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Abstract

We propose novel statistics which maximise the power of a two-sample test
based on the Maximum Mean Discrepancy (MMD), by adapting over the
set of kernels used in defining it. For finite sets, this reduces to combining
(normalised) MMD values under each of these kernels via a weighted soft
maximum. Exponential concentration bounds are proved for our proposed
statistics under the null and alternative. We further show how these kernels
can be chosen in a data-dependent but permutation-independent way, in a well-
calibrated test, avoiding data splitting. This technique applies more broadly
to general permutation-based MMD testing, and includes the use of deep
kernels with features learnt using unsupervised models such as auto-encoders.
We highlight the applicability of our MMD-FUSE test on both synthetic low-
dimensional and real-world high-dimensional data, and compare its performance
in terms of power against current state-of-the-art kernel tests.

1. Introduction

The fundamental problem of non-parametric two-sample testing consists in detecting the
difference between any two distributions having access only to samples from these. Kernel-
based tests relying on the Maximum Mean Discrepancy (MMD; Gretton et al., 2012a)
?Joint first author.
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as a measure of distance on distributions are well-suited for this framework as they can
identify complex non-linear features in the data, and benefit from both strong theoretical
guarantees and ease of implementation. This explains their popularity among practitioners
and justifies their wide use for real-world applications.
However, the performance of these tests is crucially impacted by the choice of kernel.

This is commonly tackled by either: choosing the kernel by some weakly data-dependent
heuristic (Gretton et al., 2012a); or splitting off a hold-out set of data for kernel selection,
with the other half used for the actual test (Gretton et al., 2012b; Sutherland et al., 2017).
This latter method includes training feature extractors such as deep kernels on the first
selection half. Both of these methods can incur a significant loss in test power, since
heuristics may lead to poor kernel choices, and data splitting reduces the number of data
points for the actual test.
Our contribution is to present MMD-based tests which can strongly adapt to the data

without data splitting. This comes in two parallel parts: firstly we show how the kernel can
be chosen in an unsupervised fashion using the entire dataset, and secondly we show how
multiple such kernels can be adaptively weighted in a single test statistic, optimising test
power.
Data Splitting. The data splitting approach selects test parameters on a held-out half

of the dataset, and applies the test to the other half. Commonly, this involves optimising
a kernel on held-out data in a supervised fashion to distinguish which sample originated
from which distribution, either by learning a deep kernel directly (Sutherland et al., 2017;
Liu et al., 2020, 2021), or indirectly through the associated witness function (Kübler et al.,
2022a,b). Jitkrittum et al. (2016) propose tests which select witness function features (in
either spatial or frequency space) on the held-out data, running the analytic representation
test of Chwialkowski et al. (2015) on the remaining data.
Our first contribution is to show that it is possible to learn a feature extractor for our

test (e.g., a deep kernel) on the entirety of the data in an unsupervised manner while
retaining the desired non-asymptotic test level. Specifically, any method can be used that
is ignorant of which distribution generated which samples. We can thus leverage many
feature extraction methods, from auto-encoders (Hinton and Salakhutdinov, 2006) to recent
powerful developments in self-supervised learning (He et al., 2020; Chen et al., 2020a,b,c;
Chen and He, 2021; Grill et al., 2020; Caron et al., 2020; Zbontar et al., 2021; Li et al.,
2021). Remarkably, our method applies to any permutation-based two-sample test, even
non-kernel tests, provided the parameters are chosen in this unsupervised fashion. This
includes a very wide array of MMD-based tests, and finally provides a formal justification
for the commonly-used median heuristic (Gretton et al., 2012b; Ramdas et al., 2015; Reddi
et al., 2015).
Adaptive Kernel Selection. A newer approach originating in Schrab et al. (2021)

performs adaptive kernel selection through multiple testing. Aggregating several MMD-
based tests with different kernels, each on the whole dataset, results in an overall adaptive
test with optimal power guarantees in terms of minimax separation rate over Sobolev
balls. Variants of this kernel adaptivity through aggregation have been proposed with
linear-time estimators (Schrab et al., 2022b), spectral regularisation (Hagrass et al., 2022),
kernel thinning compression (Domingo-Enrich et al., 2023), and in the asymptotic regime
(Chatterjee and Bhattacharya, 2023). Another adaptive approach using the entire dataset
for both kernel selection and testing is given by Kübler et al. (2020); this leverages the Post
Selection Inference framework, but the resulting test suffers from low power in practice.

While our unsupervised feature extraction method is an extremely powerful and general
technique, particularly for high-dimensional structured data like images, it is not always
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sufficient for data where such feature extraction is difficult. This motivates our second
contribution, a method for combining whole-dataset MMD estimates under multiple different
kernels into single test statistics, for which we prove exponential concentration. Kernel
parameters such as bandwidth can then be chosen in a non-heuristic manner to optimise
power, even on data with less structure and varying length scales. Using a single statistic
also ensures that a single test can be used, instead of the multiple testing approach outlined
above, reducing computational expense.
MMD-FUSE. By combining these contributions we construct two closely relatedMMD-

FUSE tests. Each chooses a set of kernels based on the whole dataset in an unsupervised
fashion, and then adaptively weights and fuses this (potentially infinite) set of kernels
through our new statistics; both parts of this procedure are done using the entire dataset
without splitting. On the finite sets of kernels we use in practice the weighting procedure
is done in closed form via a weighted soft maximum. We show these new tests to be
well-calibrated and give sufficient power conditions which achieve the minimax optimal
rate in terms of MMD. In empirical comparisons, our test compares favourably to the
state-of-the-art aggregated tests in terms of power and computational cost.
Outline and Summary of Contributions. In Section 2 we outline our setting, crucial

results underlying our work, and alternative existing approaches. Section 3 covers the
construction of permutation tests and discusses how we can choose the parameters for any
such test in any unsupervised fashion including with deep kernels and by those methods
mentioned above. Section 4 introduces and motivates our two proposed tests. Section 5
discusses sufficient conditions for test power (at a minimax optimal rate in MMD), and
the exponential concentration of our statistics. Finally, we show that our test compares
favourably with a wide variety of competitors in Section 6 and discuss in Section 7.

2. Background

Two-Sample Testing. The two sample testing problem is to determine whether two
distributions p and q are equal or not. In order to test this hypothesis, we are given access
to two samples, X := (X1, . . . , Xn)

iid∼ p and Y := (Y1, . . . , Ym)
iid∼ q as tuples of data points

with sizes n and m. We write the combined (ordered) sample as Z := (Z1, . . . , Zn+m) =
(X,Y ) = (X1, . . . , Xn, Y1, . . . , Ym).

We define the null hypothesis H0 as p = q and the alternative hypothesis H1 as p 6= q,
usually with a requirement D(p, q) > ε for a distance D (such as the MMD) and some ε > 0.
A hypothesis test ∆ is a {0, 1}-valued function of Z, which rejects the null hypothesis
if ∆(Z) = 1 and fails to reject it otherwise. It will usually be formulated to control the
probability of a type I error at some level α ∈ (0, 1), so that Pp×p(∆(Z) = 1) ≤ α, while
simultaneously minimising the probability of a type II error, Pp×q(∆(Z) = 0). In the above
we have used the notation Pp×p and Pp×q to indicate that the sample Z is either drawn
from the null, p = q, or the alternative p 6= q. Similar notation will be used for expectations
and variances. When a bound β ∈ (0, 1) on the probability of a type II error is given (which
may depend on the precise formulation of the alternative), we say the test has power 1− β.
Maximum Mean Discrepancy. The Maximum Mean Discrepancy (MMD) is a kernel-

based measure of distance between two distributions p and q, which is often used for
two-sample testing. The MMD quantifies the dissimilarity between these distributions by
comparing their mean embeddings in a reproducing kernel Hilbert space (RKHS; Aronszajn,
1950) with kernel k(·, ·). Formally, if Hk is the RKHS associated with kernel function k,
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the MMD between distributions p and q is the integral probability metric defined by:

MMD(p, q; k) := sup
f∈Hk:‖f‖Hk≤1

(EX∼p[f(X)]− EY∼q[f(Y )]) .

The minimum variance unbiased estimate of MMD2, is given by the sum of two U-statistics
and a sample average as:1

M̂MD
2

k(Z) :=
1

n(n− 1)

∑
(i,i′)∈[n]2

k(Xi, Xi′) +
1

m(m− 1)

∑
(j,j′)∈[m]2

k(Yj , Yj′)−
2

mn

n∑
i=1

m∑
j=1

k(Xi, Yj),

where we introduced the notation [n]2 = {(i, i′) ∈ [n]2 : i 6= i′} for the set of all pairs of
distinct indices in [n] = {1, . . . , n}. Tests based on the MMD usually reject the null when
M̂MD

2
exceeds some critical threshold, with the resulting power being greatly affected

by the kernel choice. For characteristic kernel functions (Sriperumbudur et al., 2011), it
can be shown that MMD(p, q; k) = 0 if and only if p = q, leading to consistency results.
However, on finite sample sizes, convergence rates of MMD estimates typically have strong
dependence on the data dimension, so there are settings in which kernels ignoring redundant
or unimportant features (i.e. non-characteristic kernels) will give higher test power in
practice than characteristic kernels (which can over-weight redundant features).
Permutation Tests. The tests we discuss in this paper use permutations of the data Z

to approximate the null distribution. We denote the permutation (or symmetric) group of
[N ] by SN and its elements by σ ∈ SN , σ : [N ]→ [N ]. Since σ ∈ Sn+m are group elements,
we abuse notation slightly to write their action on a sample as σZ = (Zσ(1), . . . , Zσ(n+m)).
We also introduce a quantile operator (analagous to the max and min operators) for a finite
set {f(a) ∈ R : a ∈ A}:

quantile
q,a∈A

f(a) := inf

{
r ∈ R :

1

|A|
∑
a∈A

1{f(a) ≤ r} ≥ q
}
. (1)

Under the null we note σZ =d Z, while under the alternative, the permuted sample σZ for
randomised σ ∼ Uniform(Sn+m) can be considered as a sample from the mixture 1

2(p+ q),
which simulates the null distribution. We can therefore use permutations to construct an
approximate cumulative distribution function (CDF) of our test statistic under the null,
and choose an appropriate quantile of this CDF as our test threshold. This quantile must
be exceeded under the null with probability less that level α. Various different results can
be used to choose the threshold giving a correct level; in Section 3 we will highlight a very
general method for doing this and discuss previously unconsidered implications for using
unsupervised feature extraction methods as a part of our tests.

