
HAL Id: hal-04156404
https://hal.science/hal-04156404v3

Submitted on 8 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A DSEL for high throughput and low latency
software-defined radio on multicore CPUs

Adrien Cassagne, Romain Tajan, Olivier Aumage, Camille Leroux, Denis
Barthou, Christophe Jégo

To cite this version:
Adrien Cassagne, Romain Tajan, Olivier Aumage, Camille Leroux, Denis Barthou, et al.. A DSEL
for high throughput and low latency software-defined radio on multicore CPUs. Concurrency and
Computation: Practice and Experience, 2023, pp.e7820. �10.1002/cpe.7820�. �hal-04156404v3�

https://hal.science/hal-04156404v3
https://hal.archives-ouvertes.fr

Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

A DSEL for High Throughput and Low Latency Software-Defined
Radio on Multicore CPUs

Adrien Cassagne*1 | Romain Tajan2 | Olivier Aumage3 | Camille Leroux2 | Denis
Barthou3 | Christophe Jégo2

1Sorbonne Université, CNRS, LIP6,
F-75005, Paris, France

2IMS Laboratory, UMR CNRS 5218,
Bordeaux INP, University of Bordeaux,
Talence, France

3Inria, Bordeaux Institute of Technology,
LaBRI/CNRS, Bordeaux, France

Correspondence
*Adrien Cassagne, LIP6 lab. (ALSOC
team), Sorbonne University. Email:
adrien.cassagne@lip6.fr

Summary

This article presents a new Domain Specific Embedded Language (DSEL) dedicated
to Software-Defined Radio (SDR). From a set of carefully designed components, it
enables to build efficient software digital communication systems, able to take advan-
tage of the parallelism of modern processor architectures, in a straightforward and
safe manner for the programmer. In particular, proposed DSEL enables the combi-
nation of pipelining and sequence duplication techniques to extract both temporal
and spatial parallelism from digital communication systems. We leverage the DSEL
capabilities on a real use case: a fully digital transceiver for the widely used DVB-S2
standard designed entirely in software. Through evaluation, we show how proposed
software DVB-S2 transceiver is able to get the most from modern, high-end multi-
core CPU targets.
KEYWORDS:
DSEL, SDR, Multicore CPUs, Pipeline, Real-time system, DVB-S2 transceiver

1 INTRODUCTION

Digital communication systems are traditionally implemented onto dedicated hardware (ASIC) to achieve high throughputs,
low latencies and energy efficiency. However, hardware implementations suffer from a long time to market, are expensive and
specific by nature1,2. New communication standards such as the 5G are coming with large specifications and numerous possible
configurations3. Connecting objects that exchange small amounts of data at low rates will live together with 4K video streaming
for mobile phone games requiring high throughputs and low latencies4.

To meet such diverse specifications, transceivers have to be able to adapt quickly to new configurations. Flexible, re-
configurable and programmable solutions are thus increasingly required, fueling a growing interest for the Software-Defined
Radio (SDR). It consists in processing both the Physical (PHY) and Medium Access Control (MAC) layers in software5, rather
than in hardware. Shorter time to market, lower design costs, ability to be updated, to support and to interoperate with new
protocols are its main advantages6.

SDR can be implemented on various targets such as Field Programmable Gate Arrays (FPGAs)7,8,9,10,11,12, Digital Signal
Processors (DSPs)13,14,10 or General Purpose Processors (GPPs)15,16,17,18. Many SDR elementary blocks have been optimized
for Intel® and ARM® CPUs. High throughput results have been achieved on GPUs19,20,21,22,23; latency results are is still too high
however to meet real time constraints and to compete with CPU implementations24,25,26,22,27,28,29,30,31,32,33. This is mainly due to
data transfers between the host (CPUs) and the device (GPUs), and to the nature of GPU designs, which are not optimized for
latency efficiency. In this paper, we focus on the execution of SDR on multicore general purpose CPUs.

2 CASSAGNE ET AL

Digital communication systems can be refined so that the transmitter and the receiver parts are decomposed into several
processing blocks connected in a directed graph. This matches the dataflow model34,35: Blocks are filters and links between
blocks are data exchanges. Specific dataflow models such as the synchronous dataflow36 and the cyclo-static dataflow37,38 allow
the expression of a static schedule for the graph39. SDR however requires a parallel task graph between stateful tasks and a
dynamic schedule due to early exits, conditionals and loop iterations. Maximizing throughput is the main objective, keeping
latency as low as possible is a secondary objective. This constrains the time taken by data movements and requires optimizing
for parallelism. For a SDR operating in antennas or transceivers, memory footprint is not an issue and all tasks run on CPU cores.

This paper is an extension of a previous work40 in which we presented a complete, real-life example, digital communication
system (a DVB-S2 transceiver) running on both x86 (Intel®) and ARM (Cavium®) CPUs, that meets real-time requirements for
ground-satellite transceivers. This paper includes the DVB-S2 software transceiver as well as the following new contributions:

• A DSEL based on C++ to build parallel dataflow graphs for SDR signal processing, supporting loops (including nested
and input-dependent ones), conditionals, early exits, pipeline and fork/join parallelism;

• A set of micro-benchmarks to analyze the time taken by the different constructs;
• In-depth insights to understand the performance and the genericity of the proposed DVB-S2 transceiver (for instance, two

pipeline implementations are compared and its implementation with the proposed DSEL is shown);
• A comprehensive and “as fair as possible” comparison with State-of-the-Art DVB-S2 software transceivers.

Section 2 discusses related works. The proposed DSEL is presented in Section 3. Section 4 details scheduling and parallelism
supports. Section 5 experiments with a DVB-S2 implementation built on the DSEL.

2 RELATED WORKS

Many languages dedicated to streaming applications have been introduced41,42,43,44,45,46,47,48. These languages are often variants
of the cyclo-static dataflow model and propose automatic parallelization techniques such as pipelining and forks/joins.

The concepts presented in StreamIt41 are very close to the ones implemented in the proposed DSEL. However, StreamIt does
not provide dynamic loops and conditions. FeedbackLoop and SplitJoin are closer but their scheduling is static. On the other
hand, some concepts like a dedicated control messaging system are not implemented in the proposed DSEL. Even if it is still
possible to embed control messages in the data, this is less advanced than what StreamIt does.

In Dardaillon et al. work49, a full compilation chain for SDR, based on LLVM on heterogeneous MPSoCs. This is promising
but it differs from our approach. Indeed, we chose to integrate our language into C++, making the DSEL compatible with any
C++11 compilers. Works are also tackling OS and hardware aspects of SDR50,51,52. However, the studied SDR systems are
much simpler than those addressed in this paper.

Few solutions specifically target SDR sub-domain so far. GNU Radio53 is the most famous one. It is open source and largely
adopted by the community. It comes bundled with a large variety of digital communication techniques used in real life systems.
GNU Radio models digital communication systems at the symbol and frame level. The philosophy is close to typical algorithm
descriptions from the signal processing literature, which enables fast prototyping of new digital processing algorithms. The last
version of GNU Radio (3.9) can take advantage of multi-core CPUs. One thread is spawned per block and the scheduling is
directly managed by the operating system. While sufficient on uniform memory access (UMA) architectures54, this does not
take into account non uniform memory access (NUMA) architectures with many cores. A drawback of assigning a block per
thread is that the designed SDR system is strongly linked to the parallelism strategy. Depending on the CPU architecture, it
can be necessary to change the parallelism strategy while keeping the same SDR system description. GNU Radio designers
are currently working on a proof of concept scheduler (newsched) for the future GNU Radio version 455. They introduced the
concept of workers that can execute more than one block on a physical core. To the best of our knowledge, this new version
of GNU Radio breaks the compatibility with the existing systems designed with GNU Radio and is not yet fully implemented.
However, this new version goes in the same direction as what we propose and we hope that some contributions of this paper
could help the GNU Radio project. To the best of our knowledge, GNU Radio does not implement the duplication mechanism
presented in Section 3.3 and we show this is a key mechanism for high throughputs and scalability. Besides, a new construct
in the next section (cf. the switcher module in Section 3.1) allows the design of loops and conditions for SDR systems, not yet
supported by GNU Radio where only static directed acyclic graph can be managed.

CASSAGNE ET AL 3

Some other works are focusing particularly on an SDR implementation for a DVB-S2 transceiver. Hereafter are the projects
we have identified:

• leansdr. A standalone open source project56. A low-density parity-check (LDPC) bit-flipping decoder57 is chosen. The
project does not support multi-threading.

• gr-dvbs2rx. An open source out-of-tree module58 for GNU Radio. One of the motivation of this project is to increase the
throughput compared to leansdr. The project is open-source and we were able to perform a fair comparison. The results
are presented in Section 5.5.

• Grayver and Utter. In a recently published paper18, they succeed in building a 10 Gb/s DVB-S2 receiver on a cluster of
server-class CPUs. The implementation is closed source, making fair comparisons difficult.

3 DESCRIPTION OF THE PROPOSED DOMAIN SPECIFIC EMBEDDED LANGUAGE

This section introduces a DSEL working on sets of symbols (aka frames). It implements a form of the dataflow model, single rate,
tailored to the relevant characteristics of digital communication chains with channel coding. The language defines elementary
and parallel components.

3.1 Elementary Components
Four elementary components are defined: sequence, module, task and socket. The task is the fundamental component. It can be
an encoder, a decoder or a modulator for instance and is a single-threaded code function. It is designated as filter in the standard
dataflow model. Though unlike a dataflow filter, a task can have an internal state and a private memory to store temporary data.
Additionally, a set of tasks can share a common internal/private memory. In that case, multiple tasks are grouped into a single
module. The main problem with internal memory is that tasks cannot be executed safely by several threads in parallel because
of data races. However, in many cases the expression of one task or a set of tasks can be simplified by allowing stateful tasks
and modules.

A task can consume and produce public data through the input and/or output sockets it exposes. Connecting the sockets of
different tasks is called binding. An input socket can only be bound to one output socket, while an output socket can be bound
to multiple input sockets. A task can only be executed once all its input sockets are bound.

Tasks can be grouped into a sequence. A sequence corresponds to a static schedule of tasks. To create a sequence, the designer
specifies the first tasks and the last tasks to execute. Then the connected tasks are analyzed and a sequence object is built. The
analysis is a depth-first traversal of the task graph and independent tasks are ordered according to the binding order of their
inputs. The principle is to add a task to the array of function pointers when all the input sockets are visited in the depth first
traversal of the tasks graph. After that, the output sockets of the current task are followed to reach new tasks. The order in which
the tasks have been traversed is memorized in the sequence. When the designer calls the exec method on a sequence, the tasks
are executed successively according to this statically scheduled order.

𝑡1 𝑡2 𝑡3 𝑡4

Sequence

Task
Module

Output socket
Input socket

𝑀1 𝑀2 𝑀3 𝑀4

FIGURE 1 Simple chain sequence.

𝑡1

𝑡2

𝑡3

𝑡4

𝑡5

𝑡6

Sequence

𝑀1

𝑀2

𝑀3

𝑀4

𝑀5

FIGURE 2 Sequence with multiple first and last tasks.

