
HAL Id: hal-04156310
https://hal.science/hal-04156310v2

Preprint submitted on 12 Jul 2023 (v2), last revised 3 Mar 2024 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Randomized Householder QR
Laura Grigori, Edouard Timsit

To cite this version:

Laura Grigori, Edouard Timsit. Randomized Householder QR. 2023. �hal-04156310v2�

https://hal.science/hal-04156310v2
https://hal.archives-ouvertes.fr

Randomized Householder QR

Laura Grigori∗, Edouard Timsit†

July 7th, 2023

Abstract: This paper introduces a randomized Householder QR factorization (RHQR). This
factorization can be used to obtain a well conditioned basis of a set of vectors and thus can be employed in
a variety of applications. We discuss in particular the usage of this randomized Householder factorization
in the Arnoldi process. Numerical experiments show that RHQR produces a well conditioned basis and
an accurate factorization. We observe that for some cases, it can be more stable than Randomized
Gram-Schmidt (RGS) in single precision.

1 Introduction

Computing the QR factorization of a matrix 𝑊 ∈ R𝑛×𝑚, 𝑚 ≪ 𝑛, where 𝑄 ∈ R𝑛×𝑚 has orthonormal
columns and 𝑅 ∈ R𝑚×𝑚 is upper triangular, is a process that arises in a variety of applications. Since
it allows to compute both an orthogonal basis of 𝑊 and the linear least squares problem, it lies at the
heart of Krylov subspace methods used to solve linear systems of equations and eigenvalue problems.
In finite precision arithmetics, the level of orthogonality achieved by the columns of a matrix 𝑄 can
be measured by its condition number, which is the ratio of its largest and its smallest singular values.
In the case of perfect orthogonality, this ratio is 1 (well-conditioned matrix). As the condition number
increases, the computation of coordinates in the basis 𝑄 becomes less accurate (ill-conditioned matrix).
A QR factorization is usually obtained using the Gram-Schmidt process or the Householder process.
The Householder process relies on Householder vectors 𝑢1, · · · , 𝑢𝑚 ∈ R𝑛 and orthogonal matrices called
Householder reflectors 𝐻 (𝑢1), · · · , 𝐻 (𝑢𝑚) ∈ R𝑛×𝑛 such that

𝑊 = 𝐻 (𝑢1) · · ·𝐻 (𝑢𝑚)
[

𝑅

0(𝑛−𝑚)×𝑚

]
=
(
𝐼𝑛 −𝑈𝑇𝑈𝑡

) [𝑅

0(𝑛−𝑚)×𝑚

]
, (1)

where 𝑇 ∈ R𝑚×𝑚, 𝑈 = [𝑢1 | · · · | 𝑢𝑚] ∈ R𝑛×𝑚 is lower triangular, 𝑅 ∈ R𝑚×𝑚 is upper triangular, and
0(𝑛−𝑚)×𝑚 denotes a zero matrix of dimensions (𝑛 − 𝑚) × 𝑚. J.H. Wilkinson showed in [11] that the
Householder QR factorization process is normwise backward stable in finite precision. Later on, it
has been shown in [7, Chapter 19.3, Thm 19.4 p360] that the Householder procedure is column-wise
backward stable in finite precision. Overall, computations with Householder reflectors are well-known
for their excellent numerical stability.

Applying the Woodburry-Morrison formula to 𝐼𝑛 −𝑈𝑇𝑈𝑡 , it was outlined in [9] that

𝑇 =
(
sut

(
𝑈𝑡𝑈

)
+ 𝐼𝑚

)−1
, (2)

where sut denotes the strictly upper triangular part of a matrix. This leads to the following factored
form of a sequence of Householder reflectors:

𝐻 (𝑢1) · · ·𝐻 (𝑢𝑚) = 𝐼𝑛 −𝑈
(
sut

(
𝑈𝑡𝑈

)
+ 𝐼𝑚

)−1
𝑈𝑡 . (3)

∗Laboratory for Simulation and Modelling, Paul Scherrer Institute, Switzerland; Institute of Mathematics, EPFL,
Switzerland; part of the work was performed while the author was at Sorbonne Université, Inria, CNRS, Université de
Paris, Laboratoire Jacques-Louis Lions, Paris, France.

†Sorbonne Université, Inria, CNRS, Université de Paris, Laboratoire Jacques-Louis Lions, Paris, France

1

An idea from Charles Sheffield and praised by Gene Golub led to the analysis in [8] revealing, among
other things, that the factor

(
sut

(
𝑈𝑡𝑈

)
+ 𝐼𝑚

)
captures the loss of orthogonality in finite precision Mod-

ified Gram Schmidt (MGS). Accordingly, new stable implementations of MGS were derived [4, 3] (see
comparisons of different implementations in the recent review [5]).

In this work, we introduce a randomized version of Householder QR factorization that allows to
reduce its computational cost. For this, we rely on a dimension reduction technique called subspace
embedding. Using a particular matrix Ω ∈ Rℓ×𝑛 with ℓ ≪ 𝑛, this technique allows, for all 𝑥, 𝑦 in a vector
subspace of interest, to approximate ⟨𝑥, 𝑦⟩ (2𝑛 flops) by ⟨Ω𝑥,Ω𝑦⟩ (2ℓ flops). We define randomized
Householder reflectors 𝐻Ω(𝑢1), · · ·𝐻Ω(𝑢𝑚) such that

𝐻Ω(𝑢1) · · ·𝐻Ω(𝑢𝑚) = 𝐼𝑛 −𝑈
(
sut

(
(Ω𝑈)𝑡Ω𝑈

)
+ 𝐼𝑚

)−1
ut

(
(Ω𝑈)𝑡Ω

)
, (4)

where ut denotes the upper triangular part of a matrix. This allows to produce the factorization𝑊 = 𝑄𝑅,
where 𝑄 ∈ R𝑛×𝑚 is well conditioned and 𝑅 ∈ R𝑚×𝑚 is upper triangular. Thus 𝑄 can be used as a basis
for Krylov subspace methods and 𝑅 to approximate the solution of a linear least squares problem. More
generally, it can be used to compute a well-conditioned basis of Range(𝑊).

The subspace embedding technique was applied in [2] to the Gram-Schmidt process, yielding the
Randomized Gram-Schmidt algorithm (RGS). The condition number of the basis built by RGS is similar
to that of Modified Gram-Schmidt (MGS) and sometimes even better for half the flops. Furthermore,
the communication cost of RGS is the same as that of Classical Gram-Schmidt (CGS) on a parallel
computer, but CGS is known to have stability problems. While RGS is shown to produce a basis with a
small condition number, the authors also showed that for some difficult cases, the condition number of
the basis built by both RGS and MGS increases to 102 in single precision. In the same context of single
precision, the basis built by RHQR has condition number ≈ 3.4. In terms of communication cost, RHQR
requires one synchronization per iteration, having thus similar communication cost to RGS and CGS.
While here we focus on one precision, we note that RHQR is suitable for mixed precision computation,
similarly to RGS.

This paper is organized as follows. Section 2 discusses the classical Householder QR factorization
and the subspace embedding technique. Section 3 introduces the randomized Householder reflector, and
shows that the application of a sequence of such reflectors to the matrix 𝑊 yields a triangular factor
𝑅 ∈ R𝑚×𝑚. We then introduce a factored form of such a sequence of randomized Householder reflectors
and present our main algorithm, RHQR, and its block version, blockRHQR. Section 4 describes a set
of numerical experiments that show that this process produces a well conditioned basis and an accurate
factorization of 𝑊 . We first show the accuracy of the factored forms involved in RHQR; we then discuss
the condition number of the output 𝑄 and the accuracy of the factorization; finally, we show how the
Householder-Arnoldi procedure can be adapted to RHQR. A theoretical analysis of the condition number
of the 𝑄 factor will follow shortly in an upcoming updated version of this work. Given the connection
between MGS and Householder QR, it could be possible to derive a randomized MGS procedure based
on the derivations in this paper and the formulas in [3, 4].

2 Preliminaries

In this section, we first introduce our notations. We then outline the original Householder procedure.
Finally, we introduce the subspace embedding technique.