A related approach constructs an MMD Aggregated test (MMDAgg; Schrab et al., 2021),
which combines multiple MMD-based permutation tests with different kernels, and rejects if
any of these reject, using distinct quantiles for each kernel. To ensure the overall aggregated
test is well-calibrated, these quantiles need to be adjusted, this correction is performed
using a second level of permutations. This incurs additional computational cost, a pitfall
avoided by our fused single statistic.
Distributions Over Kernels. In our test statistic, we will consider the case where

the kernel k ∈ K is drawn from a distribution ρ ∈ M1
+(K) (with the latter notation

1 Kim et al. (2022) notes that M̂MD
2

k can equivalently be written as a two-sample U-statistic with kernel
hk(x, x

′; y, y′) = k(x, x′) + k(y, y′)− k(x, y′)− k(x′, y), which is useful for analysis.
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denoting a probability measure; c.f. Benton et al., 2019 in the Gaussian Process literature).
This distribution will be adaptively chosen based on the data subject to a regularisation
term based on a “prior” π ∈M1

+(K) and defined through the Kullback-Liebler divergence:
KL(ρ‖π) := Eρ[log(dρ/dπ)] for ρ� π and KL(ρ‖π) :=∞ otherwise. When constructing
these statistics the Donsker-Varadhan equality (Donsker and Varadhan, 1975), holding for
any measurable g : K → R, will be useful:

sup
ρ∈M1

+(A)

Eρ[g]−KL(ρ‖π) = logEπ[exp ◦g]. (2)

This can be further related to the notion of soft maxima. If π is a uniform distribution on
finite K with |K| = r, then KL(ρ‖π) ≤ log(r). Setting g = f for some t > 0, Equation (2)
relaxes to

max
k

f(k)− log(r)

t
≤ 1

t
log

(
1

r

∑
k

etf(k)

)
≤ max

k
f(k), (3)

which approximates the maximum with error controlled by t. Our approach in considering
these soft maxima is reminiscent of the PAC-Bayesian (McAllester, 1998; Seeger et al.,
2001; Maurer, 2004; Catoni, 2007; see Guedj, 2019 or Alquier, 2021 for a survey) approach
to capacity control and generalisation. This framework has raised particular attention
recently as it has been used to provide the only non-vacuous generalisation bounds for deep
neural networks (Dziugaite and Roy, 2017, 2018; Dziugaite et al., 2021; Zhou et al., 2019;
Perez-Ortiz et al., 2021; Biggs and Guedj, 2021, 2022a); it has also been fruitfully applied
to other varied problems from ensemble methods (Lacasse et al., 2006, 2010; Masegosa
et al., 2020; Wu et al., 2021; Zantedeschi et al., 2021; Biggs and Guedj, 2022b; Biggs et al.,
2022) to online learning (Haddouche and Guedj, 2022). Our proofs draw on techniques
in that literature for U-Statistics (Lever et al., 2013) and martingales (Seldin et al., 2012;
Biggs and Guedj, 2023; Haddouche and Guedj, 2023; Chugg et al., 2023). By considering
these soft maxima, we gain a major advantage over the standard approaches, as we can
obtain concentration and power results for our statistics without incurring Bonferroni-type
multiple testing penalties.
Faster Sub-Optimal Tests. While the main focus of this paper revolves around

the kernel selection problem for optimal, quadratic MMD testing, we also highlight the
existence of a rich literature on efficient kernel tests which run in linear (or near-linear)
time. These speed improvements are achieved using various tools such as: incomplete
U-statistics (Gretton et al., 2012b; Yamada et al., 2019; Lim et al., 2020; Kübler et al., 2020;
Schrab et al., 2022b), block U-statistics (Zaremba et al., 2013; Deka and Sutherland, 2022),
eigenspectrum approximations (Gretton et al., 2009), Nyström approximations (Cherfaoui
et al., 2022), random Fourier features (Zhao and Meng, 2015), analytic representations
(Chwialkowski et al., 2015; Jitkrittum et al., 2016), deep linear kernels (Kirchler et al.,
2020), kernel thinning (Dwivedi and Mackey, 2021; Domingo-Enrich et al., 2023), etc.

The efficiency of these tests usually entail weaker theoretical power guarantees compared
to their quadratic-time counterparts, which are minimax optimal2 (Kim et al., 2022; Li
and Yuan, 2019; Fromont et al., 2013; Schrab et al., 2021; Chatterjee and Bhattacharya,
2023). These optimal quadratic tests are either permutation-based non-asymptotic tests
(Kim et al., 2022; Schrab et al., 2021) or studentised asymptotic tests (Kim and Ramdas,
2023; Shekhar et al., 2022; Li and Yuan, 2019; Gao and Shao, 2022; Florian et al., 2023).
We emphasise that the parameters of any of these permutation-based two-sample tests can

2With the exception of the near-linear test of Domingo-Enrich et al. (2023) which achieves the same MMD
separation rate as the quadratic test but under stronger assumptions on the data distributions.
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be chosen in the unsupervised way we outline in Section 3. We choose to focus in this work
on optimal quadratic-time results, but note that our general approach could be extended
to sub-optimal faster tests as well.

3. Constructing Permutation Tests

In this section we will highlight a very general and easy to use theorem for constructing
permutation tests, with implications for the use of unsupervised feature extraction methods
as a part of the test. Although this result is not new, we believe that its usefulness has
been under-appreciated in the kernel testing community, and that we are the first to point
out the way in which it enables such feature extraction and other parameter optimisation
in this setting. We begin by stating the result in a fairly general form, so that its use in
other close settings such as independence testing (Albert et al., 2022; Rindt et al., 2021)
or wild bootstrap-based two-sample tests (Fromont et al., 2012, 2013; Chwialkowski et al.,
2014; Schrab et al., 2021) can also be seen.

Let G be a group of transformations on Z; in our setting G = Sn+m. Write gZ for the
action of g ∈ G on Z. We will suppose Z is invariant under the action of G when the
sample is drawn from the null distribution, i.e. if the null is true than gZ =d Z for all
g ∈ G. This is clearly the case for G = Sn+m in two-sample testing, since under the null
Z = (Z1, . . . , Zm+m)

iid∼ p with p = q.
Let G be a vector of elements in G, G = (g1, g2, . . . , gB+1), with gB+1 = id (the identity

permutation). The elements g1, . . . , gB are drawn uniformly from G either i.i.d. or without
replacement (which includes the possibility of G = G). Recall the quantile operator defined
in Equation (1).

Theorem 1 (Permutation Test; Hemerik and Goeman, 2018, Theorem 2.). Let τ(Z) be a
statistic of Z. In the setting described above with any B ≥ 1, under the null hypothesis and
random draw G,

Pp×p,G

(
τ(Z) > quantile

1−α,g∈G
τ(gZ)

)
≤ α.

In other words, if we compare τ(Z) with the empirical quantile of τ(gZ) as a test threshold,
the type I error rate is no more than α. The potentially complex task of constructing a
permutation test reduces to the trivial task of choosing the statistic τ(Z). This result is
also true for randomised permutations of any number B ≥ 1 without approximation, so
an exact and computationally efficient test can be straightforwardly constructed this way.
We emphasise that this result can also be more conveniently applied than Romano and
Wolf (2005, Lemma 1), which requires exchangablity and is commonly used. For example,
the proofs of Albert et al. (2022, Proposition 1) and Schrab et al. (2021, Proposition 1)
could likely be greatly simplified by direct application of Theorem 1, without the need to
explicitly prove exchangeability of the HSIC/MMD test statistic with its permuted variants.
Importantly, Theorem 1 holds for any τ . For example, we could use the MMD with a

kernel chosen based on the data, τ(Z) = M̂MD
2

k=k(Z)(Z); however, for each permutation σ

we would need to re-compute τ(σZ) = M̂MD
2

k=k(σZ)(σZ), so the kernel being used would
be different for each permutation. This has two major disadvantages: firstly, it might be
computationally expensive to re-compute k for each permutation, especially for a deep
kernel3. Secondly, the scale of the resulting MMD could be dramatically different for each

3A possibility envisaged by e.g. Liu et al. (2020) and dismissed due to the computational infeasability.
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permutation, so the empirical quantile might not lead to a powerful test. This second
problem is related to the problem of combining multiple different MMD values into a single
test which our MMD-FUSE statistics are designed to combat (Section 4; c.f. also MMDAgg,
Schrab et al., 2021).
Our Proposal. In two-sample testing we propose to use a statistic τθ parameterised by

some θ, where θ is fixed for all permutations, but depends on the data in an unsupervised
or permutation-invariant way. Specifically, we allow such a parameter to depend on
〈Z〉 := {Z1, . . . , Zn+m}, the unordered combined sample. Since our tests will not depend
on the internal ordering of X and Y (which are assumed i.i.d. under both hypotheses), the
only additional information contained in Z over 〈Z〉 is the label assigning Zi to its initial
sample. This is justified since 〈Z〉 = 〈σZ〉 for all σ ∈ Sn+m, so setting τ(Z) = τθ(〈Z〉)(Z)
gives a fixed θ and statistic for all permutations to use in Theorem 1. The information in
〈Z〉 can be used to fine-tune test parameters for any test fitting this setup. This solves
both the computation and scaling issues mentioned above.

The above also provides a first formal justification for the use of the median heuristic in
Gretton et al. (2012a), since it is a permutation-invariant function of the data. However, a far
richer set of possibilities are available even when restricting ourselves to these permutation-
free functions of Z. For example, we can use any unsupervised or self-supervised learning
method to learn representations for use as the input to an MMD-based test statistic, while
paying no cost in terms of calibration and needing to train such methods only once. Given
the wide variety of methods dedicated to feature extraction and dimensionality reduction,
this opens up a huge range of possibilities for the design of new and principled two-sample
tests. Pointing out this powerful and widely-applicable possibility represents one of our
most practical contributions.

4. MMD-FUSE: Fusing U-Statistics by Exponentiation

We use two different test statistics based on M̂MD
2
with normalised and un-normalised

variants. Both use a “prior” π(〈Z〉), which is either fixed independently of the data, or is
a function of the data which is invariant under permutation (as discussed in Section 3).
This prior is (a function mapping to) a distribution on a space of kernels K. Our statistics
also use a regularisation parameter λ > 0, the choice of which will drive the power results
discussed in Section 5.

