) ≤ Cfm, and

m−1∑
ℓ=0

Bℓ−M (x) = 1.

Secondly, the estimation error is not as fine as the one established in Theorem 3.2 where σ2 is estimated
on a compact interval. In fact, on the real line R, the pseudo-norm ∥.∥X can no longer be equivalent to
the L2−norm since the transition density is not bounded from below on R. Consequently, we cannot
take advantage of the exact method used to establish the risk bound obtained in Theorem 3.2 which
uses the equivalence relation between the pseudo-norms ∥.∥n,1 and ∥.∥X on one side, and ∥.∥X and the
L2−norm ∥.∥ on the other side. Moreover, we can also notice that the term of order 1/n2 does not
appear since it is dominated by the estimation error.

We obtain below rates of convergence of the ridge estimator of σ2 for each of the collections [B]
and [F].

Corollary 3.5. Suppose that σ2 ∈ ΣI(β,R) with β ≥ 1

For [B]. Assume that K ∝ n1/(4β+1). Under Assumptions 2.1, there exists a constant C > 0 depend-
ing on β and σ1 such that

E
[∥∥σ̂2

m,L − σ2
∥∥2
n,1

]
≤ C log2β(n)n−2β/(4β+1).

10



For [F]. Assume that m ∝ n1/2(2β+1). Under Assumptions 2.1, it yields,

E
[∥∥σ̂2

m,L − σ2
∥∥2
n,1

]
≤ C log(n)n−β/(2β+1)

where the constant C > 0 depends on β and σ1.

As we can remark, the obtained rates are slower than the ones established in Section 3.1 where σ2 is
estimated on a compact interval. This result is the immediate consequence of the result of Theorem 3.4.

4 Estimation of the diffusion coefficient from repeated diffusion paths

We now focus on the estimation of the (square) of the diffusion coefficient from i.i.d. discrete observa-
tions of the diffusion process (N → ∞).

4.1 Non-adaptive estimation of the diffusion coefficient on a compact interval

We study the rate of convergence of the ridge estimators σ̂2
m of σ2

|I from DN,n when I is a compact
interval. The next theorem gives an upper-bound of the risk of our estimators σ̂2

m, m ∈ M.

Theorem 4.1. Suppose that L = log(Nn) and M =
{
1, . . . ,

√
min(n,N)/ log(Nn)

}
. Under As-

sumption 2.1 and for all m ∈ M, there exist constants C > 0 and C ′ > 0 depending on σ1 such
that,

E
[∥∥∥σ̂2

m − σ2
|I

∥∥∥2
n,N

]
≤ 3 inf

h∈Sm,L

∥∥∥h− σ2
|I

∥∥∥2
n
+ C

( m

Nn
+m log(Nn) exp

(
−C
√
min(n,N)

)
+∆2

n

)
E
[∥∥∥σ̂2

m − σ2
|I

∥∥∥2
n

]
≤ 34 inf

h∈Sm,L

∥∥∥h− σ2
|I

∥∥∥2
n
+ C ′

( m

Nn
+m log(Nn) exp

(
−C
√
min(n,N)

)
+∆2

n

)
.

Note that the result of Theorem 4.1 is independent of the choice of the basis that generate the
approximation space Sm. The first term on the right-hand side represents the approximation error of
the initial space, the second term O(m/(Nn)) is the estimation error, and the last term characterizes
the cost of the time discretization. The next result is derived from Theorem 4.1.

Corollary 4.2. Suppose that σ2 ∈ ΣI(β,R) with β > 3/2. Moreover, assume that Kopt ∝ (Nn)1/(2β+1)

for [B] (mopt = Kopt +M), and mopt ∝ (Nn)1/(2β+1) for [F]. Under Assumptions 2.1, it yields,

E
[∥∥∥σ̂2

mopt
− σ2

|I

∥∥∥2
n,N

]
= O

(
(Nn)−2β/(2β+1)

)
E
[∥∥∥σ̂2

mopt
− σ2

|I

∥∥∥2
n

]
= O

(
(Nn)−2β/(2β+1)

)
.

The obtained result shows that the nonparametric estimators of σ2
|I based on repeated observations

of the diffusion process are more efficient when N,n → ∞. Note that the same rate is obtained if the
risk of σ̂2

mopt
is defined with the L2−norm ∥.∥ equivalent to the empirical norm ∥.∥n.

The rate obtained in Corollary 4.2 is established for β > 3/2. If we consider for example the collec-
tion [B] and assume that β ∈ [1, 3/2], then Kopt ∝ (Nn)1/(2β+1) belongs to M for n ∝

√
N/ log4(N)

and we have

E
[∥∥∥σ̂2

mopt
− σ2

|I

∥∥∥2
n,N

]
≤ C(Nn)−2β/(2β+1).

Under the condition n ∝
√
N/ log4(N) imposed on the length of diffusion paths, the obtained rate is

of order n−3β/(2β+1) (up to a log-factor) which is equivalent to N−3β/2(2β+1) (up to a log-factor).
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4.2 Non-adaptive estimation of the diffusion coefficient on the real line

Consider a ridge estimator of σ2 on R built from N independent copies of the diffusion process X
observed in discrete times, where both N and n tend to infinity. For each m ∈ M, we still denote by
σ̂2
m the ridge estimators of σ2 and σ̂2

m,L the truncated estimators of σ2 given in Equation (16). We
establish, through the following theorem, the first risk bound that highlights the main error terms.

Theorem 4.3. Suppose that L = log2(N). Under Assumptions 2.1 and for any dimension m ∈ M,
the following holds:

E
[∥∥σ̂2

m,L − σ2
∥∥2
n,N

]
≤ 2 inf

h∈Sm,L

∥h− σ2∥2n + C

√mq log2(N)

Nn
+∆2

n


where C > 0 is a constant depending on the upper bound σ1 of the diffusion coefficient. Moreover,
q = 1 for the collection [B] and q = 2 for the collection [H].

If we consider the risk of σ̂2
m,L using the empirical norm ∥.∥n, then we obtain

E
[∥∥σ̂2

m,L − σ2
∥∥2
n

]
≤ 2 inf

h∈Sm,L

∥h− σ2∥2n + C

√mq log2(N)

Nn
+

m2 log3(N)

N
+∆2

n

 (17)

The risk bound given in Equation (17) is a sum of four error terms. The first term is the approximation
error linked to the choice of the basis, the second term is the estimation error given in Theorem 4.3, the
third term m2 log3(N)/N comes from the relation linking the empirical norm ∥.∥n to the pseudo-norm
∥.∥n,N (see Lemma 8.7), and the last term is the cost of the time-discretization.

We derive, in the next result, rates of convergence of the risk bound of the truncated ridge estimators
σ̂2
m,L based on the collections [B] and [H] respectively.

Corollary 4.4. Suppose that σ2 ∈ ΣI(β,R) with β ≥ 1, I = [− log(N), log(N)], and K ∝ (Nn)1/(4β+1)

for [B], and σ2 ∈ W s
fn
(R, R) with s ≥ 1 and m ∝ (Nn)1/2(2s+1) for [H]. Under Assumption 2.1, the

following holds:

For [B] E
[∥∥σ̂2

m,L − σ2
∥∥2
n,N

]
≤ C

(
log2β(N)(Nn)−2β/(4β+1) +

1

n2

)
,

For [H] E
[∥∥σ̂2

m,L − σ2
∥∥2
n,N

]
≤ C

(
log3(N)(Nn)−s/(2s+1) +

1

n2

)
.

where C > 0 is a constant depending on β and σ1 for [B], or s and σ1 for [H].

The obtained rates are slower compared to the rates established in Section 4.1 for the estimation
of σ2

|I where the interval I ⊂ R is compact. In fact, the method used to establish the rates of
Theorem 4.3 from which the rates of Corollary 4.4 are obtained, does not allow us to derive rates
of order (Nn)−α/(2α+1) (up to a log-factor) with α ≥ 1 (e.g. α = β, s). Finally, if we consider the
risk defined with the empirical norm ∥.∥n, then from Equation (17) with n ∝ N and assuming that
m ∝ N1/4(s+1) for [H] or K ∝ N1/4(β+1) for [B], we obtain

[B] : E
[∥∥σ̂2

m,L − σ2
∥∥2
n

]
≤ C log2β(N)(Nn)−β/2(β+1),

[H] : E
[∥∥σ̂2

m,L − σ2
∥∥2
n

]
≤ C log3(N)(Nn)−s/2(s+1),

where C > 0 is a constant depending on σ1 and on the smoothness parameter. We can see that the
obtained rates are slower compared to the results of Corollary 4.4 for n ∝ N . The deterioration of
the rates comes from the additional term of order m2 log3(N)/N which is now regarded as the new
estimation error since it dominates the other term in each case as N → ∞.
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4.3 Non-adaptive estimation of the diffusion coefficient on a compact interval
depending on the sample size

This section combines the two first sections 4.1 and 4.2 focusing on the estimation of σ2 on the
compact interval [−AN , AN ] where (AN ) is a strictly positive sequence such that AN → ∞ as N → ∞.
Consequently, we obtain that the estimation interval tends to R as the sample size N tends to infinity.

Define from the observations and for each dimension m ∈ M, the following matrices:

Ψ̂m :=

 1

Nn

N∑
j=1

n−1∑
k=0

ϕℓ

(
Xj

k∆

)
ϕℓ′

(
Xj

k∆

)
0≤ℓ,ℓ′≤m−1

, (18)

Ψm := E
(
Ψ̂m

)
=

(
E

[
1

n

n−1∑
k=0

ϕℓ (Xk∆)ϕℓ′ (Xk∆)

])
0≤ℓ,ℓ′≤m−1

. (19)

These two matrices play an essential role in the construction of a consistent projection estimator of
σ2 over any approximation subspace Sm spanned by the basis (ϕ0, · · · , ϕm−1). Furthermore, for all
h =

∑m−1
ℓ=0 aℓϕℓ ∈ Sm, we have:

∥h∥2n,N = taΨ̂ma, ∥h∥2n = E
(
∥h∥2n,N

)
= taΨma,

where a = (a0, · · · , am−1). The Gram matrix Ψm is invertible under the spline basis (see Denis et al.
(2022)) and the Hermite basis (see Comte & Genon-Catalot (2021)). We define for any invertible
matrix M , the operator norm

∥∥M−1
∥∥
op

of M−1 given by
∥∥M−1

∥∥
op

= 1/ inf{λj} where the λj are
eigenvalues of M .

For all dimension m ∈ M, the matrices Ψ̂m and Fm satisfy:

Ψ̂m = tFmFm.

Consider the ridge estimator σ̂2
m of σ2

AN
= σ21[−AN ,AN ], with m ∈ M and AN → ∞ as N → ∞. The

estimator σ̂2
m can reach a faster rate of convergence if the Gram matrix Ψm given in Equation (19)

satisfies the following condition,

L(m)
(∥∥Ψ−1

m

∥∥
op

∨ 1
)
≤ C

N

log2(N)
, where L(m) := sup

x∈R

m−1∑
ℓ=0

ϕ2
ℓ (x) < ∞ (20)

where C > 0 is a constant. In fact, the optimal rate of convergence is achieved on a random event
Ωn,N,m in which the two empirical norms ∥.∥n,N and ∥.∥n are equivalent (see Comte & Genon-Catalot
(2020a), Denis et al. (2021)). Then, Condition (20) is used to upper-bound P

(
Ωc
n,N,m

)
by a neg-

ligible term with respect to the considered rate (see Comte & Genon-Catalot (2020a)). Note that
in Equation (20), the square on log(N) is justified by the fact that the value of constant C > 0 is
unknown, and that the spline basis is not othonormal (see Denis et al. (2022), proof of Lemma 7.8).
The assumption of Equation (20) is also made in Comte & Genon-Catalot (2020a) on the operator
norm of Ψ−1

m based on an orthonormal basis with the bound cN/ log(N) where the value of c is known,
and chosen and such that the upper-bound of P(Ωc

n,N,m) is negligible with respect to the estimation
error. In our framework, since the transition density is approximated by Gaussian densities, we derive
the following result.
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Lemma 4.5. Suppose that n ∝ N and that the spline basis is constructed on the interval [−AN , AN ]
with AN > 0. Under Assumption 2.1 , for all m ∈ M and for all w ∈ Rm such that ∥w∥2,m = 1, there
exists a constant C > 0 such that

For [H] : w′Ψmw ≥ C

log(N)
exp

(
− 3cσ(4m+ 3)

2
(
1− log−1(N)

)) ,

For [B] : w′Ψmw ≥ CAN

m log(N)
exp

(
−cσA

2
N

)
,

where the constant cσ > 1 that comes from the approximation of the transition density, depends on the
diffusion coefficient σ.

The result of Lemma 4.5 implies for the Hermite basis that

(∥∥Ψ−1
m

∥∥
op

∨ 1
)
≤ log(N)

C
exp

(
3cσ(4m+ 3)

2
(
1− log−1(N)

))

where the upper-bound is an exponentially increasing sequence of N since the dimension m ∈ M has
a polynomial growth with respect to N . Thus, Condition (20) cannot be satisfied for the Hermite
basis in our framework. Considering the spline basis, one has L(m) = L(K +M) ≤ 1 and there exists
a constant C > 0 such that ∥∥Ψ−1

m

∥∥
op

≤ C
m log(N)

AN
exp

(
cσA

2
N

)
. (21)

For K ∝
(
N2/(2β+1)AN

)
, Condition (20) is satisfied if the estimation interval [−AN , AN ] is chosen

such that AN = o
(√

log(N)
)
. In the next theorem, we prove that the spline-based ridge estimator of

σ2
AN

reaches a faster rate of convergence compared to the result of Corollary 4.4 for the collection [B].

Theorem 4.6. Suppose that N ∝ n and consider the ridge estimator σ̂2
AN ,m of σ2

AN
based on the

spline basis. Furthermore, suppose that L = log(N), AN = o
(√

log(N)
)

and K ∝ (Nn)1/(2β+1)AN

(m = K + M). Under Assumptions 2.1 and for σ2 ∈ ΣI(β,R) with I = [−AN , AN ], the following
holds:

E
[∥∥σ̂2

AN ,m − σ2
AN

∥∥2
n,N

]
≤ C logβ(N)(Nn)−2β/(2β+1)

where C > 0 is a constant depending on β.

The above result shows that the risk of the ridge estimator of σ2
AN

on [−AN , AN ] reaches a rate of
order (Nn)−β/(2β+1) (up tp a log-factor) thanks to Condition (20) which allows us to take advantage
of the equivalence relation between the empirical norms ∥.∥n and ∥.∥n,N given in Equation (3) to
derive a finer estimation error (see proof of Theorem 4.6). Note that the obtained result depends on
an appropriate choice of the estimation interval [−AN , AN ] which tends to R as N tends to infinity.
Therefore, any choice of AN such that AN/

√
log(N) −→ +∞ cannot lead to a consistent estimation

error since Equation (20) is no longer satisfied for the upper-bounding of P
(
Ωc
n,N,m

)
by a term that

tends to zero as N → ∞. Thus, the assumption AN = o
(√

log(N)
)

is a necessary and sufficient
condition for the validation of Condition (20) which leads, together with Assumption 2.1, to the result
of Theorem 4.6. Finally, under the assumptions of Theorem 4.6 and considering the risk of σ̂2

AN ,m

based on the empirical norm ∥.∥n, we also obtain

E
[∥∥σ̂2

AN ,m − σ2
AN

∥∥2
n

]
= O

(
logβ(N)(Nn)−2β/(2β+1)

)
.
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In fact, under Condition (20), the estimator σ̂2
AN ,m satisfies the results of Theorem 4.1 with I =

[−AN , AN ] and AN = o
(√

log(N)
)
, which implies rates of the same order for the two empirical

norms.

5 Adaptive estimation of the diffusion coefficient from repeated ob-
servations

In this section, we suppose that n ∝ N and we propose a adaptive ridge estimator of σ2 by selecting
an optimal dimension from the sample DN . In fact, consider the estimator σ̂2

K̂,L
where K̂ satisfies:

K̂ := argmin
K∈K

{
γn,N

(
σ̂2
K

)
+ pen(K)

}
(22)

and the penalty function pen : K 7→ pen(K) is established using the chaining technique of Baraud
et al. (2001). We derive below the risk of the adaptive estimator of σ2

|I when the interval I ⊂ R is
compact and the sample size N → ∞.

Theorem 5.1. Suppose that N ∝ n, L = log(N) and consider the collection [B] with

K ∈ K = {2q, q = 0, 1, . . . , qmax} ⊂ M =
{
1, . . . ,

√
N/ log(N)

}
.

Under Assumption 2.1 , there exists a constant C > 0 such that,

E
[∥∥∥σ̂2

K̂,L
− σ2

|I

∥∥∥2
n,N

]
≤ 34 inf

K∈K

{
inf

h∈SK+M,L

∥h− σ2
|I∥

2
n + pen(K)

}
+

C

Nn

where pen(K) = κ(K +M) log(N)/Nn with κ > 0 a numerical constant.

We deduce from Corollary 4.2 and its assumptions that the adaptive estimator σ̂2
K̂,L

satisfies:

E
[∥∥∥σ̂2

K̂,L
− σ2

|I

∥∥∥2
n

]
= O

(
(Nn)−2β/(2β+1)

)
.

