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Randomized Householder QR

Laura Grigori∗, Edouard Timsit†

July 7th, 2023

Abstract: This paper introduces a randomized Householder QR factorization (RHQR). This
factorization can be used to obtain a well conditioned basis of a set of vectors and thus can be employed
in a variety of applications. The RHQR factorization of the input matrix𝑊 is equivalent to the standard
Householder QR factorization of matrix Ψ𝑊 , where Ψ is a sketching matrix that can be obtained from
any subspace embedding technique. For this reason, the RHQR algorithm can also be reconstructed
from the Householder QR factorization of the sketched problem. In most contexts, left-looking RHQR
requires a single synchronization per iteration, with half the computational cost of Householder QR, and
a similar cost to Randomized Gram-Schmidt (RGS) overall. We discuss the usage of RHQR factorization
in the Arnoldi process and then in GMRES, showing thus how it can be used in Krylov subspace methods
to solve systems of linear equations. Based on Charles Sheffield’s connection between Householder QR
and Modified Gram-Schmidt (MGS), a randomized Modified Gram Schmidt (RMGS) process is also
derived.

Numerical experiments show that RHQR produces a well conditioned basis whose sketch is numeri-
cally orthogonal, and an accurate factorization. For some very difficult cases, it can be more stable than
RGS in both unique precision (half, single, or double) and mixed precision.

1 Introduction

Computing the QR factorization of a matrix 𝑊 ∈ R𝑛×𝑚, 𝑚 ≪ 𝑛, is a process that lies at the heart of
many linear algebra algorithms, for instance for solving least-squares problems or computing bases in
Krylov subspace methods. Such process outputs the following factorization:

𝑊 = 𝑄𝑅, 𝑄 ∈ R𝑛×𝑚, 𝑄𝑡𝑄 = 𝐼𝑚, 𝑅 ∈ R𝑚×𝑚, 𝑅 upper triangular.

The QR factorization of 𝑊 ∈ R𝑛×𝑚 is usually obtained using the Gram-Schmidt process or the House-
holder process. The Householder process relies on Householder vectors 𝑢1, · · · , 𝑢𝑚 ∈ R𝑛 and orthogonal
matrices called Householder reflectors 𝑃(𝑢1), · · · , 𝑃(𝑢𝑚) ∈ R𝑛×𝑛 such that:

𝑊 = 𝑃(𝑢1) · · · 𝑃(𝑢𝑚)
[

𝑅

0(𝑛−𝑚)×𝑚

]
= 𝑄𝑅, 𝑄 = 𝑃(𝑢1) · · · 𝑃(𝑢𝑚) ·

[
𝐼𝑚

0(𝑛−𝑚)×𝑚

]
, 𝑄𝑡𝑄 = 𝐼𝑚,

where 𝑅 ∈ R𝑚×𝑚 is an upper-triangular factor. It was shown in [15] that the composition of Householder
reflectors admits the following factorization:

𝑃(𝑢1) · · · 𝑃(𝑢𝑚) = 𝐼𝑛 −𝑈𝑇𝑈𝑡 , 𝑃(𝑢𝑚) · · · 𝑃(𝑢1) = 𝐼𝑛 −𝑈𝑇 𝑡𝑈𝑡
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where 𝑈 = [𝑢1 | · · · | 𝑢𝑚] ∈ R𝑛×𝑚 is formed by the Householder vectors (and is lower-triangular by
design, see Section 2), and 𝑇 ∈ R𝑚×𝑚 is an upper-triangular factor. Applying the Woodburry-Morrison
formula to 𝐼𝑛 −𝑈𝑇𝑈𝑡 , it was outlined in [12] that

𝑈𝑡𝑈 = 𝑇−𝑡 + 𝑇−1.
J.H. Wilkinson showed in [16] that the Householder QR factorization process is normwise backward
stable in finite precision. Later on, it has been shown in [10, Chapter 19.3, Thm 19.4 p360] that the
Householder procedure is column-wise backward stable in finite precision. Overall, computations with
Householder reflectors are well-known for their excellent numerical stability. An idea from Charles
Sheffield and praised by Gene Golub led to the analysis in [11] revealing that the 𝑇 factor produced
by the Householder QR factorization of [0𝑚×𝑚; 𝑊] ∈ R(𝑛+𝑚)×𝑚 captures the loss of orthogonality of
the Modified Gram-Schmidt procedure on 𝑊 in finite precision arithmetics. Accordingly, new stable
implementations of MGS were derived in [5, 4] (see a comparison of different implementations of Gram-
Schmidt procedures in the recent review [6]).

The present work focuses on the use of the 𝜖-embedding technique, which has proved to be an
effective solution for reducing the communication and computational cost of several classic operations,
while providing quasi-optimal results. When solving large scale linear algebra problems on a parallel
computer, the communication is the limiting factor preventing scalability to large number of processors.
For an 𝑚 dimensional vector subspace of interestW ∈ R𝑛, some positive real number 𝜖 < 1, and integer
𝑚 < ℓ ≪ 𝑛, a sketching matrix Ω ∈ Rℓ×𝑛 is said to be an 𝜖-embedding ofW if

∀𝑤 ∈ W, |∥Ω𝑤∥ − ∥𝑤∥| ≤ 𝜖 ∥𝑤∥. (1)