4 CASSAGNE ET AL

1 // 1) create the module objects
2 M1 m1(); M2 m2(); M3 m3(); M4 m4();
3
4 // 2) bind the tasks
5 m2["t2::in"] = m1["t1::out"];
6 m3["t3::in"] = m2["t2::out"];
7 m4["t4::in"] = m3["t3::out"];
8
9 // 3) create the sequence (stop

10 // automatically at t4 task)
11 Sequence seq(m1["t1"]);
12
13 // 4) execute the sequence (tasks
14 // graph is executed 100 times)
15 unsigned int exe_counter = 0;
16 seq.exec ([& exe_counter]() {
17 return ++ exe_counter >= 100;
18 });

LISTING 1: Source code of the simple chain sequence
presented in Fig. 1.

1 // 1) create the module objects
2 M1 m1(); /* ... */ M7 m7();
3
4 std::vector <TYPE > some_data(SIZE);
5
6 // 2) bind the tasks
7 m1["t1::in"] = some_data;
8 m3["t3::in"] = some_data;
9

10 m2["t2::in"] = m1["t1::out"];
11 m2["t4::in1"] = m2["t2::out"];
12 m2["t4::in2"] = m3["t3::out"];
13 m4["t5::in"] = m2["t4::out"];
14 m5["t6::in"] = m2["t4::out"];
15
16 m6["t7::in"] = m4["t5::out"];
17 m7["t8::in"] = m5["t6::out"];
18
19 // 3) create the sequence
20 Sequence seq(
21 { m1["t1"], m3["t3"] }, // first tasks
22 { m4["t5"], m5["t6"] }); // last tasks
23
24 // 4) execute the sequence (no stop)
25 seq.exec ([]() { return false; });

LISTING 2: Source code of the sequence with multiple first
and last tasks presented in Fig. 2.

Fig. 1 and Fig. 2 show two examples of task sequences. Fig. 1 is a simple chain of tasks. The designer only needs to specify
its first task (𝑡1); the sequence analysis then follows the binding until the last task (𝑡4). The corresponding source code is given
in Listing 1. Here we suppose that modules 𝑀1∶4 have been previously implemented. Lines 5-7 perform the socket bindings,
line 11 shows the creation of the sequence from the 𝑡1 task and line 16 is the sequence execution. In Fig. 2, bound tasks exist
before and after the current sequence, which also has two first tasks (𝑡1 and 𝑡3) and two last tasks (𝑡5 and 𝑡6). In this case, the
designer has to explicitly specify that 𝑡1 and 𝑡3 are first tasks. If 𝑡1 is sequentially defined before 𝑡3 then 𝑡1 will be executed first
and 𝑡3 after. The analysis starts from 𝑡1 and continue to traverse new tasks if possible. In this example, 𝑡2 can be executed directly
after 𝑡1, but 𝑡4 cannot because it depends on 𝑡3. So the analysis stops after 𝑡2 and then restarts from 𝑡3. Actually, the index 𝑖 of
the 𝑡𝑖 task represents the execution order. The 𝑡5 and 𝑡6 last tasks have to be explicitly specified because their output sockets
are bound: the analysis cannot guess the end of the sequence. The corresponding source code is given in Listing 2. Lines 20-22
show the creation of the sequence from two first tasks (𝑡1 and 𝑡3) to two last tasks (𝑡5 and 𝑡6). The first two tasks (𝑡1 and 𝑡3) have
one input socket each. As they are the first tasks, they will be executed in the sequence in all cases. In the example, their input
sockets are bound to a C++ vector (lines 4-8). They could also have been bound to other tasks or to a C array. At the end of the
bindings (line 16-17), 𝑡7 and 𝑡8 tasks are bound to 𝑡5 and 𝑡6 tasks, resp. However, 𝑡7 and 𝑡8 tasks are not executed in the sequence.

In targeted SDR applications, processing is continuously repeated on batches of frames as long as the system is on. A sequence
is thus executed in a loop. When the last sequence task is executed, the next task is the first one on the next frame. The designer
can control whether the sequence should restart by supplying a condition function to the sequence exec method. The boolean
returned by the function conditions whether the sequence is repeated. For instance, in Listing 1, the condition function is given as
a lambda function which increments a counter. When this counter reaches 100, the condition line 17 is verified and the sequence
ends. On the other hand, in Listing 2, the lambda function always returns false and the sequence is executed indefinitely. A task
of a sequence may also raise an abort exception upon some condition, to immediately stop the current sequence execution and
start the first task of the sequence with the next frame. In Fig. 1 if the 𝑡3 task raises the abort exception then the next executed
task is 𝑡1 instead of 𝑡4.

Some digital communication systems include schemes that require a loop or a conditional. A sequence of tasks is executed
one or more times depending on a condition task (or a control task). To build loops and conditionals, we introduce a switcher
module composed of two control flow tasks. The select task selects one among several exclusive input paths. The commute task
creates two or more exclusive output paths.

Fig. 3 illustrates a loop. To build a loop structure (a while loop in the example), the select and commute tasks (in the given
order) of a common switcher module are used (see Fig. 3a). By convention, in a switcher module, the selected path is initialized

CASSAGNE ET AL 5

𝑡1 𝑡sel

𝑡2

𝑡com

𝑡3𝑡4𝑡5

𝑡6

𝑀1 Switcher

𝑀2

𝑀3𝑀4𝑀5

𝑀6

(a) Decomposition of the loop in modules.

𝑡1 𝑡sel

𝑡2

𝑡com

𝑡3𝑡4𝑡5

𝑡6

𝑆𝑆1 𝑆𝑆sel

𝑆𝑆2

𝑆𝑆com

𝑆𝑆3

𝑆𝑆4

(b) Decomposition of the loop in sub-sequences.

𝑆𝑆1 𝑆𝑆sel 𝑆𝑆2 𝑆𝑆com

𝑆𝑆3

𝑆𝑆4

1
0

1

0

(c) Execution graph.
FIGURE 3 Example of a sequence with a while loop.

Algorithm 1 Pseudo code of the loop (corresponding to Fig. 3)
execute 𝑆𝑆1;
while execute 𝑆𝑆2 and not 𝑡com.in2:

execute 𝑆𝑆3;
execute 𝑆𝑆4;

to the highest possible path (here 1). So, at the first 𝑡sel execution, the 𝑡1 output will be selected. Then the 𝑡2 control task will
send 0 or 1 as a control socket to 𝑡com. Here the 𝑡2 loop control task is based on the 𝑡sel output socket. As a consequence, the path
selection (0 or 1) is dynamic and depends on the runtime data. It is also possible to model the for loop behavior by ignoring
the 𝑡2 input data and by adding an internal state to 𝑀2, namely the loop counter. If 𝑡com receives a 0, then the internal path of
the switcher will be 0. Then 𝑡3, 𝑡4 and 𝑡5 tasks will be executed and 𝑡sel will select the 𝑡5 output instead of the 𝑡1 output, and so
on. Fig. 3b shows how the tasks are regrouped into sub-sequences. It enables to build the execution graph illustrated in Fig. 3c.
The corresponding pseudo code of the presented loop is shown in Alg. 1. One can note that in the proposed DSEL there is no
limitation to include nested loops schemes. The loop pattern is common in iterative demodulation/decoding. This is why it is
required in a DSEL dedicated to SDR. As an exception rule in the graph construction, the select task is added to the graph when
its last input socket is visited (while all the other tasks require all input sockets to be visited).

Fig. 4 illustrates a switch structure. The same switcher module presented in while loop structures is necessary. The number
of output/input sockets in resp. 𝑡com/𝑡sel tasks is 3 instead of 2 in the while loop example. Also, the position of these tasks has
been swapped, in the current example 𝑡com is executed before 𝑡sel. 𝑡2 is a control task that depends on the output of 𝑡1. The 𝑡2 task
output can be 0, 1 or 2. The switch exclusive path is determined dynamically depending on the runtime data. Fig. 4a shows the
decomposition of the tasks in sub-sequences and Fig. 4b presents the resulting execution graph. Alg. 2 gives the corresponding
pseudo code. The switch pattern is useful in many SDR contexts. For instance, depending on the signal to noise ratio (SNR),
the receiver can select a different path adapted to the signal quality.

6 CASSAGNE ET AL

𝑡1

𝑡2 𝑡com

𝑡3 𝑡4 𝑡5

𝑡6 𝑡7

𝑡8

𝑡sel

𝑡9

𝑆𝑆1 𝑆𝑆com

𝑆𝑆2

𝑆𝑆3

𝑆𝑆4

𝑆𝑆sel

𝑆𝑆5

(a) Decomposition of the switch in sub-sequences.

𝑆𝑆1 𝑆𝑆com

𝑆𝑆2

𝑆𝑆3

𝑆𝑆4

𝑆𝑆sel 𝑆𝑆5

0

1

2

0

1

2

(b) Execution graph.
FIGURE 4 Example of a sequence with a switch.

Algorithm 2 Pseudo code of the switch (corresponding to Fig. 4)
execute 𝑆𝑆1;
switch 𝑡com.in2:

case 0: execute 𝑆𝑆2;
case 1: execute 𝑆𝑆3;
case 2: execute 𝑆𝑆4;

execute 𝑆𝑆5;

1 M1 m1(); /* ... */ M6 m6();
2 Switcher sw(2); // 2 exclusive paths
3
4 sw["tsel::in2"] = m1["t1::out"];
5 m2["t2::in"] = sw["tsel::out"];
6 sw["tcom::in1"] = sw["tsel::out"];
7 sw["tcom::in2"] = m2["t2::out"];
8 // sub -seq. 3, executed if tcom::in2 = 0
9 m3["t3::in"] = sw["tcom::out1"];

10 m4["t4::in"] = m3["t3::out"];
11 m5["t5::in"] = m4["t4::out"];
12 sw["tsel::in1"] = m5["t5::out"];
13 // sub -seq. 4, executed if tcom::in2 = 1
14 m6["t6::in"] = sw["tcom::out2"];
15
16 Sequence seq(m1["t1"]);
17 seq.exec ([]() { return false; });

LISTING 3: Source code of the sequence with a while loop
presented in Fig. 3.

1 M1 m1(); /* ... */ M9 m9();
2 Switcher sw(3); // 3 exclusive paths
3
4 sw["tcom::in1"] = m1["t1::out"];
5 m2["t2::in"] = m1["t1::out"];
6 sw["tcom::in2"] = m2["t2::out"];
7 // sub -seq. 2, executed if tcom::in2 = 0
8 m3["t3::in"] = sw["tcom::out1"];
9 m4["t4::in"] = m3["t3::out"];

10 m5["t5::in"] = m4["t4::out"];
11 // sub -seq. 3, executed if tcom::in2 = 1
12 m6["t6::in"] = sw["tcom::out1"];
13 m7["t7::in"] = m6["t6::out"];
14 // sub -seq. 4, executed if tcom::in2 = 2
15 m8["t8::in"] = sw["tcom::out1"];
16 // merge exclusive paths
17 sw["tsel::in1"] = m5["t5::out"];
18 sw["tsel::in2"] = m7["t7::out"];
19 sw["tsel::in3"] = m8["t8::out"];
20 // last task binding
21 m6["t6::in"] = sw["tsel::out"];
22
23 Sequence seq(m1["t1"]);
24 seq.exec ([]() { return false; });

LISTING 4: Source code of the sequence with a switch
presented in Fig. 4.