This result is justified since the penalty term is of the same order (up to a log-factor) than the estimation
error established in Theorem 4.1.

Considering the adaptive estimator of σ2 on the real line I = R when the sample size N → ∞, we
obtain the following result.

Theorem 5.2. Suppose that N ∝ n and L = log(N), and consider the collection [B] with

K ∈ K = {2q, q = 0, 1, . . . , qmax} ⊂ M =
{
1, . . . ,

√
N/ log(N)

}
.

Under Assumption 2.1 and for N large enough, the exists a constant C > 0 such that,

E
[∥∥∥σ̂2

K̂,L
− σ2

∥∥∥2
n,N

]
≤ 3 inf

K∈K

{
inf

h∈SK+M,L

∥∥h− σ2
∥∥2
n
+ pen(K)

}
+

C

Nn
.

where pen(K) = κ′ (K+M) log(N)
Nn with κ′ > 0 a numerical constant.

We have a penalty term of the same order than the one obtained in Theorem 5.1 where σ2 is
estimated on a compact interval. One can deduce that the adaptive estimator reaches a rate of the
same order than the rate of the non-adaptive estimator given in Corollary 4.4 for the collection [B].

If we consider the adaptive estimator of the compactly supported diffusion coefficient built from a
single diffusion path, we obtain below an upper-bound of its risk of estimation.

15



Theorem 5.3. Suppose that N = 1, L =
√
log(n) and consider the collection [B] with

K ∈ K = {2q, q = 0, . . . , qmax} ⊂ M =
{
1, . . . ,

√
n/ log(n)

}
.

Under Assumption 2.1, it yields

E
[∥∥∥σ̂2

K̂,L
− σ2

|I

∥∥∥2
n,1

]
≤ 3 inf

K∈K

{
inf

h∈SK+M,L

∥∥∥h− σ2
|I

∥∥∥2
n
+ pen(K)

}
+

C

n
.

where C > 0 is a constant depending on τ0, and pen(K) = κ (K+M) log(n)
n with κ > 0 a numerical

constant.

We deduce from Theorem 5.3 that if we assume that σ2 ∈ ΣI(β,R), then the adaptive estimator
σ̂2
K̂,L

reaches a rate of order n−β/(2β+1) (up to a log-factor). The result of this theorem is almost a
deduction of the result of Theorem 5.1, the slight difference being the use, in the proofs, of the local
time of the process and the equivalence relation between the pseudo-norm ∥.∥n,1 with the pseudo-norm
∥.∥X instead of the empirical norm ∥.∥n considered in the proof of Theorem 5.1.

6 Numerical study

This section is devoted to the numerical study on a simulation scheme. Section 6.1 focuses on the
presentation of the chosen diffusion models. In Section 6.2, we describe the scheme for the implemen-
tation of the ridge estimators. We mainly focus on the B-spline basis for the numerical study, and in
Section 6.3, we add a numerical study on the performance of the Hermite-based ridge estimator of σ2

on R. Finally, we compare the efficiency of our estimator built on the real line R from a single path
with that of the Nadaraya-Watson estimator proposed in Florens-Zmirou (1993).

6.1 Models and simulations

Recall that the time horizon is T = 1 and X0 = 0. Consider the following diffusion models:

Model 1 Ornstein-Uhlenbeck: b(x) = 1− x, σ(x) = 1

Model 2: b(x) = 1− x, σ(x) = 1− x2

Model 3: b(x) = 1− x, σ(x) = 1
3+sin(2πx) + cos2

(
π
2x
)

Model 1 is the commonly used Ornstein-Uhlenbeck model, known to be a simple diffusion model
satisfying Assumption 2.1. Model 2 does not satisfy Assumption 2.1. Model 3 satisfies Assump-
tion 2.1 with a multimodal diffusion coefficient.

The size N of the sample DN takes values in the set {1, 10, 100, 1000} where the length n of paths
varies in the set {100, 250, 500, 1000}. As we work with the spline basis, the dimension m = K +M of
the approximation space is chosen such that M = 3 and K takes values in K = {2p, p = 0, · · · , 5} so
that the subspaces are nested inside each other. We are using R for the simulation of diffusion paths
via the function sde.sim of sde package, (see Iacus (2009) for more details on the simulation of SDEs).
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6.2 Implementation of the ridge estimators

In this section, we assess the quality of estimation of the adaptive estimator σ̂2
m̂ in each of the 3 models

through the computation of its risk of estimation. We compare the performance of the adaptive
estimator with that of the oracle estimator σ̂2

m∗ where m∗ is given by:

m∗ := argmin
m∈M

∥∥σ̂2
m − σ2

∥∥2
n,N

. (23)

For the spline basis, we have m∗ = K∗ +M with M = 3. Finally, we complete the numerical study
with a representation of a set of 10 estimators of σ2 for each of the 3 models.

We evaluate the MISE of the spline-based adaptive estimators σ̂2
K̂

by repeating 100 times the
following steps:

1. Simulate samples DN,n and DN ′,n with N ∈ {1, 10, 100, 1000}, N ′ = 100 and n ∈ {100, 250, 1000}.

2. For each K ∈ K, and from DN,n, compute estimators σ̂2
K given in Equations (9) and (10).

3. Select the optimal dimension K̂ ∈ K using Equation (22) and compute K∗ from Equation (23)

4. Using DN ′,n, evaluate
∥∥∥σ̂2

K̂
− σ2

∥∥∥2
n,N ′

and
∥∥σ̂2

K∗ − σ2
∥∥2
n,N ′ .

We deduce the risks of estimation considering the average values of
∥∥σ̂2

m̂ − σ2
∥∥2
n,N ′ and

∥∥σ̂2
m∗ − σ2

∥∥2
n,N ′

over the 100 repetitions. Note that we consider in this section, the estimation of σ2 on the compact
interval I = [−1, 1] and on the real line R. The unknown parameters κ and κ′ in the penalty functions
given in Theorem 5.1 and Theorem 5.2 respectively, are numerically calibrated (details are given in
Appendix 8.4.3), and we choose κ = 4 and κ′ = 5 as their respective values.

6.3 Numerical results

We present in this section the numerical results of the performance of the spline-based adaptive esti-
mators of σ2

|I with I ⊆ R together with the performance of the oracle estimators. We consider the case
I = [−1, 1] for the compactly supported diffusion coefficient, and the case I = R.

Tables 2 and 3 present the numerical results of estimation of σ2
|I from simulated data following the

steps given in Section 6.2.
The results of Table 2 and Table 3 show that the adapted estimator σ̂2

K̂
is consistent, since its MISE

tends to zero as both the size N of the sample DN,n and the length n of paths are larger. Moreover,
note that in most cases, the ridge estimators of the compactly supported diffusion coefficients perform
better than those of the non-compactly supported diffusion functions. As expected, we observe that the
oracle estimator has generally a better performance compared to the adaptive estimator. Nonetheless,
we can remark that the performances are very close in several cases, highlighting the efficiency of the
data-driven selection of the dimension.

An additional important remark is the significant influence of the length n of paths on the perfor-
mance of σ̂2

K̂
and σ̂2

K∗,L (by comparison of Table 2 with Table 3), which means that estimators built
from higher frequency data are more efficient. A similar remark is made for theoretical results obtained
in Sections 4.2 and 4.1.

Performance of the Hermite-based estimator of the diffusion coefficient We focus on the
estimation of σ2 on R and assess the performance of its Hermite-based estimator (see Section 4.2). We
present in Table 4, the performance of the oracle estimator σ̂2

m∗,L.
From the numerical results of Table 4, we observe that the Hermite-based estimator of σ2 is con-

sistent as the sample size N and the length n paths take larger values.
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Models Intervals Estimators N = 10 N = 100 N = 1000

Model 1

[−1, 1]
σ̂2
K̂,L

0.0102 (0.0083) 0.0009 (0.0009) 0.0002 (0.0001)

σ̂2
K∗,L 0.0094 (0.0065) 0.0009 (0.0009) 0.0002 (0.0001)

R
σ̂2
K̂,L

0.0096 (0.0062) 0.0009 (0.0008) 0.0003 (0.0002)

σ̂2
K∗,L 0.0093 (0.0057) 0.0009 (0.0008) 0.0003 (0.0002)

Model 2

[−1, 1]
σ̂2
K̂,L

0.0048 (0.0052) 0.0019 (0.0008) 0.0005 (0.0002)

σ̂2
K∗,L 0.0039 (0.0043) 0.0009 (0.0005) 0.0005 (0.0002)

R
σ̂2
K̂,L

0.0195 (0.0140) 0.0057 (0.0006) 0.0012 (0.0002)

σ̂2
K∗,L 0.0048 (0.0064) 0.0025 (0.0021) 0.0010 (0.0003)

Model 3

[−1, 1]
σ̂2
K̂,L

0.0521 (0.0191) 0.0176 (0.0070) 0.0073 (0.0021)

σ̂2
K∗,L 0.0260 (0.0081) 0.0073 (0.0030) 0.0048 (0.0009)

R
σ̂2
K̂,L

0.1132 (0.0595) 0.0319 (0.0031) 0.0179 (0.0054)

σ̂2
K∗,L 0.0351 (0.0169) 0.0319 (0.0031) 0.0116 (0.0051)

Table 2: Assessment of MISEs (mean and standard deviation between brackets) of both the adaptive
estimator σ̂2

K̂,L
and the oracle estimator σ̂2

K∗,L from diffusion paths of size n = 100.

Models Intervals Estimators N = 10 N = 100 N = 1000

Model 1

[−1, 1]
σ̂2
K̂,L

0.0047 (0.0037) 0.0003 (0.0002) 0.0001 (0.00003)

σ̂2
K∗,L 0.0042 (0.0030) 0.0003 (0.0002) 0.0001 (0.00003)

R
σ̂2
K̂,L

0.0053 (0.0037) 0.0003 (0.0002) 0.0001 (0.00004)

σ̂2
K∗,L 0.0050 (0.0031) 0.0003 (0.0002) 0.0001 (0.00004)

Model 2

[−1, 1]
σ̂2
K̂,L

0.0027 (0.0019) 0.0003 (0.0002) 0.0002 (0.00004)

σ̂2
K∗,L 0.0018 (0.0019) 0.0002 (0.0001) 0.0001 (0.00004)

R
σ̂2
K̂,L

0.0091 (0.0077) 0.0028 (0.0025) 0.0008 (0.0002)

σ̂2
K∗,L 0.0020 (0.0023) 0.0021 (0.0023) 0.0002 (0.00004)

Model 3

[−1, 1]
σ̂2
K̂,L

0.0306 (0.0150) 0.0058 (0.0012) 0.0010 (0.0003)

σ̂2
K∗,L 0.0216 (0.0067) 0.0023 (0.0020) 0.0010 (0.0003)

R
σ̂2
K̂,L

0.0560 (0.0313) 0.0275 (0.0049) 0.0069 (0.0049)

σ̂2
K∗,L 0.0261 (0.0127) 0.0096 (0.0051) 0.0065 (0.0041)

Table 3: Assessment of MISEs of both the adaptive estimator σ̂2
K̂,L

and the oracle estimator σ̂2
K∗,L

from diffusion paths of size n = 250.
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Models Intervals Estimators N = 10, n = 100 N = 100, n = 100 N = 100, n = 250

Model 1 R σ̂2
K∗,L 0.0082 (0.0059) 0.0015 (0.0008) 0.0006 (0.0004)

Model 2 R σ̂2
K∗,L 0.0058 (0.0111) 0.0007 (0.0004) 0.0003 (0.0002)

Model 3 R σ̂2
K∗,L 0.0188 (0.0151) 0.0077 (0.0037) 0.0040 (0.0036)

Table 4: Assessment of MISEs of the Hermite-based oracle estimator σ̂2
K∗,L of the square of the diffusion

coefficient.

Estimation of the diffusion coefficient from one path Consider ridge estimators of σ2
|I with

I = [−1, 1]. For the case of the adaptive estimators of σ2
|I , the dimension K̂ is selected such that

K̂ = argmin
K∈K

γn(σ̂
2
K̂
) + pen(K) (24)

where pen(K) = κ(K + M) log(n)/n with κ > 0. We choose the numerical constant κ = 4 and we
derive the numerical performance of the adaptive estimator of σ2

|I .

Models Intervals Estimators n = 100 n = 1000

Model 1 [−1, 1]
σ̂2
K̂,L

0.1751 (0.1921) 0.0915 (0.1925)

σ̂2
K∗,L 0.1563 (0.1776) 0.0783 (0.1699)

Model 2 [−1, 1]
σ̂2
K̂,L

0.1721 (0.3483) 0.1365 (0.5905)

σ̂2
K∗,L 0.0987 (0.1644) 0.0552 (0.2409)

Model 3 [−1, 1]
σ̂2
K̂,L

0.2184 (0.2780) 0.2106 (0.5790)

σ̂2
K∗,L 0.1263 (0.1486) 0.0751 (0.1469)

Table 5: Evaluation of MISEs of adaptive estimators σ̂2
K̂,L

built from a single diffusion path (N = 1)
for each of the three models.

Table 5 gives the numerical performances of both the adaptive estimator and the oracle estimator
of σ2

|I on the compact interval I = [−1, 1] and from a single diffusion path. From the obtained results,
we see that the estimators are numerically consistent. However, we note that the convergence is slow
(increasing n from 100 to 1000), which highlights the significant impact of the number N of paths on
the efficiency of the ridge estimator.

Comparison of the efficiency of the ridge estimator of the diffusion coefficient with its
Nadaraya-Watson estimator. Consider the adaptive estimator σ̂2

K̂
of the square of the diffusion

coefficient buit on the real line R from a single diffusion path (N = 1), where the dimension K̂
is selected using Equation (24). For the numerical assessment, we use the interval I = [−106, 106] to
approximate the real line R, and then, use Equation (24) for the data-driven selection of the dimension.

We want to compare the efficiency of σ̂2
K̂

with that of the Nadaraya-Watson estimator of σ2 given
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from a diffusion path X̄ = (Xk/n)1≤k≤n and for all x ∈ R by

Sn(x) =

∑n−1
k=1 K

(
Xk/n−x

hn

)
[X(k+1)/n −Xk/n]

2/n∑n
k=1K

(
Xk/n−x

hn

)
where K is a positive kernel function, and hn is the bandwidth. Thus, the estimator Sn(x) is consistent
under the condition nh4n → 0 as n tends to infinity (see Florens-Zmirou (1993)). We use the function
ksdiff() of the R-package sde to compute the Nadaraya-Watson estimator Sn.

Models Ridge estimator Nadaraya-Watson estimator

Model 1 0.0020 (0.0023) 0.9377 (0.0017)

Model 2 0.1323 (0.0794) 0.5086 (0.0885)

Model 3 0.4077 (0.1178) 1.3175 (0.3039)

Table 6: This table shows the loss errors of the ridge estimator σ̂2
K̂,L

on R and the Nadaraya-Watson
estimator Sn of σ2 built from a diffusion path (N = 1) of length n = 1000.

We remark from the results of Table 6 that our ridge estimator is more efficient. Note that for
the kernel estimator Sn, the bandwidth is computed using the rule of thumb of Scott (see Odell-Scott
(1992)). The bandwidth is proportional to n−1/(d+4) where n is the number of points, and d is the
number of spatial dimensions.

6.4 Concluding remarks

The results of our numerical study show that our ridge estimators built both on a compact interval
and on the real line are consistent as N and n take larger values, or as only n takes larger values
when the estimators are built from a single path. These results are in accordance with the theoretical
results established in the previous sections. Moreover, as expected, we obtained the consistency of
the Hermite-based estimators of σ2 on the real line R. Nonetheless, we only focus on the Hermite-
based oracle estimator since we did not establish a risk bound of the corresponding adaptive estimator.
Finally, we remark that the ridge estimator of σ2 built from a single path performs better than its
Nadaraya-Watson kernel estimator proposed in Florens-Zmirou (1993) and implemented in the R-
package sde.

7 Conclusion

In this article, we have proposed ridge-type estimators of the diffusion coefficient on a compact interval
from a single diffusion path. We took advantage of the local time of the diffusion process to prove the
consistency of non-adaptive estimators of σ2 and derive a rate of convergence of the same order than
the optimal rate established in Hoffmann (1999b). We also propose an estimator of σ2 on the real line
from a single path. We proved its consistency using the method described in Section 3.2, and derive a
rate of convergence order n−β/(4β+1) over a Hölder space for the collection [B]. Then, we extended the
study to the estimation of σ2 from repeated discrete observations of the diffusion process. We establish
rates of convergence of the ridge estimators both on a compact interval and on R. We complete the
study proposing adaptive estimators of σ2 on a compact interval for N = 1 and N → ∞, and on the
real line R for N → ∞.
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Figure 1: Bundles of 10 estimators σ̂2
K̂,L

(in green) of the true diffusion coefficient σ2
|I restricted on the

compact interval I = [−1, 1] (in red) of each of Models 1, 2, 3 (from top to bottom) using samples of
size N = 1000 with diffusion paths of length n = 500.
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A perspective on the estimation of the diffusion coefficient could be the establishment of a minimax
rate of convergence of the compactly supported (square of the) diffusion coefficient from repeated
discrete observations of the diffusion process. The case of the non-compactly supported diffusion
coefficient may be a lot more challenging, since the transition density of the diffusion process is no
longer lower-bounded. This new fact can lead to different rates of convergence depending on the
considered method (see Section 4).
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8 Proofs

In this section, we prove our main results of Sections 3, 4 and 5. To simplify our notations, we set
∆n = ∆(= 1/n) and constants are generally denoted by C > 0 or c > 0 whose values can change from
a line to another. Moreover, we use the notation Cα in case we need to specify the dependency of the
constant C on a parameter α.