Definition 1 (MMD-FUSE-N). We define the normalised test statistic

F̂USEN (Z) :=
1

λ
log

Ek∼π(〈Z〉)

exp

λM̂MD
2
(X,Y ; k)√
N̂k(Z)


where N̂k(Z) := 1

n(n−1)

∑
(i,j)∈[n+m]2

k(Zi, Zj)
2 is permutation invariant.

Although this statistic appears complex, we note that in the case where π has finite
support, its calculation reduces to a log-sum-exp of MMD estimates normalised by N̂k.
This is even clearer when π is also uniform on its support, then Equation (3) shows that
our statistic reduces to a soft maximum. The parameter λ can be seen as a “temperature”
parameter controlling the smoothness of this soft maximum. We discuss this point further
in Section 4.2.
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Our test (for sampled set S of permutations as described above) is given in terms of
F̂USEN as

∆FUSEN (Z) := 1

{
F̂USEN (Z) > quantile

1−α,σ∈S
F̂USEN (σZ)

}
. (4)

It compares the test statistic F̂USEN with its quantiles under permutation, and rejects
if the overall value exceeds a quantile controlled by α. We note that since N̂k(Z) is
permutation invariant, it only needs to be calculated once per kernel (and not separately
for each permutation).

4.1. Un-Normalised Variant

We further introduce a second FUSE statistic in which the normaliser term N̂k is neglected.
The FUSE-1 test ∆FUSE1 is defined in an analogous way to ∆FUSEN in Equation (4).

Definition 2 (MMD-FUSE-1). We define the un-normalised test statistic

F̂USE1(Z) :=
1

λ
log
(
Ek∼π(〈Z〉)

[
exp

(
λM̂MD

2
(X,Y ; k)

)])
.

Although this test has worse performance in practice, the variant statistic is interesting
in its own right because of various theoretical properties as we discuss below. Firstly, we
introduce the mean kernel Kρ(x, y) = Ek∼ρk(x, y) under a “posterior” ρ ∈M1

+(K), which
is indeed a reproducing kernel in its own right. In the finite case, this is simply a weighted
sum of “base” kernels.

Note that the linearity of M̂MD
2
and MMD2 in the kernel implies that Ek∼ρ MMD2(p, q; k) =

MMD2(p, q;Kρ), and similarly for M̂MD
2
. Combining this linearity with the dual formula-

tion of F̂USE1 via Equation (2) gives

F̂USE1(Z) = sup
ρ∈M1

+(K)

M̂MD
2
(X,Y ;Kρ)−

KL(ρ, π)

λ
.

This re-states our statistic in terms of “posterior” ρ, and makes the interpretation of our
statistic as a KL-regularised kernel-learning method clear. In the finite case our test simply
optimises the weightings of the different kernels in a constrained way. We note that for
certain infinite kernel sets and choices of prior it is be possible to express the mean kernel in
closed form. This happens because, e.g. the expectation of a Gaussian kernel with respect
to a Gamma prior over the bandwidth is simply a (closed form) rational quadratic kernel.
We discuss this point further in Appendix B.

Terms very similar to the above, with MMD2(p, q;Kρ) and KL(ρ, π) will appear in our
power results (Section 5), which are stated in terms of posteriors ρ.

4.2. Aside: Why Not Set λ→∞?

Theorem 1 shows that setting λ → ∞ will not prevent us from controlling the level of
our test by α. This is equivalent to considering the maximum, c.f. Equations (2) and (3),
over a set of MMD-based statistics; note though that for each permutation we would take
this maximum separately. Cárcamo et al. (2022) show that for certain kernel choices the
supremum of the MMD values with respect to the bandwidth is a valid integral probability
metric (Müller, 1997).
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There are however a few problems with this approach: firstly, if the class over which we are
maximising is sufficiently rich (for example a complex neural network), then the maximum
may be able to effectively memorise the entire sample for each possible permutation,
saturating the statistic for every permutation and limiting test power. Secondly, any
convergence results would need to hold simultaneously for every k in K, and so power
results would suffer. If |K| is finite then we would effectively incur a sub-optimal Bonferroni
correction; while for infinite classes, results would need to involve capacity control quantities
like Rademacher complexity. Our approach here, which is equivalent to using a KL
complexity penalty with regularisation controlled by λ, is strongly reminiscent of instead
using PAC-Bayesian (Section 2) capacity control. The Donsker-Varadhan equality shows
the equivalence of this regularisation-based approach with ours, and is used heavily in that
literature, alongside a number of other techniques we adapt to our setting.

5. Theoretical Power of MMD-FUSE

In this section we outline possible sufficient conditions for our tests to obtain power at
least 1− β at given level α. The conditions will depend on a fixed data-independent “prior”
π ∈M1

+(K) and thus hold even without unsupervised parameter optimisation. They are
stated as requirements for the existence of a “posterior” ρ ∈ M1

+(K) with corresponding
mean kernel Kρ as defined in Section 4.1. In the finite case Kρ is simply a weighted sum of
kernels, so these requirements are also satisfied under the same conditions for any single
kernel, corresponding to the case where the posterior puts all its weight on a single kernel.
Technically, these results require that there is some constant κ upper bounding all of

the kernels, and that n,m are within a constant multiple (i.e. n ≤ m ≤ cn for some
c ≥ 1, notated n � m). They hold when using randomised permutations provided
B > c′α−2 log(β−1) for small constant c′ > 0.

Theorem 2 (FUSE-1 Power). Fix prior π independently of the data. For the un-normalised
test FUSE-1 with λ � n/κ and n � m, there exists a universal constant C > 0 such that

∃ρ ∈M1
+(K) : MMD2(p, q;Kρ) >

Cκ

n

(
1

β
+ log

1

α
+ KL(ρ, π)

)
.

is sufficient for a test with power ≥ 1− β at level α.

A similar result is obtained for FUSE-N under an assumption that the normalising
term is well behaved. Specifically we require there for all k ∈ supp(π) the expectation
EZ∼p×q

[
N̂k(Z)−1

]
< c/κ is bounded for some c <∞. This requirement will be satisfied

for kernels (including most common ones) that tend to zero only in the limit of the data
being infinitely far apart.

Theorem 3 (FUSE-N Power). Fix prior π independently of the data. For the normalised
test FUSE-N with λ � n � m, there exists universal constant C > 0 such that

∃ρ ∈M1
+(K) : MMD2(p, q;Kρ) >

Cκ

n

(
1

β2
+ log

1

α
+ KL(ρ, π)

)
.

is sufficient for a test with power ≥ 1− β at level α.

Discussion. The conditions in Theorems 2 and 3 give the optimal MMD2 separation
rate rate in n (Domingo-Enrich et al., 2023, Proposition 2). These results also also imply
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consistency if the prior π assigns non-zero weight to characteristic kernels.4 Applying these
results to uniform priors supported on r points, the KL penalty can be upper bounded
as KL(ρ, π) ≤ log(r). Thus in the worst case, where only a single kernel achieves large
MMD2(p, q; k), the price paid for adaptivity is only log(r). In many cases, most of the
kernels will give large MMD2(p, q; k). The posterior will then mirror the prior, and this KL
penalty will be even smaller. Thus very large numbers of kernels could be considered, and
if all give large MMD values the power would not be greatly affected.
Additional Technical Results. Aside from the presentation of our new statistics and

tests, we make a number of technical contributions on the way to proving Theorem 2 and
Theorem 3, as well as proving some additional results. In particular, we give exponential
concentration bounds for our statistics under permutations and the null, which do not require
bounded kernels. This refined analysis requires the construction of a coupled Rademacher
chaos and concentration thereof. We obtain intermediate results using variances from the
proofs of Theorems 2 and 3 that could be used in future work to obtain power guarantees
under alternative assumptions such as Sobolev spaces (Schrab et al., 2021). Finally, we
prove exponential concentration for F̂USE1 under the alternative and bounded kernels,
requiring the proof of a “PAC-Bayesian” bounded differences-type concentration inequality.
For a more detailed overview see Section 7.

6. Experiments

We compare the test power of MMD-FUSE-N against various MMD-based kernel selective
tests (see Section 1 for details) using: the median heuristic (MMD-Median; Gretton et al.,
2012a), data splitting (MMD-Split; Sutherland et al., 2017), analytic Mean Embeddings and
on the difference in Smooth Characteristic Functions (ME & SCF; Jitkrittum et al., 2016),
the MMD Deep kernel (MMD-D; Liu et al., 2020), Automated Machine Learning (AutoML;
Kübler et al., 2022b) kernel thinning to (Aggregate) Compress Then Test (CTT & ACTT;
Domingo-Enrich et al., 2023), and MDD Aggregated (Incomplete) tests (MMDAgg &
MMDAggInc; Schrab et al., 2021, 2022b). Additional details and code link for experimental
reproducibility are provided in the appendix.
Distribution on Kernels. We choose our kernel prior distribution π as uniform

over a collection of Gaussian, kgγ(x, y) = exp
(
− ‖x − y‖22

/
2γ2
)
, and Laplace, klγ(x, y) =

exp
(
−
√

2‖x − y‖1
/
γ
)
, kernels with various bandwidths γ > 0. These bandwidths are

chosen as the uniform discretisation of the interval between half the 5% and twice the
95% quantiles (for robustness) of {‖z − z′‖r : z, z′ ∈ Z}, with r ∈ {1, 2} respectively. This
choice is similar to that of Schrab et al. (2021, Section 5.2), who empirically show that ten
points for the discretisation is sufficient (Schrab et al., 2021, Figure 6). This set of distances
is permutation-invariant so Theorem 1 guarantees a well-calibrated test even though the
kernels are data-dependent.
Mixture of Gaussians. Our first experiments (Figure 1) consider multimodal distribu-

tions p and q, each a 2-dimensional mixture of four Gaussians with means (±µ,±µ) with
µ = 20 and diagonal covariances. For p, the four components all have unit variances, while
for q we vary the standard deviation σ of one of the Gaussians. σ = 1 corresponds to the
null hypothesis p = q. Intuitively, an appropriate kernel bandwidth to distinguish p from q
would correspond to that separating Gaussians with standard deviations 1 and σ. This is
significantly smaller than the median bandwidth which scales with the distance µ between
modes.