2.1 Notations

The symbol ⊘ used between two vectors denotes the concatenation of vectors. If 𝑥 ∈ R𝑛1 and 𝑦 ∈ R𝑛2 ,
then the vector 𝑥 ⊘ 𝑦 ∈ R𝑛1+𝑛2 is defined by

𝑥 ⊘ 𝑦 =
[
𝑥

𝑦

]
2

For all 2 ≤ 𝑞 ≤ 𝑚, 𝑢𝑞 is a vector of R𝑛 whose first 𝑞 − 1 entries are zero. The last 𝑛 − 𝑞 + 1 coordinates
of 𝑢𝑞 are denoted 𝑣𝑞 ∈ R𝑛−𝑞+1. The vector 𝑢1 = 𝑣1 is a vector of R𝑛. With the concatenation notation,

∀𝑞 ∈ {2, · · ·𝑚}, 𝑢𝑞 = 0𝑞−1 ⊘ 𝑣𝑞 =
[
0𝑞−1
𝑣𝑞

]
, 𝑢1 := 𝑣1 ∈ R𝑛.

The vectors 𝑢1, · · · , 𝑢𝑞 form the following matrix

∀𝑞 ∈ {1, · · ·𝑚}, 𝑈𝑞 =
[
𝑢1 | 𝑢2 | · · · | 𝑢𝑞

]
∈ R𝑛×𝑞 .

For all 𝑞 ∈ {1, · · ·𝑚}, matrices 𝑇𝑞 and 𝑆𝑞 denote 𝑞 × 𝑞 matrices. We make use of a matrix Ω ∈ Rℓ×𝑛
throughout this work, and denote

∀𝑞 ∈ {2 . . . 𝑚}, Ω𝑞 =
[
0ℓ×(𝑞−1) Ω𝑞

]
∈ Rℓ×𝑛,

where Ω𝑞 ∈ Rℓ×(𝑛−𝑞+1) denotes the last 𝑛 − 𝑞 + 1 columns of Ω (in other words, Ω𝑞 is formed by erasing
the first 𝑞 − 1 columns of Ω). As a consequence of these notations,

Ω𝑢𝑞 = Ω𝑞𝑢𝑞 = Ω𝑞𝑣𝑞 .

The vectors 𝑤1, · · · , 𝑤𝑚 ∈ R𝑛 denote the 𝑚 columns of the input matrix𝑊 ∈ R𝑛×𝑚 whose QR factorization
is computed. We denote, for all column 𝑤𝑞 of 𝑊 ,

𝑤𝑞 = 𝑤𝑞,1 ⊘ 𝑤𝑞,2, 𝑤𝑞,1 ∈ R𝑞−1, 𝑤𝑞,2 ∈ R𝑛−𝑞+1,

that is 𝑤𝑞,1 denote the first 𝑞−1 entries of 𝑤𝑞, and 𝑤𝑞,2 the last 𝑛−𝑞+1 entries of 𝑤𝑞. For all 1 ≤ 𝑖, 𝑗 ≤ 𝑛,
𝑒
𝑗

𝑖
denotes the 𝑖-th canonical vector of R𝑛− 𝑗+1. More simply put, 𝑒

𝑗

𝑖
is the vector 𝑒𝑖+ 𝑗−1 without its first

𝑗 − 1 zeros. If the exponent is omitted, 𝑒𝑖 denotes the 𝑖-th canonical vector of R𝑛.
Given any matrix 𝐴, we denote respectively ut(𝐴), sut(𝐴), lt(𝐴) and slt(𝐴) the upper triangular,

strictly upper triangular, lower triangular, strictly lower triangular parts of 𝐴, respectively. We denote
(𝐴)𝑖, 𝑗 the entry of 𝐴 located on the 𝑖-th row and the 𝑗-th column. We denote 𝐴 𝑗1: 𝑗2 the matrix formed
by the 𝑗1, 𝑗1+1, · · · 𝑗2-th columns of 𝐴. Finally, throughout this work, the letter 𝜖 denotes a real number
of]0, 1[.

2.2 Householder orthonormalization

The Householder QR factorization is an orthogonalization procedure, alternative to the Gram Schmidt
process. While the Gram-Schmidt process focuses on building explicitly the orthogonal factor 𝑄, House-
holder’s procedure focuses instead on building the factor 𝑅 using orthogonal transformations. 𝑄 and 𝑄𝑡

are stored in a factored form. The central operation of this procedure is the Householder reflector:

∀𝑧 ∈ R𝑛 \ {0}, 𝐻 (𝑧) = 𝐼𝑛 −
2

∥𝑧∥2
𝑧 𝑧𝑡 , (5)

yielding

∀𝑧 ∈ R𝑛 \ {0}, ∀𝑥 ∈ R𝑛, 𝐻 (𝑧) · 𝑥 = 𝑥 − 2

∥𝑧∥2
⟨𝑧, 𝑥⟩ 𝑧.

Remarking that for all 𝜆 ∈ R∗, 𝐻 (𝜆𝑧) = 𝐻 (𝑧), we usually consider that 𝑧 is scaled adaptively, such that
their first non-zero entry is 1. Otherwise, they can also be scaled systematically such that ∥𝑧∥ =

√
2,

simplifying the expression of 𝐻 (𝑧) into 𝐼𝑛 − 𝑧𝑧𝑡 . It can be seen that the Householder reflector (5) is
a symmetric matrix and that 𝐻 (𝑧)2 = 𝐼𝑛 (involutary matrix). Those two properties combined show
that 𝐻 (𝑧) is an orthogonal matrix. The vector 𝑧 is an eigenvector associated to eigenvalue −1, and the

3

orthogonal of its span is an 𝑛 − 1 dimensional eigenspace associated to eigenvalue 1, i.e the Householder
reflector is a reflector with respect to the latter hyperplane. Given a vector 𝑤 ∈ R𝑛, and setting
𝑧 = 𝑤 − ∥𝑤∥𝑒1 and assuming that 𝑤 ≠ 0, one can straightforwardly derive

𝐻 (𝑧) · 𝑤 = ∥𝑤∥𝑒1,

hence the Householder reflector can be used to annihilate all the coordinates of a vector, except its
first entry. By induction, it can be inferred that, given a vector 𝑤𝑞 ∈ R𝑛, there exists 𝑣𝑞 ∈ 𝑅𝑛−𝑞+1,
𝑢𝑞 = 0𝑞−1 ⊘ 𝑣𝑞 ∈ R𝑛 such that

𝐻 (𝑢𝑞) · 𝑤𝑞 =
[
𝐼𝑞−1

𝐻 (𝑣𝑞)

]
· 𝑤𝑞 =

[
𝑤𝑞,1
∥𝑤𝑞,2∥𝑒𝑞1

]
, 𝑤𝑞,1 ∈ R𝑞−1, 𝑤𝑞,2 ∈ R𝑛−𝑞+1, 𝑤𝑞 = 𝑤𝑞,1 ⊘ 𝑤𝑞,2, (6)

that is the reflector 𝐻 (𝑢𝑞) now annihilates the coordinates 𝑞 + 1 to 𝑛 of the vector 𝑤, without modifying
its first 𝑞 − 1 entries. Hence there exist vectors 𝑢1, · · · 𝑢𝑚 such that

𝐻 (𝑢𝑚) · · ·𝐻 (𝑢1)𝑊 =

[
𝑅

0(𝑛−𝑚)×𝑚

]
⇐⇒ 𝑊 = 𝐻 (𝑢1) · · ·𝐻 (𝑢𝑚)

[
𝑅

0(𝑛−𝑚)×𝑚

]
where 𝑅 is upper triangular. The formula for computing the Householder vector 𝑧 is not stable if 𝑤 is
close to 𝜆𝑒1 for some 𝜆 ∈ R+, since

𝜆𝑒1 − ∥𝜆𝑒1∥𝑒1 = 0

hence 𝑧 = 𝑤 − ∥𝑤∥𝑒1 ≈ 0. In this case, we prefer to set 𝑧 = 𝑤 + ∥𝑤∥𝑒1. It is straightforward to check
that, for such 𝑧, 𝐻 (𝑧) · 𝑤 = −∥𝑤∥𝑒1 while