8.1 Technical results

Recall first some useful results on the local time and estimates of the transition density of diffusion
processes.

Lemma 8.1. For all integer q ≥ 1, there exists C∗ > 0 depending on q such that for all 0 ≤ s < t ≤ 1,

E
[
|Xt −Xs|2q

]
≤ C∗(t− s)q.

The proof of Lemma 8.1 is provided in Denis et al. (2022).

Proposition 8.2. Under Assumptions 2.1, there exist constants cσ > 1, C > 1 such that for all
t ∈ (0, 1], x ∈ R,

1

C
√
t
exp

(
−cσ

x2

t

)
≤ pX(t, x) ≤ C√

t
exp

(
− x2

cσt

)
.

The proof of Proposition 8.2 is provided in Gobet (2002), Proposition 1.2.

Proposition 8.3. Let h be a L0-lipschitz function. Then there exists h̃ ∈ SKN ,M , such that

|h̃(x)− h(x)| ≤ C
log(N)

KN
, ∀x ∈ (− log(N), log(N)),

where C > 0 depends on L0, and M .

The proof of Proposition 8.3 is provided in Denis et al. (2022). The finite-dimensional vector space
SKN ,M = SKN+M is introduced in Section 2.

Lemma 8.4. Under Assumption 2.1, there exist C1, C2 > 0 such that for all A > 0,

sup
t∈[0,1]

P (|Xt| ≥ A) ≤ C1

A
exp(−C2A

2).
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The proof of Lemma 8.4 is provided in Denis et al. (2022), Lemma 7.3.

Lemma 8.5. Under Assumption 2.1, the following holds:

∀ x ∈ R, Lx = Lx− a.s.

where Lx− = lim
ε→0

Lx−ε.

The result of Lemma 8.5 justifies the definition of the local time Lx, for x ∈ R, given in Equa-
tion (14).

Proof. From Revuz & Yor (2013), Theorem 1.7, we have

∀ x ∈ R, Lx − Lx− = 2

∫ 1

0
1Xs=xdXs = 2

∫ 1

0
1Xs=xb(Xs)ds+ 2

∫ 1

0
1Xs=xσ(Xs)dWs.

For all x ∈ R and for all s ∈ [0, 1], we have for all ε > 0,

P(Xs = x) = lim
ε→0

P(Xs ≤ x+ ε)− lim
ε→0

P(Xs ≤ x− ε) = lim
ε→0

Fs(x+ ε)− lim
ε→0

Fs(x− ε)

= Fs(x)− Fs(x
−)

= 0

Thus, for all x ∈ R,

E [|Lx − Lx− |] ≤ 2

∫ 1

0
|b(x)|P(Xs = x)ds+ 2E

[∣∣∣∣∫ 1

0
1Xs=xσ(Xs)dWs

∣∣∣∣]
= 2E

[∣∣∣∣∫ 1

0
1Xs=xσ(Xs)dWs

∣∣∣∣] .
Using the Cauchy Schwartz inequality, we conclude that

E [|Lx − Lx− |] ≤ 2

√
E
(∫ 1

0
1Xs=xσ2(Xs)ds

)
= 2σ(x)

∫ 1

0
P(Xs = x)ds = 0.

Using the Markov inequality, we have

∀ ε > 0, P(|Lx − Lx− | > ε) ≤ 1

ε
E [|Lx − Lx− |] = 0.

We finally conclude that for all x ∈ R,

P(Lx ̸= Lx−) = P(|Lx − Lx− | > 0) = 0.

8.2 Proofs of Section 3

8.2.1 Proof of Lemma 3.1

Proof. The proof is divided into two parts for each of the two results to be proven.
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First result. Since the function h is continuous on R, let H be a primitive of h on R. We deduce
that for all s ∈ [0, 1],

h(Xs) = lim
ε→0

H(Xs + ε)−H(Xs − ε)

2ε
= lim

ε→0

1

2ε

∫ Xs+ε

Xs−ε
h(x)dx = lim

ε→0

1

2ε

∫ +∞

−∞
h(x)1(x−ε,x+ε)(Xs)dx.

Finally, since h is integrable on R and using the theorem of dominated convergence, we obtain∫ 1

0
h(Xs)ds =

∫ +∞

−∞
h(x)lim

ε→0

1

2ε

∫ 1

0
1(x−ε,x+ε)(Xs)dsdx =

∫ +∞

−∞
h(x)Lxdx.

Second result. Fix t ∈ (0, 1] and consider PX : (t, x) 7→
∫ x
−∞ pX(t, y)dy the cumulative density

function of the random variable Xt of the density function x 7→ pX(t, x). We have:

∀ x ∈ R, E(Lx) =lim
ε→0

1

2ε

∫ 1

0
E
[
1(x−ε,x+ε)(Xs)

]
ds = lim

ε→0

1

2ε

∫ 1

0
P (x− ε ≤ Xs ≤ x+ ε) ds

=

∫ 1

0
lim
ε→0

PX(s, x+ ε)− PX(s, x− ε)

2ε
ds

=

∫ 1

0
pX(s, x)ds.

8.2.2 Proof of Theorem 3.2

Let Ωn,m be the random event in which the two pseudo-norms ∥.∥n,1 and ∥.∥X are equivalent and given
by

Ωn,m :=
⋂

g∈Sm\{0}

{∣∣∣∣∣∥g∥2n,1∥g∥2X
− 1

∣∣∣∣∣ ≤ 1

2

}
.

The proof of Theorem 3.2 relies on the following lemma.

Lemma 8.6. Let γ > 1 be a real number. Under Assumption 2.1, the following holds

P
(
Ωc
n,m

)
≤ C

m2γ

nγ/2
,

where C > 0 is a constant depending on γ.

The parameter γ > 1 has to be chosen appropriately (i.e. such that m2γ/nγ/2 = o(1/n)) so that
we obtain a variance term of the risk of the estimator σ̂2

m of order m log(n)/n (see Theorem 3.2 and
Corollary 3.3).

Proof of Theorem 3.2 . Recall that since N = 1, ζ1k∆ = ζ1,1k∆ + ζ1,2k∆ + ζ1,3k∆ is the error term of the
regression model, with:

ζ1,1k∆ =
1

∆

(∫ (k+1)∆

k∆
σ(X1

s )dW
1
s

)2

−
∫ (k+1)∆

k∆
σ2(X1

s )ds

 , (25)

ζ1,2k∆ =
2

∆

∫ (k+1)∆

k∆
((k + 1)∆− s)σ′(X1

s )σ
2(X1

s )dW
1
s , (26)
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ζ1,3k∆ = 2b(X1
k∆)

∫ (k+1)∆

k∆
σ
(
X1

s

)
dW 1

s . (27)

Besides, R1
k∆ = R1,1

k∆ +R1,2
k∆, with:

R1,1
k∆ =

1

∆

(∫ (k+1)∆

k∆
b(X1

s )ds

)2

+
1

∆

∫ (k+1)∆

k∆
((k + 1)∆− s)Φ(X1

s )ds (28)

R1,2
k∆ =

2

∆

(∫ (k+1)∆

k∆

(
b(X1

s )− b(X1
k∆)
)
ds

)(∫ (k+1)∆

k∆
σ(X1

s )dW
1
s

)
(29)

where
Φ := 2bσ′σ +

[
σ′′σ +

(
σ′)2]σ2. (30)

By definition of the projection estimator σ̂2
m for each m ∈ M (see Equation (9)), for all h ∈ Sm,L, we

have:
γn,1

(
σ̂2
m

)
− γn,1(σ

2
|I) ≤ γn,1(h)− γn,1(σ

2
|I). (31)

Furthermore, for all h ∈ Sm,L,

γn,1(h)− γn,1(σ
2
|I) =

∥∥∥σ2
|I − h

∥∥∥2
n,1

+ 2ν1(σ
2
|I − h) + 2ν2(σ

2
|I − h) + 2ν3(σ

2
|I − h) + 2µ(σ2

|I − h),

where,

νi (h) =
1

n

n−1∑
k=0

h(X1
k∆)ζ

1,i
k∆, i ∈ {1, 2, 3}, µ(h) =

1

n

n−1∑
k=0

h(X1
k∆)R

1
k∆, (32)

and ζ1,1k∆, ζ1,2k∆, ζ1,3k∆ are given in Equations (25), (26), (27), and finally, R1
k∆ = R1,1

k∆ + R1,2
k∆ given in

Equations (28) and (29). Then, for all m ∈ M, and for all h ∈ Sm,L, we obtain from Equation (31)
that ∥∥∥σ̂2

m − σ2
|I

∥∥∥2
n,1

≤
∥∥∥h− σ2

|I

∥∥∥2
n,1

+ 2ν
(
σ̂2
m − h

)
+ 2µ

(
σ̂2
m − h

)
, with ν = ν1 + ν2 + ν3. (33)

Then, it comes,

E
[∥∥∥σ̂2

m − σ2
|I

∥∥∥2
n,1

]
≤ inf

h∈Sm,L

∥∥∥h− σ2
|I

∥∥∥2
n
+ 2E

[
ν
(
σ̂2
m − h

)]
+ 2E

[
µ
(
σ̂2
m − h

)]
. (34)

Besides, for any a, d > 0, using the inequality xy ≤ ηx2 + y2/η with η = a, d, we have,
2ν
(
σ̂2
m − h

)
≤ 2

a

∥∥∥σ̂2
m − σ2

|I

∥∥∥2
X
+ 2

a

∥∥∥h− σ2
|I

∥∥∥2
X
+ a sup

h∈Sm, ∥h∥X=1
ν2(h),

2µ
(
σ̂2
m − h

)
≤ 2

d

∥∥∥σ̂2
m − σ2

|I

∥∥∥2
n,1

+ 2
d

∥∥∥h− σ2
|I

∥∥∥2
n,1

+ d
n

∑n
k=1 (R

1
k∆)

2.

(35)
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Upper bound of 1
n

∑n
k=1 (R

1
k∆)

2

We have:

∀k ∈ [[1, n]], R1
k∆ = R1,1

k∆ +R1,2
k∆ +R1,3

k∆ with,

R1,1
k∆ =

1

∆

(∫ (k+1)∆

k∆
b(X1

s )ds

)2

, R1,2
k∆ =

1

∆

∫ (k+1)∆

k∆
((k + 1)∆− s)Φ(X1

s )ds

R1,3
k∆ =

2

∆

(∫ (k+1)∆

k∆

(
b(X1

s )− b(X1
k∆)
)
ds

)(∫ (k+1)∆

k∆
σ(X1

s )dW
1
s

)
.

For all k ∈ [[1, n]], using the Cauchy-Schwarz inequality and Equation (2),

E
[∣∣∣R1,1

k∆

∣∣∣2] ≤ E

(∫ (k+1)∆

k∆
b2(X1

k∆)ds

)2
 ≤ ∆E

[∫ (k+1)∆

k∆
b4(X1

k∆)ds

]
≤ C∆2.

Consider now the term R1,2
k∆. From Equation (30), we have Φ = 2bσ′σ+

[
σ′′σ + (σ′)2

]
σ2 and according

to Assumption 2.1, there exists a constant C > 0 depending on σ1 and α such that∣∣Φ(X1
s )
∣∣ ≤ C

[
(2 + |X1

s |)(1 + |X1
s |α) + (1 + |X1

s |α)2
]
.

Then, from Equation (2) and for all s ∈ (0, 1],

E
[
Φ2(X1

s )
]
≤ C sup

s∈(0,1]
E
[
(2 + |X1

s |)2(1 + |X1
s |α)2 + (1 + |X1

s |α)4
]
< ∞

and

E
[∣∣∣R1,2

k∆

∣∣∣2] ≤ 1

∆2

∫ (k+1)∆

k∆
((k + 1)∆− s)2ds

∫ (k+1)∆

k∆
E
[
Φ2
(
X1

s

)]
ds ≤ C∆2

Finally, under Assumption 2.1, from Equation (2) and using the Cauchy-Schwarz inequality, we have

E
[∣∣∣R1,3

k∆

∣∣∣2] ≤ 4

∆2
E

∆ ∫ (k+1)∆

k∆
L2
0

∣∣X1
s −X1

k∆

∣∣2 ds(∫ (k+1)∆

k∆
σ(X1

s )dWs

)2


≤ 4

∆

√√√√√E

[
L4
0∆

∫ (k+1)∆

k∆

∣∣X1
s −X1

k∆

∣∣4 ds]E
(∫ (k+1)∆

k∆
σ(X1

s )dWs

)4


≤ C∆2.

As a result, there exists a constant C > 0 such that,

E

[
1

n

n∑
k=1

(R1
k∆)

2

]
≤ C∆2. (36)

We set a = d = 8 and considering the event Ωn,m on which the empirical norms ∥.∥X and ∥.∥n,1 are
equivalent, we deduce from Equations (34), (35) and (36) that,

E
[∥∥∥σ̂2

m − σ2
|I

∥∥∥2
n,1

1Ωn,m

]
≤ 3 inf

h∈Sm

∥∥∥h− σ2
|I

∥∥∥2
n
+ CE

(
sup

h∈Sm,∥h∥X=1
ν2(h)

)
+ C∆2 (37)

where C > 0 is a constant depending on σ1.
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Upper bound of E

(
sup

h∈Sm, ∥h∥X=1

ν2(h)

)
For all h =

∑m−1
ℓ=0 aℓϕℓ ∈ Sm such that ∥h∥2X = 1, we have ∥h∥2 ≤ 1

τ0
(see Equation (15)) and the

coordinate vector a = (a−M , · · · , aK−1) satisfies:

• ∥a∥22 ≤ Cm (m = K +M) for the spline basis (see Denis et al. (2021), Lemma 2.6)

• ∥a∥22 ≤ 1/τ0 for an orthonormal basis since ∥h∥2 = ∥a∥22.

Furthermore, using the Cauchy-Schwarz inequality, we have:

ν2(h) =

(
m−1∑
ℓ=0

aℓν (ϕℓ)

)2

≤ ∥a∥22
m−1∑
ℓ=0

ν2 (ϕℓ). (38)

Thus, since ν = ν1 + ν2 + ν3, for all ℓ ∈ [[−M,K − 1]] and for all i ∈ {1, 2, 3},

E
[
ν2i (ϕℓ)

]
=

1

n2
E

(n−1∑
k=0

ϕℓ

(
X1

k∆

)
ζ1,ik∆

)2
 .

1. Case i = 1

Recall that ζ1,1k∆ = 1
∆

[(∫ (k+1)∆
k∆ σ(X1

s )dWs

)2
−
∫ (k+1)∆
k∆ σ2(X1

s )ds

]
where W = W 1. We fix a

initial time s ∈ [0, 1) and set M s
t =

∫ t
s σ(X

1
u)dWu, ∀t ≥ s. (M s

t )t≥s is a martingale and for all
t ∈ [s, 1], we have:

⟨M s,M s⟩t =
∫ t

s
σ2
(
X1

u

)
du.

Then, ζ1,1k∆ = 1
∆

(
Mk∆

(k+1)∆

)2
−
〈
Mk∆,Mk∆

〉
(k+1)∆

is also a Fk∆-martingale, and, using the
Burkholder-Davis-Gundy inequality, we obtain for all k ∈ [[0, n− 1]],

E
[
ζ1,1k∆|Fk∆

]
= 0, E

[(
ζ1,1k∆

)2
|Fk∆

]
≤ C

∆2
E

(∫ (k+1)∆

k∆
σ2(X1

u)du

)2
 ≤ Cσ4

1. (39)

Then, using Equation (39) we have:

E
[
ν21 (ϕℓ)

]
=

1

n2
E

[
n−1∑
k=0

ϕ2
ℓ

(
X1

k∆

) (
ζ1,1k∆

)2]
=

1

n2
E

[
n−1∑
k=0

ϕ2
ℓ

(
X1

k∆

)
E
[(

ζ1,1k∆

)2
|Fk∆

]]

≤ Cσ4
1

n2
E

[
n−1∑
k=0

ϕ2
ℓ

(
X1

k∆

)]

and,

m−1∑
ℓ=0

E
[
ν21 (ϕℓ)

]
≤ Cσ4

1

n2
E

[
n−1∑
k=0

m−1∑
ℓ=0

ϕ2
ℓ

(
X1

k∆

)]
.
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One has:
∑K−1

ℓ=−M B2
ℓ

(
X1

η(s)

)
≤ 1 for the Spline basis (m = K +M),

∑m−1
ℓ=0 ϕ2

ℓ (X
1
η(s)) ≤ Cm for an orthonormal basis with C = max

0≤ℓ≤m−1
∥ϕℓ∥2∞.

(40)

Thus, it comes that

•
∑K−1

ℓ=−M E
[
ν21 (Bℓ)

]
≤ C/n for the Spline basis,

•
∑m−1

ℓ=0 E
[
ν21 (ϕℓ)

]
≤ Cm/n for an orthonormal basis,

and,

E

(
sup

h∈Sm, ∥h∥2X=1

ν21(h)

)
≤ C

m

n
(41)

where C > 0 is a constant depending on σ1 and the basis.