If ℓ is a modest multiple of 𝑚, there exist simple distributions on Rℓ×𝑚 from which one can draw Ω ∈ Rℓ×𝑚
independently ofW and verifying (1) with high probability. Furthermore, some distributions allow the
sketching operation 𝑥 ↦→ Ω𝑥 to be done for a quasi linear cost O(𝑛 log(𝑛)) and negligible storage cost of
Ω (see [1, 7]). Several methods have been proposed in order to approximate a least squares problem, i.e
finding the minimizer of 𝑥 ↦→ ∥𝑊𝑥− 𝑏∥2 using the solution of the cheaper sketched least squares problem,
i.e finding the minimizer of 𝑥 ↦→ ∥Ω(𝑊𝑥 − 𝑏)∥2. In the pioneering work [13], the authors propose to
first compute Ω𝑊 , then compute its rank revealing QR factorization to solve the sketched least squares
problem. The minimizer and the computed R factor are then used respectively as a starting point and a
preconditioner for the conjugate gradient method approximating the initial least squares problem. Later,
an alternative randomized Gram-Schmidt (RGS) process was introduced in [3], where each vector of the
sketched basis is obtained by sketching the corresponding basis vector right after its orthogonalization
step. For a given basis 𝑊 of a vector subspace of interest and an 𝜖-embedding Ω ∈ Rℓ×𝑚 of Range(𝑊),
the RGS algorithm outputs the following factorization

𝑊 = 𝑄𝑅, 𝑄 ∈ R𝑛×𝑚, (Ω𝑄)𝑡Ω𝑄 = 𝐼𝑚, Cond(𝑄) ≤ 1 + 𝜖
1 − 𝜖 , 𝑅 ∈ R𝑚×𝑚, 𝑅 upper-triangular

for the same communication cost as Classical Gram-Schmidt (CGS), half the asymptotic computational
cost, and the stability of MGS (sometimes even better). This sketch orthogonal basis 𝑄 can then be
used as a well conditioned basis of Range(𝑊), also allowing to approximate the least squares problem.
It was shown in [3], among other things, that this basis could be used in the Arnoldi iteration and
GMRES allowing to obtain a quasi-optimal solution. The authors however identified very difficult cases
in which both RGS and MGS experience instabilities in finite precision, with the sketch basis Ω𝑄 losing
orthogonality and Cond(𝑄) ≈ 102.

In this work we introduce a randomized version of the Householder QR factorization (RHQR). By
using a modified sketching matrix Ψ, which can be obtained from any 𝜖-embedding matrix Ω, this
RHQR factorization relies on randomized Householder vectors 𝑢1, . . . 𝑢𝑚 ∈ R𝑛 and upper-triangular 𝑇
factor, and verifies

Ψ

(
𝐼𝑛 −𝑈𝑇 (Ψ𝑈)𝑡Ψ

)
·
[

𝑅

0(𝑛−𝑚)×𝑚

]
=

(
𝐼ℓ+𝑚 − (Ψ𝑈)𝑇 (Ψ𝑈)𝑡

)
·
[

𝑅

0ℓ×𝑚

]
, (Ψ𝑈)𝑡Ψ𝑈 = 𝑇−𝑡 + 𝑇−1, (2)
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where the left-hand side is the sketch of the RHQR factorization of 𝑊 , and the right-hand side is the
standard Householder QR factorization of the sketch Ψ𝑊 . This equation shows that the sketch of the
basis output by RHQR is orthogonal, i.e

𝑄 :=
(
𝐼𝑛 −𝑈𝑇 (Ψ𝑈)𝑡Ψ

) [
𝐼𝑛

0(𝑛−𝑚)×𝑚

]
, 𝑊 = 𝑄𝑅, (Ψ𝑄)𝑡Ψ𝑄 = 𝐼ℓ+𝑚, Cond(𝑄) ≤ 1 + 𝜖

1 − 𝜖 .

We also show that the randomized Householder vectors (and thus the whole RHQR factorization of 𝑊)
can be reconstructed from the Householder QR factorization of Ψ𝑊 , which outputs the first 𝑚 rows of
𝑈 and matrices 𝑇,Ψ𝑈 verifying

𝑊𝑚+1:𝑚,1:𝑚 = 𝑈𝑚+1:𝑚,1:𝑚 · ut
(
𝑇 𝑡 (Ψ𝑈)𝑡 (Ψ𝑊)

)
, (3)

where ut denotes the upper-triangular part of the input matrix. Equations (2) and (3) yield three main
procedures outlined in this work : right-looking and left-looking RHQR, and reconstruct RHQR. The
right-looking and left-looking RHQR presented in Algorithms 2 and 3 are based on (2). We show that
the core iteration of left-looking RHQR makes a single synchronization as long as the next vector of the
input basis is available. We also show that the computational cost of its core iteration is dominated by
that of two sketches and a matrix vector product, resulting in twice less flops than Householder QR. We
observe in our experiments that RHQR is as stable as Householder QR. Furthermore, the core iteration
of RHQR relies only on basic linear algebra operations and doesn’t need the solving of a sketched least-
squares problem as in RGS, making it potentially even cheaper than RGS. On the previously mentioned
difficult cases from [3], the left-looking RHQR outputs a basis Ψ𝑄 that is numerically orthogonal, with
Cond(𝑄) < 2, while maintaining an accurate factorization. The third process, reconstruct RHQR shown
in Algorithm 5, is based on (3) and does a single synchronization, like CholeskyQR and its variants. On
the previously mentioned difficult cases, reconstructRHQR is more stable than Randomized CholeskyQR
and outputs a basis whose condition number is less than 5, while maintaining an accurate factorization.
We note that the RHQR factorization can be used in place of the Householder QR factorization in
TSQR [9], resulting thus in a communication avoiding algorithm for half the flops of TSQR. Following
the methods in [14, Chapter 6.3.2], this RHQR factorization is then embedded in the Arnoldi iteration,
allowing to solve systems of linear equations or eigenvalue problems. In this case, RHQR-Arnoldi
requires an additional sketch and an additional generalized matrix vector product when compared to
RGS-Arnoldi (we recall that Householder-Arnoldi is also more expensive than MGS-Arnoldi). Finally,
based on Charles Sheffield’s connection between MGS and Householder QR and as it was used in [4] to
stabilize MGS, we derive a Randomized Modified Gram-Schmidt (RMGS) in Algorithm 8 verifying the
following equations:[

0𝑚×𝑚
𝑊

]
= 𝑄𝑅, 𝑄 =

[
𝐼𝑚 − 𝑇
𝑄𝑇

]
, (Ψ𝑄)𝑡Ψ𝑄 = 𝐼𝑚, 𝐼𝑚 + (Ω𝑄)𝑡Ω𝑄 = 𝑇−1 + 𝑇−𝑡 .

