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Introduction

Parseval theorem is well known and classically applied to Fourier's series [START_REF] Kelkar | An extension of Parseval's theorem and its use in calculating transient energy in the frequency domain[END_REF]. It's a fundamental relation when we want to join a space-time point [START_REF] Olivier | Proposal of a mathematical formalism for the EMC, based on tensor analysis of networks[END_REF].

It's possible to find proposals for Parseval's theorem leading to the identity:

+∞ ∞ dtx 1 (t)x * 2 (t) = 1 2πi σ+i∞ σ-i∞ dsX 1 (s)X 2 (-s) (1) 
but in practice, how this formula can be used ?

In this article, we propose to search for Parseval's relation applied to Laplace's transform in the case of its numerical applications. It's a fundamental result for making a bridge between both spaces of Laplace and time.

2 Projection from the Laplace's space to the temporal one

We consider a function x, x ∈ R or x ∈ C. We define the power of the function x by:

P = x • x * = |x| 2 (2) 
Merlin-Fourier's [START_REF] Spiegel | Schaum's outline of theory and problems of Laplace transforms[END_REF] inversion formula is:

x(t) = 1 2πi +∞ -∞ dsx(s)e st (3) 
In a first step we take s = iω. We write the discrete development of 3:

x(t) = 1 2πi x0 + x1 e iω0t + x1 e -iω0t + x2 e i2ω0t + . . . (4) 
Then:

x • x * = 1 4π 2 x0 x * 0 + x0 x1 e iω0t + . . . + 2x 1 x * 1 + . . . (5) 
We can integrate all terms on T = 2π/ω 0 . Let's take a look to the crossed terms:

T 0 dtx 0 x1 e iω0t = x0 x1 T 0 dt (Cos (ω 0 t) + iSin (ω 0 t)) (6) 
1 with:

T 0 dtCos (ω 0 t) = 1 ω 0 [Sin(ω 0 t)]
T 0 = 0 and:

T 0 dtSin (ω 0 t) = - 1 ω 0 [Cos(ω 0 t)] T 0 = 0
All the terms multiplied by an exponential are equal to zero. Only remain the products like xi x * i . In final:

1

T T 0 dt x • x * = 1 2π 2 T x0 x * 0 2 + N n=1 xi x * i T 0 dt (7) 
From this last expression we obtain the root mean square value that can be projected on the time axis:

1 T T 0 dt x • x * = 1 π √ 2 x0 x * 0 2 + N n=1 xi x * i (8)

Temporal function with dissipation

If the temporel function has a self dissipation [START_REF] Angot | Mathématiques pour l'ingénieur. Edition Masson. Operational and symbolic calculus[END_REF] α, a depreciation exp(-αt) appears in its expression:

y(t) = x(t)e -αt (9) 
Keeping s = iω, Laplace's transform of y is:

L [y(t)] (s) = +∞ 0 dty(t)e -st = +∞ 0 dtx(t)e -αt e -st (10) 
Noting s ′ = α + iω, we have:

+∞ 0 dtx(t)e -s ′ t = L [x(t)] (s ′ ) (11) 
By the fact:

L [y(t)] (s) = L [x(t)] (s ′ ) (12) 
With (8) we know the rms value of y(t) knowing L [y(t)] (s), developed with the purely imaginary s Laplace's operator. This can be used for computing the rms value of L [x(t)] (s ′ ), developed with the complex s ′ Laplace's operator.

Let's take an obvious example: γ(t) is the step function and y(t) = γ(t)e -αt so that L [y(t)] (s) = (s + α)

-1 . The rms value of y(t)is:

rms (y(t)) = 1 π √ 2 1 2α 2 + N n=1 1 α 2 + n 2 ω 2 0 (13)
which is also the rms value obtained from L [γ(t)] (s ′ ) = s ′-1 .