Listing 3 and Listing 4 present the source codes corresponding to the loop example in Fig. 3 and the switch example in Fig. 4,
respectively. One may note that the proposed DSEL does not introduce new C++ keywords, it is only based on tasks binding.
Thus, it can run on any C++ (version 11) compilers. In the previous listings, the Switcher module is a keyword of the DSEL
(but not a C++ keyword). When the sequence is created, the task graph is parsed and the sw object is processed as an exception.
The C++ runtime dynamic cast feature is used to recognized objects of Switcher class. Thus, the proposed DSEL can be seen as

CASSAGNE ET AL 7

an interpreted language. The code corresponding to the tasks graph is generated only once when the sequence object is created
(line 16 in Listing 3 and line 23 in Listing 4).

1 // create a stateless module
2 Stateless min32 ();
3 // set module name
4 min32.set_name("Minimum32");
5 // create a task for the ’min32 ’ module
6 Task &t = min32.create_tsk("find_min");
7 // create in/out sockets for the task
8 size_t si =
9 min32.create_sck_in <int >(t, "in", 32);

10 size_t so =
11 min32.create_sck_out <int >(t, "out", 1);
12 // define the code to execute when the
13 // ’find_min ’ task is called
14 min32.create_codelet(t,
15 [si , so](Module &m, Task &tsk) -> int {
16 // get in/out data pointers
17 const int* pi = tsk[si]. get_dataptr ();
18 int* po = tsk[so]. get_dataptr ();
19 // compute the minimum of 32 elements
20 *po = pi[0];
21 for (int i = 1; i < 32; i++)
22 if (*po > pi[i])
23 *po = pi[i];
24 // return ’SUCCESS ’ code
25 return status_t :: SUCCESS;
26 });

LISTING 5: Definition and implementation of a stateless
task that finds the minimum in a 32 elements array.

1 class Counter : public Module {
2 private: // inner data => stateful
3 int cnt;
4 public: // constructor
5 Counter () : Module (), cnt(0) {
6 this ->set_name("Counter");
7 Task &t = this ->create_tsk("get_val");
8 size_t so =
9 this ->create_sck_out <int >(t, "o", 1);

10 this ->create_codelet(t,
11 [so](Module &m, Task &tsk) -> int {
12 int* po = tsk[so]. get_dataptr ();
13 // cast ’m’ into ’Counter ’ class type
14 Counter &mc =
15 static_cast <Counter&>(m);
16 // write value in the output socket
17 *po = mc.get_value ();
18 // increment the counter
19 mc.increment ();
20 return status_t :: SUCCESS;
21 });
22 }
23 protected: // methods
24 int get_value () { return this ->cnt; }
25 void increment () { this ->cnt++; }
26 };

LISTING 6: Definition and implementation of a stateful task
that increments a counter.

Listing 5 shows how to define and implement a stateless task in the proposed DSEL. First, a Stateless class is instantiated (line 2),
then a task is declared (find_min line 6) with its input/output sockets (line 8-9 and 10-11). To create a socket, four parameters
are required: its datatype (given as a template parameter), its associated task, its name, and its size. Finally, a “codelet” function
need to be set (lines 14-26). This codelet will be called when the task will be triggered. In the Listing 5, the codelet is given as
a lambda function with two parameters: a module and a task. In the case of a stateless task, the module is never used. However,
the task is used to get data pointers associated to each socket (lines 17-18). Then the code to find the minimum element is
written (lines 20-23). In addition, a codelet returns a status integer that can be used by other tasks. The return status integer is
implemented as a particular output socket.

Listing 6 shows how to define and implement a stateful task in the proposed DSEL. The state of the task is represented by
a member of the Counter class, namely cnt (line 3). The Counter class inherits from the Module abstract class. The latest
defines and implements specific methods required to declare tasks and sockets. In the example, the get_val task and its output
socket are defined in the constructor of the Counter class (lines 7-21). In the case of a stateful task, the codelet needs the module
parameter to read/write the inner data. In Listing 6, this is achieved by calling the get_value and increment methods on the
mc module object (lines 16-19).

One may note that stateless and stateful task definitions are well suited to wrap existing C/C++ code. Indeed, the functions
have to be described with tasks (create_tsk function) and the corresponding input/output parameters have to be described
with sockets (create_sck_in and create_sck_out functions). Then, these functions need to be called in the codelet.

3.2 Performance Evaluation on Micro-benchmarks
In this section, an estimation of the DSEL overhead is measured from four micro-benchmarks: a simple chain (see Fig. 1)
denoted 𝑀𝐵1, a single for loop (Fig. 3) denoted 𝑀𝐵2, a system of two nested for loops denoted 𝑀𝐵3, and a system with a
switch (Fig. 4) denoted 𝑀𝐵4. These micro-benchmarks are representative of real-world SDR application patterns and they are
available online†. In 𝑀𝐵1, 𝑀𝐵2 and 𝑀𝐵3 three computational tasks are chained. In 𝑀𝐵2, the loop performs 10 iterations. In

†Micro-benchmarks source code: https://github.com/aff3ct/aff3ct-core/tree/development/tests)

https://github.com/aff3ct/aff3ct-core/tree/development/tests

8 CASSAGNE ET AL

𝑀𝐵3, the inner loop performs 5 iterations, the outer loop performs 2 iterations. In 𝑀𝐵4, three computational tasks are chained
in the first path, two in the second path and a single in the last path. Moreover, an iterate task is configured to perform a cyclic
path selection (0,1,2,0,1,2,...). In each computational task, an active wait of the same amount of time is performed. Four types
of tasks are used: computational tasks , select and commute switcher module tasks sel and com resp., and iterate tasks  to
determine paths in loops and switches ( = control task).

Evaluations ran on a single core of an Intel® Core™ i5-8250U @ 1.60 GHz. The Turbo Boost mode has been disabled. This
processor has a 15-Watt TDP that matches embedded system constraints. The GNU C++ compiler version 9.3 (on Linux Ubuntu
20.04 operating system) has been used with the following flags: -O3 -march=native.

Though duration of a  task is controlled by the programmer, we measured a constant 135 ns overhead due to the DSEL and
to the system call behind the std::chrono::steady_clock::now() function. We measured sel tasks around 60 ns, com
tasks around 80 ns, and  tasks around 70 ns. Later on, sel, com and  tasks are reported as overhead. both sel and com tasks
are copy-less, thus for a given configuration, their execution time is constant.

TABLE 1 Execution of 1 125 000  tasks of 4 𝜇𝑠 each. Theoretical execution time is 4500 ms for each micro-benchmark.
Overhead

 tasks sel tasks com tasks  tasks Other
Label Seq. exec. Run time (ms) Exec. Time (ms) Exec. Time (ms) Exec. Time (ms) Exec. Time (ms) Time (ms)
𝑀𝐵1 375000 4656.45 1125000 151.86 – – – – – – 4.59
𝑀𝐵2 37500 4744.08 1125000 151.86 412500 24.75 412500 33.00 412500 28.88 5.59
𝑀𝐵3 37500 4777.03 1125000 151.86 562500 33.75 562500 45.00 562500 39.38 7.04
𝑀𝐵4 562500 4784.88 1125000 151.86 562500 33.75 562500 45.00 562500 39.38 14.89

Tab. 1 reports the execution time of 1 125 000  tasks for each case. Column Seq. exec. gives the number of sequence
executions required to run 1 125 000  tasks. Theoretical time is computed directly from the number of  tasks and the duration
of the active waiting in each task: theoretical = 1125000 × 4 𝜇s = 4500 ms. Run time column reports the measured execution
time. Remaining columns report task counts and overheads per task types. Last column Other reports the residual time that does
not come from the tasks execution. In each benchmark, a stop condition is evaluated at the end of the sequence. The condition
checks that the current number of executions is lower than the one given in the Seq. exec. column. This comes with an extra cost
because of an additional function call for each sequence execution. This is also why the execution time of 𝑀𝐵4 is higher than
𝑀𝐵3, there is significantly more sequence executions in 𝑀𝐵4.

0.5 1.0 2.0 4.0 8.0 16.0
0

5

10

15

20

25

30

35

Time per C task (𝜇𝑠)

Gl
ob
al
ov
er
he
ad

(%
)

Simple chain (𝑀𝐵1)
For loop (𝑀𝐵2)

Nested for loops (𝑀𝐵3)
Switch (𝑀𝐵4)

FIGURE 5 Global overhead of the proposed DSEL on 4 micro-benchmarks.

CASSAGNE ET AL 9

Fig. 5 shows the overhead depending on the granularity of the  tasks. It results that from 4 𝜇s tasks, the proposed DSEL has
an acceptable overhead. For tasks longer than 4 𝜇s the overhead is negligible. This shows that the proposed DSEL matches the
low latency requirements of SDR systems.

3.3 Parallel Components

𝑡11 𝑡12 𝑡13 𝑡14

𝑡21 𝑡22 𝑡23 𝑡24𝑡1 𝑡2 𝑡3 𝑡4

𝑡𝑡1 𝑡𝑡2 𝑡𝑡3 𝑡𝑡4

thread

𝑀1 𝑀2 𝑀3

𝑀1
1 𝑀1

2 𝑀1
3

𝑀2
1 𝑀2

2 𝑀2
3

𝑀 𝑡
1 𝑀 𝑡

2 𝑀 𝑡
3

Sequence

Sequence

FIGURE 6 Sequence duplication for multi-threaded execution. The modules are duplicated with their tasks and data.

A sequence can be duplicated, to let several threads execute it in parallel, see Fig. 6. The number 𝑡 of duplicates is a parameter
of its constructor. There is no synchronization between sequence duplicates. Each threaded sequence can be executed on one
dedicated core and the public data transfers remain on this core for the data reuse in the caches. By default, modules have no
duplication mechanism (see next section).

In some particular cases such as in the signal synchronization processing, the tasks can have a dependency on themselves. It is
then impossible to duplicate the sequence because of the sequential nature of the tasks. To overcome this issue, the well-known
pipelining strategy can be applied to increase the sequence throughput up to the slowest task throughput. The proposed DSEL
comes with a specific pipeline component to this purpose. The pipeline takes multiple sequences as input. Each sequence of the
pipeline is called a stage, run on one thread. For instance, a 4-stage pipeline creates 4 threads. A pipeline stage can be combined
with the sequence duplication strategy. It means that there are nested threads in the current stage thread. Pipelining comes with
an extra synchronization cost between the stage threads, implementation details are discussed in the next section.