2. Case i = 2

Wa have ζ1,2k∆ = 2
∆

∫ (k+1)∆
k∆ ((k + 1)∆− s)σ′ (X1

s

)
σ2
(
X1

s

)
dWs and,

E
[
ν22 (ϕℓ)

]
= 4E

(n−1∑
k=0

ϕℓ

(
X1

k∆

) ∫ (k+1)∆

k∆
(k + 1)∆− s)σ′ (X1

s

)
σ2
(
X1

s

)
dWs

)2


= 4E

[(∫ 1

0
ϕℓ

(
X1

η(s)

)
(η(s) + ∆− s)σ′ (X1

s

)
σ2
(
X1

s

)
dWs

)2
]

≤ Cσ4
1∆

2E
[∫ 1

0
ϕ2
ℓ

(
X1

η(s)

)
ds

]
where C > 0 is a constant. We deduce for both the spline basis and any orthonormal basis that
there exists a constant C > 0 depending on σ1 such that:

E

(
sup

h∈Sm, ∥h∥2X=1

ν22(h)

)
≤ C

m

n2
. (42)

3. Case i = 3

We have ζ1,3k∆ = 2b
(
X1

k∆

) ∫ (k+1)∆
k∆ σ

(
X1

s

)
dWs and,

E
[
ν23 (ϕℓ)

]
=

4

n2
E

[(∫ 1

0
ϕℓ

(
X1

η(s)

)
b
(
X1

η(s)

)
σ
(
X1

s

)
dWs

)2
]

≤ 4σ2
1

n2
E
[∫ 1

0
ϕ2
ℓ

(
X1

η(s)

)
b2
(
X1

η(s)

)
ds

]
Since for all x ∈ R, b2(x) ≤ C0(1 + x2) and sup

t∈[0,1]
E
(
|Xt|2

)
< ∞, there exists a constant C > 0

depending on σ1 such that:

E

(
sup

h∈Sm, ∥h∥2X=1

ν23(h)

)
≤ C

m

n2
. (43)
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We finally obtain from Equations (41), (42) and (43) that there exists a constant C > 0 depending on
σ1 such that:

E

(
sup

h∈Sm, ∥h∥2X=1

ν2(h)

)
≤ C

m

n
. (44)

We deduce from Equations (37) and (44) that there exists a constant C > 0 depending on σ1 such
that,

E
[
∥σ̂2

m − σ2
|I∥

2
n,11Ωn,m

]
≤ 3 inf

h∈Sm,L

∥σ2
|I − h∥2n + C

(m
n

+∆2
)
.

For n large enough, we have ∥σ̂2
m − σ2

|I∥
2
∞ ≤ 2mL since ∥σ̂2

m∥∞ ≤
√
mL. Then, from Lemma 8.6 and

for all m ∈ M, there exists a constant C > 0 depending on σ1 such that

E
[∥∥∥σ̂2

m − σ2
|I

∥∥∥2
n,1

]
= E

[∥∥∥σ̂2
m − σ2

|I

∥∥∥2
n,1

1Ωn,m

]
+ E

[∥∥∥σ̂2
m − σ2

|I

∥∥∥2
n,1

1Ωc
n,m

]
≤ E

[∥∥∥σ̂2
m − σ2

|I

∥∥∥2
n,1

1Ωn,m

]
+ 2mLP

(
Ωc
n,m

)
≤ 3 inf

h∈Sm,L

∥σ2
|I − h∥2n + C

(
m

n
+

m2γ+1L

nγ/2
+∆2

)
.

Since the pseudo-norms ∥.∥n,1 and ∥.∥X are equivalent on the event Ωn,m, then, using Lemma 8.6,
there exists a constant C > 0 depending on σ1 such that

E
[∥∥∥σ̂2

m − σ2
|I

∥∥∥2
X

]
=E

[∥∥∥σ̂2
m − σ2

|I

∥∥∥2
X
1Ωn,m

]
+ E

[∥∥∥σ̂2
m − σ2

|I

∥∥∥2
X
1Ωc

n,m

]
≤8E

[∥∥∥σ̂2
m − σ2

|I

∥∥∥2
n,1

]
+ 10 inf

h∈Sm

∥∥∥σ2
|I − h

∥∥∥2
n
+ 2mLP

(
Ωc
n,m

)
≤34 inf

h∈Sm,L

∥∥∥h− σ2
|I

∥∥∥2
n
+ C

(
m

n
+

m2γ+1L

nγ/2
+∆2

)
.

Finally, since the estimator σ̂2
m is built from a diffusion path X̄1 independent of the diffusion process

X, and from Equations (15) and (12), the pseudo-norm ∥.∥X depending on the process X and the
empirical norm ∥.∥n are equivalent (∀ h ∈ L2(I), ∥h∥2n ≤ (τ1/τ0)E

[
∥h∥2X

]
), there exists a constant

C > 0 depending on σ1, τ0 and τ1 such that

E
[∥∥∥σ̂2

m − σ2
|I

∥∥∥2
n

]
≤34τ1

τ0
inf

h∈Sm,L

∥∥∥h− σ2
|I

∥∥∥2
n
+ C

(
m

n
+

m2γ+1L

nγ/2
+∆2

)
.

Proof of Lemma 8.6 . The proof of this Lemma mainly focus on the spline basis and the Fourier
basis based on functions cos and sin which are Lipschitz functions. Thus, for all g =

∑m−1
ℓ=0 aℓϕℓ ∈ Sm,

∣∣∥g∥2n,1 − ∥g∥2X
∣∣ ≤ ∫ 1

0

∣∣g2(Xη(s))− g2(Xs)
∣∣ ds ≤ 2∥g∥∞

∫ 1

0

∣∣g(Xη(s))− g(Xs)
∣∣ ds. (45)

From Equation (15), one has E
[
∥g∥2X

]
≥ τ0∥g∥2. Thus, if ∥g∥2X = 1, then ∥g∥2 ≤ 1/τ0, and we deduce

for all g =
∑m−1

ℓ=0 aℓϕℓ that there exists a constant C > 0 such that

• Spline basis: ∥g∥∞ ≤ ∥a∥2 ≤ C
√
m (see Denis et al. (2021))

• Fourier basis: ∥g∥∞ ≤ C
√
m since ∥g∥ = ∥a∥2 and

∑m−1
ℓ=0 ϕ2

ℓ = O(m).
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Moreover, each g ∈ Sm such that ∥g∥2X = 1 is the Lipschitz function with a Lipschitz coefficient
Lg = O

(
m3/2

)
. For the spline basis, this result is obtained in Denis et al. (2021), proof of Lemma

C.1 combined with Lemma 2.6. For the Fourier basis, for all x, y ∈ I and using the Cauchy Schwarz
inequality, we obtain

|g(x)− g(y)| ≤
m−1∑
ℓ=0

|aℓ|.|ϕℓ(x)− ϕℓ(y)|

≤2πm
√
m∥a∥2|x− y|

≤2π

τ0
m
√
m|x− y|.

Back to Equation (45), there exists a constant C > 0 such that

∣∣∥g∥2n,1 − ∥g∥2X
∣∣ ≤ Cm2

∫ 1

0
|Xη(s) −Xs|ds (46)

We have:

Ωc
n,m =

{
ω ∈ Ω, ∃g ∈ Sm \ {0},

∣∣∣∣∣∥g∥2n,1∥g∥2X
− 1

∣∣∣∣∣ > 1

2

}
,

and, using Equation (46), we obtain

sup
g∈Sm\{0}

∣∣∣∣∣∥g∥2n,1∥g∥2X
− 1

∣∣∣∣∣ = sup
g∈Sm, ∥g∥2X=1

∣∣∥g∥2n,1 − ∥g∥X
∣∣ ≤ Cm2

∫ 1

0
|Xη(s) −Xs|ds.

Finally, using the Markov inequality, the Hölder inequality, Equation (2), and Lemma 8.1, we conclude
that

P
(
Ωc
n,m

)
≤ P

(
Cm2

∫ 1

0
|Xη(s) −Xs|ds ≥

1

2

)
≤ Cm2γ

∫ 1

0
E
[
|Xη(s) −Xs|γ

]
ds

≤ C
m2γ

nγ/2

with γ ∈ (1,+∞).

8.2.3 Proof of Theorem 3.4

Proof. Since L = log2(n), we have

E
[∥∥σ̂2

m,L − σ2
∥∥2
n,1

]
= E

[∥∥(σ̂2
m,L − σ2)1[− log(n),log(n)]

∥∥2
n,1

]
+ E

[∥∥(σ̂2
m,L − σ2)1[− log(n),log(n)]c

∥∥2
n,1

]
≤ E

[∥∥(σ̂2
m,L − σ2)1[− log(n),log(n)]

∥∥2
n,1

]
+ 2 log2(n) sup

t∈(0,1]
P(|Xt| > log(n)).

From Equation (34) (Proof of Theorem 3.2), for all h ∈ Sm,L,

E
[∥∥(σ̂2

m,L − σ2)1[− log(n),log(n)]

∥∥2
n,1

]
≤ inf

h∈Sm,L

∥∥h− σ2
∥∥2
n
+2

3∑
i=1

E
[
νi
(
σ̂2
m − h

)]
+2E

[
µ
(
σ̂2
m − h

)]
(47)
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where νi, i = 1, 2, 3 and µ are given in Equation (32). For all i ∈ {1, 2, 3} and for all h ∈ Sm,L, one
has

E
[
νi
(
σ̂2
m,L − h

)]
≤
√
2m log2(n)

√√√√m−1∑
ℓ=0

E
[
ν2i (ϕℓ)

]
. (48)

1. Upper bound of
∑m−1

ℓ=0 E
[
ν21(ϕℓ)

]
According to Equation (32), we have

∀ℓ ∈ [[0,m− 1]], ν1(ϕℓ) =
1

n

n−1∑
k=0

ϕℓ(X
1
k∆)ζ

1,1
k∆

where ζ1,1k∆ = 1
∆

[(∫ (k+1)∆
k∆ σ(X1

s )dWs

)2
−
∫ (k+1)∆
k∆ σ2(X1

s )ds

]
is a martingale satisfying

E
[
ζ1,1k∆|Fk∆

]
= 0 and E

[(
ζ1,1k∆

)2
|Fk∆

]
≤ 1

∆2
E

(∫ (k+1)∆

k∆
σ2(X1

s )ds

)2
 ≤ Cσ4

1

with C > 0 a constant, W = W 1 and (Ft)t≥0 the natural filtration of the martingale (Mt)t∈[0,1]
given for all t ∈ [0, 1] by Mt =

∫ t
0 σ(X

1
s )dWs. We derive that

m−1∑
ℓ=0

E
[
ν21(ϕℓ)

]
=

1

n2

m−1∑
ℓ=0

E

(n−1∑
k=0

ϕℓ(X
1
k∆)ζ

1,1
k∆

)2
 =

1

n2
E

[
n−1∑
k=0

m−1∑
ℓ=0

ϕ2
ℓ (X

1
k∆)

(
ζ1,1k∆

)2]

since for all integers k, k′ such that k > k′ ≥ 0, we have

E
[
ϕℓ(X

1
k∆)ζ

1,1
k∆ϕℓ(X

1
k′∆)ζ

1,1
k′∆|Fk∆

]
= ϕℓ(X

1
k∆)ζ

1,1
k′∆ϕℓ(X

1
k′∆)E

[
ζ1,1k∆|Fk∆

]
= 0.

For each k ∈ [[0, n− 1]], we have
∑m−1

ℓ=0 ϕℓ(X
1
k∆) =

∑K−1
ℓ=−M Bℓ(X

1
k∆) = 1 for the spline basis

∑m−1
ℓ=0 ϕℓ(X

1
k∆) ≤ Cm For an orthonormal basis with C = max

0≤ℓ≤m−1
∥ϕℓ∥∞.

Finally, there exists a constant C > 0 such that

m−1∑
ℓ=0

E
[
ν21(ϕℓ)

]
≤


C
n for the spline basis

Cm
n for an orthonormal basis.

2. Upper bound of
∑m−1

ℓ=0 E
[
ν22(ϕℓ)

]
For all k ∈ [[0, n− 1]] and for all s ∈ [0, 1], set η(s) = k∆ if s ∈ [k∆, (k + 1)∆). We have:

m−1∑
ℓ=0

E
[
ν22(ϕℓ)

]
= 4

m−1∑
ℓ=0

E

(n−1∑
k=0

∫ (k+1)∆

k∆
ϕℓ(X

1
k∆)((k + 1)∆− s)σ′(X1

s )σ
2(X1

s )dWs

)2


= 4

m−1∑
ℓ=0

E

[(∫ 1

0
ϕℓ(X

1
η(s))(η(s) + ∆− s)σ′(X1

s )σ
2(X1

s )dWs

)2
]
.
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We conclude that

m−1∑
ℓ=0

E
[
ν22(ϕℓ)

]
≤


C
n2 for the spline basis

C m
n2 for an orthonormal basis.

where the constant C > 0 depends on the diffusion coefficient and the upper bound of the basis
functions.

3. Upper bound of
∑m−1

ℓ=0 E
[
ν32(ϕℓ)

]
We have:

m−1∑
ℓ=0

E
[
ν23(ϕℓ)

]
=

4

n2

m−1∑
ℓ=0

E

(n−1∑
k=0

∫ (k+1)∆

k∆
ϕℓ(X

1
k∆)b(X

1
k∆)σ(X

1
s )dWs

)2


=
4

n2

m−1∑
ℓ=0

E

[(∫ 1

0
ϕℓ(X

1
η(s))b(X

1
η(s))σ(X

1
s )dWs

)2
]

≤ 4

n2
E

[∫ 1

0

m−1∑
ℓ=0

ϕ2
ℓ (X

1
η(s))b

2(X1
η(s))σ

2(X1
s )ds

]
.

Since for all x ∈ R, b(x) ≤ C0(1 + x2) and sup
t∈[0,1]

E
(
|Xt|4

)
< ∞, there exists a constant C > 0

depending on the diffusion coefficient such that

m−1∑
ℓ=0

E
[
ν23(ϕℓ)

]
≤


C
n2 for the spline basis

C m
n2 for an orthonormal basis.

We finally deduce that from Equations (47) and (48) that for all h ∈ Sm,L,
E
[
∥(σ̂2

m,L − σ2)1[− log(n),log(n)]∥2n,1
]
≤ inf

h∈Sm

∥h− σ2∥2n + C

√
m log2(n)

n + 2E
[
µ(σ̂2

m,L − h)
]

[B]

E
[
∥(σ̂2

m,L − σ2)1[− log(n),log(n)]∥2n,1
]
≤ inf

h∈Sm

∥h− σ2∥2n + C

√
m2 log2(n)

n + 2E
[
µ(σ̂2

m,L − h)
]

[F]

(49)
where C > 0 is a constant. It remains to obtain an upper bound of the term µ(σ̂2

m,L−h). For all a > 0
and for all h ∈ Sm,L,

2µ
(
σ̂2
m,L − h

)
≤2

a

∥∥σ̂2
m,L − σ2

∥∥2
n,1

+
2

a

∥∥h− σ2
∥∥2
n,1

+
a

n

n−1∑
k=0

(
R1

k∆

)2
2E
[
µ
(
σ̂2
m,L − h

)]
≤2

a
E
∥∥σ̂2

m,L − σ2
∥∥2
n,1

+
2

a
inf

h∈Sm

∥h− σ2∥2n +
a

n

n−1∑
k=0

E
[(
R1

k∆

)2]
.

Using Equations (36), (49) and setting a = 4, we deduce that there exists constant C > 0 depending
on σ1 such that,

E
[
∥σ̂2

m,L − σ2∥2n,1
]
≤ inf

h∈Sm

∥h− σ2∥2n + C

√
m log2(n)

n + 2 log2(n) sup
t∈(0,1]

P(|Xt| > An) [B]

E
[
∥σ̂2

m,L − σ2∥2n,1
]
≤ inf

h∈Sm

∥h− σ2∥2n + C

√
m2 log2(n)

n + 2 log2(n) sup
t∈(0,1]

P(|Xt| > An) [F].
(50)
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From Proposition 8.3, sup
t∈(0,1]

P(|Xt| > log(n)) ≤ log−1(n) exp(−c log2(n)) with c > 0 a constant. Then,

we obtain from Equation (50) that
E
[
∥σ̂2

m,L − σ2∥2n,1
]
≤ inf

h∈Sm

∥h− σ2∥2n + C

√
m log2(n)

n [B]

E
[
∥σ̂2

m,L − σ2∥2n,1
]
≤ inf

h∈Sm

∥h− σ2∥2n + C

√
m2 log2(n)

n [F].

(51)

8.3 Proof of Section 4

The following lemma allows us to obtain a risk bound of σ̂2
m,L defined with the empirical norm ∥.∥n

from the risk bound defined from the pseudo norm ∥.∥n,N .

Lemma 8.7. Let σ̂2
m,L be the truncated projection estimator on R of σ2 over the subspace Sm,L. Suppose

that L = log2(N), N > 1. Under Assumption 2.1, there exists a constant C > 0 independent of m and
N such that

E
[∥∥σ̂2

m,L − σ2
∥∥2
n,N

]
− 2E

[∥∥σ̂2
m,L − σ2

∥∥2
n

]
≤ C

m2 log3(N)

N
.