4 Under this condition KL(ν, π)<∞ with ν the restriction of π to characteristic kernels. Kν is characteristic
so MMD(p, q;Kν)>0 ⇐⇒ p 6= q, and our condition lower bound tends to zero with n→∞.
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Figure 1: Power experiments. The four columns correspond to different settings: Mixture
of Gaussians in two dimensions (null σ = 1), Perturbed Uniform for d ∈ {1, 2}
(null a = 0), and Galaxy MNIST in dimension 12288 (null c = 0). In the first row,
the deviations away from the null are varied for fixed sample size m = n = 500.
In the second row, the sample size varies while the deviations are fixed as σ = 1.3,
a = 0.2, a = 0.4, and c = 0.15, for the four respective problems. The plots
correspond to the rejections of the null averaged over 200 repetitions.

Perturbed Uniform. In Figure 1, we report test power for detecting perturbations
on uniform distributions in one and two dimensions. We vary the amplitude a of two
perturbations from a = 0 (null) to a = 1 (maximum value for the density to remain
non-negative). A similar benchmark was first proposed by Schrab et al. (2021, Section 5.5)
and considered in several other works (Schrab et al., 2022b; Hagrass et al., 2022; Chatterjee
and Bhattacharya, 2023). Different bandwidths are required to detect different amplitudes
of the perturbations.
Galaxy MNIST. We examine performance on real-world data in Figure 1, through

satellite-captured galaxy images (Walmsley et al., 2022) in dimension d = 3×64×64 = 12288.
These consist of four classes: ‘smooth and cigar-shaped’, ‘edge-on-disk’, ‘unbarred spiral’,
and ‘smooth and round’. One distribution uniformly samples images from the first three
categories, while the other does the same with probability 1 − c and uniformly samples
a ‘smooth and round’ galaxy image with probability of corruption c ∈ [0, 1]. The null
hypothesis corresponds to the case c = 0.
CIFAR 10 vs 10.1. The aim of this experiment is to detect the difference between

images from the CIFAR-10 (Krizhevsky, 2009) and CIFAR-10.1 (Recht et al., 2019) test
sets. This is a challenging problem as CIFAR-10.1 was specifically created to consist of
new samples from the CIFAR-10 distribution so that it can be used as an alternative test
set for models trained on CIFAR-10. Samples from the two distributions are presented in
Figure 6 in Appendix A.3 (Liu et al., 2020, Figure 5). This benchmark was proposed by
Liu et al. (2020, Table 3) who introduced the deep MMD test MMD-D and the MMD-Split
test (here referred to as MMD-O to point out that their implementation has been used
rather than ours). They also compare to ME and SCF, as well as to C2ST-L and C2ST-S
(Lopez-Paz and Oquab, 2017) which correspond to Classifier Two-Sample Tests based on
Sign or Linear kernels. For the tests slitting the data, 1000 images from both datasets
are used for parameter selection and/or model training, and 1021 other images from each
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distributions are used for testing. Consequently, tests avoiding data splitting are given the
full 2021 images from CIFAR-10.1 and 2021 images sampled from CIFAR-10.
Experimental Results of Figure 1. We observe similar trends in all eight experiments

in Figure 1: MMD-FUSE matches the power of state-of-the-art MMDAgg while being
computationally faster (both theoretically and practically). These two tests consistently
obtain the highest power in every experiment, except when increasing the number of
GalaxyMNIST images where MMD-D obtains higher power. However, we observe in
Table 1 that MMD-FUSE outperforms MMD-D on another image data problem, also
with large sample size. On synthetic data, the deep kernel test MMD-D surprisingly only
obtains power similar to MMD-split in most experiments (even lower in the 2-dimensional
perturbed uniform experiment). The two near-linear aggregated variants ACTT and
MMDAggInc trade-off a small portion of test power for computational efficiency, with the
former outperforming the latter for large sample sizes. The importance of kernel selection
is emphasised by the fact the two tests using the median bandwidth (MMD-Median and
CTT) achieve very low power. While the linear SCF test, based in the frequency domain,
attains high power in the Mixture of Gaussians experiments, it has low power in the three
other experiments. Its spatial domain variant ME performs better on Perturbed Uniform
d ∈ {1, 2} experiments but in general still has reduced power compared to both linear and
quadratic time alternatives. Finally, the AutoML test performs well for fixed sample size
m = n = 500 (first row of Figure 1), but its power compared to other tests considerably
deteriorates as the sample size increases (second row of Figure 1). Overall, MMD-FUSE
achieves state-of-the-art performance across our experiments on both low-dimensional
synthetic data and high-dimensional real-world data.
Experimental Results of Table 1. We report in Table 1 the power achieved by each

test on the CIFAR 10 vs 10.1 experiment, which is averaged over 1000 repetitions. We
observe that MMD-FUSE performs the best and obtains power 0.937, which means that out
of 1000 repetitions, it was 937 times able to distinguish between samples from CIFAR-10
and from CIFAR-10.1. This demonstrates that the images in CIFAR-10.1 do not come from
the same distribution as those in CIFAR-10.

7. Conclusions

In this work, we propose MMD-FUSE, an MMD-based test which fuses kernels through
a soft maximum and a method for learning general two-sample testing parameters in an
unsupervised fashion. We demonstrate the empirical performance of MMD-FUSE and
show that it achieves the optimal MMD separation rate guaranteeing high test power.
This optimality holds with respect to the sample size and likely also for the logarithmic
dependence in α, but we believe the dependence on β could be improved in future work; a
general question is whether lower bounds in terms of α and β can be proved. Obtaining
separation rates in terms of the L2-norm between the densities (Schrab et al., 2021) may
also be possible but challenging; unlike MMD, this distance is independent of the kernel.
An open question is in explaining the significant empirical power advantage of the

normalised test over its un-normalised variant, which is currently not reflected in the
derived rates. The importance of this normalisation is clear when considering kernels with
different bandwidths, leading to vastly different scaling in the un-normalised permutation
distributions. Work here could begin with finite-sample concentration guarantees for our
normalised statistic or other “studentised” variants, some of which might obtain better
performance.
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Table 1: Test power for detecting the difference between CIFAR-10 and CIFAR-10.1 images
with test level α = 0.05. The averaged numbers of rejections over 1000 repetitions
are reported.

Tests Power

MMD-FUSE 0.937
MMDAgg 0.883
MMD-D 0.744
CTT 0.711

MMD-Median 0.678
ACTT 0.652
ME 0.588

AutoML 0.544
C2ST-L 0.529
C2ST-S 0.452
MMD-O 0.316

MMDAggInc 0.281
SCF 0.171

Future work could also examine computationally efficient variants of MMD-FUSE, by
either relying on incomplete U -statistics (Schrab et al., 2022b) and leading to suboptimal
rates, or by relying on recent ideas of kernel thinning (Domingo-Enrich et al., 2023) which
can lead to the same optimal rate under stronger assumptions on the data distributions.
Finally, our two-sample MMD fusing approach could be extended to the HSIC independence
framework (Gretton et al., 2005, 2008; Albert et al., 2022) and to the KSD goodness-of-fit
setting (Chwialkowski et al., 2016; Liu et al., 2016; Schrab et al., 2022a).
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Overview of Appendices

Appendix A We give further experimental details, discuss time complexity of our results
while graphing run-times. We also give additional results on an image benchmark
(CIFAR-10 vs CIFAR-10.1), where we outperform other existing tests.

Appendix B We discuss how F̂USE1 can be expressed in a simple form for certain uncount-
able priors.

Appendix C We prove exponential concentration bounds for both our statistics under the
null and permutations.

Appendix D We prove exponential concentration bounds for the F̂USE1 statistic under
the alternative hypothesis.

Appendix E We prove the power results stated in Section 5 and other interesting interme-
diate results.
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A. Experiments

A.1. Code and licenses

Our implementation of MMD-FUSE in Jax (Bradbury et al., 2018), as well as the code for
the reproducibility of the experiments, are made publicly available at:

https://github.com/antoninschrab/mmdfuse-paper

Our code is under the MIT License, and we also implement ourselves the MMD-Median
(Gretton et al., 2012a) and MMD-Split (Sutherland et al., 2017) tests. For ME & SCF
(Jitkrittum et al., 2016), MMD-D (Liu et al., 2020), AutoML (Kübler et al., 2022b), CTT
& ACTT (Domingo-Enrich et al., 2023), MMDAgg & MMDAggInc (Schrab et al., 2021,
2022b), we use the implementations of the respective authors, which are all under the MIT
license.

The experiments were run on an AMD Ryzen Threadripper 3960X 24 Cores 128Gb RAM
CPU at 3.8GHz and on an NVIDIA RTX A5000 24Gb Graphics Card, with a compute
time of a couple of hours.

A.2. Test parameters

In general, we use the default test parameters recommended by the authors of the tests
(listed above). For the ME and SCF tests, ten test locations are chosen on half of the data.
AutoML is run with the recommended training time limit of one minute.
Kernels. As explained in Section 6 (§Distribution on Kernels), for MMD-Fuse, we use

Gaussian and Laplace kernels with bandwidths in {qr5% + i(qr95% − qr5%)/9 : i = 0, . . . , 9}
where qr5% is half the 5% quantile of all the inter-sample distances {‖z − z′‖r : z, z′ ∈ Z}
with r = 1 and r = 2 for Laplace and Gaussian kernels, respectively. Similarly, qr95% is
twice the 95% quantile.
MMD-Split selects a Gaussian kernel on half of the data with bandwidth in {qr5% +

i(qr95% − qr5%)/99 : i = 0, . . . , 99} by maximizing a proxy for asymptotic power which is the
ratio of the estimated MMD with its estimated standard deviation under the alternative
(Liu et al., 2020, Equation 3). The MMD test is then run on the other half with the selected
kernel.
CTT and MMD-Median both use a Gaussian kernel with bandwidth the median of
{‖z − z′‖2 : z, z′ ∈ Z}, while ACTT is run with Gaussian kernels with bandwidths in
{q2

5% + i(q2
95% − q2

5%)/9 : i = 0, . . . , 9}.
The MMDAgg and MMDAggInc tests are run with their default implementations, which

similarly use collections of 20 kernels split equally between Gaussian and Laplace kernels
with ten bandwidths each, but they use a different (non-uniform) discretisation of the
intervals [qr95%, q

r
5%].