4 AUTOMATED PARALLELIZATION TECHNIQUES

4.1 Sequence Duplication
In a fully dataflow-compliant model, there is no need to duplicate the sequence because a stateless task is always thread-safe.
In the proposed DSEL with stateful tasks, a clone method is defined for each module to deal with internal state and private
memory (stored in the module). The clone method is polymorphic and defined in the Module abstract class. It relies on the
implicit copy constructors and a deep copy protected method (overridable). It is the responsibility of the ModuleImpl developer
to correctly override the deep copy method and to make sure the duplication is valid for this module. The deep copy method deals
with pointer and reference members. If the pointer/reference members are read-only (const), then the implicit copy constructor
copies the memory addresses automatically. When the current ModuleImpl class owns one ore more writable references, the
module cannot be cloned and its tasks are sequential. However, for a writable pointer member, the developer can explicitly
allocate a new pointer in the deep copy method.

10 CASSAGNE ET AL

4.2 Pipeline

𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6

Stage 1 Stage 2 Stage 3

Pipeline

(a) Description of a pipeline: tasks creation, tasks binding and
sequences/stages definition (with the corresponding number of
threads).

𝑡1
push
1 → 𝑛

pull
1 → 𝑛

𝑡2 𝑡3 𝑡4
push
𝑛 → 1

pull′

1 → 𝑛
𝑡′2 𝑡′3 𝑡′4

push′

𝑛 → 1

pull′′

1 → 𝑛
𝑡′′2 𝑡′′3 𝑡′′4

push′′

𝑛 → 1

pull′′′

1 → 𝑛
𝑡′′′2 𝑡′′′3 𝑡′′′4

push′′′

𝑛 → 1

pull
𝑛 → 1

𝑡5 𝑡6

Stage 1

Stage 2

Stage 3

1 to 𝑛 adaptor 𝑛 to 1 adaptor

Pipeline

Core 1 Core 2 Core 3 Core 4 Core 5 Core 6 Core 7 Core 8

Stage 1 Stage 2 Stage 3

Pipeline threads pinning on a multicore CPU

(b) Automatic parallelization of a pipeline description: sequence duplications, 1 to 𝑛 and 𝑛 to 1
adaptors creation and binding.

FIGURE 7 Example of a pipeline description and the associate transformation with adaptors.

1 // 1) creation of the module objects
2 M1 m1(); M2 m2(); M3 m3(); M4 m4(); M5 m5(); M6 m6();
3 // 2) binding of the tasks
4 m2["t2::in"]=m1["t1::out"]; m3["t3::in"]=m2["t2::out"]; m4["t4::in"]=m3["t3::out"];
5 m5["t5::in"]=m4["t4::out"]; m6["t6::in"]=m5["t5::out"];
6 // 3) creation of the pipeline (= sequences and pipeline analyses)
7 runtime :: Pipeline pip(
8 m1["t1"], // first task of the graph (for valisation purpose)
9 { { { m1["t1"] }, { m1["t1"] } }, // first & last tasks of stage 1

10 { { m2["t2"] }, { m4["t4"] } }, // first & last tasks of stage 2
11 { { m5["t5"] }, { m6["t6"] } }, }, // first & last tasks of stage 3
12 { 1, 4, 1 }, // number of threads per stage
13 { { 1 }, // pin thread ’1’ of stage 1 to core ’1’
14 { 3, 4, 5, 6 }, // pin threads ’1-4’ of stage 2 to cores ’3-6’
15 { 8 }, }); // pin thread ’1’ of stage 3 to core ’8’
16 // 4) execution of the pipeline , it is indefinitely executed in loop
17 pip.exec ([]() { return false; });

LISTING 7: C++ DSEL source code of the pipeline described in Fig. 7.

CASSAGNE ET AL 11

In this section, the pipeline implementation is illustrated through a simple example. Fig. 7 shows the difference between a
pipeline description (see Fig. 7a) and its actual instantiation (see Fig. 7b). In Fig. 7 we suppose that the 𝑡1, 𝑡5 and 𝑡6 tasks cannot
be duplicated (plain boxes). The designer knows that the execution time of the 𝑡1 task is higher than the cumulated execution
time of tasks 𝑡5 and 𝑡6. We assume that the cumulated execution time of 𝑡2, 𝑡3 and 𝑡4 is approximatively four times higher than
𝑡1. This knowledge motivates the splitting of the stages 1, 2 and 3. There is no need to split the 𝑡5 and 𝑡6 tasks in two stages
because the overall throughput is limited by the slowest stage (𝑡1 here). Stage 2 is duplicated four times to increase its throughput
by four as we know that its latency is approximatively four times that of Stage 1. In general, a preliminary profiling phase of
the sequential code is required to guide the pipeline strategy. In the proposed DSEL, each task can be automatically profiled:
its duration is computed with the C++11 chrono standard library. For a given task, the API returns the average latency, the
minimum latency and the maximum latency. In this work, the following strategy has been applied: 1) run a sequence of tasks
100000 times (without duplication parallelism) and 2) print the latency of the tasks. Then, knowing the sequential duration of
each task, it is up to the system designer to find an efficient pipeline stages decomposition. Listing 7 presents the C++ DSEL
source code corresponding to the pipeline description in Fig. 7a. Each task 𝑡𝑖 is contained (as a method) in the 𝑀𝑖 module (or
class). The four main steps are: 1) Creation of the modules; 2) Binding of the tasks; 3) Creation of the pipeline strategy; 4)
Pipeline execution.

Fig. 7b presents the internal structure of the pipeline. As we can see, new tasks have been automatically added: 𝑝𝑢𝑠ℎ1→𝑛,
𝑝𝑢𝑙𝑙1→𝑛 shared by a 1 to n adaptor module and 𝑝𝑢𝑠ℎ𝑛→1, 𝑝𝑢𝑙𝑙𝑛→1 shared by a n to 1 adaptor module. The binding has been
modified to insert the tasks of the adaptors. In the initial pipeline description, 𝑡1 is bound to 𝑡2. In a parallel pipelined execution
this is not possible anymore because many threads are running concurrently: One for stage 1, four for stage 2 and one for stage 3 in
the example. To this purpose, the adaptors implement a producer-consumer scheme. The yellow diamonds represent the buffers
that are required. The 𝑝𝑢𝑠ℎ1→𝑛 and 𝑝𝑢𝑙𝑙𝑛→1 tasks can only be executed by a single thread while the 𝑝𝑢𝑙𝑙1→𝑛 and 𝑝𝑢𝑠ℎ𝑛→1 tasks
are thread-safe. The 𝑝𝑢𝑠ℎ1→𝑛 task copies its input socket in one buffer each time it is called. There is one buffer per duplicated
sequence. To guarantee that the order of the input frames is preserved, a round-robin scheduling has been adopted. On the other
side, the 𝑝𝑢𝑙𝑙𝑛→1 task is copying the data from the buffers to its output socket, with the same round-robin scheduling.

The size of the synchronization buffers in the adaptors are defined on creation. The default size is one. During the copy of
the input socket data in one of the buffers, threads cannot access the data until the copy is finished. The synchronization is
automatically managed by the framework. If the buffer is full, the producer (𝑝𝑢𝑠ℎ1→𝑛 and 𝑝𝑢𝑠ℎ𝑛→1 tasks) has to wait. The same
applies for the consumer (𝑝𝑢𝑙𝑙1→𝑛 and 𝑝𝑢𝑙𝑙𝑛→1 tasks) if the buffer is empty. We implemented both active and passive waiting.

Copies from and to buffers are expensive. These copies are removed by dynamically re-binding the tasks just before and just
after the push and pull tasks, and casting the tasks into copyless variants. It is also necessary to bypass the regular execution
in the 𝑝𝑢𝑠ℎ1→𝑛, 𝑝𝑢𝑙𝑙1→𝑛, 𝑝𝑢𝑠ℎ𝑛→1 and 𝑝𝑢𝑙𝑙𝑛→1 tasks. This replaces the source code of the data buffer copy by a simple pointer
copy. The pointers are exchanged cyclically.

In Fig. 7b, the pipeline threads are pinned to specific CPU cores. This is the direct consequence of the lines 13-15 in Listing 7.
The hwloc library59 has been used and integrated in our DSEL to pin the software threads to processing units (hardware threads).
In the given example, we assume that the CPU cores can only execute one hardware thread (SMT off). The threads pinning is
given by the designer. This can improve the multi-threading performance on NUMA architectures.

Fig. 7 is an example of a simple chain of tasks. More complicated task graphs can have more than two tasks to synchronize
between two pipeline stages. The adaptor implementation can manage multiple socket synchronizations. The key idea is to deal
with a 2-dimensional array of buffers. Another difficult case is when a task 𝑡1 is in stage 1 and possesses an output socket bound
to an other task 𝑡𝑥 which is located in the stage 4. To work, the pipeline adaptors between the stages 1 and 2 and the stages 2
and 3 automatically synchronize the data of the 𝑡1 output socket.

5 APPLICATION ON THE DVB-S2 STANDARD

In this section, we present a real use case of our DSEL. The second generation of Digital Video Broadcasting standard for
Satellite (DVB-S2)60 is a flexible standard designed for broadcast applications. DVB-S2 is typically used for the digital television
(HDTV with H.264 source coding). The full DVB-S2 transmitter and receiver are implemented in a SDR-compliant system. Two
Universal Software Radio Peripherals (USRPs) N320‡ have been used for the analog signal transmission and reception where

‡USRP N320: https://www.ettus.com/all-products/usrp-n320/.

https://www.ettus.com/all-products/usrp-n320/

12 CASSAGNE ET AL

all the digital processing of the system have been implemented. The purpose of this section is not to detail all the implemented
tasks extensively, but rather to expose the system as a whole. Some specific focuses are given to describe the main encountered
problems and solutions.

5.1 Transmitter Software Implementation

TABLE 2 Selected DVB-S2 configurations (MODCOD).

Config. Modulation Rate 𝑅 𝐾BCH 𝐾LDPC 𝑁LDPC 𝑁PLH Interleaver
MODCOD 1 QPSK 3/5 9552 9720 16200 16740 no
MODCOD 2 QPSK 8/9 14232 14400 16200 16740 no
MODCOD 3 8-PSK 8/9 14232 14400 16200 16740 column/row

The DVB-S2 coding scheme rests upon the serial concatenation of a Bose, Ray-Chaudhuri & Hocquenghem (BCH) and a
LDPC code. The selected modulation is a Phase-Shift Keying (PSK). The standard defines 32 MODulation and CODing schemes
or MODCODs. This work focuses on the 3 MODCODs given in Tab. 2. Depending on the MODCOD, the PSK modulation and
the LDPC code rate 𝑅 vary. In MODCOD 1 and 2 there is no interleaver, MODCOD 3 uses a column/row interleaver. 𝐾BCH or 𝐾
is the number of information bits and the input size of the BCH encoder. 𝑁BCH or 𝐾LDPC is the output size of the BCH encoder
and the input size of the LDPC encoder. For each selected MODCOD, 𝑁LDPC = 16200. With the pay load header (PLH) and
pilots bits, the frame size (𝑁PLH or 𝑁) contains a total of 16740 bits.

generate
(tTx

1)
scramble

(tTx
2)

encode
(tTx

3)
encode
(tTx

4)
interleave

(tTx
5)

modulate
(tTx

6)
insert
(tTx

7)
scramble

(tTx
8)

filter
(tTx

9)
send
(tTx

10)

Source Binary File Scrambler Binary Encoder BCH Encoder LDPC Interleaver

Modem PSK Framer PLH Scrambler Symbol Filter Shaping Radio

USRP

Stage 1

Stage 2 Stage 3

FIGURE 8 DVB-S2 transmitter software implementation.