𝜆𝑒1 + ∥𝜆𝑒1∥𝑒1 = 2𝜆𝑒1

hence 𝑧 = 𝑤 + ∥𝑤∥𝑒1 ≈ 2𝑤 ≠ 0. Finally, straightforward induction shows that the composition
𝐻 (𝑢1) · · ·𝐻 (𝑢𝑚) can be factored as{

𝐻 (𝑢1) · · ·𝐻 (𝑢𝑚) = 𝐼𝑛 −𝑈𝑞𝑇𝑞𝑈𝑡𝑞
𝐻 (𝑢𝑞) · · ·𝐻 (𝑢1) = 𝐼𝑛 −𝑈𝑞𝑇 𝑡𝑞𝑈𝑡𝑞

(7)

where 𝑇𝑞 is defined by induction. If the vectors 𝑢1, · · · 𝑢𝑞 are scaled such that they are all of norm
√
2,

𝑇𝑞 is given by the following formula:

𝑇1 = [1] , ∀𝑞 ∈ {1, · · ·𝑚 − 1}, 𝑇𝑞+1 =
[

𝑇𝑞 −𝑇𝑞𝑈𝑡𝑞𝑢𝑞+1
01×𝑞 1

]
.

As a triangular matrix with a diagonal of ones, 𝑇𝑞 is non-singular. As outlined in [9], we can then apply
the Woodburry Morrison formula to 𝐼𝑛 −𝑈𝑞𝑇𝑞𝑈𝑡𝑞 and and derive

𝑇𝑞 =

(
sut(𝑈𝑡𝑞𝑈𝑞) + 𝐼𝑞

)−1
.

The meaning of this matrix is then unveiled by the analysis found in [8]

2.3 Subspace embeddings

Definition 2.1. [12, Definition 1] We say that a matrix Ω ∈ Rℓ×𝑛 is an 𝜖-embedding of a vector-subspace
W ⊂ R𝑛 if and only if

∀𝑥 ∈ W, (1 − 𝜖)∥𝑥∥2 ≤ ∥Ω𝑥∥ ≤ (1 + 𝜖)∥𝑥∥2. (8)

4

By using polarization identities on both 𝑥 ↦→ ∥Ω𝑥∥2 and 𝑥 ↦→ ∥𝑥∥2, and then using the parallelogram
identity, one can find that (8) is equivalent to

∀𝑥, 𝑦 ∈ W, |⟨Ω𝑥,Ω𝑦⟩ − ⟨𝑥, 𝑦⟩| ≤ 𝜖 ∥𝑥∥ · ∥𝑦∥. (9)

We say that a vector 𝑞 ∈ R𝑛 is a sketch unit vector if and only if

∥Ω𝑞∥ = 1.

We say that vectors 𝑞1, · · · , 𝑞𝑚 are sketch orthogonal if and only if

∀ 𝑖 < 𝑗 ∈ {1, · · ·𝑚}, ⟨Ω𝑞𝑖,Ω𝑞 𝑗 ⟩ = 0.

We say that they are sketch orthonormal if and only if they are sketch unit vectors and sketch orthogonal.
There exist distributions over Rℓ×𝑛 whose realizations Ω ∈ Rℓ× are an 𝜖-embedding of any 𝑚-

dimensional vector subspaceW𝑚 with high probability. These distributions are called oblivious subspace
embeddings (OSE).

Definition 2.2. [12, Definition 2] Let 𝜖, 𝛿 ∈]0, 1[. Let 𝑚 ≤ ℓ ≪ 𝑛 ∈ N∗. We say that Ω ∈ Rℓ×𝑛 comes
from oblivious subspace embedding distribution with parameters (𝜖, 𝛿, 𝑚) and denote Ω ∈ OSE(𝜖, 𝛿, 𝑚) if
and only if for any 𝑚-dimensional vector subspaceW𝑚 ⊂ R𝑛, Ω is an 𝜖-embedding ofW𝑚 with probability
at least 1 − 𝛿.

We choose two such distributions : Gaussian OSE and subsampled random Hadamard transform
OSE (SRHT OSE). In both cases, as the sampling size ℓ increases, the probability of failure 𝛿 and 𝜖
decrease. The Gaussian OSE is the simplest OSE, and consists in drawing a matrix 𝐺 ∈ Rℓ×𝑛 where the
coefficients are i.i.d standard Gaussian variables, and set

Ω =
1
√
ℓ
𝐺 (10)

This technique has the inconvenient of relying on a dense matrix Ω, whose application to a vector 𝑥 ∈ R𝑛
costs 2ℓ𝑛 flops. On the other hand, it has the advantage of scaling well on a parallel computer. As
proven in [12], this distribution is an (𝜖, 𝛿, 𝑚) OSE if ℓ = O

(
𝜖−2(𝑚 − log 𝛿)

)
. In the meanwhile, the

SRHT OSE writes

Ω =

√︂
𝑛

ℓ
𝑃𝐻𝐷, (11)

where 𝑃 is made of ℓ rows of the identity matrix 𝐼𝑛 drawn uniformly at random (which corresponds to the
sampling step), 𝐻 is the Walsh-Hadamard transform, and 𝐷 is a diagonal of random signs. Its application
costs O(𝑛 log 𝑛) flops when implemented with standard Walsh-Hadamard Transform. Furthermore, it re-
quires similar sampling size as Gaussian OSE, as it is a (𝜖, 𝛿, 𝑚) OSE if ℓ = O

(
𝜖−2 (𝑚 + log(𝑛 − 𝛿)) log(𝑚 − 𝛿)

)
.

A block version of this transform, which is suitable for distributed computing, is proposed in [1].
If Ω ∈ Rℓ×𝑛 is an 𝜖-embedding for Range(𝑄) where 𝑄 ∈ R𝑛×𝑚, then in particular 𝑄𝑥 and 𝑄𝑦 ∈ R𝑛

are well-sketched, where 𝑥 and 𝑦 denote respectively the largest and smallest right-singular vectors of
𝑄. In turn (see [12, 2]),

𝜎max(𝑄) = ∥𝑄𝑥∥ ≤
1

√
1 − 𝜖

∥Ω𝑄𝑥∥ ≤ 1
√
1 − 𝜖

𝜎max(Ω𝑄)

𝜎min(𝑄) = ∥𝑄𝑦∥ ≥
1

√
1 + 𝜖

∥Ω𝑄𝑦∥ ≥ 1
√
1 + 𝜖

𝜎min (Ω𝑄)

yielding

Cond(𝑄) ≤
√︂

1 + 𝜖
1 − 𝜖 Cond(Ω𝑄). (12)

In particular, if Ω𝑄 ∈ Rℓ×𝑚 has orthonormal columns, the condition number of 𝑄 is simply bounded by
the constant

√
1 + 𝜖/

√
1 − 𝜖 . With 𝜖 = 1/2, we get Cond(𝑄) ≤

√
3.

5

3 Randomized Householder process

In this section, we introduce a randomized version of the Householder reflector and the associated
randomized Householder QR factorization for tall and skinny matrices. We then show how both the
leftwise and rightwise compositions of these reflectors can be represented in a factored form, in the spirit
of the original Householder process. Finally, we introduce the RHQR algorithm.