Permutations. For MMD-Median, MMD-Split, and MMD-FUSE, we use 2000 permuta-
tions to estimate the quantiles. MMDAgg and MMDAggInc use 2000 + 2000 and 500 + 500
permutations, respectively, to approximate the quantiles and the multiple testing correction.
The CTT and ACTT tests are run with 39 and 299 + 200 permutations, respectively.
AutoML uses 10000 permutations and MMD-D 100 of them. The ME and SCF tests use
asymptotic quantiles. We recall that using a higher number of permutations for the quantile
does not necessarily lead to a more powerful test (Rindt et al., 2021, Section 7).
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A.3. Details on the experiments of Section 6

In this section, we present figures illustrating the four experimental settings described in
Section 6 with results in Figure 1: Mixture of Gaussians (Figure 2), Perturbed Uniform
d = 1 (Figure 3), Perturbed Uniform d = 2 (Figure 4), Galaxy MNIST (Figure 5), and
CIFAR 10 vs 10.1 (Figure 6).
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Figure 2: Mixture of Gaussians. Both distributions are mixtures of four 2-dimensional
Gaussians with means (±20,±20) and standard deviations σ1 = σ2 = σ3 = 1.
Samples from p (orange) are drawn with σ4 = 1, while samples from q (blue) are
drawn with σ4 = 2.
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Figure 3: Perturbed Uniform d = 1. One-dimensional uniform densities with two perturba-
tions are plotted for various amplitudes a.
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Figure 4: Perturbed Uniform d = 2. Two-dimensional uniform densities with two pertur-
bations per dimension are plotted for various amplitudes a.

Figure 5: Galaxy MNIST (Walmsley et al., 2022) images in dimension 3× 64× 64 across
four categories: ‘smooth cigar’ (first row), ‘edge on disk’ (second row), ‘unbarred
spiral’ (third row), and ‘smooth round’ (fourth row).
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(a) CIFAR-10 images (b) CIFAR-10.1 images

Figure 6: Images from the CIFAR-10 (Krizhevsky, 2009) and CIFAR-10.1 (Recht et al.,
2019) test sets. This figure corresponds to Figure 5 of Liu et al. (2020).
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A.4. Time complexity and runtimes

The time complexity of MMD-FUSE is

O
(
KB

(
m2 + n2

))
where m and n are the sizes of the two samples, K is the number of kernels fused, and B is
the number of permutations to estimate the quantile. Note that this is an improvement
over the time complexity of MMDAgg (Schrab et al., 2021)

O
(
K
(
B +B′

)(
m2 + n2

))
where the extra parameter B′ corresponds to the number of permutations used to estimate
the multiple testing correction, often set as B′ = B in practice (Schrab et al., 2021, Section
5.2). We indeed observe in Figure 7 that MMD-FUSE runs twice as fast as MMDAgg.
While the runtimes of most tests should not depend on the type of data (only on the

sample size and on the dimension), we note that the runtimes of tests relying on optimisation
(e.g. ME & SCF) can be affected. In the experiment of Figure 7, we consider samples from
multivariate Gaussians centred at zero with covariance matrices Id and σId with σ = 1.1.
We vary both the sample sizes and the dimensions.
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Figure 7: Test runtimes plotted using logarithmic scales. In the LHS figure, we vary the
sample size for fixed dimension 10. In the RHS figure, we vary the dimension for
fixed sample size 500. The mean and standard deviations of the test runtimes
over ten repetitions are reported. Recall that the tests are run with their default
parameters with different numbers of permutations, and that AutoML has a
training time parameter which is set to 60 seconds by default, as described in
Appendix A.2.
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B. Closed Form Mean Kernel

We have observed in the main text that in some cases where the prior has non-finite support,
F̂USE1 still gives a straightforwardly expressed statistic. This happens because for certain
kernel choices, the expectation of the kernel with respect to some parameter is still a closed
form kernel. We give one example of such a statistic here.

Theorem 4. For any fixed α > 0, the following is an example of a F̂USE1 statistic:

F̂USE
rq

1 (Z) = sup
R>0

M̂MD2
u(Z; krq(α,

√
Rη0))− α ·

logR+ 1/R− 1

λ

where krq(α,η) = (1 + ‖x− y‖2/2η2)−α is a rational quadratic kernel, and η0 is the “prior”
bandwidth (which can essentially be absorbed into the data scaling).

Proof of Theorem 4. Firstly, we define a general rational quadratic kernel

krq(α,η)(x, y) =

(
1 +
‖x− y‖2

2η2

)−α
.

Note that kg(r) = e−τr
2/2 with r = ‖x− y‖ is a bounded kernel with parameter τ . If we

take the expectation of τ with respect to a Gamma distribution,

Eτ∼Γ(α,β)e
−τr2/2 =

βα

Γ(α)

∫ ∞
−∞

τα−1 exp(−τβ) exp(−τr2/2) dτ

=
βα

Γ(α)
Γ(α)

(
β +

r2

2

)−α
=

(
1 +

r2

2β

)−α
= krq(α,

√
β)(r).

The KL divergence between Gamma distributions is

KL(Γ(α, β),Γ(α0, β0)) = (α− α0)ψ(α) + log
Γ(α0)

Γ(α)
+ α0 logR+ α

(
1

R
− 1

)
where R = β/β0. Using the dual form of F̂USE1 we find that

F̂USE1 = sup
α>0,β>0

M̂MD
2
(Z; krq(α,

√
β))−

KL(Γ(α, β),Γ(α0, β0))

λ
.

Restricting α = α0, prior β0 = η2
0 and setting β = Rη2

0 gives the result.
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C. Null and Permutation Concentration Results

In this section we prove the following concentration results under the null (or equivalently,
under the permutation distribution). These results show that for appropriate choices of λ,
both statistics converge to zero at rate at least O(1/n) under the null or permutations. We
recall that without loss of generality n ≤ m.

Theorem 5. If the kernels are bounded, k ≤ κ < ∞, then with probability at least 1− δ
over either a sample Z from the null,

F̂USE1(Z) ≤ 4κ2λ

n(n− 1)
+

log 1
δ

λ

provided 0 < λ <
√
n(n− 1)/8

√
2κ, and

−F̂USE1(Z) ≤ 4κ2t

n(n− 1)
+

log 1
δ

t

provided 0 < t <
√
n(n− 1)/8

√
2κ.

Also, under the null hypothesis with probability at least 1− δ, and without the assumption
of boundedness,

F̂USEN (Z) ≤ 16λ

n(n− 1)
+

log 1
δ

λ
,

provided 0 < λ <
√
n(n− 1)/16

√
2, and

−F̂USEN (Z) ≤ 16t

n(n− 1)
+

log 1
δ

t
,

provided 0 < t <
√
n(n− 1)/16

√
2.

The above bounds are also valid for F̂USE1(σZ), F̂USEN (σZ) and any fixed Z (potentially
non-null) under permutation by σ ∼ Uniform(Sn+m).

Note that, while the upper bounds depend critically upon our choice of λ, the lower
bounds instead hold for any t that satisfy the requisite conditions. Note also that choosing
λ �

√
n(n− 1)) � n indeed gives the desired rates O(1/n).

C.1. Sub-Gaussian Chaos Theorem

Theorem 6 (Sub-Gaussian Chaos; adapted from Rudelson and Vershynin, 2013). Let Xi

be mean-zero 1-sub-Gaussian variables, such that logEX exp(tX) ≤ 1
2 t

2 for every t ∈ R.
Let A ∈ Rn×n be a real symmetric matrix with zeros on the diagonal and we define the
sub-Gaussian chaos

W :=

n∑
i=1

n∑
j=1

AijXiXj .

For all |t| ≤ (4
√

2‖A‖)−1,

EX exp(tW ) ≤ exp
(
16t2‖A‖2F

)
.

Proof. This proof is closely adapted from Rudelson and Vershynin (2013) with some
modifications which reflect the desire for the tightest possible bound on the moment
generating function.
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Let Xi be mean-zero 1-sub-Gaussian variables, such that logEX exp(tX) ≤ 1
2 t

2 for every
t ∈ R. We are considering

W :=
∑
i,j

AijXiXj

where Aij has zeros on the diagonal. We introduce independent Bernoulli random variables
δi ∈ {0, 1} with Eδi = 1/2 and define the matrix Aδ with entries (Aδ)ij = δi(1 − δj)Aij .
Note that EδAδ = 1

4A, since Eδi(1− δj) equals 1/4 for i 6= j.
Writing the set of indices Λδ = {i ∈ [n] : δi = 1}, we introduce

Wδ :=
∑
i,j

AδijXiXj =
∑

i∈Λδ, j∈Λcδ

AijXiXj =
∑
j∈Λcδ

Xj

(∑
i∈Λδ

AijXi

)
.

By Jensen’s inequality,
EX exp(tW ) ≤ EX,δ exp(4tWδ).

Conditioned on δ and (Xi)i∈Λδ , Wδ is a linear combination of the mean-zero sub-gaussian
random variables Xj , j ∈ Λc

δ. It follows that this conditional distribution of Wδ is sub-
gaussian, and so

E(Xj)j∈Λc
δ

exp(4tWδ) ≤ exp

1

2
(4t)2

∑
j∈Λcδ

(∑
i∈Λδ

AijXi

)2

 .

Now introduce g = (g1, . . . , gn) ∼ N(0, 1) i.i.d. draws from a normal and note that the
above can also arise directly as the moment generating function of these Normal variables,
so we make the further equality (for fixed X and δ),

exp

1

2
(4t)2

∑
j∈Λcδ

(∑
i∈Λδ

AijXi

)2

 = Eg exp

4t
∑
j∈Λcδ

gj

(∑
i∈Λδ

AijXi

)2

 .

Rearranging the terms, and using that the resulting term is a linear combination of the
sub-Gaussian Xi, i ∈ Λδ, we find that

EX,g exp

4t
∑
j∈Λcδ

gj

(∑
i∈Λδ

AijXi

)2

 = EX,g exp

4t
∑
i∈Λδ

Xi

( ∑
j∈Λcδ

Aijgj

)
≤ EX,g exp

1

2
(4t)2

∑
i∈Λδ

( ∑
j∈Λcδ

Aijgj

)2


≤ EX,g exp

8t2
∑
i

(∑
j

δi(1− δj)Aijgj
)2


≤ EX,g exp

(
8t2‖Aδg‖22

)
.

Now, by the rotation invariance of the distribution of g, the random variable ‖Aδg‖22
is distributed identically with

∑
i s

2
i g

2
i where si denote the singular values of Aδ, so by

independence

EX,g exp
(

8t2‖Aδg‖22
)

= Eg exp

(
8t2
∑
i

s2
i g

2
i

)
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=
∏
i

Eg exp
(
8t2s2

i g
2
i

)
≤
∏
i

exp
(
16t2s2

i

)
where the last inequality holds if 8t2 maxi s

2
i ≤ 1

4 and arises since the MGF of a Chi-squared
variable, Eetg2 ≤ e2t for 0 ≤ t ≤ 1

4 .
Since maxi si = ‖Aδ‖ ≤ ‖A‖ and

∑
i s

2
i = ‖Aδ‖2F ≤ ‖A‖F , we combine the above steps

to find that
EX exp(tW ) ≤ exp

(
16t2‖A‖2F

)
for |t| ≤ (4

√
2‖A‖)−1.