Fig. 8 shows the DVB-S2 transmitter decomposition in tasks and pipeline stages. Intrinsically sequential tasks are represented
by plain boxes. The DVB-S2 transmitter has been implemented in software with the proposed DSEL. Out of conciseness, it is
not detailed in this paper as it is much more simpler than the receiver part of the system in terms of computational requirement
and complexity of the task graph.

5.2 Receiver Software Implementation
Fig. 9 presents the task decomposition of the DVB-S2 receiver software implementation with the five distinct phases. The plain
tasks are intrinsically sequential and cannot be duplicated. The first phase is called the waiting phase (see Fig. 9a). It consists in
waiting until a transmitter starts to transmit. The Synchronizer Frame task (𝑡Rx

8) possesses a frame detection criterion. When a
signal is detected, the learning phase 1 (see Fig. 9a) is executed during 150 frames. After that the learning phase 2 (see Fig. 9a)
is also executed during 150 frames. After the learning phase 1 and 2, the tasks have to be re-bound for the learning phase 3
(see Fig. 9b). This last learning phase is applied over 200 frames. After the 500 frames of these successive learning phases, the
final transmission phase is established (see Fig. 9b).

In a real life communication systems, the internal clocks of the radios can drift slightly. A specific processing has to be added
in order to be resilient. This is achieved by the Synchronizer Timing tasks (𝑡Rx

5 and 𝑡Rx
6). Similarly, the radio transmitter frequency

CASSAGNE ET AL 13

receive
(𝑡Rx1)

imultiply
(𝑡Rx2)

synchronize (𝑡Rx3,4,5)

filtersynchronize synchronize
extract
(𝑡Rx6)

imultiply
(𝑡Rx7)

synchronize
(𝑡Rx8)

USRP

Radio Multiplier AGC

Synchronizer
Pilot Feedback

Synchronizer
Freq. Coarse

Filter
Matched

Synchronizer Timing
(Gardner) Multiplier AGC

Synchronizer
Frame

(a) Waiting phase and learning phase 1 & 2.

receive
(𝑡Rx1)

imultiply
(𝑡Rx2)

synchronize
(𝑡Rx3)

filter
(𝑡Rx4)

synchronize
(𝑡Rx5)

extract
(𝑡Rx6)

imultiply
(𝑡Rx7)

synchronize
(𝑡Rx8)

descramble
(𝑡Rx9)

synchronize
(𝑡Rx10)

synchronize
(𝑡Rx11)

remove
(𝑡Rx12)

estimate
(𝑡Rx13)

demodulate
(𝑡Rx14)

deinterleave
(𝑡Rx15)

decode SIHO
(𝑡Rx16)

decode HIHO
(𝑡Rx17)

descramble
(𝑡Rx18)

send
(𝑡Rx19)

USRP

Stage 1 Stage 2

Stage 3 Stage 4

Stage 5 Stage 6

Stage 7 Stage 8

Radio Multiplier AGC
Synchronizer
Freq. Coarse

Filter
Matched

Synchronizer Timing
(Gardner) Multiplier AGC

Synchronizer
Frame

Scrambler Symbol
Synchronizer
Freq. Fine L&R

Synchronizer
Freq. Fine P/F Framer PLH Noise Estimator

Modem PSK Interleaver Decoder LDPC Decoder BCH Scrambler Binary Sink Binary File

End of the learning phase 3

(b) Learning phase 3 & transmission phase.
FIGURE 9 DVB-S2 receiver software implementation.

does not perfectly match the receiver frequency, so the Synchronizer Frequency tasks (𝑡Rx
3 , 𝑡Rx

10 and 𝑡Rx
11) recalibrate the signal to

recover the transmitted symbols. Finally LDPC decoder is a block coding scheme that requires to know precisely the first and last
bits of the codeword. The Synchronizer Frame task (𝑡Rx

8) uses the PLH and pilots bits inserted by the transmitter to recover the
first and last symbols. The Synchronizer Timing module is composed by two separated tasks (synchronize or 𝑡Rx

5 and extract or
𝑡Rx
6). This behavior is different from the other Synchronizer modules. The synchronize task (𝑡Rx

5 or 𝑡Rx
3,4,5) has two output sockets,

one for the regular data and another one for a mask. The regular data and the mask are then used by the extract task (𝑡Rx
5) to

screen which data is selected for the next task. The Synchronizer Timing tasks (𝑡Rx
5 and 𝑡Rx

6) have an high latency compared to
the others tasks, thus splitting the treatment in two tasks is a way to increase the throughput of the pipeline.

Besides in some cases the task does not have enough samples to produce a frame. In such cases, the extract task raises an
abort exception (= early exit). The exception is caught and the sequence restarts from the first task (𝑡Rx

1).
During the waiting and learning phases 1 and 2, the Synchronizer Freq. Coarse, the Filter Matched and a part of the Synchro-

nizer Timing have to work symbol by symbol. They have been grouped in the Synchronizer Pilot Feedback task (𝑡Rx
3,4,5). 𝑡Rx

3,4,5 also

14 CASSAGNE ET AL

requires a feedback input from the Synchronizer Frame task (𝑡Rx
8). This behavior is no longer necessary in subsequent phases,

so the 𝑡Rx
3,4,5 task has been split in 𝑡Rx

3 , 𝑡Rx
4 and 𝑡Rx

5 . Consequently, the feedback from the 𝑡Rx
8 second output socket is left unbound.

1 2 3 4 5 6 7 8 9
10−7

10−6

10−5

10−4

10−3

10−2

10−1

𝐸𝑏/𝑁0 (dB)

Bi
tE

rr
or

Ra
te

(B
ER

)

1 2 3 4 5 6 7 8 9

10−4

10−3

10−2

10−1

100

𝐸𝑏/𝑁0 (dB)

Fr
am

e
Er
ro
rR

at
e
(F
ER

)

MODCOD 1 2 3
AWGN
AWGN+

Real

FIGURE 10 DVB-S2 BER & FER decoding performance (LDPC BP horizontal-layered, min-sum, 10 iterations).

Fig. 10 shows the frame error rate (FER) decoding performance results of the 3 selected MODCODs. The shapes represent
the channel conditions: Squares stand for a standard simulated additive white Gaussian noise (AWGN) channel, triangles are a
simulated AWGN channel in which frequency shift, phase shift and symbol delay have been taken into account, circles are the
real conditions measured performances with the USRPs. There is a 0.2 dB inaccuracy in the noise estimated by the 𝑡Rx

13 task. It is
symbolized by the extra horizontal bars over the circles. The MODCOD 1 is represented by dashed lines, MODCOD 2 by dotted
lines and MODCOD 3 by solid lines. For each MODCOD, the LDPC decoder is based on the belief propagation algorithm
with horizontal layered scheduling (10 iterations) and with the min-sum node update rules. Each DVB-S2 configuration has a
well-separated SNR predilection zone.

5.3 Open Source Integration with AFF3CT Toolbox
The proposed software implementation of the DVB-S2 digital transceiver is open source§. It is described with the help of
the AFF3CT toolbox61. AFF3CT is a library dedicated to the digital communication systems and more specifically to the
channel decoding algorithms. In this paper, we extend AFF3CT with the presented DSEL to the SDR use case while keeping
the interoperability, reproducibility and maintainability philosophy initiated in the toolbox. Some components are directly used
from the AFF3CT library (tasks 𝑡Tx

{1,3,4,5,6} in Fig. 8 and tasks 𝑡Rx
{14,15,16,17,19} in Fig. 9b) and are optimized for efficiency. For

instance, knowing that the LDPC decoding is one of the most compute intensive task, an existing high performance SIMD
implementation is used, based on the portable MIPP library62. Additional AFF3CT tasks have been implemented specifically
for this project. These new tasks mainly address two areas: signal synchronizations and filters, and real-time communications.
One may note that the proposed DSEL is also open source, it is integrated to the AFF3CT library as a dependency. Moreover,
it can be used standalone: it defines sequences and parallelism between tasks that can be defined by another library. The DSEL
is packaged in the repository named “AFF3CT-core”¶.

5.4 Evaluation
This section evaluates the receiver part of the system. The transmitter part as it is not the most compute intensive part and high
throughputs are much more easier to reach. All the presented results have been obtained on two high-end NUMA machines. One

§DVB-S2 digital transceiver repository: https://github.com/aff3ct/dvbs2.
¶AFF3CT-core DSEL repository: https://github.com/aff3ct/aff3ct-core.

https://github.com/aff3ct/dvbs2
https://github.com/aff3ct/aff3ct-core

CASSAGNE ET AL 15

TABLE 3 Tasks sequential throughputs and latencies of the DVB-S2 receiver (transmission phase, 16288 frames, inter-frame
level = 16, MODCOD 2, error-free SNR zone, x86 target) Sequential tasks are represented by blue rows. The slowest seq.
stage is in red while the slowest of all is in orange .

Stages and Tasks Throughput Latency Time
(Mb/s) (𝜇s) (%)

Radio - receive (𝑡Rx
1) 431.83 527.32 0.94

Stage 1 431.83 527.32 0.94
Multiplier AGC - imultiply (𝑡Rx

2) 367.45 619.71 1.11
Synch. Freq. Coarse - synchronize (𝑡Rx

3) 841.32 270.66 0.48
Filter Matched - filter (𝑡Rx

4) 116.41 1956.08 3.49
Stage 2 80.00 2846.45 5.08

Synch. Timing - synchronize (𝑡Rx
5) 55.42 4108.52 7.34

Stage 3 55.42 4108.52 7.34
Synch. Timing - extract (𝑡Rx

6) 281.83 807.97 1.44
Multiplier AGC - imultiply (𝑡Rx

7) 685.51 332.18 0.59
Synch. Frame - synchronize (𝑡Rx

8) 159.41 1428.51 2.55
Stage 4 88.65 2568.66 4.58

Scrambler Symbol - descramble (𝑡Rx
9) 1682.89 135.31 0.24

Synch. Freq. Fine L&R - synchronize (𝑡Rx
10) 1246.85 182.63 0.33

Synch. Freq. Fine P/F - synchronize (𝑡Rx
11) 112.56 2022.98 3.61

Stage 5 97.27 2340.92 4.18
Framer PLH - remove (𝑡Rx

12) 1008.60 225.77 0.40
Noise Estimator - estimate (𝑡Rx

13) 550.06 413.98 0.74
Stage 6 355.94 639.75 1.14

Modem PSK - demodulate (𝑡Rx
14) 40.47 5626.34 10.05

Interleaver - deinterleave (𝑡Rx
15) 1347.25 169.02 0.30

Decoder LDPC - decode SIHO (𝑡Rx
16) 164.21 1386.74 2.48

Decoder BCH - decode HIHO (𝑡Rx
17) 6.92 32905.37 58.79

Scrambler Binary - descramble (𝑡Rx
18) 91.11 2499.41 4.47

Stage 7 5.35 42586.88 76.09
Sink Binary File - send (𝑡Rx

19) 1838.31 123.87 0.22
Stage 8 1838.31 123.87 0.22

Total 4.09 55742.37 99.57

is composed by two Intel® Xeon™ Platinum 2.70 Ghz 8168 CPUs, 24 cores 128 GB RAM (denoted as x86). Turbo Boost mode
has been disabled for the reproducibility of the experiment results. Each core is powered by AVX-512F SIMD ISA. The second
architecture is composed by two Cavium ThunderX2® 2.00 GHz CN9975 v2.1 CPUs, 28 cores, 256 GB of RAM (denoted as
ARM). Each core is powered by NEON SIMD ISA. In the proposed implementation, the data are represented by 32-bit floating-
point numbers. Data parallelism level is thus 16 for AVX-512F ISA and 4 for NEON ISA. For both targets, the GNU C++
compiler version 9.3 has been used with the following flags: -O3 -march=native.