On the previously mentioned difficult cases, RMGS outputs a basis whose condition number is less than
20, while maintaining an accurate factorization.

This paper is organized as follows. Section 2 discusses the classical Householder QR factorization
and the subspace embedding technique. Section 3 introduces the randomized Householder reflector, and
proves that the sketched RHQR factorization of 𝑊 coincides with the Householder QR factorization of
the sketch Ψ𝑊 (i.e (2)). We then introduce compact formulas that allow to handle this procedure almost
in-place and in a left-looking context, as described in our main contribution Algorithm 3 (left-looking
RHQR). We also describe a block version in Algorithm 4 (blockRHQR). In Section 4, we adapt the
randomized Arnoldi iteration to RHQR in Algorithm 6 (RHQR-Arnoldi), as well as GMRES in Al-
gorithm 7 (RHQR-GMRES), using the same principles as those found in [14]. In Section 5, based
on Charles Sheffield’s connection between Householder QR and Modified Gram-Schmidt, we introduce
a Randomized Modified Gram-Schmidt process (RMGS) in Algorithm 8. In Section 6, we describe
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an alternative randomized Householder reflector and the corresponding RHQR factorizations in Algo-
rithms 10 and 11 (left-looking and right-looking trimRHQR). Section 7 describes a set of numerical
experiments showing the performance of the algorithms introduced in this paper compared to state of
the art algorithms.

2 Preliminaries

In this section, we first introduce our notations. We then outline the original Householder procedure.
Finally, we introduce the subspace embedding technique.

2.1 Notations

We denote, for all 𝑛 ∈ N∗, 0𝑛 the nul vector of R𝑛. We denote, for all 𝑛, 𝑚 ∈ N, 0𝑛×𝑚 the nul matrix of
R𝑛×𝑚. The matrix for which we seek to produce a factorization is formed by the vectors 𝑤1 . . . 𝑤𝑚 ∈ R𝑛,
is denoted 𝑊 ∈ R𝑛×𝑚, and is viewed as two blocks:

[𝑤1 | · · · | 𝑤𝑚] = 𝑊 =

[
𝑊1

𝑊2

]
, 𝑊1 ∈ R𝑚×𝑚, 𝑊2 ∈ R(𝑛−𝑚)×𝑚 .

The symbol ⊘ used between two vectors denotes the concatenation of vectors. If 𝑥 ∈ R𝑛1 and 𝑦 ∈ R𝑛2 ,
then the vector 𝑥 ⊘ 𝑦 ∈ R𝑛1+𝑛2 is defined as:

𝑥 ⊘ 𝑦 =

[
𝑥

𝑦

]
.

The vertical concatenation of matrices with same column dimension is denoted 𝐶 = [𝐴, 𝐵], 𝐴 ∈ R𝑎×𝑏,
𝐵 ∈ R𝑐×𝑏, 𝐶 ∈ R(𝑎+𝑐)×𝑏. The null space of a matrix 𝐴 ∈ R𝑛×𝑚 is denoted

Ker (𝐴) = {𝑥 ∈ R𝑚, 𝐴𝑥 = 0𝑛}.
The symbol 𝑢 𝑗 for 𝑗 ∈ {1, . . . , 𝑚} is dedicated to Householder vectors. The symbol 𝑇𝑗 for all 𝑗 ∈
{1, . . . , 𝑚} denotes 𝑗 × 𝑗 matrices that are related to randomized Householder vectors 𝑢1 . . . 𝑢 𝑗 . The
symbol 𝑈 denotes the matrix formed by the vectors 𝑢1, . . . , 𝑢𝑚. The symbols Ω and Ψ denote sketching
matrices. If the matrix to be factored is 𝑊 ∈ R𝑛×𝑚, then Ω and Ψ are respectively in Rℓ×(𝑛−𝑚) and
R(ℓ+𝑚)×𝑛.

The symbol 𝑃 denotes several versions of the Householder reflector. When 𝑃 has one non-zero
argument 𝑣 ∈ R𝑛, then it denotes the standard Householder reflector of R𝑛,

𝑃(𝑣) = 𝐼𝑛 −
2

∥𝑣∥2
𝑣𝑣𝑡 .

When 𝑃 has two arguments 𝑣 ∈ R𝑛 and Θ ∈ Rℓ×𝑛, 𝑣 ∉ Ker (Θ), then it denotes the randomized
Householder reflector,

𝑃(𝑣,Θ) = 𝐼𝑛 −
2

∥Θ𝑣∥2
· 𝑣(Θ𝑣)𝑡Θ,

which is described in Section 3.
Given any matrix 𝐴 ∈ R𝑛×𝑚, we denote respectively ut(𝐴), sut(𝐴), lt(𝐴) and slt(𝐴) the upper

triangular, strictly upper triangular, lower triangular, strictly lower triangular parts of 𝐴, respectively.
We denote 𝐴𝑖, 𝑗 the entry of 𝐴 located on the 𝑖-th row and the 𝑗-th column. We denote 𝐴 𝑗1: 𝑗2 the matrix
formed by the 𝑗1, 𝑗1 + 1, . . . 𝑗2-th columns of 𝐴. We denote 𝑎1, . . . 𝑎𝑚 the column vectors of 𝐴. In the
algorithms, we denote the entries 𝑖 to 𝑗 of a vector 𝑤 with the symbol (𝑤)𝑖: 𝑗 .