Let us set a matrix Ω ∈ Rℓ×𝑛 and not suppose anything about it for now, and let us denote Ω𝑞 the
last 𝑛 − 𝑞 + 1 columns of Ω. Let us for all 𝑞 ≤ 𝑛 set vector 𝑢𝑞 = 0𝑞−1 ⊘ 𝑣𝑞, where 𝑣𝑞 ∈ R𝑛−𝑞+1, and let
us suppose that 𝑢𝑞 ∉ Ker (Ω), that is 𝑣𝑞 ∉ Ker

(
Ω𝑞

)
. We define the randomized Householder reflector

associated to vector 𝑢𝑞 and matrix Ω as

𝐻Ω(𝑢𝑞) := 𝐼𝑛 −
2

∥Ω𝑢𝑞 ∥2
𝑢𝑞 (Ω𝑢𝑞)𝑡

[
0ℓ×(𝑞−1) Ω𝑞

]
= 𝐼𝑛 −

2

∥Ω𝑞𝑢𝑞 ∥2
𝑢𝑞 (Ω𝑞𝑢𝑞)𝑡Ω𝑞 . (13)

It is useful to remark that, denoting for all 𝑞 ≤ 𝑛 the operator

𝐴Ω𝑞 (𝑣𝑞) = 𝐼𝑛−𝑞+1 −
2

∥Ω𝑞𝑣𝑞 ∥2
(Ω𝑞𝑣𝑞)𝑡Ω𝑞, 𝐴Ω𝑞 (𝑣𝑞) ∈ R(𝑛−𝑞+1)×(𝑛−𝑞+1) , (14)

then we can rewrite (13) as

𝐻Ω(𝑢𝑞) =
[
𝐼𝑞−1

𝐴Ω𝑞 (𝑣𝑞)

]
. (15)

It is straightforward to show that for all 𝑧 ∈ R𝑛 and 𝑥 ∈ R𝑛, we get 𝐴Ω(𝑧) · 𝐴Ω(𝑧) · 𝑥 = 𝑥, hence 𝐴Ω(𝑧)
is an involutary matrix, that is 𝐴Ω(𝑧)2 = 𝐼𝑛. By induction on 𝑞 ∈ {1, · · ·𝑚}, for any 𝑣𝑞 ∈ R𝑛−𝑞+1
and 𝑥𝑞 ∈ R𝑛−𝑞+1, the operator 𝐴Ω𝑞 (𝑣𝑞) ∈ R(𝑛−𝑞+1)×(𝑛−𝑞+1) is also an involutary matrix. In turn, for all
𝑞 ∈ {1, · · · , 𝑚}, for all 𝑢𝑞 = 0𝑞−1 ⊘ 𝑣𝑞 ∈ R𝑛, the operator 𝐻Ω(𝑢𝑞) ∈ R𝑛×𝑛 is also an involutary matrix.
Now let us make our first assumption on Ω and let us suppose that its columns are unit vectors of
Rℓ (SRHT matrices are such matrices). In Proposition 3.1 we show that the randomized Householder
reflector can be used to eliminate the coordinates of a vector below a given entry, without modifying
the entries above.

Proposition 3.1. Let Ω ∈ Rℓ×𝑛 be an arbitrary matrix with unit columns. Let 𝑞 ∈ {1, · · · , 𝑚}. Let
𝑤 ∈ R𝑛 be written as 𝑤 = 𝑥 ⊘ 𝑦, where 𝑥 ∈ R𝑞−1 and 𝑦 ∈ R𝑛−𝑞+1 denote respectively the first 𝑞 − 1 entries
and the last 𝑛 − 𝑞 + 1 entries of 𝑤. Suppose that 𝑣𝑞 = 𝑦 − ∥Ω𝑞𝑦∥𝑒𝑞1 is not in the kernel of Ω𝑞. Then

𝐻Ω(𝑢𝑞) is well defined and we get:

𝐻Ω(𝑢𝑞) · 𝑤 =

[
𝑥

∥Ω𝑞𝑦∥𝑒𝑞1

]
.

Proof. Let 𝑤 ∈ R𝑛 and let us set 𝑢1 = 𝑣1 = 𝑤 − ∥Ω𝑤∥𝑒1 ∈ R𝑛. Let us suppose that 𝑢1 ∉ Ker (Ω). We
obtain

⟨Ω𝑢1,Ω𝑤⟩ = ∥Ω𝑤∥2 − ∥Ω𝑤∥⟨Ω𝑒1,Ω𝑤⟩.
We also have

∥Ω𝑢1∥2 = ∥Ω𝑤∥2 − 2∥Ω𝑤∥⟨Ω𝑤,Ω𝑒1⟩ + ∥Ω𝑤∥2∥Ω𝑒1∥2.
As columns of Ω are supposed to be unit vectors, we get ∥Ω𝑒1∥ = 1 yielding

∥Ω𝑢1∥2 = 2∥Ω𝑤∥2 − 2∥Ω𝑤∥⟨Ω𝑤,Ω𝑒1⟩

which leads to
2

∥Ω𝑢1∥2
⟨Ω𝑢1,Ω𝑤⟩ = 1.

Overall, we get
𝐴Ω(𝑢1) · 𝑤 = ∥Ω𝑤∥𝑒1.

The result follows from induction on 𝑞 ∈ {1, · · ·𝑚}. □

6

It is straightforward to check that, as in the deterministic Householder process, we can switch the
sign in the computation of the Householder vector to avoid cancellations. We can proceed similarly to
the Householder QR factorization of a matrix 𝑊 ∈ R𝑛×𝑚, where 𝑚 ≪ 𝑛, and produce the factorization:

𝐻Ω(𝑢𝑚) · 𝐻Ω(𝑢𝑚−1) · · ·𝐻Ω(𝑢1)𝑊 =

[
𝑅

0(𝑛−𝑚)×𝑚

]
,

where 𝑅 ∈ R𝑚×𝑚 is upper triangular. Since these operators are involutary, this is equivalent to:

𝑊 = 𝐻Ω(𝑢1) · 𝐻Ω(𝑢2) · · ·𝐻Ω(𝑢𝑚)
[

𝑅

0(𝑛−𝑚)×𝑚

]
,

or the thin QR factorization

𝑊 = 𝑄𝑚𝑅, where 𝑄𝑚 = 𝐻Ω(𝑢1) · 𝐻Ω(𝑢2) · · ·𝐻Ω(𝑢𝑚)𝐼1:𝑚 ∈ R𝑛×𝑚 .

We remark that the randomized Householder reflector is invariant under scaling of the randomized
Householder vector. Indeed, if 𝜆 ∈ R∗,

𝐻Ω(𝜆𝑢𝑞) = 𝐼𝑛 −
2

𝜆2∥Ω𝑞𝑢𝑞 ∥2
𝜆2𝑢𝑞 (Ω𝑞𝑢𝑞)𝑡Ω𝑞 = 𝐻

Ω(𝑢𝑞).

We present in Propositions 3.2 and 3.4 formulas for the factored forms of rightwise and leftwise compo-
sitions of randomized Householder reflectors. For simplicity, these formulas assume that the randomized
Householder vectors are scaled such that ∥Ω𝑢𝑞 ∥2 = ∥Ω𝑞𝑢𝑞 ∥2 = ∥Ω𝑞𝑣𝑞 ∥2 = 2, for all 1 ≤ 𝑞 ≤ 𝑚, simplify-
ing (13) into:

𝐻Ω(𝑢𝑞) = 𝐼𝑛 − 𝑢𝑞 (Ω𝑞𝑢𝑞)𝑡Ω𝑞 . (16)

Proposition 3.2. Assume vectors 𝑢1, · · · 𝑢𝑚 ∈ R𝑛 are scaled such that their sketched norm is
√
2. Define

by induction the matrix 𝑇𝑞 for all 1 ≤ 𝑞 ≤ 𝑚 as

𝑇1 ∈ R1×1, 𝑇1 = [1]

∀1 ≤ 𝑞 ≤ 𝑚 − 1, 𝑇𝑞+1 =
[
𝑇𝑞 −𝑇𝑞 (Ω𝑈𝑞)𝑡Ω𝑢𝑞+1
01×𝑞 1

]
(17)

Then for all 1 ≤ 𝑞 ≤ 𝑚, we have the factored form:

H−1𝑞 := 𝐻Ω(𝑢1) · · ·𝐻Ω(𝑢𝑞) = 𝐼 −𝑈𝑞𝑇𝑞ut
(
(Ω𝑈𝑞)𝑡Ω

)
. (18)

Proof. We proceed by induction on 𝑚. For the case 𝑚 = 2, multiplying 𝐻Ω(𝑢1) and 𝐻Ω(𝑢2), we observe
that

𝐻Ω(𝑢1)𝐻Ω(𝑢2) = 𝐼𝑛 −𝑈2𝑇2ut
(
(Ω𝑈2)𝑡Ω

)
,

where ut denotes the upper triangular part and

𝑇2 =

[
1 −⟨Ω𝑢1,Ω𝑢2⟩
0 1

]
.