An high performance LDPC decoder implementation with the inter-frame SIMD technique is used (the early termination
criterion has been switched on). This choice has the effect of computing sixteen/four frames at once in each task of the receiver
(depending on the x86 or ARM target). It negatively affects the overall latency of the system (by a factor of sixteen/four). But
it is not important in the video streaming targeted application. The Decoder LDPC task (𝑡Rx

16) is the only one in the receiver to
take advantage of the inter-frame SIMD technique. The other tasks simply process sixteen/four frames sequentially.

Tab. 3 presents the tasks throughputs and latencies measured for a sequential execution of the MODCOD 2 in the transmission
phase (x86 target). The tasks have been regrouped per stage in order to introduce the future decomposition when the parallelism
is applied. The throughputs have been normalized to the number of information bits (𝐾 = 14232). This enables the comparison
among all the reported throughputs.

The stage 7 takes 76% of the time with especially the Decoder BCH task (𝑡Rx
17) that takes 59% of the time. 𝑡Rx

17 should not take
so many time compared to the other tasks. However, we chose to not spend too much time in optimizing the BCH decoding

16 CASSAGNE ET AL

process as the stage 7 throughput can easily be increased with the sequence duplication technique. The second slower stage in
the stage 3. This stage is the main hotspot of the implemented receiver. The stage 3 contains only one synchronization task (𝑡Rx

5).
In the current implementation this task cannot be duplicated (or parallelized) because there is an internal data dependency with
the previous frame (state-full task). The stage 3 is the real limiting factor of the receiver. If a machine with an infinite number
of cores is considered, the maximum reachable information throughput is 55.42 Mb/s.

We did not try to parallelize the waiting and the learning phases. We measured that the whole learning phase (1, 2 and 3)
takes about one second. During the learning phase, the receiver is not fast enough to process the received samples in real time.
To fix this problem, the samples are buffered in the Radio - receive task (𝑡Rx

1). Once the learning phase is done, the transmission
phase is parallelized. Thus, the receiver becomes fast enough to absorb the radio buffer and samples in real time. During the
transmission phase, the receiver is split into 8 stages as presented in Fig. 9b. This decomposition has been motivated by the
nature of the tasks (sequential or parallel) and by the sequential measured throughput. The number of stages has been minimized
in order to limit the pipeline overhead. Consequently, sequential and parallel tasks have been regrouped in common stages. The
slowest sequential task (𝑡Rx

5) has been isolated in the dedicated stage 3. The other sequential stages have been formed to always
have an higher throughput than the stage 3. The sequential throughput of the stage 7 (5.35 Mb/s) is lower than the throughput
of the stage 3 (55.42 Mb/s). This is why the sequence duplication has been applied. The stage 7 has been parallelized over 28
threads. This looks overkill but the machine was dedicated to the DVB-S2 receiver and the throughput of the Decoder LDPC
task (𝑡Rx

16) varies depending on the SNR. An early termination criterion was enabled. When the signal quality is very good, the
Decoder LDPC task runs fast and the threads can spend a lot of time in waiting. With the passive waiting version of the adaptor
push and pull tasks, the CPU dynamically adapt the cores charge and energy can be saved. In Tab. 3, the presented Decoder
LDPC task throughputs and latencies are optimistic because we are in a SNR error-free zone. All the threads are pinned to a
single core with the hwloc library. The 28 threads of the stage 7 are pinned in round-robin between the CPU sockets. By this
way, the memory bandwidth is maximized thanks to the two NUMA memory banks. The strategy of the stage 7 parallelism
is to maximize the throughput. During the duplication process (modules clones), the thread pinning is known and the memory
is copied into the right memory bank (first touch policy). All the other pipeline stages (1, 2, 3, 4, 5, 6 and 8) are running on
a single thread. Because of the synchronizations between the pipeline stages (adaptor pushes and pulls), the threads have been
pinned on the same socket. The idea is to minimize the pipeline stage latencies in maximizing the CPU cache performance. It
avoids the extra-cost of moving the cache data between the sockets. On the ARM target, the pipeline has been decomposed in
12 sequential stages and 1 parallel stage of 40 threads (stage 7).

The receiver program needs around 1.3 GB of the global memory during a sequential execution while it needs around 30 GB
in parallel. The memory usage increases because of the sequence duplications in the stage 7. The duplication operation takes
about 20 seconds. It is made at the very beginning of the program (before the waiting phase). It is worth mentioning that the
amount of memory was not a critical resource. So, we did not try to reduce its overall occupancy.

1 2 3 4 5 6 7 8
0%

20%

40%

60%

80%

100%

Pipeline stage

Pe
rc
en
ta
ge

of
tim

e
in

th
e
st
ag
e

Std. tasks Push wait Push copy Pull wait Pull copy

(a) Data copy (stage throughput is 40 Mb/s).

1 2 3 4 5 6 7 8
0%

20%

40%

60%

80%

100%

Pipeline stage

Pe
rc
en
ta
ge

of
tim

e
in

th
e
st
ag
e

Standard tasks Push wait Pull wait

(b) Copy-less (stage throughput is 55 Mb/s).
FIGURE 11 Comparison of the two pipeline implementations in the receiver (x86 target, MODCOD 2).

CASSAGNE ET AL 17

Fig. 11 presents the repartition of the time in the pipeline stages on the x86 target (MODCOD 2). The receiver is running
over 35 threads. Fig. 11a shows the pipeline implementation with data copies. Fig. 11b shows the pipeline implementation with
pointer copies (copy-less). Push wait and Pull wait are the percentage of time spent in passive or active waiting. Push copy and
Pull copy are the percentage of time spent in copying the data to and from the adaptors buffers. Standard tasks is the cumulative
percentage of time spent by the tasks presented in Fig. 9b. In both implementations the pipeline stage throughput is constraint
by the slowest one. In Fig. 11a the measured throughput per stage is 40 Mb/s whereas in Fig. 11b the measured throughput is
55 Mb/s. The copy-less implementation throughput is ≈ 27% higher than the data copy implementation. Fig. 11a shows that the
copy overhead is non-negligible. A 27% slowdown is directly due to these copies in the stage 3. It largely justifies the copy-less
implementation. In Fig. 11b and in the stage 3, 100% of time is taken by the 𝑡Rx

5 task. This is also confirmed by the measured
throughput (55 Mb/s) which is very close the sequential throughput (55.42 Mb/s) reported in Tab. 3.

TABLE 4 Throughputs depending on the selected DVB-S2 configuration.

Throughput (Mb/s)
Sequential Parallel Latency (ms)

Configuration x86 ARM x86 ARM x86 ARM
MODCOD 1 3.4 1.0 37 19 – 37
MODCOD 2 4.1 1.4 55 28 56 41
MODCOD 3 4.0 1.1 80 42 – 51

Tab. 4 summarizes sequential and parallel throughputs for the 3 MODCODs presented in Tab. 2. To measure the maximum
achievable throughput, the USRP modules are removed and samples are read from a binary file. This is because the pipeline
stages are naturally adapting to the slowest one. It means that in a real communication, the throughput of the radio is always
configured to be just a little bit slower than the slowest stage. Otherwise the radio task has to indefinitely buffer samples even
though the amount of available memory in the machine is not infinite. The information throughput (𝐾 bits) is the final useful
throughput for the user. Between the MODCOD 1 and 2, only the LDPC code rate varies (𝑅 = 3∕5 and 𝑅 = 8∕9 resp.). In the
parallel implementation, it has a direct impact on the information throughput. Between the MODCOD 2 and 3, the modulation
varies (QPSK and 8-PSK resp.) and the frames have to be deinterleaved (column/row interleaver). High order modulation reduces
the amount of samples processed in the Synchronizer Timing task (𝑡Rx

5): this results in higher throughput (80 Mb/s for the 8-
PSK) in the slowest stage 3. In the parallel implementation, the pipeline stage throughputs are adapting to the slowest stage 3.
It results in an important speedup. In the sequential implementation, it results in a little slowdown. Indeed, the additional time
spent in the deinterleave task (𝑡Rx

15) is higher than the time saved in the Synchronizer Timing task (𝑡Rx
5).

These results demonstrate the benefit of our parallel implementation. Throughput speedups range from 10 to 20 compared
to the sequential implementation. Selected configurations each are most efficient in different SNR zones (as shown in Fig. 10),
depending on the signal quality. For instance, MODCOD 1 is adapted for noisy environments (3 dB). However the informa-
tion throughput is limited to 37 Mb/s (x86 target). MODCOD 3 is more adapted to clearer signal conditions (7.5 dB) and the
information throughput reaches 80 Mb/s (x86 target). MODCOD 2 is in-between. The throughputs obtained on the ARM target
are lower than on the x86 CPUs (by a factor of ≈ 2 when running in parallel). It can be explained by the limited mono-core
performance of the ThunderX2 architecture: the frequency is lower (2.0 GHz versus 2.7 GHz) and the SIMD width is smaller
(128-bit in NEON versus 512-bit in AVX-512F). However, being able to run the transceiver on both x86 and ARM CPUs with
comparable throughput demonstrates the flexibility and the portability of the proposed framework.

5.5 Comparison with State-of-the-Art
gr-dvbs2rx
To the best of our knowledge, it is the faster open source implementation at the time of the writing of the paper. gr-dvbs2rx
has been run on the same x86 target presented before (with the same compiler and options) and on the MODCOD 2. We ran
the code without the radios, this way only the software part of the receiver is evaluated. First, a set of IQs have been generated

18 CASSAGNE ET AL

from the emitter and written on a file. Then, the receiver has been executed on it. The set of IQs have been read from the same
file. The evaluation has been made on error-free SNR zone. To make a fair comparison, we modified a little bit the source code
of the receiver to remove “artificial blocks” that slowed down the throughput. The throttle block has been removed as well as
some useless (and not optimized) blocks dedicated to the conversion of the IQs (from 8-bit fixed-point to 32-bit floating-point
format). The source code modifications we made are available on a fork of the project#.