The canonical vectors of R𝑛 are denoted 𝑒1, . . . , 𝑒𝑚. For some 𝑘 ∈ {1, . . . , 𝑛} and 𝑗 ∈ {1, . . . , 𝑘}, we
denote 𝑒𝑘

𝑗
the 𝑗-th canonical vector of R𝑘 .

The letter 𝜖 denotes a real number of ]0, 1[, which is a parameter that determines the dimensions of
Ω and thus Ψ.
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2.2 Householder orthonormalization

The Householder QR factorization is an orthogonalization procedure, alternative to the Gram Schmidt
process. While the Gram-Schmidt process focuses on building explicitly the orthogonal factor 𝑄, House-
holder’s procedure focuses instead on building the factor 𝑅 using orthogonal transformations. 𝑄 and 𝑄𝑡

are stored in a factored form. The central operator of this procedure is the Householder reflector:

∀𝑧 ∈ R𝑛 \ {0}, 𝑃(𝑧) = 𝐼𝑛 −
2

∥𝑧∥2
𝑧 𝑧𝑡 , (4)

or equivalently

∀𝑧 ∈ R𝑛 \ {0}, ∀𝑥 ∈ R𝑛, 𝑃(𝑧) · 𝑥 = 𝑥 − 2

∥𝑧∥2
⟨𝑧, 𝑥⟩ 𝑧.

𝑃(𝑧)2 = 𝐼𝑛, hence its name, and also 𝑃(𝑧)𝑡 = 𝑃(𝑧). These two properties combined show that 𝑃(𝑧) is an
orthogonal matrix. The vector 𝑧 is an eigenvector associated to eigenvalue −1, and the orthogonal of its
span is an 𝑛 − 1 dimensional eigenspace associated to eigenvalue 1, i.e the Householder reflector is an
orthogonal reflector with respect to the latter hyperplane. Given a vector 𝑤 ∈ R𝑛 that is not a multiple
of 𝑒1, and setting 𝑧 = 𝑤 − ∥𝑤∥𝑒1, one can straightforwardly derive,

𝑃(𝑧) · 𝑤 = ∥𝑤∥𝑒1,

hence the Householder reflector can be used to annihilate all the coordinates of a vector, except its first
entry (it has been shown that the formula for 𝑧 can be refined into stabler formulas in finite precision,
see [10, Chapter 19.1]). It can be inferred by induction that, given a vector 𝑤 = 𝑐 ⊘ 𝑑 ∈ R𝑛, 𝑐 ∈ R 𝑗−1,
𝑑 ∈ R𝑛− 𝑗+1, there exists 𝑣 𝑗 ∈ 𝑅𝑛− 𝑗+1, 𝑢 𝑗 = 0 𝑗−1 ⊘ 𝑣 𝑗 ∈ R𝑛 such that

𝑃(𝑢 𝑗 ) · 𝑤 =

[
𝐼 𝑗−1

𝑃(𝑣 𝑗 )

]
· 𝑤 =

[
𝑐

∥𝑑∥𝑒𝑛− 𝑗+11

]
=


𝑐

∥𝑑∥
0𝑛− 𝑗

 ,
that is the reflector 𝑃(𝑢 𝑗 ) now annihilates the coordinates 𝑗 + 1 to 𝑛 of the vector 𝑤, without modifying
its first 𝑗 − 1 entries. By induction (this classic argument is detailed below in the proof of Theorem 3.5),
there exist Householder vectors 𝑢1, · · · 𝑢𝑚 such that

𝑃(𝑢𝑚) · · · 𝑃(𝑢1)𝑊 =

[
𝑅

0(𝑛−𝑚)×𝑚

]
⇐⇒ 𝑊 = 𝑃(𝑢1) · · · 𝑃(𝑢𝑚)

[
𝑅

0(𝑛−𝑚)×𝑚

]
. (5)

It was outlined in [15] that the composition 𝑃(𝑢1) · · · 𝑃(𝑢𝑚) can be factored as:{
𝑃(𝑢1) · · · 𝑃(𝑢𝑚) = 𝐼𝑛 −𝑈𝑇𝑈𝑡

𝑃(𝑢𝑚) · · · 𝑃(𝑢1) = 𝐼𝑛 −𝑈𝑇 𝑡𝑈𝑡 (6)

where 𝑈 ∈ R𝑛×𝑚 is formed by 𝑢1, . . . , 𝑢𝑚 and 𝑇 ∈ R𝑚×𝑚 is an upper-triangular matrix. If we denote
𝛽 𝑗 = 2/∥𝑢 𝑗 ∥2 for all 𝑗 ∈ {1, . . . , 𝑚}, then 𝑇 defined by induction as:

𝑇1 = [𝛽1] , ∀ 𝑗 ∈ {1, . . . , 𝑚 − 1}, 𝑇𝑗+1 =

[
𝑇𝑗 −𝛽 𝑗+1𝑇𝑗𝑈

𝑡
𝑗
𝑢 𝑗+1

01× 𝑗 𝛽 𝑗+1

]
, 𝑇 := 𝑇𝑚

As a triangular matrix with a diagonal of non-zeros, 𝑇 is non-singular. As outlined in [12], we can then
apply the Woodburry Morrison formula to 𝐼𝑛 −𝑈𝑇𝑈𝑡 and derive

𝑈𝑡𝑈 = 𝑇−1 + 𝑇−𝑡 , 𝑇 =

(
sut(𝑈𝑡𝑈) + 1

2
Diag(𝑈𝑡𝑈)

)−1
5



where sut denotes the strictly upper-triangular part and Diag denotes the matrix formed by the diagonal
entries. We insist that both the explicit compositions of Householder reflectors and formulas (6) are
operators of R𝑛, hence implicitly represented by R𝑛×𝑛 matrices. The right-hand sides of (6) are referred
to as compact forms of the compositions 𝑃1 · 𝑃2 · · · 𝑃𝑚 ∈ R𝑛×𝑛 and 𝑃𝑚 · 𝑃𝑚−1 · · · 𝑃1 ∈ R𝑛×𝑛.