C.2. Permutation Bounds for Two-Sample U-Statistics

The main technical result we use for the null bounds is the following. Here we assume
the permutation-invariance property of the U statistic kernel that h(x1, x2; y1, y2) =
h(x2, x1; y1, y2) = h(x1, x2; y2, y1). This can always be ensured by symmetrizing the kernel,
and is satisfied by the kernel used by M̂MD

2
which we consider in this paper.

Theorem 7. Fix combined sample Z of size n+m with n ≤ m and let h(x1, x2; y1, y2) be
a two-sample U-statistic kernel as described above. Define

U(Z) :=
1

n(n− 1)m(m− 1)

∑
(i,i′)∈[n]2

∑
(j,j′)∈[m]2

h(Zi, Zi′ ;Zn+j , Zn+j′).

and

Ū(Z) =
1

n(n− 1)m(m− 1)
sup

σ∈Sn+m

√√√√√ ∑
(i,i′)∈[n]2

 ∑
(j,j′)∈[m]2

h(Zσ(i), Zσ(i′);Zσ(n+j), Zσ(n+j′))

2

.

If σ ∈ Uniform(Sn+m) is a random permutation of the dataset, then then for all |t| <
(4
√

2Ū(Z))−1,
Eσ exp(tU(σZ)) ≤ exp

(
t2Ū2(Z)

)
.

Theorem 8 (Normaliser Bound). If h(x, x′; y, y′) = k(x, x′) + k(y, y′)− k(x, y′)− k(x′, y)
then

Ū(Z)2 ≤ 16

n(n− 1)
N̂(Z)

where n ≤ m and
N̂(Z) =

1

n(n− 1)

∑
(i,j)∈[n+m]2

k(Zi, Zj)
2.

Additionally, if 0 ≤ k(x, x′) ≤ κ for all x, x′, then

Ū2(Z) ≤ 4κ2

n(n− 1)
.

Proof of Theorem 7. Firstly, we make the following definitions based on the work of
Kim et al. (2022): let L = {l1, . . . , ln} be an n-tuple drawn uniformly without replacement
from [m]. Then for any fixed Z

EL[ŨL(Z)] = U(Z) (5)
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where we define

ŨL(Z) :=
1

n(n− 1)

∑
(i,j)∈[n]2

h(Zi, Zj ;Zn+li , Zn+lj ).

Note that in the above we have used the invariance h(x1, x2; y1, y2) = h(x1, x2; y2, y1).
Now additionally define ζi as i.i.d. Rademacher variables, and let σ ∼ Uniform(Sn+m).

For any fixed Z
ŨL(σZ) =d ŨL,ζ(σZ) (6)

where we have defined

ŨL,ζ(Z) :=
1

n(n− 1)

∑
(i,j)∈[n]2

ζiζjh(Zi, Zj ;Zn+li , Zn+lj ).

This works because we can first define Z̃i = Zi or Z̃i = Zn+li , each with probability 1
2 .

The distribution of ŨL(σZ̃) =d ŨL(σZ), and then using the symmetry of k(x, y) in its
arguments gives the equivalence Equation (6) (c.f. eq. 28, Kim et al., 2022).
Now for fixed Z, combining Equations (5) and (6) and Jensen’s inequality we gives

Eσ exp(tU(σZ)) = Eσ exp(tEL[ŨL(σZ)|σ])

= Eσ exp(tEL,ζ [ŨL,ζ(σZ)|σ])

≤ Eσ,ζ exp

tEL
 1

n(n− 1)

∑
(i,j)∈[n]2

ζiζjh(Zσ(i), Zσ(j);Zσ(n+li), Zσ(n+lj))

∣∣∣∣∣∣σ


= Eσ,ζ exp

t 1

n(n− 1)

∑
(i,j)∈[n]2

ζiζjEL
[
h(Zσ(i), Zσ(j);Zσ(n+li), Zσ(n+lj))

∣∣∣σ]


=: Eσ,ζ exp

t n∑
i=1

n∑
j=1

ζiζjA
σ
ij

 .

In the final step we have defined the matrixAσ, with entriesAσij = (n(n−1))−1EL
[
h(Zσ(i), Zσ(j);Zσ(n+li), Zσ(n+lj))

∣∣∣σ]
for i 6= j and Aii = 0 for all i.

We note that ζ is independent of σ and satisfies the conditions of Theorem 6, so applying
this theorem we obtain that

Eσ,ζ exp

t n∑
i=1

n∑
j=1

ζiζjA
σ
ij


≤ Eσ exp

(
16t2‖Aσ‖2F

)
for |t| < (4

√
2‖Aσ‖)−1

≤ Eσ exp
(
16t2‖Aσ‖2F

)
for |t| < (4

√
2‖Aσ‖F )−1

≤ exp

(
16t2 sup

σ∈Sn+m

‖Aσ‖2F

)
for |t| < (4

√
2 sup
σ∈Sn+m

‖Aσ‖F )−1

where in the second line we have used that ‖M‖ ≤ ‖M‖F for any matrix M .
Now note that

‖Aσ‖2F =

n∑
i=1

n∑
i′=1

(Aσii′)
2
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=
1

n2(n− 1)2

∑
(i,i′)∈[n]2

(EL
[
h(Zσ(i), Zσ(i′);Zσ(n+li), Zσ(n+li′ )

)
∣∣σ])2

=
1

n2(n− 1)2

∑
(i,i′)∈[n]2

 1

m(m− 1)

∑
(j,j′)∈[m]2

h(Zσ(i), Zσ(i′);Zσ(n+j), Zσ(n+j′))

2

.

We complete the proof by noting that Ū(Z)2 = supσ∈Sn+m
‖Aσ‖2F .

Proof of Theorem 8. We have

Ū2(Z) =
1

n2(n− 1)2

∑
(i,i′)∈[n]2

 1

m(m− 1)

∑
(j,j′)∈[m]2

h(Zσ(i), Zσ(i′);Zσ(n+j), Zσ(n+j′))

2

≤ 1

n2(n− 1)2m(m− 1)

∑
(i,i′)∈[n]2

∑
(j,j′)∈[m]2

h(Zσ(i), Zσ(i′);Zσ(n+j), Zσ(n+j′))
2

≤ 4

n2(n− 1)2m(m− 1)

∑
(i,i′)∈[n]2

∑
(j,j′)∈[m]2

(
k(Zσ(i), Zσ(i′))

2 + k(Zσ(n+j), Zσ(n+j′))
2

+ k(Zσ(i), Zσ(n+j′))
2 + k(Zσ(i′), Zσ(n+j′))

2
)

=
4

n2(n− 1)2m(m− 1)

(
m(m− 1)

∑
(i,i′)∈[n]2

k(Zσ(i), Zσ(i′))
2

+ n(n− 1)
∑

(j,j′)∈[m]2

k(Zσ(n+j), Zσ(n+j′))
2

+ (m− 1)(n− 1)
∑

1≤i≤n

∑
1≤j≤m

k(Zσ(i), Zσ(n+j′))
2

+ (m− 1)(n− 1)
∑

1≤i≤n

∑
1≤j≤m

k(Zσ(i′), Zσ(n+j))
2

)

≤ 16

n2(n− 1)2

∑
(i,j)∈[n+m]2

k(Zi, Zj)
2

=
16

n(n− 1)
N̂(Z)

where the first inequality holds by Jensen’s inequality, the second by convexity (so that
(a+ b+ c+d)2 ≤ 4(a2 + b2 + c2 +d2)) and the third inequality using n ≤ m to upper bound
each of the four scalars inside the parentheses by m(m− 1), and we also upper bounded
each of sums over subsets of terms by the sum over all possible terms.
For the second part note that since h ∈ [−2κ, 2κ]

Ū2(Z) =
1

n2(n− 1)2

∑
(i,i′)∈[n]2

 1

m(m− 1)

∑
(j,j′)∈[m]2

h(Zσ(i), Zσ(i′);Zσ(n+j), Zσ(n+j′))

2

≤ 1

n2(n− 1)2

∑
(i,i′)∈[n]2

(2κ)2

≤ 4κ2

n(n− 1)
.
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C.3. Bounds for MMD-Fuse under Null: Proof of Theorem 5

Proof of Theorem 5. Note under the null Z is permutation invariant. We will use
Theorem 7 with h as the MMD 2-statistic kernel, so that U(Z) = M̂MD

2
(Z) (for fixed k).

We will use the notation ≤1−δ to denote that the inequality holds with probability at least
1− δ over the random variables being considered.

Note that Ū2 ≤ 4κ2/n(n− 1) so that

logEk∼π(〈Z〉) exp
(
tM̂MD

2

k(X,Y )
)

≤1−δ
1

t
logEZEk∼π(〈Z〉) exp

(
tM̂MD

2

k(X,Y )
)

+ log
1

δ
Markov

= logEσEZEk∼π(〈Z〉) exp
(
tM̂MD

2

k(σZ)
)

+ log
1

δ
Null Permutation-Free

= logEZEk∼π(〈Z〉)Eσ exp
(
tM̂MD

2

k(σZ)
)

+ log
1

δ
Prior Permutation-Free

≤ logEZEk∼π(〈Z〉)Eσ exp
(
t2Ū2

k

)
+ log

1

δ

≤ 4κ2t2

n(n− 1)
+ log

1

δ
,

where the penultimate result holds provided |t| < (4
√

2 supk Ūk(Z))−1. By dividing M̂MD
2

by the permutation invariant N̂k in every one of the above, we also find that

logEk∼π(〈Z〉) exp

tM̂MD
2

k(X,Y )√
N̂k(〈Z〉)

 ≤ 16t2

n(n− 1)
+ log

1

δ
,

in the final step using that Ū2 ≤ 16N̂k/n(n− 1). The upper tail bounds for F̂USEN and
F̂USE1 immediately follow from their definitions and t = λ.