The proof of Lemma 8.7 is provided in Denis et al. (2021), Theorem 3.3. The proof uses the
independence of the copies X̄1, . . . , X̄N of the process X at discrete times, and the Bernstein inequality.

8.3.1 Proof of Theorem 4.1

For fixed n and N in N∗, we set for all m ∈ M,

Ωn,N,m :=
⋂

h∈Sm\{0}

{∣∣∣∣∣∥h∥2n,N∥h∥2n
− 1

∣∣∣∣∣ ≤ 1

2

}
. (52)

As we can see, the empirical norms ∥h∥n,N and ∥h∥n of any function h ∈ Sm \{0} are equivalent on
Ωn,N,m. More precisely, on the set Ωn,N,m, for all h ∈ Sm \ {0}, we have : 1

2∥h∥
2
n ≤ ∥h∥2n,N ≤ 3

2∥h∥
2
n.

We have the following result:

Lemma 8.8. Under Assumption 2.1, the following holds:

• If n ≥ N or n ∝ N , then m ∈ M =
{
1, . . . ,

√
N/ log(Nn)

}
and,

P
(
Ωc
n,N,m

)
≤ 2 exp(−C

√
N).

• If n ≤ N , then m ∈ M = {1, . . . ,
√
n/ log(Nn)} and

P
(
Ωc
n,N,m

)
≤ 2 exp(−C

√
n)

where C > 0 is a constant.
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Proof of Lemma 8.8 . We have:

Ωc
n,N,m =

{
ω ∈ Ω, ∃h0 ∈ Sm,

∣∣∣∣∣∥h∥2n,N∥h∥2n
− 1

∣∣∣∣∣ > 1

2

}
,

Denote by Hm = {h ∈ Sm, ∥h∥n = 1} and Hε
m the ε−net of Hm for any ε > 0. We have

sup
h∈Hm

∣∣∣∣∣∥h∥2n,N∥h∥2n
− 1

∣∣∣∣∣ = sup
h∈Hm

∣∣∥h∥2n,N − 1
∣∣.

Let ε > 0 and let Hε
m be the ε−net of Hm w.r.t. the supremum norm ∥.∥∞. Then, for each h ∈ Hm,

there exists hε ∈ Hε
m such that ∥h− hε∥∞ ≤ ε. Then∣∣∥h∥2n,N − 1

∣∣ ≤ ∣∣∥h∥2n,N − ∥hε∥2n,N
∣∣+ ∣∣∥hε∥2n,N − 1

∣∣
and,

∣∣∥h∥2n,N − ∥hε∥2n,N
∣∣ ≤ 1

Nn

N∑
j=1

n−1∑
k=0

∣∣∣h(Xj
k∆)− hε(X

j
k∆)
∣∣∣ (∥h∥∞ + ∥hε∥∞) ≤ (∥h∥∞ + ∥hε∥∞) ε.

Moreover, we have ∥h∥2, ∥hε∥2 ≤ 1/τ0. Then, there exists a constant c > 0 such that
∣∣∣∥h∥2n,N − ∥hε∥2n,N

∣∣∣ ≤ 2
√

cm
τ0

ε for the spline basis (see Lemma 2.6 in Denis et al .(2021))

∣∣∣∥h∥2n,N − ∥hε∥2n,N
∣∣∣ ≤ 2

√
cm
τ0

ε for an orthonormal basis (∥h∥2∞ ≤ ( max
0≤ℓ≤m−1

∥ϕℓ∥2∞)m∥h∥2).

Therefore, for all δ > 0 and for both the spline basis and any orthonormal basis,

P
(

sup
h∈Hm

∣∣∥h∥2n,N − 1
∣∣ ≥ δ

)
≤ P

(
sup

h∈Hε
m

∣∣∥h∥2n,N − 1
∣∣ ≥ δ/2

)
+ 1

4ε
√

cm
τ0

≥δ
.

We set δ = 1/2 and we choose ε > 0 such that 4ε
√

cm
τ0

< 1/2. Then, using the Hoeffding inequality,
there exists a constant c > 0 depending on c and τ0 such that

P
(
Ωc
n,N,m

)
≤ 2N∞(ε,Hm) exp

(
−c

N

m

)
(53)

where N∞(ε,Hm) is the covering number of Hm satisfying:

N∞(ε,Hm) ≤
(
κ

√
m

ε

)m

(54)

where the constant κ > 0 depends on c > 0 (see Denis et al. (2021), Proof of Lemma D.1 ). We set
ε = κ

√
m∗

N with m∗ = maxM and we derive from Equations (53) and (54) that

P
(
Ωc
n,N,m

)
≤ 2Nm∗

exp

(
−c

N

m∗

)
= 2 exp

(
−c

N

m∗

(
1− m∗2 log(N)

cN

))
.

• If n ≥ N , then m ∈ M =
{
1, . . . ,

√
N/ log(Nn)

}
. Since m∗2 log(N)/N → 0 as N → +∞, there

exists a constant C > 0 such that

P
(
Ωc
n,N,m

)
≤ 2 exp

(
−C

√
N
)
.
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• If n ≤ N , then m ∈ M = {1, . . . ,
√
n/ log(Nn)} , m∗2 log(N)/N ≤ log(N)/ log2(Nn) → 0 as

N,n → ∞, and
P
(
Ωc
n,N,m

)
≤ 2 exp

(
−C

√
n
)
.

• If n ∝ N , then m ∈ M =
{
1, . . . ,

√
N/ log(Nn)

}
. Since m∗2 log(N)/N → 0 as N → +∞, there

exists a constant C > 0 such that

P
(
Ωc
n,N,m

)
≤ 2 exp

(
−C

√
N
)
.

Proof of Theorem 4.1 . The proof of Theorem 4.1 extends the proof of Theorem 3.2 when N tends
to infinity. Then, we deduce from Equation (37) that

E
[∥∥∥σ̂2

m − σ2
|I

∥∥∥2
n,N

1Ωn,N,m

]
≤ 3 inf

h∈Sm,L

∥∥∥h− σ2
|I

∥∥∥2
n
+ CE

(
sup

h∈Sm,∥h∥n=1
ν2(h)

)
+ C∆2 (55)

where C > 0 is a constant depending on σ1, and ν = ν1 + ν2 + ν3 with

νi(h) =
1

Nn

N∑
j=1

n−1∑
k=0

h(Xj
k∆)ζ

j,i
k∆, i = 1, 2, 3

and the ζj,ik∆’s are the error terms depending on each path Xj , j = 1, . . . , N .

Upper bound of E

(
sup

h∈Sm, ∥h∥n=1

ν2(h)

)
For all h =

∑m−1
ℓ=0 aℓϕℓ ∈ Sm such that ∥h∥n = 1, we have ∥h∥2 ≤ 1

τ0
and the coordinate vector

a = (a0, · · · , am−1) satisfies:

• ∥a∥22 ≤ CK ≤ Cm for the spline basis (see Denis et al. (2021), Lemma 2.6)

• ∥a∥22 ≤ 1/τ0 for an orthonormal basis since ∥h∥2 = ∥a∥22.

Furthermore, using the Cauchy Schwartz inequality, we have:

ν2(h) =

(
m−1∑
ℓ=0

aℓν (ϕℓ)

)2

≤ ∥a∥22
m−1∑
ℓ=0

ν2 (ϕℓ).

Thus, for all ℓ ∈ [[0,m− 1]], ν = ν1 + ν2 + ν3 and for all i ∈ {1, 2, 3}

E
[
ν2i (ϕℓ)

]
=

1

Nn2
E

(n−1∑
k=0

ϕℓ

(
X1

k∆

)
ζ1,ik∆

)2
 .

We finally deduce from (41), (42) and (43) that there exists a constant C > 0 depending on σ1 such
that:

E

(
sup

h∈Sm, ∥h∥n=1
ν2(h)

)
≤ C

m

Nn
. (56)
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We deduce from (55) and (56) that there exists a constant C > 0 such that,

E
[∥∥∥σ̂2

m − σ2
|I

∥∥∥2
n,N

1Ωn,N,m

]
≤ 3 inf

h∈Sm,L

∥∥∥σ2
|I − h

∥∥∥2
n
+ C

( m

Nn
+∆2

)
. (57)

Since we have
∥∥σ̂2

m

∥∥
∞ ≤

√
mL, then for m and L large enough,

∥∥∥σ̂2
m − σ2

|I

∥∥∥2
∞

≤ 2mL. There exists a
constant C > 0 such that for all m ∈ M and for m and L large enough,

E
[∥∥∥σ̂2

m − σ2
|I

∥∥∥2
n,N

]
= E

[∥∥∥σ̂2
m − σ2

|I

∥∥∥2
n,N

1Ωn,N,m

]
+ E

[∥∥∥σ̂2
m − σ2

|I

∥∥∥2
n,N

1Ωc
n,N,m

]
≤ E

[∥∥∥σ̂2
m − σ2

|I

∥∥∥2
n,N

1Ωn,N,m

]
+ 2mLP

(
Ωc
n,N,m

)
.

Then, from Equation (57), Lemma 8.8 and for m ∈ M =
{
1, . . . ,

√
min(n,N)/

√
log(Nn)

}
, we have:

E
[∥∥∥σ̂2

m − σ2
|I

∥∥∥2
n,N

]
≤ 3 inf

h∈Sm,L

∥∥∥h− σ2
|I

∥∥∥2
n
+ C

( m

Nn
+mL exp

(
−C
√
min(n,N)

)
+∆2

)
where C > 0 is a constant. Recall that the empirical norms ∥.∥n,N and ∥.∥n are equivalent on Ωn,N,m,
that is for all h ∈ Sm, ∥h∥2n ≤ 2∥h∥2n,N . Thus, we have

E
[∥∥∥σ̂2

m − σ2
|I

∥∥∥2
n

]
= E

[∥∥∥σ̂2
m − σ2

|I

∥∥∥2
n
1Ωn,N,m

]
+ E

[∥∥∥σ̂2
m − σ2

|I

∥∥∥2
n
1Ωc

n,N,m

]
≤ E

[∥∥∥σ̂2
m − σ2

|I

∥∥∥2
n
1Ωn,N,m

]
+ 2mLP

(
Ωc
n,N,m

)
.

For all h ∈ Sm,L ⊂ Sm, we have:

E
[∥∥∥σ̂2

m − σ2
|I

∥∥∥2
n
1Ωn,N,m

]
≤ 2E

[∥∥σ̂2
m − h

∥∥2
n
1Ωn,N,m

]
+ 2

∥∥∥h− σ2
|I

∥∥∥2
n

≤ 4E
[∥∥σ̂2

m − h
∥∥2
n,N

1Ωn,N,m

]
+ 2

∥∥∥h− σ2
|I

∥∥∥2
n

≤ 8E
[∥∥∥σ̂2

m − σ2
|I

∥∥∥2
n,N

]
+ 10

∥∥∥h− σ2
|I

∥∥∥2
n
.

We finally conclude that

E
[∥∥∥σ̂2

m − σ2
|I

∥∥∥2
n

]
≤34 inf

h∈Sm,L

∥∥∥h− σ2
|I

∥∥∥2
n
+ C

( m

Nn
+mL exp

(
−C
√
min(n,N)

)
+∆2

)
.

8.3.2 Proof of Theorem 4.3

Proof. We consider the restriction σ21[− log(N),log(N)] of σ2 on the compact interval [− log(N), log(N)]
on which the spline basis is built. Then we have:

E
[∥∥σ̂2

m,L − σ2
∥∥2
n

]
= E

[∥∥(σ̂2
m,L − σ2)1[− log(N),log(N)]

∥∥2
n

]
+ E

[∥∥(σ̂2
m,L − σ2)1[− log(N),log(N)]c

∥∥2
n

]

36



and from Proposition 8.2, Lemma 8.4 and for N large enough, there exists constants c, C > 0 such
that

E
[∥∥(σ̂2

m,L − σ2)1[− log(N),log(N)]c
∥∥2
n

]
≤2L

n

n−1∑
k=0

P (|Xk∆| > log(N)) ≤ 2L sup
t∈[0,1]

P (|Xt| ≥ log(N))

≤ C

log(N)
exp

(
−c log2(N)

)
.

We deduce that

E
[∥∥σ̂2

m,L − σ2
∥∥2
n

]
= E

[∥∥(σ̂2
m,L − σ2)1[− log(N),log(N)]

∥∥2
n

]
+

C

log(N)
exp

(
−c log2(N)

)
. (58)

It remains to upper-bound the first term on the right hand side of Equation (58).

Upper bound of E
[∥∥∥σ̂2

m,L − σ2
∥∥∥2
n
1[− log(N),log(N)]

]
. For all h ∈ Sm,L, we obtain from Equation (9),

γn,N (σ̂2
m,L)− γn,N (σ2) ≤ γn,N (h)− γn,N (σ2). (59)

For all h ∈ Sm,L,

γn,N (h)− γn,N (σ2) =
∥∥h− σ2

∥∥2
n,N

+ 2ν1(σ
2 − h) + 2ν2(σ

2 − h) + 2ν3(σ
2 − h) + 2µ(σ2 − h)

where

νi(h) =
1

nN

N∑
j=1

n−1∑
k=0

h(Xj
k∆)ζ

j,i
k∆, i ∈ {1, 2, 3}, µ(h) =

1

nN

N∑
j=1

n−1∑
k=0

h(Xj
k∆)R

j
k∆, (60)

we deduce from Equation (59) that for all h ∈ Sm,L,

E
[∥∥σ̂2

m,L − σ2
∥∥2
n,N

1[− log(N),log(N)]

]
≤ inf

h∈Sm,L

∥h− σ2∥2n + 2

3∑
i=1

E
[
νi(σ̂

2
m,L − h)

]
+ 2E

[
µ(σ̂2

m,L − h)
]
.

(61)
For all i ∈ {1, 2, 3} and for all h ∈ Sm,L, one has

E
[
νi
(
σ̂2
m,L − h

)]
≤

√
2mL

√√√√m−1∑
ℓ=0

E
[
ν2i (ϕℓ)

]
. (62)

1. Upper bound of
∑m−1

ℓ=0 E
[
ν21(ϕℓ)

]
According to Equation (60), we have

∀ℓ ∈ [[0,m− 1]], ν1(ϕℓ) =
1

Nn

N∑
j=1

n−1∑
k=0

ϕℓ(X
j
k∆)ζ

j,1
k∆

where ζj,1k∆ = 1
∆

[(∫ (k+1)∆
k∆ σ(Xj

s )dW
j
s

)2
−
∫ (k+1)∆
k∆ σ2(Xj

s )ds

]
is a martingale satisfying

E
[
ζ1,1k∆|Fk∆

]
= 0 and E

[(
ζ1,1k∆

)2
|Fk∆

]
≤ 1

∆2
E

(∫ (k+1)∆

k∆
σ2(X1

s )ds

)2
 ≤ Cσ4

1
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with C > 0 a constant, W = W 1 and (Ft)t≥0 the natural filtration of the martingale (Mt)t∈[0,1]
given for all t ∈ [0, 1] by Mt =

∫ t
0 σ(X

1
s )dWs. We derive that

m−1∑
ℓ=0

E
[
ν21(ϕℓ)

]
=

1

Nn2

m−1∑
ℓ=0

E

(n−1∑
k=0

ϕℓ(X
j
k∆)ζ

1,1
k∆

)2
 =

1

Nn2
E

[
n−1∑
k=0

m−1∑
ℓ=0

ϕ2
ℓ (X

1
k∆)

(
ζ1,1k∆

)2]
.

For each k ∈ [[0, n− 1]], we have
∑m−1

ℓ=0 ϕ2
ℓ (X

1
k∆) =

∑K−1
ℓ=−M B2

ℓ (X
1
k∆) = 1 for the spline basis

∑m−1
ℓ=0 ϕ2

ℓ (X
1
k∆) ≤ Cm For an orthonormal basis with C = max

0≤ℓ≤m−1
∥ϕℓ∥2∞.

Finally, there exists a constant C > 0 such that

m−1∑
ℓ=0

E
[
ν21(ϕℓ)

]
≤


C
Nn for the spline basis

C m
Nn for an orthonormal basis.

2. Upper bound of
∑m−1

ℓ=0 E
[
ν22(ϕℓ)

]
For all k ∈ [[0, n− 1]] and for all s ∈ [0, 1], set η(s) = k∆ if s ∈ [k∆, (k + 1)∆). We have:

m−1∑
ℓ=0

E
[
ν22(ϕℓ)

]
=

4

N

m−1∑
ℓ=0

E

(n−1∑
k=0

∫ (k+1)∆

k∆
ϕℓ(X

1
k∆)((k + 1)∆− s)σ′(X1

s )σ
2(X1

s )dWs

)2


=
4

N

m−1∑
ℓ=0

E

[(∫ 1

0
ϕℓ(X

1
η(s))(η(s) + ∆− s)σ′(X1

s )σ
2(X1

s )dWs

)2
]
.

We conclude that

m−1∑
ℓ=0

E
[
ν22(ϕℓ)

]
≤


C

Nn2 for the spline basis

C m
Nn2 for an orthonormal basis.

where the constant C > 0 depends on the diffusion coefficient and the upper bound of the basis
functions.