Let us then suppose that
𝐻Ω(𝑢1) · · ·𝐻Ω(𝑢𝑞) = 𝐼 −𝑈𝑞𝑇𝑞ut

(
(Ω𝑈𝑞)𝑡Ω

)
,

for some matrix 𝑇𝑞 ∈ R𝑞×𝑞. Multiplying by 𝐻Ω(𝑢𝑞+1) on the right-side, we obtain

𝐻Ω(𝑢1) · · ·𝐻Ω(𝑢𝑞)𝐻Ω(𝑢𝑞+1) =
𝐼𝑛 − 𝑢𝑞+1(Ω𝑢𝑞+1)𝑡

[
0ℓ×𝑞 Ω𝑞+1

]
−𝑈𝑞𝑇𝑞ut

(
(Ω𝑈𝑞)𝑡Ω

)
+𝑈𝑞𝑇𝑞ut

(
(Ω𝑈𝑞)𝑡Ω

)
𝑢𝑞+1(Ω𝑢𝑞+1)𝑡

[
0ℓ×𝑞 Ω𝑞+1

]
.

7

We first observe that
(Ω𝑢𝑞+1)𝑡

[
0𝑞 Ω𝑞+1

]
=
[
0𝑞 (Ω𝑢𝑞+1)𝑡Ω𝑞+1

]
.

Since the first 𝑞 coordinates of 𝑢𝑞+1 are zero, we also have:

ut
(
(Ω𝑈𝑞)𝑡Ω

)
𝑢𝑞+1 = (Ω𝑈𝑞)𝑡Ω𝑢𝑞+1,

so that the total composition writes

𝐼𝑛 − 𝑢𝑞+1
[
0ℓ×𝑞 (Ω𝑢𝑞+1)𝑡Ω𝑞+1

]
−𝑈𝑞𝑇𝑞


(Ω𝑢1)𝑡Ω
01×1 (Ω𝑢2)𝑡Ω2
...

01×(𝑞−1) (Ω𝑢𝑞)𝑡Ω𝑞


+𝑈𝑞

(
𝑇𝑞 (Ω𝑈𝑞)𝑡Ω𝑢𝑞+1

) [
01×𝑞 (Ω𝑢𝑞+1)𝑡Ω𝑞+1

]
,

(19)

which can be factored as

𝐻Ω(𝑢1) · · ·𝐻Ω(𝑢𝑞)𝐻Ω(𝑢𝑞+1) = 𝐼 −𝑈𝑞+1
[
𝑇𝑞 −𝑇𝑞 (Ω𝑈𝑞)𝑡Ω𝑢𝑞+1
01×𝑞 1

]
ut

(
(Ω𝑈𝑞+1)𝑡Ω

)
.

The proposition follows by induction. □

Applying the Woodburry-Morrison formula to the factored form as in [9], we derive the following
proposition Since 𝑇𝑞 is triangular with unit diagonal, we deduce the following formula

Proposition 3.3. With the previous notations, we have

𝑇−1𝑞 + 𝑇−𝑡𝑞 = (Ω𝑈𝑞)𝑡Ω𝑈𝑞 =⇒ 𝑇𝑞 =
[
sut

(
(Ω𝑈𝑞)𝑡Ω𝑈𝑞

)
+ 𝐼𝑞

]−1
. (20)

By following the same reasoning, we summarize in the following proposition the factored form of the
leftwise compositions of randomized Householder reflectors:

Proposition 3.4. Assume vectors 𝑢1, · · · 𝑢𝑚 ∈ R𝑛 are scaled such that their sketched norm is
√
2. Define

by induction the matrix 𝑆𝑞 for all 1 ≤ 𝑞 ≤ 𝑚 as

𝑆1 ∈ R1×1, 𝑆1 = [1]

∀1 ≤ 𝑞 ≤ 𝑚 − 1, 𝑆𝑞+1 =

[
𝑆𝑞 0

−(Ω𝑢𝑞+1)𝑡Ω𝑞+1𝑈𝑞𝑆𝑞 1

]
. (21)

Then for all 1 ≤ 𝑞 ≤ 𝑚, we have the factored form

H𝑞 = 𝐻Ω(𝑢𝑞) · · ·𝐻Ω(𝑢1) = 𝐼 −𝑈𝑞𝑆𝑞ut
(
(Ω𝑈𝑞)𝑡Ω

)
. (22)

Algorithm 1 describes the randomized Householder QR (RHQR) factorization of a matrix𝑊 ∈ R𝑛×𝑚,
with 𝑚 ≪ 𝑛, that relies on the previous derivations. We consider here that the vectors become available
as in a Krylov subspace solver and we describe a left-looking version of the algorithm. In the case when
the vectors are available at once, a right-looking version can be derived, that does not need to construct
the factored form before the end of the factorization.

This algorithm stores 𝑅 in place of the upper triangular part of 𝑊 . The matrix 𝑈𝑚 can be stored
in the lower triangular part of 𝑊 (the diagonal of 𝑈𝑚 can be stored in a vector). The storage cost of
Ω𝑈𝑚, 𝑇𝑚, 𝑆𝑚 is negligible compared to that of 𝑊 . The output can be used to produce the thin factor
𝑄𝑚 = H−1𝑚 𝐼1:𝑚. Lines 3 and 7 output the result of the application of 𝐻Ω(𝑢1) (resp. 𝐻Ω(𝑢𝑞)) to 𝑤1 (resp.

8

Algorithm 1: Randomized-Householder QR (RHQR), left-looking

Input: Given: Matrix 𝑊 ∈ R𝑛×𝑚, matrix Ω ∈ Rℓ×𝑛, 𝑚 < 𝑙 ≪ 𝑛

1 Compute scaled 𝑢1 and Ω𝑢1 such that 𝐻Ω(𝑢1) · 𝑤1 = ∥Ω𝑤1∥𝑒1
2 Set 𝑇1 = 𝑆1 = [1] , 𝑈1 = [𝑢1], Ω𝑈1 = [Ω𝑢1]
3 Set (𝑊)1,1 = ∥Ω𝑤1∥
4 for 𝑞 = 2 : 𝑚 do
5 𝑤𝑞 ←

[
𝐼𝑛 −𝑈𝑞−1𝑆𝑞−1ut

(
(Ω𝑈𝑞−1)𝑡Ω

)]
· 𝑤𝑞

6 Compute scaled 𝑢𝑞 and Ω𝑢𝑞 such that 𝐻Ω(𝑢𝑞)𝑤𝑞 = 𝑤𝑞,1 ⊘ (∥Ω𝑞𝑤𝑞,2∥𝑒𝑞1)
7 Set (𝑊)𝑞,𝑞 = ∥Ω𝑞𝑤𝑞,2∥
8 Update 𝑇𝑞, 𝑆𝑞 according to (17) and (21), 𝑈𝑞 =

[
𝑈𝑞−1 | 𝑢𝑞

]
, Ω𝑈𝑞 =

[
Ω𝑈𝑞−1 | Ω𝑢𝑞

]
9 𝑄𝑚 ←

[
𝐼𝑛 −𝑈𝑚𝑇𝑚ut

(
(Ω𝑈𝑚)𝑡Ω

)]
· 𝐼1:𝑚 (optional)

10 Return 𝑈𝑚,Ω𝑈𝑚, 𝑇𝑚, 𝑆𝑚, 𝑄 = 𝑄𝑚 (optional) and 𝑅 = (𝑊𝑖, 𝑗)1≤𝑖≤ 𝑗≤𝑚

H𝑞−1 · 𝑤𝑞). As to Line 5, the main challenge is the application of ut
(
(Ω𝑈𝑞)𝑡Ω

)
, which can be done in

several ways. For example, one can first compute (Ω𝑈𝑞)𝑡Ω𝑥, then substract the vector

0
⟨Ω𝑢2, 𝑥1Ω1:1⟩
⟨Ω𝑢3,Ω1:2𝑥1:2⟩

...

⟨Ω𝑢𝑞,Ω1:𝑞𝑥1:𝑞⟩


.