Whereas the Gram-Schmidt type algorithms produces the factors 𝑄 ∈ R𝑛×𝑚 and an upper-triangular
𝑅 ∈ R𝑚×𝑚 such that𝑊 = 𝑄𝑅, the Householder process outputs instead an isometric operator 𝑃(𝑢1) · · · 𝑃(𝑢𝑚) ∈
R𝑛×𝑛, and an upper-triangular factor 𝑅 ∈ R𝑚×𝑚 such that 𝑃(𝑢1) · · · 𝑃(𝑢𝑚) ·

[
𝑅; 0(𝑛−𝑚)×𝑚

]
. A matrix

𝑄 ∈ R𝑛×𝑚 can still be output by Householder QR using the compact formulas (6),

𝑊 = 𝑃(𝑢1) · · · 𝑃(𝑢𝑚)
[

𝑅

0(𝑛−𝑚)×𝑚

]
⇐⇒ 𝑊 =

( [
𝐼𝑚

0(𝑛−𝑚)×𝑚

]
−𝑈𝑇𝑈𝑡

[
𝐼𝑚

0(𝑛−𝑚)×𝑚

] )
· 𝑅 =: 𝑄𝑅,

We refer to 𝑄 ∈ R𝑛×𝑚 as the thin Q factor associated to 𝑈,𝑇 . We stress that 𝑈,𝑇 and (6) are sufficient
for the computation of 𝑄𝑡𝑥, 𝑥 ∈ R𝑛 for solving the least-squares problem. If 𝑊 admits the factorization
in (5), then

argmin
𝑥∈R𝑚

∥𝑊𝑥 − 𝑏∥ = 𝑅−1 ·
[
𝐼𝑚 0𝑚×(𝑛−𝑚)

]
·
(
𝑃(𝑢𝑚) · · · 𝑃(𝑢1)

)
· 𝑏 = 𝑅−1 ·

[
𝐼𝑚 0𝑚×(𝑛−𝑚)

]
· (𝑏 −𝑈𝑇 𝑡𝑈𝑡𝑏)

that is the application of (𝑃(𝑢1) · · · 𝑃(𝑢𝑚))−1 = 𝑃(𝑢𝑚) · · · 𝑃(𝑢1), followed by the sampling of the first 𝑚
coordinates, followed by the backward solve of 𝑅. In this work, we denote the pair (𝑈,𝑇) in (6) as the
implicit 𝑄 factor.

As described in [11, 4], Charles Sheffield pointed out to Gene Golub that given a matrix𝑊 ∈ R𝑛×𝑚, its
modified Gram-Schmidt (MGS) QR factorization was equivalent to the Householder QR factorization of
[0𝑚×𝑚; 𝑊] in both exact and finite precision arithmetics. The analysis derived in [11] shows that, in this
context of finite precision, the factor 𝑇 computed by Householder QR captures the loss of orthogonality
in Modified Gram-Schmidt. Accordingly, a stabler version of MGS was derived in [5, 4].

All these principles and formulas find a straightforward randomized equivalent in the randomized
Householder QR factorization (RHQR) that we derive in Section 3.

2.3 Subspace embeddings

Definition 2.1. [17, Definition 1] We say that a matrix Ω ∈ Rℓ×𝑛 is an 𝜖-embedding of a vector-subspace
W ⊂ R𝑛 if and only if

∀𝑥 ∈ W, (1 − 𝜖)∥𝑥∥ ≤ ∥Ω𝑥∥ ≤ (1 + 𝜖)∥𝑥∥. (7)

The 𝜖-embedding property is sometimes written as in (7), only with squared norms. The use of
𝜖-embedding matrices is obviously justified by one or other of these properties. For any 𝑚-dimensional
vector subspaceW ⊂ R𝑛, there exist simple distributions over Rℓ×𝑛 whose realizations Ω ∈ Rℓ×𝑛 drawn
independently of W are an 𝜖-embedding of W with high probability. These distributions are called
oblivious subspace embeddings (OSE).

Definition 2.2. [17, Definition 2] Let 𝜖, 𝛿 ∈ ]0, 1[. Let 𝑚 ≤ ℓ ≪ 𝑛 ∈ N∗. We say that a distribution
D over Rℓ×𝑛 is an oblivious subspace embedding with parameters (𝜖, 𝛿, 𝑚), denoted OSE(𝜖, 𝛿, 𝑚), if and
only if for any 𝑚-dimensional vector subspaceW𝑚 ⊂ R𝑛, Ω drawn from D independently ofW𝑚 is an
𝜖-embedding ofW𝑚 with probability at least 1 − 𝛿.