TABLE 5 gr-dvbs2rx throughputs per pipeline stage compared with this work (error-free SNR zone, x86 target, MODCOD 2).
Same color codes as in Tab. 3.

GNU Radio Equi. Throughput (Mb/s)
Stage Block (𝑡Rx

{𝑖}) gr-dvbs2rx This work
1 file_source 1 100.7 431.8
2 agc_cc 2 24.0 367.5
3 symbol_sync_cc 4-6 16.9 33.1
4 rotator_cc 7 96.1 685.5
5 plsync_cc 3,8-13 45.3 48.4
6 ldpc_decoder_cb 14-16 23.0 31.7
7 bch_decoder_bb 17 14.9 6.9
8 bbdescrambler_bb 18 225.8 91.1
9 bbdeheader_bb – 252.5 –

10 file_sink 19 346.5 1838.3

Tab. 5 presents the per block normalized throughputs of gr-dvbs2rx and of this work (considering the gr-dvbs2rx pipeline
decomposition). For each GNU Radio block the tasks equivalence with our system is given. We measured an overall information
throughput of 14.9 Mb/s. As GNU Radio pins each block to a thread, the throughput performance is driven by the slowest block
(here bch_decoder_bb). gr-dvbs2rx uses 10 threads (same as the number of stages). If we applied the same decomposition with-
out the duplication of the stage 7 our receiver will have been limited to the throughput of the BCH decoder (6.9 Mb/s). With the
duplication technique the stage 7 is automatically dispatched on multiple threads and its throughput is approximately multiplied
by the number of threads. This automatic transformation is not possible with the GNU Radio implementation. Moreover, still if
we only consider the gr-dvbs2rx pipeline decomposition, our work will have been limited to the lowest sequential throughput
which is 33.1 Mb/s (symbol_sync_cc block). Thanks to a finer decomposition into tasks (symbol_sync_cc = 𝑡Rx

4 + 𝑡Rx
5 + 𝑡Rx

6) our
receiver is able to reach 55 Mb/s (see Tab. 4). As a result, the throughput of the proposed implementation is 3.7 times faster than
gr-dvbs2rx.
Grayver and Utter
For a comparable CPU (Intel® Xeon™ E5-2698v4), and on a same code rate (𝑅 = 1∕2), their solution reaches an information
throughput of 180 Mb/s, this is 3.3 times higher than what is achieved with the proposed implementation (55 Mb/s). This
is mainly due to new algorithmic improvements in the synchronization tasks. For instance, they were able to express more
parallelism in the Synchronizer Timing task (𝑡Rx

5). However, we also tried some aggressive optimizations in this task but we never
succeeded to measure the same level of FER decoding performance. It could be interesting to check for any penalty in terms of
decoding performance that may occur and to combine their optimizations with our DSEL. Unlike our work, their work focuses
on a single DVB-S2 configuration (8-PSK, 𝑁 = 64800 and 𝑅 = 1∕2) and a single architecture (x86). Their implementation
looks like a hard-coded solution for the DVB-S2 standard while our goal is to provide generic methods and tools for SDR system
implementations.

#gr-dvbs2rx fork (thr_benchmark branch): github.com/kouchy/gr-dvbs2rx/

github.com/kouchy/gr-dvbs2rx/

CASSAGNE ET AL 19

6 CONCLUSION

In this article, we introduced a new DSEL designed to satisfy SDR needs in terms of expressiveness and performance on
multicore processors. It allows the definition of stateless/stateful tasks, dynamic control and early exits. First, we evaluated
it on real-world representative micro-benchmarks and showed that its scheduling overhead is negligible for tasks longer than
4 𝜇s. Then, we evaluated a full software implementation of the DVB-S2 standard built with our DSEL and the AFF3CT library
for tasks. This implementation is the fastest open source software solution on multicore CPUs. It matches satellite real time
constraints (30 - 50 Mb/s), which demonstrates the relevance and efficiency of the DSEL. This is the consequence of two main
factors: 1) the low overhead achieved by DSEL, 2) an efficient implementation of the pipeline technique, where one stage,
parallelized, reaches saturation. In future works, we plan to integrate the parallel features of the DSEL with high level languages
such as Python or MATLAB® typically used in the signal processing community, often less familiar with the C++ language.
Moreover, automatic parallelization, tuning of pipelining stages, could be investigated. A profile-guided optimization, capturing
task runtime, has been used to tune pipeline stages, for instance. A more automatic and integrated approach could be possible
since the analysis of the task graph is dynamic. Finally, the correctness of parallel stateful dataflow programs could be explored
to guide the system designers in the development process.

References

1. Palkovic M, Raghavan P, Li M, Dejonghe A, Van der Perre L, Catthoor F. Future Software-Defined Radio Platforms and
Mapping Flows. IEEE Signal Processing Magazine 2010; 27(2): 22–33. doi: 10.1109/MSP.2009.935386

2. Palkovic M, Declerck J, Avasare P, et al. DART - a High Level Software-Defined Radio Platform Model for Developing
the Run-Time Controller. Springer Journal of Signal Processing Systems (JSPS) 2012; 69: 317–327. doi: 10.1007/s11265-
012-0669-3

3. ETSI . 3GPP - TS 38.212 - Multiplexing and Channel Coding (R. 15). https://www.etsi.org/deliver/etsi_ts/138200_138299/
138212/15.02.00_60/ts_138212v150200p.pdf; 2018.

4. Rost P, Bernardos CJ, Domenico AD, et al. Cloud Technologies for Flexible 5G Radio Access Networks. IEEE Communi-
cations Magazine 2014; 52(5): 68–76. doi: 10.1109/MCOM.2014.6898939

5. Mitola J. Software Radios: Survey, Critical Evaluation and Future Directions. IEEE Aerospace and Electronic Systems
Magazine 1993; 8(4): 25–36. doi: 10.1109/62.210638

6. Akeela R, Dezfouli B. Software-Defined Radios: Architecture, State-of-the-Art, and Challenges. ACM Computer Commu-
nications 2018; 128: 106–125. doi: 10.1016/j.comcom.2018.07.012

7. Coulton P, Carline D. An SDR Inspired Design for the FPGA Implementation of 802.11a Baseband System. In: International
Symposium on Consumer Electronics (ISCE). IEEE; 2004: 470–475

8. Skey K, Bradley J, Wagner K. A Reuse Approach for FPGA-Based SDR Waveforms. In: Military Communications
Conference (MILCOM). IEEE; 2006: 1–7

9. Dutta P, Kuo Y, Ledeczi A, Schmid T, Volgyesi P. Putting the Software Radio on a Low-calorie Diet. In: Workshop on Hot
Topics in Networks (HotNets). ACM; 2010

10. Shaik S, Angadi S. Architecture and Component Selection for SDR Applications. International Journal of Engineering
Trends and Technology (IJETT) 2013; 4(4): 691–694.

11. Maheshwarappa MR, Bowyer M, Bridges CP. Software Defined Radio (SDR) Architecture to Support Multi-satellite
Communications. In: Aerospace Conference (AeroConf). IEEE; 2015: 1–10

12. Nivin R, Rani JS, Vidhya P. Design and Hardware Implementation of Reconfigurable Nano Satellite Communication System
using FPGA based SDR for FM/FSK Demodulation and BPSK Modulation. In: International Conference on Communication
Systems and Networks (ComNet). IEEE; 2016: 1–6

http://dx.doi.org/10.1109/MSP.2009.935386
http://dx.doi.org/10.1007/s11265-012-0669-3
http://dx.doi.org/10.1007/s11265-012-0669-3
https://www.etsi.org/deliver/etsi_ts/138200_138299/138212/15.02.00_60/ts_138212v150200p.pdf
https://www.etsi.org/deliver/etsi_ts/138200_138299/138212/15.02.00_60/ts_138212v150200p.pdf
http://dx.doi.org/10.1109/MCOM.2014.6898939
http://dx.doi.org/10.1109/62.210638
http://dx.doi.org/10.1016/j.comcom.2018.07.012

20 CASSAGNE ET AL

13. Kaur G, Raj V. Multirate Digital Signal Processing for Software Defined Radio (SDR) Technology. In: International
Conference on Emerging Trends in Engineering and Technology (ICETET). IEEE; 2008: 110–115

14. Karlsson A, Sohl J, Wang J, Liu D. ePUMA: A Unique Memory Access based Parallel DSP Processor for SDR and CR. In:
Global Conference on Signal and Information Processing (GlobalSIP). IEEE; 2013: 1234–1237

15. Yoge DRN, Chandrachoodan N. GPU Implementation of a Programmable Turbo Decoder for Software Defined Radio
Applications. In: International Conference on VLSI Design. IEEE; 2012: 149–154

16. Bang S, Ahn C, Jin Y, Choi S, Glossner J, Ahn S. Implementation of LTE System on an SDR Platform using CUDA
and UHD. Springer Journal of Analog Integrated Circuits and Signal Processing (AICSP) 2014; 78(3): 599. doi:
10.1007/s10470-013-0229-1

17. Meshram S, Kolhare N. The Advent Software Defined Radio: FM Receiver with RTL SDR and GNU Radio. In: International
Conference on Smart Systems and Inventive Technology (ICSSIT). IEEE; 2019: 230–235

18. Grayver E, Utter A. Extreme Software Defined Radio – GHz in Real Time. In: Aerospace Conference (AeroConf). IEEE;
2020.