If Ω is not stored as a dense matrix but can only be applied to a vector (e.g SRHT OSE), one can also
compute explicitly along the iterations

slt
(
(Ω𝑈𝑞)𝑡Ω

)
=



0 0 0 0
⟨Ω𝑢2,Ω𝑒1⟩ 0 0 0
⟨Ω𝑢3,Ω𝑒1⟩ ⟨Ω𝑢3,Ω𝑒2⟩ 0 . . .

...
. . .

⟨Ω𝑢𝑞,Ω𝑒1⟩ ⟨Ω𝑢𝑞,Ω𝑒2⟩ . . . ⟨Ω𝑢𝑞,Ω𝑒𝑞−1⟩ 0 . . . 0


. (23)

Then, the computation of ut
(
(Ω𝑈𝑞)𝑡Ω

)
𝑥 is replaced by that of (Ω𝑈𝑞)𝑡Ω𝑥 followed by the substraction

of slt
(
(Ω𝑈𝑞)𝑡Ω

)
𝑥. The same approach can be used to compute the update of 𝑆𝑞.

We finally detail in Algorithm 2 a block version of Algorithm 1. The matrix 𝑊 ∈ R𝑛×(𝑚𝑏) is now
considered as formed by vertical slices 𝑊1, · · ·𝑊𝑏 ∈ R𝑛×𝑏. Algorithm 1 is then applied consecutively to
each blocks. For each 𝑊 𝑗 , we denote 𝑈𝑚, 𝑗 ,Ω𝑈𝑚, 𝑗 , 𝑇𝑚, 𝑗 , 𝑆𝑚, 𝑗 the output of Algorithm 1 applied to 𝑊 𝑗 .
Just as in Algorithm 1, the upper triangular par of 𝑊 is erased and replaced by the final 𝑅 factor, while[
𝑈𝑚,1 | · · · | 𝑈𝑚,𝑏

]
can be stored in place of the lower triangular part of 𝑊 (again, one can store the

diagonal in a vector). At step 𝑗 , the next application of Algorithm 1 must begin at the 𝑚(𝑗 − 1) + 1-th
row of the block 𝑊 𝑗 .

4 Numerical experiments

In this section, we first detail the matrices of our test set. We then test the stability and accuracy
of RHQR on difficult examples. Finally, we experiment an adaptation of Householder Arnoldi to the
randomized Householder reflectors.

9

Algorithm 2: Block Randomized-Householder QR (block RHQR)

Input: Given: Matrix 𝑊 = [𝑊1 · · ·𝑊𝑏] ∈ R𝑛×𝑚𝑏, matrix Ω ∈ Rℓ×𝑛, 𝑚𝑏 < 𝑙 ≪ 𝑛

Output: 𝑄 in factored form, 𝑅
1 Apply Algorithm 1 to the block 𝑊1 and output 𝑈𝑚,1,Ω𝑈𝑚,1, 𝑇𝑚,1, 𝑆𝑚,1
2 for 𝑗 = 2 : 𝑏 do
3 Apply

[
𝐼𝑛 −𝑈𝑚, 𝑗−1𝑆𝑚, 𝑗−1ut

(
(Ω𝑈𝑚, 𝑗−1)𝑡Ω

)]
· · ·

[
𝐼𝑛 −𝑈𝑚,1𝑇𝑚,1ut

(
(Ω𝑈𝑚,1)𝑡Ω

)]
to the block 𝑊 𝑗

4 Apply Algorithm 1 to 𝑊 𝑗 , starting from 𝑚(𝑗 − 1)-th row and output 𝑈𝑚, 𝑗 ,Ω𝑈𝑚, 𝑗 , 𝑇𝑚, 𝑗 , 𝑆𝑚, 𝑗

5 𝑄 ←
[
𝐼𝑛 −𝑈𝑚,1𝑆𝑚,1ut

(
(Ω𝑈𝑚,1)𝑡Ω

)]
· · ·

[
𝐼𝑛 −𝑈𝑚,𝑏𝑇𝑚,𝑏ut

(
(Ω𝑈𝑚,𝑏)𝑡Ω

)]
𝐼1:𝑚𝑏 (optional)

6 Return
{
𝑈𝑚, 𝑗 ,Ω𝑈𝑚, 𝑗 , 𝑇𝑚, 𝑗 , 𝑆𝑚, 𝑗

}
1≤ 𝑗≤𝑏 , (𝑊𝑖, 𝑗)1≤𝑖, 𝑗≤𝑚𝑏

The first matrix is formed by uniformly discretized parametric functions, also used in [2], that we
denote 𝑆 ∈ R𝑛×𝑚. For all floating numbers 0 ≤ 𝑥, 𝜇 ≤ 1, the function is defined as

𝑓 (𝑥, 𝜇) = sin (10(𝜇 + 𝑥))
cos (100(𝜇 − 𝑥)) + 1.1

and the associated matrix is

𝑆 ∈ R50000×600, (𝑆)𝑖, 𝑗 = 𝑓

(
𝑖 − 1
50000

,
𝑗 − 1
600

)
. (24)

The condition number of 𝑆 ∈ R50000×600 in double precision is displayed in Figure 2a and in single
precision in Figure 3a. The second matrix 𝑆𝑏 ∈ R50000×2000 is defined similarly. A third construction
is used, based on a rank-one perturbation of a random matrix. We select a large positive real number
𝐾. We draw a random matrix and denote it 𝑃(𝐾) ∈ R50000×600, normalize its columns and select 𝑝 as
the first column of 𝑃(𝐾). Then, until the condition number of 𝑃(𝐾) is larger than 𝐾, we repeat the
following steps:

1. 𝑃(𝐾) ← 𝑃(𝐾) + 𝑝 · (1 1 · · · 1)
2. Normalize 𝑃(𝐾)

(25)

We select two matrices from SuiteSparse [6] to test the Arnoldi process based on randomized Housholder
QR. The first, Poli4, is an unsymmetric operator arising from solving an economic problem. Its condition
number is approximately 700, which qualifies it as a rather easy problem. The second problem is the
matrix SiO from [6]. It is symmetric but not positive. Its condition number is approximately 3500.
These matrices are summarized in Table 1.

Name Size Cond. Origin
𝑆 50000 × 600 ∞ synthetic functions
𝑆𝑏 50000 × 2000 ∞ synthetic functions
𝑃(𝐾) 50000 × 600 ≥ 𝐾 rank 1 perturbation of random matrix
El3D 18800 ≈ 1026 near incompressible regime 3D elasticity

Table 1: Set of matrices used in experiments

10

10-16

10-15

10-14

 50 100 150 200 250||
H

1
..

H
i -

 (
I
-

U
 T

 u
t)

||
2
 /
 |
|H

1
..

H
i||

2

iteration

Num. accuracy of I - U T ut

(a) Operator H−1𝑚 , ℓ = 2000

10-16

10-15

10-14

 50 100 150 200 250||
 H

i.
.H

1
 -

 (
I-

U
 S

 u
t)

||
2
 /
 |
|
H

i.
.H

1
||

2

iteration

Num. accuracy of I - U S ut

(b) Operator H𝑚, ℓ = 2000

Figure 1: Relative spectral error between the applications of factored form H−1𝑚 ,H𝑚 and the explicit
compositions of all reflectors.

4.1 Factored form

In this section we investigate the accuracy of the factored form, with respect to the expicit compositions
of randomized Householder reflectors. For all factored forms, we display the spectral norm of the error,
divided by that of the explicit compositions. These norms are approximated through Arnoldi iterations.
In Figure 1 we illustrate the evolution of this relative spectral error as the number of compositions
increase. The operators are randomly generated randomized Householder reflectors of R50000×50000.
Both Figures 1a and 1b show that this error remains very close to 10−15.

4.2 Randomized Householder QR factorization

We discuss in this section the accuracy of the randomized Householder QR factorization as described
in Algorithm 1. We first use SRHT OSE Ω, as its columns are unit vectors of Rℓ. We use in these tests
the set of synthetic functions described in (24). We consider 600 discretization points for 𝜇 and 50000
discretization points for 𝑥.