Lower Bounds. For the lower tails, we note that for any function f(Z, k) and s > 0,

logEk∼π(〈Z〉) exp(λf(Z, k)) ≥ sup
ρ
ρ[f(Z, k)]− KL(ρ, π)

λ

≥ Ek∼π(〈Z〉)[f(Z, k)] =
1

s
Ek∼π(〈Z〉) exp (sf(Z, k)) .

Combining this with the above results and t = −s gives

−F̂USE1(Z) ≤1−δ
4κ2t2

n(n− 1)
+ log

1

δ
,

−F̂USEN (Z) ≤1−δ
16t2

n(n− 1)
+ log

1

δ
.

Unlike the upper bounds, where rates depend on setting λ � n, we can freely choose s here
to optimise the lower bounds.

Under Permutation. To prove the equivalent result for σZ under permutations, we replace
Z by σZ and our application of Markov’s inequality introducing an expectation over Z
with one over σ. This changes nothing else in the derivations.
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D. Concentration under the alternative

We give the exponential convergence bounds for F̂USE1 under the alternative and relate
it to its mean. In the following we will assume that K is a class of kernels bounded by
0 < κ <∞, so that F̂USE1 ∈ [−2κ, 2κ]. We also introduce the following quantity (for fixed,
data-free prior π) which is closely related to the expectation of F̂USE1,

FUSE1 := sup
ρ∈M1

+(K)

MMD2(p, q;Kρ)−
KL(ρ, π)

λ
.

Theorem 9. FUSE1 is bounded in the following ways:

FUSE1 ≤ EZF̂USE1(Z) ≤ FUSE1 +8κ2λ

(
1

n
+

1

m

)
,

and

MMD2(p, q;Kπ) ≤ FUSE1 ≤ sup
ρ∈M1

+(K):KL(ρ,π)<∞
MMD2(p, q;Kρ) ≤ sup

k∈supp(π)
MMD2(p, q; k).

Under the null hypothesis FUSE1 = 0.

We can now state concentration results for F̂USE1 in terms of FUSE1.

Theorem 10. With probability at least 1− δ over the sample

F̂USE1(Z)− FUSE1 ≤ 8κ2λ

(
1

n
+

1

m

)
+

log δ−1

λ

and with the same probability,

FUSE1−F̂USE1(Z) ≤ κ
√

8

(
1

n
+

1

m

)
log δ−1.

D.1. Proofs

We begin with the following lemma.

Theorem 11 (Bounded Difference Lemma). A function f has the bounded difference
property there exist constants L` <∞, ` ∈ [n] such that

|f(z1, . . . , zk, . . . , zn)− f(z1, . . . , z
′
`, . . . , zn)| ≤ L`

for any choices of z1, . . . , zn, z′`, and ` ∈ [n].
For such a function and any independent random variables Z1, . . . , Zn and t ∈ R (subject

to appropriate measurability restrictions)

E exp(t(f(Z1, . . . , Zn)− Ef(Z1, . . . , Zn))) ≤ exp

(
1

8
t2

n∑
`=1

L2
`

)
.

Proof of Theorem 11. We introduce the Doob construction, defining

D` = E[f(Z1, . . . , Zn)|Z1, . . . , Z`]− E[f(Z1, . . . , Zn)|Z1, . . . , Z`−1]
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This is a martingale difference sequence with

n∑
`=1

D` = f(Z1, . . . , Zn)− Ef(Z1, . . . , Zn).

It is shown by (for example) Wainwright (2019, Ch. 2.2, p.37) that D` lies in an interval
of length at most L` by the bounded differences assumption. Thus, applying iterated
expectation and Hoeffding’s lemma for the MGF of bounded random variables,

E exp(t(f(Z1, . . . , Zn)− Ef(Z1, . . . , Zn))) = E exp

(
λ

n∑
`=1

D`

)

= E

[
exp

(
λ
n−1∑
`=1

D`

)
E [exp (λDn) |Z1, . . . , Zn−1]

]

≤ E

[
exp

(
λ
n−1∑
`=1

D`

)]
exp

(
1

8
λ2L2

nDn

)

≤ exp

(
1

8
t2

n∑
`=1

L2
`

)
.

The MGF of M̂MD
2
can then be bounded using the following result, proved via the

above.

Theorem 12. For bounded kernel k ≤ κ, t ∈ R and sample sizes m,n,

E exp(t(M̂MD
2
(X,Y ; k)−MMD2(p, q; k))) ≤ exp

(
8t2κ2

(
1

m
+

1

n

))
.

Proof of Theorem 12. We show that M̂MD
2
(x, y; k) has the bounded differences

property and then apply Theorem 11. Denote by x\` for ` ∈ [n] that the `-th example in
the x sample is changed. Then

|M̂MD
2
(x, y; k)−M̂MD

2
(x\`, y; k)|

=

∣∣∣∣∣∣ 2

n(n− 1)

∑
i∈[n]\{`}

(k(x`, xi)− k(x′`, xi))−
2

mn

m∑
j=1

(k(x`, yj)− k(x′`, yj))

∣∣∣∣∣∣
≤ 2

n(n− 1)

∑
i∈[n]\{`}

|k(x`, xi)− k(x′`, xi)|+
2

mn

m∑
j=1

|k(x`, yj)− k(x′`, yj)|

≤ 2

n(n− 1)
(n− 1) · 2κ+

2

mn
m · 2κ

=
8κ

n
.

A similar process for the y sample gives bounds of 8κ/m, so that M̂MD
2
has the bounded

differences property with

n+m∑
`=1

L2
` ≤ n ·

(
8κ

n

)2

+m ·
(

8κ

m

)2

= 64κ2

(
1

n
+

1

m

)
.
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Proof of Theorem 9. For the first lower bound, note

EZF̂USE1(Z) = EZ sup
ρ

Eρ[M̂MD
2
]− KL

λ
≥ sup

y
EZ,ρ[M̂MD

2
]− KL

λ
= FUSE1 .

For the upper bound, note that

EZF̂USE1(Z) ≤
[

1

λ
log

(
EZEk∼π

[
eλM̂MD

2

k

])]
Jensen

≤
[

1

λ
log

(
Ek∼πEZ

[
eλM̂MD

2

k

])]
Independence of π from Z

≤ 1

λ
log
(
Ek∼π

[
eλMMD2

k +8λ2κ2/N
])

Theorem 12

= FUSE1 +8κ2λ

(
1

n
+

1

m

)
.

The lower bound on FUSE1 is obtained by relaxing the supremum with ρ = π. The upper
bounds come since the supremum over ρ ∈ M1

+(K) : KL(ρ, π) < ∞ of MMD2 is clearly
greater than the KL-regularised version. Under the null hypothesis, MMD(p, q; k) = 0 for
every kernel (regardless of them being characteristic or not), so FUSE1 = 0.
Proof of Theorem 10. For the upper bound,

F̂USE1(Z) =

[
1

λ
log

(
Ek∼π

[
eλM̂MD

2

k

])]
≤1−δ

[
1

λ
log

(
EZEk∼π

[
eλM̂MD

2

k

])]
+

log δ−1

λ
Markov

≤
[

1

λ
log

(
Ek∼πEZ

[
eλM̂MD

2

k

])]
+

log δ−1

λ
Independence of π from Z

≤ 1

λ
log
(
Ek∼π

[
eλMMD2

k +8λ2κ2(m−1+n−1)
])

+
log δ−1

λ
Theorem 12

= FUSE1 +8κ2λ

(
1

n
+

1

m

)
+

log δ−1

λ
.

For the lower bound, let ρ∗ be the value of ρ achieving the supremum in the dual form of
FUSE1 (which we note is independent of the sample), so that

FUSE1−F̂USE1(Z) = sup
ρ

{
Eρ∗ [MMD2

k]−
KL(ρ, π)

λ

}
− sup

ρ

{
Eρ[M̂MD

2

k]−
KL(ρ, π)

λ

}
= Eρ∗ [MMD2

k]−
KL(ρ∗, π)

λ
− sup

ρ

{
Eρ[M̂MD

2

k]−
KL(ρ, π)

λ

}
≤ Eρ∗ [MMD2

k]−
KL(ρ∗, π)

λ
−
(
Eρ∗ [M̂MD

2

k]−
KL(ρ∗, π)

λ

)
= Eρ∗ [MMD2

k−M̂MD
2

k]

= MMD2(p, q;Kρ∗)− M̂MD
2

k(X,Y ;Kρ∗).

This is of the form with an MGF that can be bounded by Theorem 12, so we apply
Chernoff’s exponential inequality to obtain the final result (since Kρ∗ is independent of the
sample).
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E. Power Analysis

E.1. General Recipe for Power Analysis of Permutation Tests

The general outline for power analysis consists of the following: First we start with the
Type II error probability. Then we attempt to upper bound it by iteratively applying the
following simple lemma to the different terms.

Monotonicity in High Probability. Let X,Y be r.v.s, such that X ≤ Y w.p. ≥ 1 − δ.
Then P(X ≥ c) ≤ P(Y ≥ c) + δ. This result can be applied both when X ≤ Y a.s. giving
δ = 0, or if Y = a is constant.
Iteratively applying this lemma gives P(Type II) ≤ Nδ, and then we set Nδ = β.
As a first step in the above process we will use the following useful result (adapted

from Kim et al., 2022) to convert from the random permutations we use in practice to
the full set of permutation. This result shows that when B is taken sufficiently large
(roughly Ω(α−2 log(β−1))), the only changes to the final power results will be in constants
multiplying α and β.

Theorem 13 (From Randomised to Deterministic Permutations). Suppose G = (g1, . . . , gB+1)
consists of B uniformly drawn permutations from G, plus the identity permutation as gB+1.
Then

P

(
τ(Z) ≤ quantile

1−α,G
τ(gZ)

)
≤ P

(
τ(Z) ≤ quantile

1−αB ,G
τ(gZ)

)
+ δ

where 1− αB = B+1
B (1− α) +

√
log(2/δ)

2B .
We note that provided B ≥ 8α−2 log(2/δ), then 1− αB ≤ 1− α/2.