19. Xianjun J, Canfeng C, Jääskeläinen P, Guzma V, Berg H. A 122Mb/s Turbo decoder using a mid-range GPU. In: International
Wireless Communications and Mobile Computing Conference (IWCMC). IEEE; 2013: 1090–1094

20. Li R, Dou Y, Xu J, Niu X, Ni S. An Efficient Parallel SOVA-based Turbo Decoder for Software Defined Radio on GPU.
IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 2014; 97(5): 1027–1036.
doi: 10.1587/transfun.E97.A.1027

21. Le Gal B, Jégo C, Crenne J. A High Throughput Efficient Approach for Decoding LDPC Codes onto GPU Devices. IEEE
Embedded Systems Letters (ESL) 2014; 6(2): 29–32. doi: 10.1109/LES.2014.2311317

22. Giard P, Sarkis G, Leroux C, Thibeault C, Gross WJ. Low-Latency Software Polar Decoders. Springer Journal of Signal
Processing Systems (JSPS) 2016; 90: 761–775. doi: 10.1007/s11265-016-1157-y

23. Keskin S, Kocak T. GPU Accelerated Gigabit Level BCH and LDPC Concatenated Coding System. In: High Performance
Extreme Computing Conference (HPEC). IEEE; 2017: 1–4

24. Sarkis G, Giard P, Thibeault C, Gross WJ. Autogenerating Software Polar Decoders. In: Global Conference on Signal and
Information Processing (GlobalSIP). IEEE; 2014: 6–10

25. Le Gal B, Leroux C, Jégo C. Multi-Gb/s Software Decoding of Polar Codes. IEEE Transactions on Signal Processing (TSP)
2015; 63(2): 349–359. doi: 10.1109/TSP.2014.2371781

26. Cassagne A, Le Gal B, Leroux C, Aumage O, Barthou D. An Efficient, Portable and Generic Library for Successive Cancel-
lation Decoding of Polar Codes. In: International Workshop on Languages and Compilers for Parallel Computing (LCPC).
Springer; 2015

27. Sarkis G, Giard P, Vardy A, Thibeault C, Gross WJ. Fast List Decoders for Polar Codes. IEEE Journal on Selected Areas
in Communications (JSAC) 2016; 34(2): 318–328. doi: 10.1109/JSAC.2015.2504299

28. Cassagne A, Tonnellier T, Leroux C, Le Gal B, Aumage O, Barthou D. Beyond Gbps Turbo decoder on multi-core CPUs.
In: International Symposium on Turbo Codes and Iterative Information Processing (ISTC). IEEE; 2016: 136–140

29. Cassagne A, Aumage O, Leroux C, Barthou D, Le Gal B. Energy Consumption Analysis of Software Polar Decoders on
Low Power Processors. In: European Signal Processing Conference (EUSIPCO). IEEE; 2016: 642–646

30. Le Gal B, Jégo C. High-Throughput Multi-Core LDPC Decoders Based on x86 Processor. IEEE Transactions on Parallel
and Distributed Systems (TPDS) 2016; 27(5): 1373–1386. doi: 10.1109/TPDS.2015.2435787

31. Le Gal B, Jégo C. Low-Latency Software LDPC Decoders for x86 Multi-Core Devices. In: International Workshop on
Signal Processing Systems (SiPS). IEEE; 2017: 1–6

http://dx.doi.org/10.1007/s10470-013-0229-1
http://dx.doi.org/10.1007/s10470-013-0229-1
http://dx.doi.org/10.1587/transfun.E97.A.1027
http://dx.doi.org/10.1109/LES.2014.2311317
http://dx.doi.org/10.1007/s11265-016-1157-y
http://dx.doi.org/10.1109/TSP.2014.2371781
http://dx.doi.org/10.1109/JSAC.2015.2504299
http://dx.doi.org/10.1109/TPDS.2015.2435787

CASSAGNE ET AL 21

32. Léonardon M, Cassagne A, Leroux C, Jégo C, Hamelin LP, Savaria Y. Fast and Flexible Software Polar List Decoders.
Springer Journal of Signal Processing Systems (JSPS) 2019; 91: 937–952. doi: 10.1007/s11265-018-1430-3

33. Le Gal B, Jégo C. Low-latency and High-throughput Software Turbo Decoders on Multi-core Architectures. Springer Annals
of Telecommunications 2019; 75: 27–42. doi: 10.1007/s12243-019-00727-5

34. Dennis J. Data Flow Supercomputers. IEEE Computer 1980; 13(11): 48–56. doi: 10.1109/MC.1980.1653418
35. Ackerman W. Data Flow Languages. IEEE Computer 1982; 15: 15–25. doi: 10.1109/MC.1982.1653938
36. Lee EA, Messerschmitt DG. Static Scheduling of Synchronous Data Flow Programs for Digital Signal Processing. IEEE

Transactions on Computers (TC) 1987; C-36(1): 24–35. doi: 10.1109/TC.1987.5009446
37. Engels M, Bilsen G, Lauwereins R, Peperstraete JA. Cycle-Static Dataflow: Model and Implementation. In: . 1. Asilomar

Conference on Signals, Systems, and Computers (ACSSC). IEEE; 1994: 503–507
38. Bilsen G, Engels M, Lauwereins R, Peperstraete JA. Cyclo-Static Data Flow. In: . 5. International Conference on Acoustics,

Speech and Signal Processing (ICASSP). IEEE; 1995: 3255–3258
39. Parks TM, Pino JL, Lee EA. A Comparison of Synchronous and Cycle-Static Dataflow. In: . 1. Asilomar Conference on

Signals, Systems, and Computers (ACSSC). IEEE; 1995: 204–210
40. Cassagne A, Léonardon M, Tajan R, et al. A Flexible and Portable Real-time DVB-S2 Transceiver using Multicore and

SIMD CPUs. In: International Symposium on Topics in Coding (ISTC). IEEE; 2021
41. Thies W, Karczmarek M, Amarasinghe S. StreamIt: A Language for Streaming Applications. In: Horspool RN. , ed.

International Conference on Compiler Construction (CC)Springer; 2002; Berlin, Heidelberg: 179–196
42. Buck I, Foley T, Horn D, et al. Brook for GPUs: Stream Computing on Graphics Hardware. ACM Transactions on Graphics

(TOG) 2004; 23(3): 777–786. doi: 10.1145/1015706.1015800
43. Amarasinghe S, Gordon lM, Karczmarek M, et al. Language and Compiler Design for Streaming Applications. Springer

International Journal of Parallel Programming (IJPP) 2005; 2(33): 261–278. doi: 10.1007/s10766-005-3590-6
44. Liao SW, Du Z, Wu G, Lueh GY. Data and Computation Transformations for Brook Streaming Applications on Multipro-

cessors. In: International Symposium on Code Generation and Optimization (CGO). IEEE; 2006: 207–219
45. Black-Schaffer D, Dally WJ. Block-Parallel Programming for Real-Time Embedded Applications. In: International Confer-

ence on Parallel Processing (ICPP). IEEE; 2010: 297–306
46. Glitia C, Dumont P, Boulet P. Array-OL with Delays, a Domain Specific Specification Language for Multidimen-

sional Intensive Signal Processing. Springer Multidimensional Systems and Signal Processing 2010(21): 105–131. doi:
10.1007/s11045-009-0085-4

47. Thies W, Amarasinghe S. An Empirical Characterization of Stream Programs and its Implications for Language and Com-
piler Design. In: International Conference on Parallel Architectures and Compilation Techniques (PACT). ACM/IEEE;
2010: 365–376

48. De Oliveira Castro P, Louise S, Barthou D. DSL Stream Programming on Multicore Architectures. In: John Wiley and Sons.
2017

49. Dardaillon M, Marquet K, Risset T, Martin J, Charles HP. A New Compilation Flow for Software-Defined Radio Appli-
cations on Heterogeneous MPSoCs. ACM Transactions on Architecture and Code Optimization (TACO) 2016; 13(2). doi:
10.1145/2910583

50. Tan K, Liu H, Zhang J, Zhang Y, Fang J, Voelker GM. Sora: High-Performance Software Radio Using General-Purpose
Multi-Core Processors. ACM Communications 2011; 54(1): 99–107. doi: 10.1145/1866739.1866760

51. Li R, Dou Y, Zhou J, Deng L, Wang S. CuSora: Real-time Software Radio using Multi-core Graphics Processing Unit.
Elsevier Journal of Systems Architecture (JSA) 2014; 60(3): 280-292. doi: 10.1016/j.sysarc.2013.10.009

http://dx.doi.org/10.1007/s11265-018-1430-3
http://dx.doi.org/10.1007/s12243-019-00727-5
http://dx.doi.org/10.1109/MC.1980.1653418
http://dx.doi.org/10.1109/MC.1982.1653938
http://dx.doi.org/10.1109/TC.1987.5009446
http://dx.doi.org/10.1145/1015706.1015800
http://dx.doi.org/10.1007/s10766-005-3590-6
http://dx.doi.org/10.1007/s11045-009-0085-4
http://dx.doi.org/10.1007/s11045-009-0085-4
http://dx.doi.org/10.1145/2910583
http://dx.doi.org/10.1145/2910583
http://dx.doi.org/10.1145/1866739.1866760
http://dx.doi.org/10.1016/j.sysarc.2013.10.009

22 CASSAGNE ET AL

52. Hussain T, Khan M, Rehman MU, et al. A High Performance Software Defined Radio System Architecture and Development
Environment for a Wide Range of Applications. In: International Conference on Computing, Mathematics and Engineering
Technologies (iCoMET). IEEE; 2018: 1-5

53. Rondeau T, Blum J, Corgan J, et al. GNURadio: the Free and Open Software Radio Ecosystem. https://github.com/gnuradio/
gnuradio; 2006.

54. Bloessl B, Müller M, Hollick M. Benchmarking and Profiling the GNU Radio Scheduler. In: . 4. GNU Radio Conference
(GRCon). ; 2019.

55. Müller M. How to evolve the GNU Radio scheduler - Embracing and breaking legacy. In: FOSDEM. ; 2020.
56. pabr . leansdr: Lightweight, Portable Software-defined Radio.. https://github.com/pabr/leansdr; 2016.
57. Ryan W, Lin S. Channel Codes: Classical and Modern. Cambridge University Press . 2009
58. Freire I, Economos R, Inan A. gr-dvbs2rx: GNU Radio Extensions for the DVB-S2 and DVB-T2 Standards. https://github.

com/igorauad/gr-dvbs2rx; 2022.
59. Broquedis F, Clet-Ortega J, Moreaud S, et al. hwloc: A Generic Framework for Managing Hardware Affinities in HPC

Applications. In: Euromicro Conference on Parallel, Distributed and Network-based Processing (PDP). IEEE; 2010: 180–
186

60. ETSI . EN 302 307 - Digital Video Broadcasting (DVB); Second Generation Framing Structure, Channel Coding and
Modulation Systems for Broadcasting, Interactive Services, News Gathering and Other Broadband Satellite Applications
(DVB-S2). https://www.etsi.org/deliver/etsi_en/302300_302399/302307/01.02.01_60/en_302307v010201p.pdf; 2005.

61. Cassagne A, Hartmann O, Léonardon M, et al. AFF3CT: A Fast Forward Error Correction Toolbox!. Elsevier SoftwareX
2019; 10: 100345. doi: 10.1016/j.softx.2019.100345

62. Cassagne A, Aumage O, Barthou D, Leroux C, Jégo C. MIPP: A Portable C++ SIMD Wrapper and its use for Error
Correction Coding in 5G Standard. In: Workshop on Programming Models for SIMD/Vector Processing (WPMVP). ACM;
2018; Vösendorf/Wien, Austria

https://github.com/gnuradio/gnuradio
https://github.com/gnuradio/gnuradio
https://github.com/pabr/leansdr
https://github.com/igorauad/gr-dvbs2rx
https://github.com/igorauad/gr-dvbs2rx
https://www.etsi.org/deliver/etsi_en/302300_302399/302307/01.02.01_60/en_302307v010201p.pdf
http://dx.doi.org/10.1016/j.softx.2019.100345

	A DSEL for High Throughput and Low Latency Software-Defined Radio on Multicore CPUs
	Abstract
	Introduction
	Related Works
	Description of the Proposed Domain Specific Embedded Language
	Elementary Components
	Performance Evaluation on Micro-benchmarks
	Parallel Components

	Automated Parallelization Techniques
	Sequence Duplication
	Pipeline

	Application on the DVB-S2 Standard
	Transmitter Software Implementation
	Receiver Software Implementation
	Open Source Integration with AFF3CT Toolbox
	Evaluation
	Comparison with State-of-the-Art

	Conclusion
	References