3. Upper bound of
∑m−1

ℓ=0 E
[
ν32(ϕℓ)

]
We have:

m−1∑
ℓ=0

E
[
ν23(ϕℓ)

]
=

4

Nn2

m−1∑
ℓ=0

E

(n−1∑
k=0

∫ (k+1)∆

k∆
ϕℓ(X

1
k∆)b(X

1
k∆)σ(X

1
s )dWs

)2


=
4

Nn2

m−1∑
ℓ=0

E

[(∫ 1

0
ϕℓ(X

1
η(s))b(X

1
η(s))σ(X

1
s )dWs

)2
]

≤ 4

Nn2
E

[∫ 1

0

m−1∑
ℓ=0

ϕ2
ℓ (X

1
η(s))b(X

1
η(s))σ

2(X1
s )ds

]
.
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Since for all x ∈ R, b(x) ≤ C0(1 + x2) and sup
t∈[0,1]

E
(
|Xt|2

)
< ∞, there exists a constant C > 0

depending on the diffusion coefficient such that

m−1∑
ℓ=0

E
[
ν23(ϕℓ)

]
≤


C

Nn2 for the spline basis

C m
Nn2 for an orthonormal basis.

We finally deduce that from Equations (61) and (62) that for all h ∈ Sm,L,
E
[∥∥∥σ̂2

m,L − σ2
∥∥∥2
n,N

1[− log(N),log(N)]

]
≤ inf

h∈Sm,L

∥h− σ2∥2n + C
√

mL
Nn + 2E

[
µ(σ̂2

m,L − h)
]

(1)

E
[∥∥∥σ̂2

m,L − σ2
∥∥∥2
n,N

1[− log(N),log(N)]

]
≤ inf

h∈Sm,L

∥h− σ2∥2n + C
√

m2L
Nn + 2E

[
µ(σ̂2

m,L − h)
]

(2)

(63)
where C > 0 is a constant, the result (1) corresponds to the spline basis, and the result (2) corresponds
to any orthonormal basis. It remains to obtain an upper bound of the term µ(σ̂2

m,L −h). For all a > 0
and for all h ∈ Sm,L,

2µ
(
σ̂2
m,L − h

)
≤2

a

∥∥σ̂2
m,L − σ2

∥∥2
n,N

+
2

a

∥∥h− σ2
∥∥2
n,N

+
a

Nn

N∑
j=1

n−1∑
k=0

(
Rj

k∆

)2
2E
[
µ
(
σ̂2
m,L − h

)]
≤2

a
E
∥∥σ̂2

m,L − σ2
∥∥2
n,N

+
2

a
inf

h∈Sm,L

∥h− σ2∥2n +
a

Nn

N∑
j=1

n−1∑
k=0

E
[(

Rj
k∆

)2]
.

Using Equations (36), (63) and setting a = 4, we deduce that there exists constant C > 0 depending
on σ1 such that,

E
[∥∥∥σ̂2

m,L − σ2
∥∥∥2
n,N

1[− log(N),log(N)]

]
≤ inf

h∈Sm,L

∥h− σ2∥2n + C

(√
mL
Nn +∆2

)
[B]

E
[∥∥∥σ̂2

m,L − σ2
∥∥∥2
n,N

1[− log(N),log(N)]

]
≤ inf

h∈Sm,L

∥h− σ2∥2n + C

(√
m2L
Nn +∆2

)
[H].

(64)

The final result is obtained from Equations (58) and (64).

8.3.3 Proof of Lemma 4.5

Proof. It is proven in Comte & Genon-Catalot (2020a) that for each dimension m ∈ M, the Gram
matrix Ψm built from the Hermite basis is invertible. For the case of the B-spline basis, let us
consider a vector (x−M , · · · , xK−1) ∈ Rm such that xj ∈ [uj+M , uj+M+1) and Bj(xj) ̸= 0. Since
[uj+M , uj+M+1) ∩ [uj′+M , uj′+M+1) = ∅ for all j, j′ ∈ {−M, · · · ,K − 1} such that j ̸= j′, then for all
j, j′ ∈ {−M, · · · ,K − 1} such that j ̸= j′, Bj(xj′) = 0. Consequently, we obtain:

det
(
(Bℓ(xℓ′))−M≤ℓ,ℓ′≤K−1

)
= det (diag (B−M (xM ), · · · , BK−1(xK−1)))

=

K−1∏
ℓ=−M

Bℓ(xℓ) ̸= 0.
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Then, we deduce from Comte & Genon-Catalot (2020a), Lemma 1 that the matrix Ψm is invertible
for all m ∈ M, where the function fT are replaced by

fn : x 7→ 1

n

n−1∑
k=0

pX(k∆, x)

with λ([−AN , AN ] ∩ supp(fn)) > 0, λ being the Lebesgue measure.

Case of the B-spline basis. For all w ∈ Rm such that ∥w∥2,m = 1, we have:

w′Ψmw = ∥tw∥2n =

∫ AN

−AN

t2w(x)fn(x)dx+
t2w(x0)

n
with tw =

K−1∑
ℓ=−M

wℓBℓ.

Under Assumption 2.1, the transition density (t, x) 7→ pX(t, x) is approximated as follows

∀(t, x) ∈ (0, 1]× R,
1

K∗
√
t
exp

(
−cσ

x2

t

)
≤ pX(t, x) ≤ K∗√

t
exp

(
− x2

cσt

)
where K∗ > 1 and cσ > 1. Since s 7→ exp

(
−cσx

2/s
)

is an increasing function, then for n large enough
and for all x ∈ [−AN , AN ],

fn(x) ≥
1

K∗n

n−1∑
k=1

exp

(
−c

x2

k∆

)
≥ 1

K∗

∫ 1−∆

0
exp

(
−cσ

x2

s

)
ds

≥ 1

K∗

∫ 1−(2 log(N))−1

1−(log(N))−1

exp

(
−cσ

x2

s

)
ds

≥ 1

2K∗ log(N)
exp

(
− cσx

2

1− log−1(N)

)
.

Thus, the density function satisfies

∀x ∈ [−AN , AN ], fn(x) ≥
1

2K∗ log(N)
exp

(
−

cσA
2
N

1− log−1(N)

)
≥ 1

2K∗ log(N)
exp

(
−cσA

2
N

)
. (65)

Finally, since there exists a constant C1 > 0 such that ∥tw∥2 ≥ C1ANK−1
N (see Denis et al. (2021),

Lemma 2.6), for all w ∈ Rm (m = KN +M) such that ∥w∥2,m = 1, there exists a constant C > 0 such
that,

w′Ψmw ≥ CAN

m log(N)
exp

(
−cσA

2
N

)
.

Case of the Hermite basis. For all w ∈ Rm such that ∥w∥2,m = 1, we have

w′Ψmw = ∥tw∥2n =

∫ +∞

−∞
t2w(x)fn(x)dx+

t2w(x0)

n
with tw =

m−1∑
ℓ=0

wℓhℓ.
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Recall that for all x ∈ R such that |x| ≥
√

(3/2)(4m+ 3), |hℓ(x)| ≤ c|x| exp(−c0x
2) for all ℓ ≥ 0.

Then we have

w′Ψmw ≥
∫
|x|≤

√
(3/2)(4m+3)

(
m−1∑
ℓ=0

wℓhℓ(x)

)2

fn(x)dx

≥ inf
x∈[−

√
(3/2)(4m+3),

√
(3/2)(4m+3)]

fn(x)

∫
|x|≤

√
(3/2)(4m+3)

(
m−1∑
ℓ=0

wℓhℓ(x)

)2

dx

≥ 1

2K∗ log(N)
exp

(
− 3cσ(4m+ 3)

2
(
1− log−1(N)

))∫
|x|≤

√
(3/2)(4m+3)

(
m−1∑
ℓ=0

wℓhℓ(x)

)2

dx

since for all x ∈ R, fn(x) ≥ (1/2K∗ log(N)) exp
(
− cσx2

1−log−1(N)

)
. Set aN =

√
(3/2)(4m+ 3), then we

obtain

w′Ψmw ≥
exp

(
− 3cσ(4m+3)

2(1−log−1(N))

)
2K∗ log(N)

∫ +∞

−∞

(
m−1∑
ℓ=0

wℓhℓ(x)

)2

dx−
∫
|x|>aN

(
m−1∑
ℓ=0

wℓhℓ(x)

)2

dx



≥
exp

(
− 3cσ(4m+3)

2(1−log−1(N))

)
2K∗ log(N)

(
1− 2c2m

∫ +∞

aN

x2 exp(−8c0x
2)dx

)

≥
exp

(
− 3cσ(4m+3)

2(1−log−1(N))

)
2K∗ log(N)

(
1− c2m

8c0

√
3

2
(4m+ 3) exp (−12c0(4m+ 3))

)
where c, c0 > 0 are constants depending on the Hermite basis. Finally, for N large enough,

1− c2m

8c0

√
3

2
(4m+ 3) exp (−12c0(4m+ 3)) ≥ 1

2
.

Finally, there exists a constant C > 0 such that for all w ∈ Rm such that ∥w∥2,m,

w′Ψmw ≥ C

log(N)
exp

(
− 3cσ(4m+ 3)

2
(
1− log−1(N)

)) .

8.3.4 Proof of Theorem 4.6

The proof of Theorem 4.6 relies on the following lemma:

Lemma 8.9. Under Assumptions 2.1 and for σ2 ∈ ΣI(β,R) with β ≥ 1, I = [−AN , AN ] and

N ∝ n, AN = o
(√

log(N)
)
, K ∝

(
(Nn)1/(2β+1)AN

)
(m = K +M),

the following holds:

P
(
Ωc
n,N,m

)
≤ C exp

(
−c log3/2(N)

)
where c, C > 0 are constants independent of N .
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Proof of Theorem 4.6 . According to Equations (55) in the proof of Theorem 4.1, for all dimension
m = K +M , with K ∈ M, and for all h ∈ SK+M , there exists a constant C > 0 such that

E
[∥∥σ̂2

AN ,m − σ2
AN

∥∥2
n,N

1Ωn,N,m

]
≤ C

[
inf

h∈SK+M,L

∥h− σ2
AN

∥2n + E

(
sup

h∈SK+M ,∥h∥n=1
ν2(h)

)
+∆2

]
(66)

where Ωn,N,m is given in Equation (52) and ν = ν1 + ν2 + ν3 with the νi given in Equation (32) .
For all h =

∑K−1
ℓ=−M aℓBℓ ∈ SK+M,LN

,

∥h∥2n = E

[
1

n

n−1∑
k=0

h2(Xk∆)

]
=

K−1∑
ℓ=−M

K−1∑
ℓ=−M

aℓaℓ′E

[
1

n

n−1∑
k=0

Bℓ(Xk∆)Bℓ′(Xk∆)

]
= a′Ψma.

The Gram matrix Ψm is invertible for each K ∈ M (see proof of Lemma 4.5). It follows that for all
h =

∑K−1
ℓ=−M aℓBℓ such that ∥h∥2n = a′Ψma = 1, one has a = Ψ

−1/2
m u where u ∈ Rm and ∥u∥2,m = 1.

Furthermore, we have:

h =
K−1∑
ℓ=−M

aℓBℓ =

K−1∑
ℓ=−M

uℓ

K−1∑
ℓ′

[
Ψ−1/2

m

]
ℓ′,ℓ

Bℓ′ .

Then for all h ∈ SK+M , we have ν2(h) ≤ 3(ν21(h) + ν22(h) + ν23(h)) where,

∀i ∈ {1, 2, 3}, ν2i (h) ≤
K−1∑
ℓ=−M

 1

Nn

N∑
j=1

n−1∑
k=0

K−1∑
ℓ′=−M

[
Ψ−1/2

m

]
ℓ′,ℓ

Bℓ′(X
j
k∆)ζ

j,i
k∆

2

.

So we obtain,

∀i ∈ {1, 2, 3}, E

[
sup

h∈SK+M ,∥h∥n=1
ν2i (h)

]
≤ 1

Nn2

K−1∑
ℓ=−M

E

(n−1∑
k=0

K−1∑
ℓ′=−M

[
Ψ−1/2

m

]
ℓ′,ℓ

Bℓ′(X
j
k∆)ζ

1,i
k∆

)2


For i = 1, we have ζ1,1k∆ = 1
∆

[(∫ (k+1)∆
k∆ σ(X1

s )dWs

)2
−
∫ (k+1)∆
k∆ σ2(X1

s )ds

]
and we obtained in the proof

of Theorem 5.1 that there exists a constant C > 0 such that for all k ∈ [[0, n− 1]],

E
[
ζ1,1k∆|Fk∆

]
= 0, E

[(
ζ1,1k∆

)2
|Fk∆

]
≤ CE

(∫ (k+1)∆

k∆
σ2(Xu)du

)2
 ≤ Cσ4

1∆
2.

We deduce that

E

[
sup

h∈SK+M ,∥h∥n=1
ν21(h)

]
=

1

Nn2∆2

K−1∑
ℓ=0

E

(n−1∑
k=0

K−1∑
ℓ′=−M

[
Ψ−1/2

m

]
ℓ′,ℓ

Bℓ′(X
1
k∆)ζ

1,1
k∆

)2


≤ 1

N

K−1∑
ℓ=−M

n−1∑
k=0

E


(

K−1∑
ℓ′=−M

[
Ψ−1/2

m

]
ℓ′,ℓ

Bℓ′(X
1
k∆)

)2 (
ζ1,1k∆

)2
≤ 4σ2

1

Nn

K−1∑
ℓ=−M

K−1∑
ℓ′=−M

K−1∑
ℓ′′=−M

[
Ψ−1/2

m

]
ℓ′,ℓ

[
Ψ−1/2

m

]
ℓ′′,ℓ

[
Ψ−1/2

m

]
ℓ′,ℓ′′

.
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We have:

K−1∑
ℓ=−M

K−1∑
ℓ′=−M

K−1∑
ℓ′′=−M

[
Ψ−1/2

m

]
ℓ′,ℓ

[
Ψ−1/2

m

]
ℓ′′,ℓ

[
Ψ−1/2

m

]
ℓ′,ℓ′′

= Tr
(
Ψ−1

m Ψm

)
= Tr(Im) = m.

So we obtain

E

[
sup

h∈SK+M

ν21(h)

]
≤ 4σ2

1m

Nn
.

For i = 2, we have ζ1,2k∆ = 2
∆

∫ (k+1)∆
k∆ ((k + 1)∆− s)σ′(X1

s )σ
2(X1

s )dWs and

E

[
sup

h∈SK+M ,∥h∥n=1
ν22(h)

]
≤ 1

Nn2

K−1∑
ℓ=−M

E

(n−1∑
k=0

K−1∑
ℓ′=−M

[
Ψ−1/2

m

]
ℓ′,ℓ

Bℓ′(X
j
k∆)ζ

1,2
k∆

)2


≤ 4σ4
1∥σ′∥2∞∆

Nn2

K−1∑
ℓ=−M

n−1∑
k=0

E

( K−1∑
ℓ′=−M

[
Ψ−1/2

m

]
ℓ′,ℓ

Bℓ′(X
1
k∆)

)2


≤ 4σ2
1∥σ′∥2∞m

Nn2
.

For i = 3, we have ζ1,3k∆ = 2b
(
X1

k∆

) ∫ (k+1)∆
k∆ σ(X1

s )dWs and there exists constants C1, C2 > 0 such that

E

[
sup

h∈SK+M ,∥h∥n=1
ν23(h)

]
≤ 1

Nn2

K−1∑
ℓ=−M

E

(n−1∑
k=0

K−1∑
ℓ′=−M

[
Ψ−1/2

m

]
ℓ′,ℓ

Bℓ′(X
j
k∆)ζ

1,3
k∆

)2


≤ C1
σ2
1∆

Nn2

K−1∑
ℓ=−M

n−1∑
k=0

E

( K−1∑
ℓ′=−M

[
Ψ−1/2

m

]
ℓ′,ℓ

Bℓ′(X
1
k∆)

)2


≤ C2
σ2
1m

Nn2
.

Finally, there exists a constant C > 0 depending on σ1 and M such that

E

[
sup

h∈SK+M ,∥h∥n=1
ν2(h)

]
≤ C

m

Nn
. (67)

From Equations (66) and (67) , we deduce that

E
[∥∥σ̂2

AN ,m − σ2
AN

∥∥2
n,N

1Ωn,N,m

]
≤ C

(
inf

h∈SK+M,L

∥h− σ2
AN

∥2n +
m

Nn
+∆2

)
where C > 0 is a constant depending on σ1 and M . We obtain

E
[∥∥σ̂2

AN ,m − σ2
AN

∥∥2
n,N

]
≤ C

(
inf

h∈SK+M,L

∥h− σ2
AN

∥2n +
m

Nn
+∆2

)
+ E

[∥∥σ̂2
AN ,m − σ2

AN

∥∥2
n,N

1Ωc
n,N,m

]
and for N large enough,

∥∥∥σ̂2
AN ,m − σ2

AN

∥∥∥2
n,N

≤ 4mL, and according to Lemma 8.9 ,

E
[∥∥σ̂2

AN ,m − σ2
AN

∥∥2
n,N

1Ωc
n,N,m

]
≤ 4mLP

(
Ωc
n,N,m

)
≤ CmL exp

(
−c log3/2(N)

)
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where c > 0 is a constant. Thus, there exists a constant C > 0 such that

E
[∥∥σ̂2

AN ,m − σ2
AN

∥∥2
n,N

]
≤ E

[∥∥σ̂2
AN ,m − σ2

AN

∥∥2
n,N

1Ωn,N,m

]
+ E

[∥∥σ̂2
AN ,m − σ2

AN

∥∥2
n,N

1Ωc
n,N,m

]
≤ C

(
inf

h∈SK+M,L

∥h− σ2
AN

∥2n +
m

Nn
+mL exp

(
−c log3/2(N)

)
+∆2

)
.