As an example, we mention three such distributions. The Gaussian OSE is the simplest, and consists
in drawing a matrix 𝐺 ∈ Rℓ×𝑛 where the coefficients are i.i.d standard Gaussian variables, and set

Ω =
1
√
ℓ
𝐺.
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As proven in [17], this distribution is an (𝜖, 𝛿, 𝑚) OSE if ℓ = O
(
𝜖−2(𝑚 + log(1/𝛿))

)
. If this technique

has the advantage of giving a simple way of building 𝜖-embedding matrices, it has the disadvantage of
relying on a dense matrix Ω, whose storage and application to a vector 𝑥 ∈ R𝑛 are expensive (it still
has the advantage of scaling well on a parallel computer). A lighter and faster technique is given by the
subsampled randomized Hadamard transform (SRHT) OSE, which writes

Ω =

√︂
𝑛

ℓ
𝑃𝐻𝐷,

where 𝑃 is made of ℓ rows of the identity matrix 𝐼𝑛 drawn uniformly at random (which corresponds to a
uniform sampling step), 𝐻 is the normalized Walsh-Hadamard transform, and 𝐷 is a diagonal of random
signs (see [1]). In most applications, this matrix is not explicitly stored, and is only given as a matrix-
vector routine. In this case, its storage cost is negligible. Its application to a vector costs O(𝑛 log 𝑛)
flops when implemented with standard Walsh-Hadamard Transform. This distribution is OSE(𝜖, 𝛿, 𝑚)
if ℓ ∈ O(𝜖−2(𝑚 + log(𝑛/𝛿)) log(𝑚/𝛿)). Finally, we mention distributions based on hashing techniques.
In this case, the obtained sketching matrix Ω is a sparse matrix with a specified number of expected
non-zeros per columns, see [7].

Let us consider a set of linearly independent vectors 𝑤1, . . . 𝑤𝑚 forming a full-rank matrix 𝑊 ∈ R𝑛×𝑚
and spanningW = Range(𝑊). The largest and smallest singular values of 𝑊 are defined as

𝜎max(𝑊) = ∥𝑊 ∥2 = max
∥𝑥∥2=1

∥𝑊𝑥∥2 = ∥𝑊𝑣max∥2, 𝜎min(𝑊) = min
∥𝑥∥2=1

∥𝑊𝑥∥2 = ∥𝑊𝑣min∥2, 𝑣max, 𝑣min ∈ R𝑚

i.e the greatest dilatation and the greatest contraction of an input vector 𝑥 ∈ R𝑚. Their ratio also defines
the condition number of 𝑊 , as shown by the min-max theorem.

Cond(𝑊) =

√︄
𝜆max(𝑊 𝑡𝑊)
𝜆min(𝑊 𝑡𝑊) =

𝜎max(𝑊)
𝜎min(𝑊)

=
∥𝑊𝑣max∥
∥𝑊𝑣min∥

, 𝑣max, 𝑣min ∈ R𝑚 .

If Ω ∈ Rℓ×𝑛 is an 𝜖-embedding for Range(𝑊), then (see [17, 3])

Cond(𝑊) ≤ 1 + 𝜖
1 − 𝜖 Cond(Ω𝑊).

In particular, if 𝑄 ∈ R𝑛×𝑚 is a basis ofW such that Ω𝑄 ∈ Rℓ×𝑚 has orthonormal columns, the condition
number of 𝑄 is simply bounded by the constant (1 + 𝜖)/(1 − 𝜖). With 𝜖 = 1/2, we get Cond(𝑄) ≤ 3.
Hence sketch-orthonormal bases are well-conditioned bases.

3 Randomized Householder process

In this section we introduce a randomized version of the Householder reflector and show its main prop-
erties. We then show how several randomized Householder reflectors can be used to factor 𝑊 = 𝑄𝑅

such that Ψ𝑊 = (Ψ𝑄) · 𝑅 is the Householder factorization of Ψ𝑊 (Theorem 3.5). These computations
yield the right-looking version of the RHQR factorization in Algorithm 2. We then derive a compact
representation of the composition of multiple randomized Householder reflectors, yielding our main con-
tribution, the left-looking version of the RHQR factorization in Algorithm 3. Exploiting the equivalence
between the Householder factorizations, we derive an algorithm reconstructing the RHQR factorization
of 𝑊 from the Householder QR factorization of Ψ𝑊 in Algorithm 5. Finally, we show a block version of
RHQR in Algorithm 4.
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3.1 Algebra of the randomized Householder QR

Let us set a matrix Θ ∈ Rℓ×𝑛, a vector 𝑧 ∈ R𝑛 \Ker (Θ) and define the randomized Householder reflector
associated to Θ and 𝑧:

∀Θ ∈ Rℓ×𝑛, ∀𝑧 ∈ R𝑛 \Ker (Θ) , 𝑃(𝑧,Θ) = 𝐼𝑛 −
2

∥Θ𝑧∥2
· 𝑧(Θ𝑧)𝑡Θ (8)

Proposition 3.1. Let 𝑃(𝑧,Θ) be defined as in (8). The following properties hold:

1. ∀𝜆 ∈ R∗, 𝑃(𝜆𝑧,Θ) = 𝑃(𝑧,Θ)

2. 𝑃(𝑧,Θ)2 = 𝐼𝑛, i.e 𝑃(𝑧,Θ) is a (non orthogonal) reflector

3. ∀𝑥 ∈ R𝑛, Θ · 𝑃(𝑧,Θ) · 𝑥 = 𝑃(Θ𝑧) · Θ𝑥 where 𝑃(Θ𝑧) denotes the standard Householder reflector of
Rℓ associated to Θ𝑧 ∈ Rℓ.

4. ∀𝑥 ∈ R𝑛, ∥Θ ·𝑃(𝑧,Θ) ·𝑥∥2 = ∥Θ𝑥∥2, (consequence of 3) We say that 𝑃(𝑧,Θ) is sketch-isometric
with respect to Θ.

Proof. Let us denote 𝑃 := 𝑃(𝑧,Θ). First, for 𝜆 ∈ R∗, we obtain:

𝐼𝑛 −
2

𝜆2∥Θ𝑧∥2
· (𝜆𝑧) · (𝜆Θ𝑧)𝑡Θ = 𝐼𝑛 −

2

∥Θ𝑧∥2
· 𝜆

2

𝜆2
· 𝑧 · (Θ𝑧)𝑡Θ = 𝑃.