Figure 2 displays the accuracy obtained in double precision for both RHQR and RGS, in terms
of condition number of the computed basis and the accuracy of the obtained factorization. Figure 2a
shows the condition number of 𝑊 as the number of its vectors increases from 1 to 600. The condition
number grows exponentially and the matrix becomes numerically singular when the 300-th vector is
reached. Figure 2b displays in red the condition number of the basis obtained through RHQR from
Algorithm 1, and in blue that obtained by RGS for reference. We observe that for similar sampling size,
both algorithms produce a well conditioned basis, with a slight advantage for RGS. Figure 2c shows
the relative Frobenius error of the QR factorization obtained by RHQR (in red) and RGS (in blue).
Both algorithms produce accurate factorizations, with a slight advantage for RGS, but that becomes
negligible when 𝑚 grows. Those results also show that Algorithm 1 produces an accurate factorization
even with a sampling size inferior to the number of vectors to be sketched (ℓ = 450, 𝑚 = 600).

Figure 3 displays the condition number of the computed basis as well as the accuracy of the factor-
ization produced by Algorithm 1 in single precision. Figure 3a shows the condition number of the matrix
𝑊 , which becomes numerically singular once its 200-th vector is reached. Figure 3b shows the condition
number of the Q factor produced by Algorithm 1 in red, and that of RGS in blue. We see that, while
RGS produces a slightly better conditioned basis during the first iterations, its behavior changes as the
matrix 𝑊 becomes numerically singular. The increase of the condition number of the basis obtained
by RHQR from Algorithm 1 continues to grow very slowly, and produces a better conditioned basis

11

104

106

108

1010

1012

1014

1016

 100 200 300 400 500 600

C
on

d.
 o

f fi
rs

t i
 v

ec
s.

iteration i

W

Conds. (double precision)

(a) Cond. of initial matrix

100

101

102

103

 100 200 300 400 500 600

C
o

n
d
.

o
f

fir
st

 i
 v

e
c
s.

iteration i

Conds. (double precision)

RHouse 3000
RHouse 800
RHouse 450

RGS 3000
RGS 800

(b) Cond. of basis built

10-16

10-15

10-14

10-13

 100 200 300 400 500 600

||
 Q

R
[1

:i
]

-
W

[1
:i
]|
| F

 /
 |
|W

[1
:i
]|
| F

iteration i

Fact. error (double precision)

RHouse 3000
RHouse 800
RHouse 450

RGS 3000
RGS 800

(c) Factorization error

Figure 2: Randomized Householder QR in double precision (RHouse in the graphs) and comparison
with RGS.

103

104

105

106

107

108

109

 100 200 300 400 500 600

C
on

d.
 o

f fi
rs

t i
 v

ec
s.

iteration i

W

Conds. (simple precision)

(a) Cond. of initial built

100

101

102

103

 100 200 300 400 500 600

C
o

n
d
.

o
f

fir
st

 i
ve

c
s.

iteration i

Conds. (simple precision)

RHouse 3000
RHouse 800
RHouse 300

RGS 3000
RGS 800

(b) Cond. of the Q factor, W = QR

10-8

10-7

10-6

10-5

 100 200 300 400 500 600
||
Q

R
[1

:i
]

-
W

[1
:i
]|
| F

 /
 |
|W

[1
:i
]|
| F

iteration i

Fact. error (simple precision)

RHouse 3000
RHouse 800
RHouse 450

RGS 3000
RGS 800

(c) Factorization error

Figure 3: Randomized Householder QR in single precision (RHouse in the graphs) and comparison with
RGS.

than RGS. More precisely, Algorithm 1 with a sampling size inferior to the number of columns of 𝑊
(ℓ = 300, 𝑚 = 600) outperforms RGS with a larger sampling size. In Figure 3c we show the relative
Frobenius error of the factorization. We see that both algorithms perform well, with a slight advantage
for RGS.

Lastly, we compare in Figure 4 the results obtained when the sketching is performed using SRHT
OSE with respect to the ones obtained with a modified Gaussian OSE. The Gaussian OSE cannot
be straightforwardly used in Algorithm 1, as its columns are not unit vectors of Rℓ. However, our
experiments show that it is possible to use Gaussian OSE if we explicitely scale its columns to be
unit vectors of Rℓ. Figure 4a displays the condition number of the basis produced by SRHT OSE and
modified Gaussian OSE, in double (plain lines) and simple (dotted lines) precision. In double precision,
the two techniques have similar behavior, with a slight advantage for modified Gaussian OSE at the end
of the iterations. In simple precision, both techniques have good accuracy, but SRHT OSE seems to be
slightly better for most of the iterations. Figure 4b shows the Frobenius norm of the relative error of
the factorization in double precision. Both techniques lead to small errors, with a clearer advantage for
SRHT OSE. Figure 4c displays the same errors in single precision, and we observe a similar behavior.

4.3 Block Randomized Householder QR

In this section we discuss the numerical accuracy as well as the condition number of the 𝑄 factor
produced by Algorithm 2. We use the same set of synthetic functions, this time on matrix 𝑆𝑏 with

12

 2

 3

 4

 5

 6

 7

 8

 100 200 300 400 500 600

C
o

n
d
.

o
f

fir
st

 i
 v

e
c
s.

iteration i

Conds, scaled Gaussian

SRHT F64
SRHT F32

Gauss F64
Gauss F32

(a) Cond. of basis built

10-15

10-14

 100 200 300 400 500 600

||
Q

R
[1

:i
]

-
W

[1
:i
]|
| F

 /
 |
|W

[1
:i
]|
| F

iteration i

Fact. error SRHT/Gauss F64

SRHT F64
Gauss F64

(b) Factorization error in double pre-
cision

10-7

10-6

10-5

 100 200 300 400 500 600

||
Q

R
[1

:i
]

-
W

[1
:i
]|
| F

 /
 |
|W

[1
:i
]|
| F

iteration i

Fact. error SRHT/Gaussian F32

SRHT F32
Gauss F32

(c) Factorization error in single pre-
cision

Figure 4: Comparison of modified Gaussian and SRHT OSE.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 6 8 10 12 14 16 18 20

C
on

di
tio

n
nu

m
be

r

number of blocks b

Float64, ΩQ
Float64, Q

Float32, ΩQ
Float32, Q

Condition numbers

(a) Condition number of 𝑄 as the
number of blocks 𝑏 increases

10-15

10-14

 6 8 10 12 14 16 18 20

||W
 -

 Q
R

|| F
 /

||W
|| F

number of blocks b

Float64

Fact. error, double precision

(b) Factorization relative error
∥𝑄𝑅 − 𝑊 ∥2 · ∥𝑊 ∥−12 in double pre-
cision as the number of blocks 𝑏 in-
creases

10-7

10-6

10-5

 6 8 10 12 14 16 18 20

||W
 -

 Q
R

|| F
 /

||W
|| F

number of blocks b

Float32

Fact. error, simple precision

(c) Same as (b) in simple precision

Figure 5: Condition number of the basis and accuracy of the factorization produced by block RHQR on
matrix 𝑆𝑏 ∈ R50000×2000, with sampling size ℓ = 4000

𝑚 = 2000 columns. We consider different block sizes, 𝑏 ∈ {5, 10, 16, 20}. The results are presented
in Figure 5. Figure 5a displays the condition number of the 𝑄 and sketched Ω𝑄 factors obtained for
different block sizes in both precisions. The condition numbers of factored forms don’t seem to multiply.
Furthermore, we see that the factorization is overall performing well with ℓ ≈ 2𝑚 (Cond(𝑄) ≈ 8).
In Figures 5b and 5c, we see that the factorization relative error is small in both precisions.

4.4 Application to Arnoldi

The Householder Arnoldi procedure [10, Algorithm 6.3, p163] can be easily adapted to use Algorithm 1,
yielding Algorithm 3 in which the notations for vectors (𝑤 𝑗)1≤ 𝑗≤𝑚 are also used for vectors 𝑧 𝑗 (namely,
𝑧 𝑗 ,1 denote the first 𝑗 − 1 coordinates of 𝑧 𝑗 and 𝑧 𝑗 ,2 the last 𝑛 − 𝑗 + 1 coordinates of 𝑧 𝑗).