Then, as n ∝ N and L = log(N), there exists a constant C > 0 such that

E
[∥∥σ̂2

AN ,m − σ2
AN

∥∥2
n,N

]
≤ C

(
inf

h∈SK+M,L

∥h− σ2
AN

∥2n +
m

Nn

)
.

Finally, since σ2 ∈ ΣI(β,R) with β ≥ 1 and I = [−AN , AN ], one has

inf
h∈SK+M,L

∥h− σ2
AN

∥2n ≤ CA2β
N K−2β

where the constant C > 0 depends on β,R and M . Furthermore, as we chose the inverval [−AN , AN ]

such that AN = o
(√

log(N)
)

and for K ∝
(
(Nn)1/(2β+1)AN

)
, we obtain

E
[∥∥σ̂2

AN ,m − σ2
AN

∥∥2
n,N

]
≤ C logβ(N)(Nn)−2β/(2β+1).

8.4 Proof of Section 5

8.4.1 Proof of Theorem 5.1

Set for all K,K ′ ∈ K =
{
2q, q = 0, . . . , qmax, 2qmax ≤

√
N/ log(N)

}
⊂ M,

TK,K′ =
{
g ∈ SK+M + SK′+M , ∥g∥n = 1, ∥g∥∞ ≤

√
L
}
. (68)

Recall that for all j ∈ [[1, N ]] and for all k ∈ [[0, n]],

ζj,1k∆ =
1

∆

(∫ (k+1)∆

k∆
σ(Xj

s )dW
j
s

)2

−
∫ (k+1)∆

k∆
σ2(Xj

s )ds

 .

The proof of Theorem 5.1 relies on the following lemma whose proof is in Appendix.

Lemma 8.10. Under Assumption 2.1, for all ε, v > 0 and g ∈ TK,K′ , there exists a real constant
C > 0 such that,

P

 1

Nn

N∑
j=1

n−1∑
k=0

g(Xj
k∆)ζ

j,1
k∆ ≥ ε, ∥g∥2n,N ≤ v2

 ≤ exp

(
−C

Nnε2

σ2
1

(
ε∥g∥∞ + 4σ2

1v
2
))

and for all x > 0 such that x ≤ ε2/σ2
1

(
ε∥g∥∞ + 4σ2

1v
2
)
,

P

 1

Nn

N∑
j=1

n−1∑
k=0

g(Xj
k∆)ζ

j,1
k∆ ≥ 2σ2

1v
√
x+ σ2

1∥g∥∞x, ∥g∥2n,N ≤ v2

 ≤ exp (−CNnx) .

44



Proof of Theorem 5.1. From Equation (22), we have

K̂ := argmin
K∈K

{
γn,N (σ̂2

K) + pen(K)
}
.

For all K ∈ K and h ∈ SK+M,L,

γn,N (σ̂2
K̂
) + pen(K̂) ≤ γn,N (h) + pen(K),

then, for all K ∈ K and for all h ∈ SK+M,L,

γn,N (σ̂2
K̂
)− γn,N (σ2

|I) ≤ γn,N (h)− γn,N (σ2
|I) + pen(K)− pen(K̂)∥∥∥σ̂2

K̂
− σ2

|I

∥∥∥2
n,N

≤
∥∥∥h− σ2

|I

∥∥∥2
n,N

+ 2ν
(
σ̂2
K̂
− h
)
+ 2µ

(
σ̂2
K̂
− h
)
+ pen(K)− pen(K̂)

≤
∥∥∥h− σ2

|I

∥∥∥2
n,N

+
1

d

∥∥∥σ̂2
K̂
− t
∥∥∥2
n
+ d sup

g∈T
K,K̂

ν2(g) +
1

d

∥∥∥σ̂2
K̂
− h
∥∥∥2
n,N

+
d

Nn

N∑
j=1

n−1∑
k=0

(
Rj

k∆

)2
+ pen(K)− pen(K̂)

where d > 1 and the space T
K,K̂

is given in Equation (68). On the set Ωn,N,Kmax (given in Equation
(52)): ∀h ∈ SK+M , 1

2∥h∥
2
n ≤ ∥h∥2n,N ≤ 3

2∥h∥
2
n. Then on Ωn,N,Kmax , for all d > 1 and for all h ∈ SK+M

with K ∈ K,(
1− 10

d

)∥∥∥σ̂2
K̂
− σ2

|I

∥∥∥2
n,N

≤
(
1 +

10

d

)∥∥∥h− σ2
|I

∥∥∥2
n,N

+ d sup
h∈T

K,K̂

ν2(h) +
d

Nn

N∑
j=1

n−1∑
k=0

(
Rj

k∆

)2
+ pen(K)− pen(K̂).

We set d = 20. Then, on Ωn,N,max and for all h ∈ SK+M,L,

∥∥∥σ̂2
K̂
− σ2

|I

∥∥∥2
n,N

≤ 3
∥∥∥h− σ2

|I

∥∥∥2
n,N

+20 sup
h∈T

K,K̂

ν2(h)+
20

Nn

N∑
j=1

n−1∑
k=0

(
Rj

k∆

)2
+2
(
pen(K)− pen(K̂)

)
. (69)

Let q : K2 −→ R+ such that 160q(K,K ′) ≤ 18pen(K) + 16pen(K ′). Thus, on the set Ωn,N,Kmax , there
exists a constant C > 0 such that for all h ∈ SK+M

E
[∥∥∥σ̂2

K̂
− σ2

|I

∥∥∥2
n,N

1Ωn,N,Kmax

]
≤ 34

(
inf

h∈SK+M,L

∥∥∥h− σ2
|I

∥∥∥2
n
+ pen(K)

)
+ 160E

(
sup

h∈T
K,K̂

ν21(h)− q(K, K̂)

)
+ C∆2

where

ν1(h) :=
1

Nn

N∑
j=1

n−1∑
k=0

h(Xj
k∆)ζ

j,1
k∆ (70)

with ζj,1k∆ the error term. We set for all K,K ′ ∈ K,

GK(K ′) := sup
h∈TK,K′

ν21(h) (71)
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and for N and n large enough,
∥∥∥σ̂2

K̂
− σ2

|I

∥∥∥2
n,N

≤ 4(K +M)L. We deduce that,

E
[∥∥∥σ̂2

K̂
− σ2

|I

∥∥∥2
n,N

]
≤ E

[∥∥∥σ̂2
K̂
− σ2

|I

∥∥∥2
n,N

1Ωn,N,Kmax

]
+ E

[∥∥∥σ̂2
K̂
− σ2

|I

∥∥∥2
n,N

1Ωc
n,N,Kmax

]
≤ 34 inf

K∈K

(
inf

h∈SK+M

∥∥∥h− σ2
|I

∥∥∥2
n
+ pen(K)

)
+ C∆2 + 4(K +M)LP(Ωc

n,N,Kmax
)

+ 160E
[(

GK(K̂)− q(K, K̂)
)
+
1Ωn,N,Kmax

]
.

In the sequel, we refer to the proof of Proposition 6.1 in Baraud et al. (2001). We known from Lorentz
et al (see Lorentz et al. (1996)) that given the unit ball B∥.∥n(0, 1) of the approximation subspace
SK+M with respect to norm ∥.∥n defined as follows:

B∥.∥n(0, 1) = {h ∈ SK+M : ∥h∥n ≤ 1} =

{
h ∈ SK+M : ∥h∥ ≤ 1

τ0

}
= B2(0, 1/τ0),

we can find a ε−net Eε such that for each ε ∈ (0, 1], |Eε| ≤
(

3
ετ0

)K+M
.

Recall that TK,K′ =
{
g ∈ SK+M + SK′+M , ∥g∥n = 1, ∥g∥∞ ≤

√
L
}

and consider the sequence

(Eεk)k≥1 of ε−net with εk = ε02
−k and ε0 ∈ (0, 1]. Moreover, set Nk = log(|Eεk |) for each k ≥ 0. Then

for each g ∈ SK+M + SK′+M such that ∥g∥∞ ≤
√
L, there exists a sequence (gk)k≥0 with gk ∈ Eεk

such that g = g0 +
∑∞

k=1 gk − gk−1. Set P̃ := P (. ∩ Ωn,N,Kmax) and

τ := σ2
1

√
6xn,N0 + σ2

1

√
Lxn,N0 +

∑
k≥1

εk−1

{
σ2
1

√
6xn,Nk + 2σ2

1

√
Lxn,Nk

}
= yn,N0 +

∑
k≥0

yn,Nk .

For all h ∈ TK,K′ and on the event Ωn,N,Kmax , one has ∥h∥2n,N ≤ 3
2∥h∥

2
n = 3

2 . Then, using the chaining
technique of Baraud et al. (2001), we have

P̃

(
sup

h∈TK,K′
ν1(h) > τ

)
= P̃

∃(hk)k≥0 ∈
∏
k≥0

Eεk/ν1(h) = ν1(h0) +

∞∑
k=1

ν1(hk − hk−1) > τ


≤
∑

h0∈E0

P̃
(
ν1(h0) > yn,N0

)
+

∞∑
k=1

∑
hk∈Eεk

hk−1∈Eεk−1

P̃
(
ν1(hk − hk−1) > yn,Nk

)
.

According to Equation (70) and Lemma 8.10, there exists a constant C > 0 such that

P̃
(
ν1(h0) > yn,N0

)
≤ P̃

(
ν1(h0) > σ1

√
6xn,N0 + σ2

1∥h0∥∞xn,N0

)
≤ exp(−CNnxn,N0 ),

∀k ≥ 1, P̃
(
ν1(hk − hk−1) > yn,N0

)
≤ P̃

(
ν1(hk − hk−1) > σ1

√
6xn,Nk + σ2

1∥hk − hk−1∥∞xn,Nk

)
≤ exp(−CNnxn,Nk ).
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Finally, since Nk = log(|Eεk |) for all k ≥ 0, we deduce that

P̃

(
sup

h∈TK,K′
ν1(h) > τ

)
≤ |Eε0 | exp(−CNnxn,N0 ) +

∞∑
k=1

(
|Eεk |+

∣∣Eεk−1

∣∣) exp(−CNnxn,Nk )

≤ exp
(
N0 − CNnxn,N0

)
+

∞∑
k=1

exp
(
Nk +Nk−1 − CNnxn,Nk

)
.

We choose xn,N0 and xn,Nk , k ≥ 1 such that,

N0 − CNnxn,N0 =− a
(
K +K ′ + 2M

)
− b

Nk +Nk−1 − CNnxn,Nk =− k(K +K ′ + 2M)− a
(
K +K ′ + 2M

)
− b

where a and b are two positive real numbers. We deduce that

xn,Nk ≤ C0(1 + k)
K +K ′ + 2M

Nn
and τ ≤ C1σ

2
1

√
√
L
K +K ′ + 2M

Nn
(72)

with C0 > 0 and C1 two constants depending on a and b. It comes that

∼
P

(
sup

t∈TK,K′
ν(t) > τ

)
≤ e

e− 1
e−b exp

{
−a
(
K +K ′ + 2M

)}
.

From Equation (72), we set

q
(
K,K ′) = κ∗σ2

1

√
L
K +K ′ + 2M

Nn
where κ∗ > 0 depends on C1 > 0. Thus, for all K,K ′ ∈ K,

P

({
sup

h∈TK,K′
ν2(h) > q

(
K,K ′)} ∩ Ωn,N,Kmax

)
≤ e−b+1

e + 1
exp

{
−a
(
K +K ′ + 2M

)}
and there exists constants c, C > 0 such that

E
[(
GK

(
K ′)− q(K,K ′)

)
+
1Ωn,N,Kmax

]
≤ c(K +K ′)

Nn
P

({
sup

t∈TK,K′
ν2(t) > q(K,K ′)

}
∩ Ωn,N,Kmax

)

≤ C

Nn
exp

{
−a

2

(
K +K ′)} .

Finally, there exists a real constant C > 0 such that,

E
[(

GK(K̂)− q(K, K̂)
)
+
1Ωn,N,Kmax

]
≤

∑
K′∈K

E
[(
GK

(
K ′)− q(K,K ′)

)
+
1Ωn,N,Kmax

]
≤ C

Nn
.

We choose the penalty function pen such that for each K ∈ K,

pen(K) ≥ κσ2
1

√
L
K +M

Nn
.

For N large enough, one has σ2
1 ≤

√
L. Thus, we finally set pen(K) = κ (K+M) log(N)

Nn with L = log(N).
Then, there exists a constant C > 0 such that,

E
[∥∥∥σ̂2

K̂
− σ2

|I

∥∥∥2
n,N

]
≤ 34 inf

K∈K

{
inf

h∈SK+M

∥∥∥h− σ2
|I

∥∥∥2
n
+ pen(K)

}
+

C

Nn
.
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8.4.2 Proof of Theorem 5.2

Proof. From Equation (22), we have

K̂ := argmin
K∈K

γn,N (σ̂2
K+M,L) + pen(K).

Then, for all K ∈ K and for all h ∈ SK+M,L, we have

γn,N (σ̂2
K̂,L

) + pen(K̂) ≤ γn,N (h) + pen(K).

Then, for all K ∈ K and for all h ∈ SK+M,L,

γn,N (σ̂2
K̂,L

)− γn,N (σ2) ≤ γn,N (h)− γn,N (σ2) + pen(K)− pen(K̂)∥∥∥σ̂2
K̂,L

− σ2
∥∥∥2
n,N

≤ ∥h− σ2∥2n,N + 2ν(σ̂2
K̂,L

− h) + 2µ(σ̂2
K̂,L

− h) + pen(K)− pen(K̂).

We have for all a > 0,

2E
[
µ
(
σ̂2
K̂,L

− h
)]

≤2

a
E
∥∥∥σ̂2

K̂,L
− σ2

∥∥∥2
n,N

+
2

a
inf

h∈SK+M,L

∥h− σ2∥2n +
a

Nn

N∑
j=1

n−1∑
k=0

E
[(

Rj
k∆

)2]
and since ν = ν1 + ν2 + ν3, according to the proof of Theorem 4.3, there exists a constant c > 0 such
that

E
[
ν(σ̂2

K̂,L
− h)

]
≤ cE

[
ν1(σ̂

2
K̂,L

− h)
]

where the for i ∈ {1, 2, 3} and for all h ∈ SK+M,L, K ∈ K,

νi(h) =
1

Nn

N∑
j=1

n−1∑
k=0

h(Xj
k∆)ζ

j
k∆,

and the ζjk∆ are given Then,(
1− 2

a

)
E
[∥∥∥σ̂2

K̂,L
− σ2

∥∥∥2
n,N

]
≤
(
1 +

2

a

)
inf

h∈SK+M,L

∥∥h− σ2
∥∥2
n
+ 2cE

[
ν1(σ̂

2
K̂,L

− h)
]

+ pen(K)− pen(K̂) +
a

Nn

N∑
j=1

n−1∑
k=0

E
[(

Rj
k∆

)2]

From Equation (36) and for a = 4, there exists a constant C > 0 such that

E
[∥∥∥σ̂2

K̂,L
− σ2

∥∥∥2
n,N

]
≤ 3 inf

h∈SK+M,L

∥∥h− σ2
∥∥2
n
+ 4cE

[
ν1(σ̂

2
K̂,L

− h)
]
+ 2

(
pen(K)− pen(K̂)

)
+ C∆2.

(73)
Since for all K ∈ K, pen(K) ≥ 2κ∗σ2

1(K +M)
√
2L/(Nn), define the function q : (K,K ′) 7→ q(K,K ′)

such that

q(K,K ′) = 2C∗σ2
1

(K +K ′ + 2M)
√
2L

Nn
≥ 2σ2

1v
√
xn,N + σ2

1vx
n,N (74)

where

xn,N ∝
(
K +K ′ + 2M

Nn

)2

and v =
√
2L.
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The constant C∗ > 0 depends on constants κ∗ > 0 and c > 0 of Equation (73) such that

4cq(K,K ′) ≤ pen(K) + 2pen(K ′).

Then for all K ∈ K and for all h ∈ SK+M,L,

E
[∥∥∥σ̂2

K̂,L
− σ2

∥∥∥2
n,N

]
≤ 3

(
inf

h∈SK+M,L

∥∥h− σ2
∥∥2
n
+ pen(K)

)
+4cE

[(
ν1(σ̂

2
m̂,L − h)− q(K, K̂)

)
+

]
+C∆2.

(75)
For all K ∈ K and for all h ∈ SK+M,L such that ∥h∥∞ ≤

√
L, we have ,∥∥∥σ̂2

K̂,L
− h
∥∥∥2
n,N

≤
∥∥∥σ̂2

K̂,L
− h
∥∥∥2
∞

≤ 2L =: v2.