Proof. We note the Dvoretzky–Kiefer–Wolfowitz inequality Dvoretzky et al. (1956);
Massart (1990) for empirical CDF Fn of n samples from original CDF F :

P
(

sup
x
|Fn(x)− F (x)| ≥ t

)
≤ 2e−2nt2 (7)

for every t > 0.
The permutation CDF for a group G take the form

FG(x) =
1

|G|
∑
g∈G

1{τ(gZ) ≤ x}

and given sample G̃ = (g1, . . . , gB) i.i.d. uniformly from G (this excludes the identity
permutation added to G), the empirical CDF is

F̂
G̃

(x) =
1

B

∑
g∈G̃

1{τ(gZ) ≤ x}

We can also write F̂G(x) including the identity permutation as gB+1, and note that F̂G(x) =
Define the good event

A =

{
sup
x
|F
G̃

(x)− FG(x)| ≤
√

log(2/δ)

2B

}
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which holds with probability at least 1− δ by Equation (7). Given A, we have

qG := quantile
1−α,g∈G

τ(gZ) = inf{r ∈ R :
1

B + 1

∑
g∈G

1{τ(gZ) ≤ r} ≥ 1− α}

≤ inf{r ∈ R :
1

B + 1

∑
g∈G

1{τ(gZ) ≤ r} ≥ 1− α}

= inf{r ∈ R : F̂
G̃

(r) ≥ B + 1

B
(1− α)}

≤ inf

{
r ∈ R : F̂G(r) ≥ B + 1

B
(1− α) +

√
log(2/δ)

2B

}
= quantile

1−αB ,g∈G
τ(gZ) =: q

where we have defined αB as above.
Overall we find P(τ ≤ qG) ≤ P(τ ≤ qG|A) + P(Ac) ≤ P(τ ≤ q) + δ.

E.2. Variance of M̂MD
2

In proving our power results it is necessary to upper bound the variance of M̂MD
2
.

Theorem 14. For any kernel k upper bounded by κ, if n ≤ m ≤ cn for c ≥ 1, there exists
universal constant C > 0 depending only on c, such that

V[M̂MD
2
] ≤ C

(
4κMMD2

n
+
κ2

n2

)
Proof. We define

σ2
10 = VX(EX′,Y,Y ′ [h(X,X ′, Y, Y ′)])

σ2
01 = VY (EX,X′,Y ′ [h(X,X ′, Y, Y ′)])

σ2
11 = max{E[k2(X,X ′)],E[k2(X,Y )],E[k2(Y, Y ′)]}.

From a well-known bound (based on Lee, 1990, Equation 2, p.38; see also Kim et al.,
2022, Appendix F, Equation 59 or Schrab et al., 2021, Proposition 3),

V[M̂MD
2
] ≤ C

(
σ2

10

m
+
σ2

01

n
+ σ2

11

(
1

m
+

1

n

)2
)

≤ C
(
σ2

10

n
+
σ2

01

n
+
σ2

11

n2

)
where we used that n ≤ m ≤ cn. and the result in red above, and the boundedness of the
kernel for the final term. This gives the further bound

V[M̂MD
2
] ≤ C

(
4κMMD2

n
+
κ2

n2

)

σ2
10 = varX(EX′,Y,Y ′ [h(X,X ′, Y, Y ′)])

= EX
[(
EX′,Y,Y ′ [h(X,X ′, Y, Y ′)]

)2]
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= EX
[
〈φ(X)− φ(Y ), φ(X ′)− φ(Y ′)〉2

]
≤
(
EX
[
‖φ(X)− µQ‖2

])
‖µP − µQ‖2

≤ 2κ‖µP − µQ‖2

= 2κMMD2,

a similar result for σ01, and the simple bound σ2
11 ≤ κ2.

E.3. Proof of Theorem 2

Proof. For any ρ, we define

Sρ = MMD2(p, q;Kρ)−
KL(ρ, π)

λ
− quantile

1−αB ,G
F̂USE1(σZ)

and note that 1− αB < 1− α/2 under the assumption B ≥ 8α−2 log(4/β).
By Theorem 13 we can consider the full permutation set as

Pp×q,G

(
F̂USE1(Z) ≤ quantile

1−α,G
F̂USE1(σZ)

)
≤ Pp×q

(
F̂USE1(Z) ≤ quantile

1−αB ,G
F̂USE1(σZ)

)
+β/2.

Next, Type II under the full permutation set can be bounded as

Pp×q

(
F̂USE1(Z) ≤ quantile

1−αB ,G
F̂USE1(σZ)

)

= P
(

MMD2(p, q;Kρ)−
1

λ
KL(ρ, π)− F̂USE1(Z) ≥ Sρ

)
= P

(
MMD2(p, q;Kρ)−

1

λ
KL(ρ, π)− sup

ρ′

(
M̂MD

2
(Z;Kρ)−

1

λ
KL(ρ′, π)

)
≥ Sρ

)
≤ P

(
MMD2(p, q;Kρ)− M̂MD

2
(Z;Kρ) ≥ Sρ

)
=

1

S2
ρ

Vp×q
[
M̂MD

2
(Z;Kρ)

]
≤ C1

S2
ρ

(
4κMMD2

n
+
κ2

n2

)
,

where the inequalities are sup f(ρ′) ≥ f(ρ), Chebyshev’s, and Theorem 14. This term is
upper bounded by β/2 if we set

S2
ρ >

2C1

β

(
4κMMD2

n
+
κ2

n2

)
.

We also recall that from Theorem 5 when λ = cn/κ,

quantile
1−αB ,G

F̂USE1(σZ) ≤ C2κ(1 + logα−1)

n
.
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We also note that for a, b, x all non-negative, if x2 > a2 + 2b, then x2 > ax+ b. This works

because x2 > ax+ b is equivalent to x2 >

(
a
2 +

√
a2

4 + b

)2

by taking the positive root, and

(
a

2
+

√
a2

4
+ b

)2

=
a2

2
+ b+ 2

a

2

√
a2

4
+ b ≤ a2 + 2b

using Young’s inequality 2AB ≤ A2 +B2.
Combining the above the Type II error rate is controlled by β provided any of the

following statements are true for any ρ (with each new result implying the former):

MMD2(p, q;Kρ) >
KL(ρ, π)

λ
+
C2κ(1 + logα−1)

n
+

√
2C1

β

(
4κMMD2

n
+
κ2

n2

)

MMD2(p, q;Kρ) >
KL(ρ, π)

λ
+
C2κ(1 + logα−1)

n
+

√
8C1κ

nβ
MMD +

√
2C1κ

n
√
β

MMD2(p, q;Kρ) >
2 KL(ρ, π)

λ
+

2C2κ(1 + logα−1)

n
+

8C1κ

nβ
+

2
√

2C1κ

n
√
β

MMD2(p, q;Kρ) >
Cκ

n

(
1

β
+ log

1

α
+ KL(ρ, π)

)
where we used that

√
x+ y ≤ √x+

√
y, the result above, and λ = cn/κ.

E.4. Power for F̂USEN

The proof of this statement proceeds similarly to the proof of Theorem 2 We assume that
n ≤ m ≤ cn for some c ≥ 1. Based on this, note that Nk ≤ κ2/C2

1 for C1 depending only
on m/n ∈ [1, c].

For any ρ : KL(ρ, π) <∞ we define

Tρ =
C1

κ
·MMD2

Kρ

Sρ = Tρ −
1

λ
KL(ρ, π)− quantile

1−αB ,G
F̂USEN (σZ).

Note that (since MMD2 ≥ 0 is strictly non-negative, unlike M̂MD
2
which can be negative),

−Eρ

 MMD2
k√

N̂k(Z)

 ≤ −C1

κ
Ek∼ρ

[
MMD2

k

]
= −Tρ. (8)

Now we bound the type II under the full set of permutations as

P

(
F̂USEN (Z) ≤ quantile

1−αB ,G
F̂USEN (σZ)

)

= P
(
Tρ −

1

λ
KL(ρ, π)− F̂USEN (Z) ≥ Sρ

)

= P

Tρ − 1

λ
KL(ρ, π)− sup

ρ′

Ek∼ρ′

M̂MD
2
(Z; k)√

N̂k(Z)

− 1

λ
KL(ρ′, π)

 ≥ Sρ

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≤ P

Tρ − Ek∼ρ

M̂MD
2
(Z; k)√

N̂k(Z)

 ≥ Sρ
 sup f(ρ′) ≥ f(ρ)

= P

Tρ − Ek∼ρ

 MMD2
k√

N̂k(Z)
− MMD2

k√
N̂k(Z)

+
M̂MD

2
(Z; k)√

N̂k(Z)

 ≥ Sρ


= P

Tρ − Ek∼ρ

 MMD2
k√

N̂k(Z)

+ Ek∼ρ

MMD2
k−M̂MD

2
(Z; k)√

N̂k(Z)

 ≥ Sρ


= P

Tρ − Ek∼ρ

 MMD2
k√

N̂k(Z)

+ Ek∼ρ

MMD2
k−M̂MD

2
(Z; k)√

N̂k(Z)

 ≥ Sρ


≤ P

Ek∼ρ

MMD2
k−M̂MD

2
(Z; k)√

N̂k(Z)

 ≥ Sρ
 by Equation (8)

≤ P

∣∣∣∣∣∣Ek∼ρ
MMD2

k−M̂MD
2
(Z; k)√

N̂k(Z)

∣∣∣∣∣∣ ≥ Sρ
 x ≤ |x|

≤ P

Ek∼ρ

∣∣∣∣∣∣MMD2
k−M̂MD

2
(Z; k)√

N̂k(Z)

∣∣∣∣∣∣
 ≥ Sρ

 |x| convex, Jensen

= P

Ek∼ρ

 |MMD2
k−M̂MD

2
(Z; k)|√

N̂k(Z)

 ≥ Sρ
 Nk non-neg.

≤ 1

Sρ
EZEk∼ρ

 |MMD2
k−M̂MD

2
(Z; k)|√

N̂k(Z)

 Nk non-neg, Markov

≤ 1

Sρ

√√√√EZEk∼ρ
[
|MMD2

k−M̂MD
2
(Z; k)|2

]
EZEk∼ρ

[
1

N̂k(Z)

]
Cauchy-Schwarz.

Thus, combining with Theorem 13, our true type II error will be controlled by β if for any ρ

Sρ >
2

β

√√√√EZEk∼ρ
[
|MMD2

k−M̂MD
2
(Z; k)|2

]
EZEk∼ρ

[
1

N̂k(Z)

]
.

Provided there is a c > 0 with

Ep×q

[
1

N̂k(Z)

]
≤ c

for all k, use λ = cn and Theorem 5 to reduce this to the condition

MMD2(p, q;Kρ) > C2κ

(
logα−1

n
+

1

β

√
EρVp×q

[
M̂MD

2
(Z; k)

]
+

KL(ρ, π)

n

)
.

Applying Theorem 14, the proof is completed in essentially the same way as in the result
for F̂USE1 (with slightly different β dependence).
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