Proposition 4.1. Algorithm 3 produces 𝑉𝑚 ∈ R𝑛×𝑚, 𝑉𝑚+1 ∈ R𝑛×(𝑚+1) , 𝐻𝑚+1,𝑚 ∈ R(𝑚+1)×𝑚 such that
𝐴𝑉𝑚 = 𝑉𝑚+1𝐻𝑚+1,𝑚.

Proof. The proof is almost identical to that found in [10]. We recall that in this work, H−1𝑚 denotes the
rightwise composition of reflectors 𝐻Ω(𝑢1) · · ·𝐻Ω(𝑢𝑚). The second difference is that our operator H−1𝑚
is not unitary, although we have access to H𝑚 in factored form. By the definition of the vector 𝑧 𝑗+1

13

Algorithm 3: Randomized Householder Arnoldi

Input: Given: Matrix 𝐴 ∈ R𝑛×𝑛, 𝑥0, 𝑏 ∈ R𝑛, 𝑚 ∈ N∗, matrix Ω ∈ Rℓ×𝑛, 𝑚 < 𝑙 ≪ 𝑛,
1 Set 𝑧1 = 𝑏 − 𝐴𝑥0
2 for 𝑗 = 1 : 𝑚 + 1 do

3 Compute 𝑢 𝑗 ∈ R𝑛 such that 𝐻Ω(𝑢 𝑗) · 𝑧 𝑗 = (𝑧 𝑗 ,1 ⊘ (∥Ω 𝑗 𝑧 𝑗 ,2∥𝑒 𝑗1)
4 Set ℎ 𝑗−1 = 𝐻Ω(𝑢 𝑗)𝑧 𝑗 , ℎ 𝑗−1 ∈ R𝑛
5 Set 𝑣 𝑗 = 𝐻

Ω(𝑢1) · · ·𝐻Ω(𝑢 𝑗)𝑒 𝑗
6 if 𝑗 ≤ 𝑚 then
7 Set 𝑧 𝑗+1 = 𝐻Ω(𝑢 𝑗) · · ·𝐻Ω(𝑢1)𝐴𝑣 𝑗

8 Set 𝐻𝑚+1,𝑚 as the first 𝑚 + 1 rows of [ℎ1 ℎ2 . . . ℎ𝑚], discard ℎ0.
9 Return 𝑉𝑚+1, 𝐻𝑚+1,𝑚

at Line 7, once the following randomized Householder reflector is applied at Line 4, we obtain:

ℎ 𝑗 = 𝐻
Ω(𝑢 𝑗+1)𝐻Ω(𝑢 𝑗) · · ·𝐻Ω(𝑢1)𝐴𝑣 𝑗 . (26)

Since the coordinates 𝑗 + 2, 𝑗 + 3 · · · 𝑛 of ℎ 𝑗 are zero, it is invariant under the remaining reflectors:

ℎ 𝑗 = 𝐻
Ω(𝑢𝑚) · · ·𝐻Ω(𝑢 𝑗+2)ℎ 𝑗 = 𝐻Ω(𝑢𝑚) · · ·𝐻Ω(𝑢1)𝐴𝑣 𝑗 . (27)

This relation being true for all 𝑗 , we obtain the factorization:

𝐻Ω(𝑢𝑚) · · ·𝐻Ω(𝑢1) [𝑟0 𝐴𝑣1 . . . 𝐴𝑣𝑚] = [ℎ0 ℎ1 · · · ℎ𝑚] .

Multiplying on the left by the reflectors in reverse order 𝐻Ω(𝑢1) · · ·𝐻Ω(𝑢𝑚), we obtain:

[𝑟0 𝐴𝑣1 . . . 𝐴𝑣𝑚] = 𝐻Ω(𝑢1) · · ·𝐻Ω(𝑢𝑚) [ℎ0 ℎ1 · · · ℎ𝑚] = H−1𝑚 [ℎ0 ℎ1 · · · ℎ𝑚] .

From relation (27),

𝐴𝑣 𝑗 = H 𝑗+1ℎ 𝑗 =
𝑗+1∑︁
𝑖=1

ℎ𝑖, 𝑗+1H 𝑗+1𝑒𝑖 .

In addition, the reflectors 𝐻Ω(𝑢𝑖+1), · · ·𝐻Ω(𝑢 𝑗) let 𝑒𝑖 invariant, yielding

𝐴𝑣 𝑗 =

𝑗+1∑︁
𝑖=1

ℎ𝑖, 𝑗+1𝑣𝑖,

which concludes the proof. □

We display in Figure 6 the condition number of the Arnoldi basis built and the factorization error
of Algorithm 3 on a matrix obtained from finite element methods applied to a nearly incompressible 3D
elasticity PDE. It is a very difficult case, on which we can see the stability of Algorithm 3.

5 Acknowledgements

This project has received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement No 810367).

14

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300

C
o
n
d
.
o
f

fi
rs

t
i
ve

c
s.

iteration i

Conds. (simple precision)

RHouse 1500
RGS 1500

(a) Condition number of Arnoldi basis in
simple precision

10-9

10-8

10-7

10-6

 50 100 150 200 250 300

||
A

V
 -

 V
H

||
F
/|
|A

V
||

F

iteration i

Rel. fact. Frobenius error

RHouse 1500
RGS 1500

(b) Relative factorization Frobenius error in
simple precision

Figure 6: Performance of Algorithm 3 on El3D in simple precision

References

[1] Oleg Balabanov, Matthias Beaupere, Laura Grigori, and Victor Lederer. “Block subsampled ran-
domized Hadamard transform for low-rank approximation on distributed architectures”. In: Pro-
ceedings of the 40th International Conference on Machine Learning. https://doi.org/10.48550/arxiv.2210.11295.
PMLR 202. 2023.

[2] Oleg Balabanov and Laura Grigori. “Randomized Gram–Schmidt Process with Application to
GMRES”. In: SIAM Journal on Scientific Computing 44.3 (2022), A1450–A1474.

[3] Jesse L Barlow. “Block Modified Gram–Schmidt Algorithms and Their Analysis”. In: SIAM Jour-
nal on Matrix Analysis and Applications 40.4 (2019), pp. 1257–1290.

[4] Åke Björck and Christopher C Paige. “Loss and recapture of orthogonality in the modified Gram–
Schmidt algorithm”. In: SIAM journal on matrix analysis and applications 13.1 (1992), pp. 176–
190.

[5] Erin Carson, Kathryn Lund, Miroslav Rozložńık, and Stephen Thomas. “Block Gram-Schmidt
algorithms and their stability properties”. In: Linear Algebra and its Applications 638 (2022),
pp. 150–195.

[6] Timothy A Davis and Yifan Hu. “The University of Florida sparse matrix collection”. In: ACM
Transactions on Mathematical Software (TOMS) 38.1 (2011), pp. 1–25.

[7] Nicholas J Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

[8] Christopher C Paige. “A useful form of unitary matrix obtained from any sequence of unit 2-norm
n-vectors”. In: SIAM Journal on Matrix Analysis and Applications 31.2 (2009), pp. 565–583.

[9] Chiara Puglisi. “Modification of the Householder method based on the compact WY representa-
tion”. In: SIAM Journal on Scientific and Statistical Computing 13.3 (1992), pp. 723–726.

[10] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[11] JH Wilkinson. “The algebraic eigenvalue problem”. In: Handbook for Automatic Computation,
Volume II, Linear Algebra. Springer-Verlag New York, 1971.

[12] David P. Woodruff. “Sketching as a Tool for Numerical Linear Algebra”. In: CoRR abs/1411.4357
(2014). arXiv: 1411.4357. url: http://arxiv.org/abs/1411.4357.

15

https://arxiv.org/abs/1411.4357
http://arxiv.org/abs/1411.4357

	Introduction
	Preliminaries
	Notations
	Householder orthonormalization
	Subspace embeddings

	Randomized Householder process
	Numerical experiments
	Factored form
	Randomized Householder QR factorization
	Block Randomized Householder QR
	Application to Arnoldi

	Acknowledgements