Then, using Equation (74) and Lemma 8.10, there exists a constant C > 0 such that for all K,K ′ ∈ K
and for all h ∈ SK+M,L,

P
(
ν1(σ̂

2
K′,L − h) ≥ q(K,K ′), ∥σ̂2

K̂,L
− h∥2n,N ≤ v2

)
≤ exp

(
−CNnxn,N

)
. (76)

Since L = log(N), then for N large enough, σ2
1 ≤

√
log(N), we finally choose

pen(K) = κ
(K +M) log(N)

Nn

where κ > 0 is a new constant. Since E
[
ν1(σ̂

2
K̂,L

− h)
]

≤ O

(√
(Kmax+M) log2(N)

Nn

)
(see proof of

Theorem 4.3), for all K ∈ K and h ∈ SK+M,L, there exists a constant c > 0 such that

E
[(

ν1(σ̂
2
K̂,L

− h)− q(K, K̂)
)
+

]
≤ max

K′∈K

{
E
[(
ν1(σ̂

2
K′,L − h)− q(K,K ′)

)
+

]}
≤ cq(K,Kmax)max

K′∈K

{
P
(
ν1(σ̂

2
K′,L − h) ≥ q(K,K ′)

)}
.

From Equation (76), we obtain that

E
[(

ν1(σ̂
2
K̂,L

− h)− q(K, K̂)
)
+

]
≤ cq(K,Kmax) exp(−CNn) ≤ C

Nn
(77)

since K and Kmax increase with the size N of the sample paths DN,n, and

cNnq(K,Kmax) exp(−CNn) → 0 as N → ∞.

Then, from Equations (77) and (75), there exists a constant C > 0 such that

E
[∥∥∥σ̂2

K̂,L
− σ2

∥∥∥2
n,N

]
≤ 3 inf

K∈K

{
inf

h∈SK+M,L

∥∥h− σ2
∥∥2
n
+ pen(K)

}
+

C

Nn
. (78)
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8.4.3 Proof of Theorem 5.3

Proof. The proof of Theorem 5.3 is similar to the proof of Theorem 5.1. Then, from Equation (69),
for all h ∈ SK+M ,

∥∥∥σ̂2
K̂,L

− σ2
|I

∥∥∥2
n,1

≤ 3
∥∥∥h− σ2

|I

∥∥∥2
n,1

+ 20 sup
h∈T

K,K̂

ν2(h) +
20

n

n−1∑
k=0

(
R1

k∆

)2
+ 2

(
pen(K)− pen(K̂)

)
,

where TK,K′ = {h ∈ SK+M + SK′+M , ∥h∥X = 1, ∥h∥∞ ≤
√
L}. Let q : K2 −→ R+ such that

160q(K,K ′) ≤ 18pen(K) + 16pen(K ′).
Recall that the L2−norm ∥.∥, the norm E [∥.∥X ] and the empirical norm ∥.∥n are equivalent on

L2(I) since the transition density is bounded on the compact interval I. Then, for all K ∈ K and
h ∈ SK+M,L, we have

E
[∥∥∥σ̂2

K̂,L
− σ2

|I

∥∥∥2
n,1

]
≤ 3

(
inf

h∈SK+M,L

∥∥∥h− σ2
|I

∥∥∥2
n
+ pen(K)

)
+ 20E

(
sup

h∈T
K,K̂

ν21(h)− q(K, K̂)

)
+ C∆2

where

ν1(h) :=
1

n

n−1∑
k=0

h(X1
k∆)ζ

1,1
k∆

with ζ1,1k∆ the error term. We set for all K,K ′ ∈ K, GK(K ′) := sup
h∈TK,K′

ν21(h). Then, there exists C > 0

such that

E
[∥∥∥σ̂2

K̂,L
− σ2

|I

∥∥∥2
n,1

]
≤ 3 inf

K∈K

{
inf

h∈SK+M,L

∥∥∥h− σ2
|I

∥∥∥2
n
+ pen(K)

}
+ 20

∑
K′∈K

E
[(
GK(K ′)− q(K,K ′)

)
+

]
+ C∆2.

Considering the unit ball B∥.∥X (0, 1) of the approximation subspace given by

B∥.∥X (0, 1) =
{
h ∈ SK+M , ∥h∥2X ≤ 1

}
=

{
h ∈ SK+M , ∥h∥2 ≤ 1

τ0

}
.

We obtain from the proof of Theorem 5.1 with N = 1 that,∑
K′∈K

E
[(
GK(K ′)− q(K,K ′)

)
+

]
≤ C

n
,

where C > 0 is a constant, q(K,K ′) ∝ σ4
1
(K+K′+2M)

√
log(n)

n and pen(K) ∝ (K+M) log(n)
n . Then we

obtain
E
[∥∥∥σ̂2

K̂,L
− σ2

|I

∥∥∥2
n,1

]
≤ 3

τ0
inf
K∈K

{
inf

h∈SK+M,L

∥∥∥h− σ2
|I

∥∥∥2
n
+ pen(K)

}
+

C

n
.

50



References

Bandi, F.-M. & Phillips, P.-C.-B. (2003). Fully nonparametric estimation of scalar diffusion models.
Econometrica 71, 241–283.

Baraud, Y., Comte, F. & Viennet, G. (2001). Model selection for (auto-) regression with dependent
data. ESAIM: Probability and Statistics 5, 33–49.

Barron, A., Lucien, B. & Pascal, M. (1999). Risk bounds for model selection via penalization. Proba-
bility theory and related fields 113, 301–413.

Clement, E. (1997). Estimation of diffusion processes by simulated moment methods. Scandinavian
Journal of Statistics 24, 353–369.

Comte, F. (2017). Nonparametric Estimation. Spartacus IDH.

Comte, F. & Genon-Catalot, V. (2020a). Nonparametric drift estimation for iid paths of stochastic
differential equations. The Annals of Statistics 48, 3336–3365.

Comte, F. & Genon-Catalot, V. (2020b). Regression function estimation as a partly inverse problem.
Annals of the Institute of Statistical Mathematics 72, 1023–1054.

Comte, F. & Genon-Catalot, V. (2021). Drift estimation on non compact support for diffusion models.
Stochastic Processes and their Applications 134, 174–207.

Comte, F., Genon-Catalot, V., Rozenholc, Y. et al. (2007). Penalized nonparametric mean square
estimation of the coefficients of diffusion processes. Bernoulli .

Comte, F., Genon-Catalot, V. et al. (2018). Regression function estimation as a partly inverse problem.
Preprint Hal .

Denis, C., Dion-Blanc, C. & Martinez, M. (2021). A ridge estimator of the drift from discrete repeated
observations of the solutions of a stochastic differential equation. Bernoulli .

Denis, C., Dion-Blanc, C., Mintsa, E. E. & Tran, V.-C. (2022). Nonparametric plug-in classifier for
multiclass classification of sde paths. arXiv preprint arXiv:2212.10259 .

DeVore, R. A. & Lorentz, G. G. (1993). Constructive approximation, vol. 303. Springer Science &
Business Media.

Florens, D. (1998). Estimation of the diffusion coefficient from crossings. Statistical Inference for
Stochastic Processes 1, 175–195.

Florens-Zmirou, D. (1993). On estimating the diffusion coefficient from discrete observations. Journal
of applied probability 30, 790–804.

Genon-Catalot, V. & Jacod, J. (1993). On the estimation of the diffusion coefficient for multi-
dimensional diffusion processes. In Annales de l’IHP Probabilités et statistiques, vol. 29, pp. 119–151.

Genon-Catalot, V. & Jacod, J. (1994). Estimation of the diffusion coefficient for diffusion processes:
random sampling. Scandinavian Journal of Statistics pp. 193–221.

Genon-Catalot, V., Jeantheau, T. & Laredo, C. (1999). Parameter estimation for discretely observed
stochastic volatility models. Bernoulli pp. 855–872.

51



Genon-Catalot, V., Laredo, C. & Picard, D. (1992). Non-parametric estimation of the diffusion coeffi-
cient by wavelets methods. Scandinavian Journal of Statistics pp. 317–335.

Gloter, A. (2000). Discrete sampling of an integrated diffusion process and parameter estimation of
the diffusion coefficient. ESAIM: Probability and Statistics 4, 205–227.

Gobet, E. (2002). Lan property for ergodic diffusions with discrete observations. Annales de l’Institut
Henri Poincare (B) Probability and Statistics 38, 711–737.

Gourieroux, C., Nguyen, H.-T. & Sriboonchitta, S. (2017). Nonparametric estimation of a scalar
diffusion model from discrete time data: a survey. Annals of Operations Research 256, 203–219.

Györfi, L., Kohler, M., Krzyzak, A. & Walk, H. (2006). A distribution-free theory of nonparametric
regression. Springer Science & Business Media.

Hastie, T., Tibshirani, R. & Friedman, J. (2001). Springer series in statistics the elements of statistical
learning data mining, inference. Tech. rep., and Prediction. Technical report.

Hoffmann, M. (1997). Minimax estimation of the diffusion coefficient through irregular samplings.
Statistics & probability letters 32, 11–24.

Hoffmann, M. (1999a). Adaptive estimation in diffusion processes. Stochastic processes and their
Applications 79, 135–163.

Hoffmann, M. (1999b). Lp estimation of the diffusion coefficient. Bernoulli pp. 447–481.

Iacus, S.-M. (2009). Simulation and inference for stochastic differential equations: with R examples.
Springer Science & Business Media.

Jacod, J. (1993). Random sampling in estimation problems for continuous gaussian processes with
independent increments. Stochastic processes and their applications 44, 181–204.

Lorentz, G.-G., Golitschek, M.-V. & Makovoz, Y. (1996). Constructive approximation: advanced
problems, vol. 304. Springer.

Odell-Scott, D. W. (1992). Multivariate density estimation: theory, practice, and visualization.

Park, J.-Y. & Wang, B. (2021). Nonparametric estimation of jump diffusion models. Journal of
Econometrics 222, 688–715.

Renò, R. (2006). Nonparametric estimation of stochastic volatility models. Economics Letters 90,
390–395.

Revuz, D. & Yor, M. (2013). Continuous martingales and Brownian motion, vol. 293. Springer Science
& Business Media.

Schmisser, E. (2012). Non-parametric estimation of the diffusion coefficient from noisy data. Statistical
inference for stochastic processes 15, 193–223.

Schmisser, E. (2019). Non parametric estimation of the diffusion coefficients of a diffusion with jumps.
Stochastic processes and their applications 129, 5364–5405.

Sørensen, H. (2002). Estimation of diffusion parameters for discretely observed diffusion processes.
Bernoulli pp. 491–508.

Soulier, P. (1993). Estimation fonctionnelle dans divers cadres de dépendance. Ph.D. thesis, Paris 11.

52



Appendix
Calibration

Fix the drift function b(x) = 1 − x, the time-horizon T = 1 and at time t = 0, x0 = 0. Consider the
following three models:

Model 1: σ(x) = 1

Model 2: σ(x) = 0.1 + 0.9/
√
1 + x2

Model 3: σ(x) = 1/3 + sin2(2πx)/π + 1/(π + x2).

The three diffusion models satisfy Assumption 2.1 and are used to calibrate the numerical constant
κ of the penalty function given in Theorem 5.1

As we already know, the adaptive estimator of σ2 on the interval [−
√
log(N),

√
log(N)] necessitate

a data-driven selection of an optimal dimension through the minimization of the penalized least squares
contrast given in Equation (22) . Since the penalty function pen(dN ) = κ(KN + M) log2(N)/N2

depends on the unknown numerical constant κ > 0, the goal is to select an optimal value of κ in the
set V = {0.1, 0.5, 1, 2, 4, 5, 7, 10} of its possible values. To this end, we repeat 100 times the following
steps:

1. Simulate learning samples DN and DN ′ with N ∈ {50, 100}, N ′ = 100 and n ∈ {100, 250}

2. For each κ ∈ V:

(a) For each KN ∈ K and from DN , compute σ̂2
dN ,LN

given in Equations (9) and (10).

(b) Select the optimal dimension K̂N ∈ K using Equation (22)

(c) Using the learning sample DN ′ , evaluate
∥∥∥σ̂2

d̂N ,LN
− σ2

A

∥∥∥2
n,N ′

where d̂N = K̂N +M .

Then, we calculate average values of
∥∥∥σ̂2

d̂N ,LN
− σ2

A

∥∥∥2
n,N ′

for each κ ∈ V and obtain the following

results:
We finally choose 5 ∈ V as the optimal value of κ in reference to the results of Figure 2 .

Proof of Lemma 8.10

Proof. We obtain from Comte,Genon-Catalot,Rozenholc (2007) proof of Lemma 3 that for each j ∈
[[1, N ]], k ∈ [[0, n− 1]] and p ∈ N \ {0, 1}

E

[
exp

(
ug(Xj

k∆)ξ
j,1
k∆ −

au2g2(Xj
k∆)

1− bu

)
|Fk∆

]
≤ 1

with a = e
(
4σ2

1c
2
)2

, b = 4σ2
1c

2e∥g∥∞, u ∈ R such that bu < 1 and c > 0 a real constant. Thus,

P

 1

Nn

N∑
j=1

n−1∑
k=0

g(Xj
k∆)ξ

j,1
k∆ ≥ ε, ∥g∥2N,n ≤ v2

 = E
(
1{∑N

j=1

∑n−1
k=0 ug(Xj

k∆)ξ
(j,1)
k∆ ≥Nnuε

}1∥g∥2n,N≤v2

)

= E
(
1{

exp
(∑N

j=1

∑n−1
k=0 ug(Xj

k∆)ξ
(j,1)
k∆

)
e−Nnuε≥1

}1∥g∥2N,n≤v2

)

≤ e−NnuεE

1∥g∥2n,N≤v2 exp


N∑
j=1

n−1∑
k=0

ug(Xj
k∆)ξ

j,1
k∆


 .
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Figure 2: Calibration of the constant κ ∈ V of the penalty function

It follows that,

P

 1

Nn

N∑
j=1

n−1∑
k=0

g(Xj
k∆)ξ

j,1
k∆ ≥ ε, ∥g∥2n,N ≤ v2

 ≤ exp
{
−Nnuε+ Nnau2v2

1−bu

}
.

We set u = ε
εb+2av2

. Then, we have −Nnuε+Nnav2u2/(1− bu) = −Nnε2/2(εb+ 2av2) and,

P

 1

Nn

N∑
j=1

n−1∑
k=0

g(Xj
k∆)ξ

j,1
k∆ ≥ ε, ∥g∥2n,N ≤ v2

 ≤ exp

(
− Nnε2

2(εb+ av2)

)

≤ exp

(
−C

Nnε2

σ2
1

(
ε∥g∥∞ + 4σ2

1v
2
))

where C > 0 is a constant depending on c > 0.

Proof of Lemma 8.9

Proof. Set Kn,N = KN since N ∝ n. Let us remind the reader of the Gram matrix ΨKN
given in

Equation (19),

ΨKN
= E

[
1

Nn
F′
KN

FKN

]
= E

(
Ψ̂KN

)
where,

FKN
:=
(
(Bℓ(X

j
0), . . . , (Bℓ(X

j
(n−1)∆))

)
0≤ℓ≤KN−1

1≤j≤N

∈ RNn×(KN+M) (79)

The empirical counterpart Ψ̂ is the random matrix given by Ψ̂KN
of size (KN + M) × (KN + M) is

given by

Ψ̂KN
:=

1

Nn
F′
KN

FKN
=

 1

Nn

N∑
j=1

n−1∑
k=0

fℓ(X
j
k∆)fℓ′(X

j
k∆)


ℓ,ℓ′∈[−M,KN−1]

. (80)
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For all t =
∑KN−1

ℓ=−M aℓBℓ,M,u ∈ SKN ,M one has

∥t∥2n,N = a′Ψ̂KN
a and ∥t∥2n = a′ΨKN

a, with a = (a−M , · · · , aKN−1)
′ .

Under Assumption 2.1, we follow the lines of Comte et al. (2018) Proposition 2.3 and Lemma 6.2.
Then,

sup
t∈SKN,M ,∥t∥n=1

∣∣∥t∥2n,N − ∥t∥2n
∣∣ = sup

w∈RKN+M ,
∥∥∥Φ1/2

KN
w
∥∥∥
2,KN+M

=1

∣∣∣w′
(
Ψ̂KN

−ΨKN

)
w
∣∣∣

= sup
u∈RKN+M ,∥u∥2,KN+M=1

∣∣∣u′Ψ−1/2
KN

(
Ψ̂KN

−ΨKN

)
Ψ

−1/2
KN

u
∣∣∣

=
∥∥∥Ψ−1/2

KN
Ψ̂KN

Ψ
−1/2
KN

− IdKN+M

∥∥∥
op

.

Therefore,

Ωc
n,N,KN

=

{∥∥∥Ψ−1/2
KN

Ψ̂KN
Ψ

−1/2
KN

− IdKN+M

∥∥∥
op

> 1/2

}
.

Since AN = o
(√

log(N)
)
, we obtain from Denis et al. (2022), proof of Lemma 7.8, there exists a

constant C > 0 such that

P
(
Ωc
n,N,KN

)
≤ 2(KN +M) exp

(
−C log3/2(N)

)
. (81)

Finally, since 2(KN +M) exp
(
−(C/2) log3/2(N)

)
−→ 0 as N −→ +∞, one concludes from Equa-

tion (81) and for N large enough,

P
(
Ωc
n,N,KN

)
≤ C exp

(
−c log3/2(N)

)
where c > 0 and C > 0 are new constants.
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