For the next two points, we suppose that ∥Θ𝑧∥2 = 2. Now, for 𝑥 ∈ R𝑛,

𝑃𝑥 = 𝑥 − ⟨Θ𝑥,Θ𝑧⟩𝑧.

Remark also that 𝑃𝑧 = −𝑧. Then,

𝑃𝑃𝑥 = 𝑃𝑥 + ⟨Θ𝑥,Θ𝑧⟩𝑧 = 𝑥 − ⟨Θ𝑥,Θ𝑧⟩𝑧 + ⟨Θ𝑥,Θ𝑧⟩𝑧 = 𝑥.

Lastly, developping the squared norm,

∥Θ𝑃𝑥∥2 = ∥Θ𝑥∥2 − 2⟨Θ𝑥,Θ𝑧⟩2 + ⟨Θ𝑥,Θ𝑧⟩2∥Θ𝑧∥2 = ∥Θ𝑥∥2 − 2⟨Θ𝑥,Θ𝑧⟩2 + 2⟨Θ𝑥,Θ𝑧⟩2 = ∥Θ𝑥∥2.

For the third property, by definition of (8), for all 𝑥 ∈ R𝑛, we get

Θ · 𝑃 · 𝑥 = Θ𝑥 − 2

∥Θ𝑧∥2
Θ𝑧(Θ𝑧)𝑡Θ𝑥 =

(
𝐼ℓ −

2

∥Θ𝑧∥2
Θ𝑧(Θ𝑧)𝑡

)
· Θ𝑥 = 𝑃(Θ𝑧) · Θ𝑥

where 𝑃(Θ𝑧) is the Householder reflector of Rℓ associated to Θ𝑧 ∈ Rℓ defined in (4). □

Remark 3.2. The sketch-isometric property of 𝑃 = 𝑃(𝑧,Θ) is equivalent to

𝑃𝑡Θ𝑡Θ𝑃 = Θ𝑡Θ,

while 𝑃𝑡Θ𝑡Θ𝑃 is at most of rank ℓ.

Compositions of multiple randomized Householder reflectors can be represented with compact for-
mulas.
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Proposition 3.3. Let 𝑢1, · · · 𝑢𝑚 ∈ R𝑛. Define for all 𝑗 ∈ {1, . . . , 𝑚} the coefficients 𝛽 𝑗 = 2/∥Θ𝑢 𝑗 ∥2.
Define by induction the matrix 𝑇𝑗 for all 1 ≤ 𝑗 ≤ 𝑚 as

𝑇1 ∈ R1×1, 𝑇1 = [𝛽1]

∀1 ≤ 𝑗 ≤ 𝑚 − 1, 𝑇𝑗+1 =

[
𝑇𝑗 −𝛽 𝑗 · 𝑇𝑗 (Θ𝑈 𝑗 )𝑡Θ𝑢 𝑗+1
01× 𝑗 𝛽 𝑗

]
Then, denoting 𝑈 ∈ R𝑛×𝑚 the matrix formed by 𝑢1, . . . , 𝑢𝑚 and 𝑇 = 𝑇𝑚, we get the following compact
representation:

𝑃(𝑢1,Θ) · · · 𝑃(𝑢𝑚,Θ) = 𝐼𝑛 −𝑈𝑇 (Θ𝑈)𝑡Θ
𝑃(𝑢𝑚,Θ) · · · 𝑃(𝑢1,Θ) = 𝐼𝑛 −𝑈𝑇 𝑡 (Θ𝑈)𝑡Θ

(9)

Furthermore, the factor 𝑇 verifies

(Θ𝑈)𝑡Θ𝑈 = 𝑇−1 + 𝑇−𝑡 (10)

Proof. The compact formulas can be derived by straightforward induction as in the deterministic case
shown in [15]. Then, apply the Woodburry-Morrison formula to the left-wise and right-wise compositions
as in [12]. □

Let us set a matrix Ω ∈ Rℓ×(𝑛−𝑚), and define the matrix

Ψ =


𝐼𝑚

Ω

 ∈ R
(ℓ+𝑚)×𝑛. (11)

Then the randomized Householder reflector associated to 𝑧 and Ψ is

∀𝑧 ∈ R𝑛 \Ker (Ψ) , 𝑃(𝑧,Ψ) = 𝐼𝑛 −
2

∥Ψ𝑧∥2
· 𝑧 · (Ψ𝑧)𝑡Ψ ∈ R𝑛×𝑛 (12)

All properties from Propositions 3.1 and 3.3 apply to 𝑃(𝑧,Ψ) and to multiple compositions of those
reflectors, simply replacing Θ by Ψ. We now show that the design of Ψ allows to annihilate entries of a
vector below a given index.

Proposition 3.4. Let 𝑗 ∈ {1, . . . , 𝑚}. Denote 𝑐 ∈ R 𝑗−1 and 𝑑 ∈ R𝑛− 𝑗+1 such that 𝑤 = 𝑐 ⊘ 𝑑. Define
𝑤′ = 0 𝑗−1 ⊘ 𝑑, and suppose that 𝑤′ is neither in the kernel of Ψ nor a multiple of 𝑒𝑛

𝑗
. Define the

randomized Householder vector as:

𝑢 𝑗 = 𝑤′ − ∥Ψ𝑤′∥𝑒 𝑗 ∈ R𝑛. (13)

Then

𝑃(𝑢 𝑗 ,Ψ) · 𝑤 = 𝑐 ⊘ (∥Ψ𝑤′∥𝑒𝑛− 𝑗+11 ) =


𝑐

∥Ψ𝑤′∥
0𝑛− 𝑗

 .
Proof. First, remark that ⟨Ψ𝑢 𝑗 ,Ψ𝑤⟩ = ⟨Ψ𝑢 𝑗 ,Ψ𝑤′⟩ because of 𝑢 𝑗 ’s first 𝑗 − 1 zero entries coupled with
the design of Ψ. Also by design of Ψ, remark that ⟨Ψ𝑤,Ψ𝑒 𝑗 ⟩ = ⟨Ψ𝑤′,Ψ𝑒 𝑗 ⟩. Developing the expression
of 𝑢 𝑗 , we get:

⟨Ψ𝑤,Ψ𝑢 𝑗 ⟩ = ∥Ψ𝑤′∥2 − ∥Ψ𝑤′∥⟨Ψ𝑤′,Ψ𝑒 𝑗 ⟩.
On the other hand, recalling that ∥Ψ𝑒 𝑗 ∥ = 1 (see (11)),

∥Ψ𝑢 𝑗 ∥2 = 2∥Ψ𝑤′∥2 − 2∥Ψ𝑤′∥⟨Ψ𝑤′,Ψ𝑒 𝑗 ⟩,
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hence
2

∥Ψ𝑢 𝑗 ∥2
· ⟨Ψ𝑤,Ψ𝑢 𝑗 ⟩ = 1,

which finally yields

𝑃(𝑢 𝑗 ,Ψ) · 𝑤 = 𝑤 − 𝑢 𝑗 = 𝑐 ⊘
(
𝑑 − 𝑑 + ∥Ψ𝑤′∥𝑒1

)
= 𝑐 ⊘ (∥Ψ𝑤′∥𝑒1) .

□

Let us quickly point out that the formula in Proposition 3.4 suffers the same cancellation problems
as in the deterministic case in finite precision arithmetics. Indeed, let us suppose that 𝑤 is almost a
positive multiple of 𝑒1, that is 𝑤1 = 𝜆𝑒1 + 𝑔 ∈ R𝑛, where 𝑔 is a vector of small norm, and 𝜆 ∈ R. The
vector 𝑢1 as defined in Proposition 3.4 might suffer cancellations. It is then useful to flip the sign of 𝑢1,
and choose in general

𝑢 𝑗 := 𝑤′ + sign⟨𝑤 𝑗 , 𝑒 𝑗 ⟩∥Ψ𝑤′∥𝑒𝑛𝑗 ,

with 𝑤′ from Proposition 3.4. To sum up, denoting 𝑐 ∈ R 𝑗−1 and 𝑑 ∈ R𝑛− 𝑗+1 such that 𝑤 = 𝑐 ⊘ 𝑑,
𝜎𝑗 = sign⟨𝑤, 𝑒 𝑗 ⟩
𝜌 𝑗 = ∥Ψ(0 𝑗−1 ⊘ 𝑑)∥
𝑢 𝑗 = (0 𝑗−1 ⊘ 𝑑) + 𝜎𝑗 𝜌 𝑗𝑒

𝑛
𝑗

=⇒ 𝑃(𝑢 𝑗 ,Ψ) · 𝑤 =


𝑐

−𝜎𝑗 𝜌 𝑗

0𝑛− 𝑗

 ∈ R𝑛 (14)

We can now state our main result.

Theorem 3.5. (simultaneous factorizations) Let 𝑊 ∈ R𝑛×𝑚, 𝑊 = [𝑊1; 𝑊2], 𝑊1 ∈ R𝑚×𝑚, and assume
that 𝑊2 is full-rank. Let Ω ∈ Rℓ×(𝑛−𝑚) such that Ω𝑊2 is also full-rank. Define Ψ as in (11). Then there
exist randomized Householder vectors 𝑢1, . . . , 𝑢𝑚 ∈ R𝑛 such that

𝑊 = 𝑃(𝑢1,Ψ) · · · 𝑃(𝑢𝑚,Ψ) ·
[

𝑅

0(𝑛−𝑚)×𝑚

]
=

(
𝐼𝑛 −𝑈𝑇 (Ψ𝑈)𝑡Ψ

) [
𝑅

0(𝑛−𝑚)×𝑚

]
= 𝑄𝑅 (RHQR)

Ψ𝑊 = 𝑃(Ψ𝑢1) · · · 𝑃(Ψ𝑢𝑚) ·
[

𝑅

0ℓ×𝑚

]
=

(
𝐼ℓ+𝑚 − Ψ𝑈𝑇 (Ψ𝑈)𝑡

) [
𝑅

0ℓ×𝑚

]
= (Ψ𝑄)𝑅 (Householder QR)

(15)

i.e the sketch of the RHQR factorization of 𝑊 is the Householder QR factorization of the sketch Ψ𝑊.
In particular, (Ψ𝑄)𝑡Ψ𝑄 = 𝐼𝑚. If Ω is an 𝜖-embedding of Range(𝑊2), then Ψ is an 𝜖-embedding of
Range(𝑊), and we get

Cond(𝑄) ≤ 1 + 𝜖
1 − 𝜖

Proof. Let us first compute 𝑢1 as in Proposition 3.4 such that the first column of 𝑊 gets all its entries
below the first one cancelled. Since 𝑊2 and Ω𝑊2 are full-rank, 𝑢1 is well-defined and is not in the kernel
of Ψ. We get

𝑃(𝑢1,Ψ) ·𝑊 =



𝑟1,1 𝑟1,2 · · · 𝑟1,𝑚
0
...
... ∗
...

0


∈ R𝑛×𝑚

Let us now denote 𝑤 the second column of 𝑃(𝑢1,Ψ) ·𝑊 , and compute 𝑢2 such that all the entries of
𝑤 below the second one are cancelled. The span of the last 𝑛 − 𝑚 rows of 𝑃(𝑢1,Ψ) is still that of 𝑊2.
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Since 𝑊2 and Ω𝑊2 are full rank, 𝑢2 is well-defined and is not in the kernel of Ψ. Furthermore, as shown
in Proposition 3.4, the reflector 𝑃(𝑢2,Ψ) does not modify the first row of the input matrix. We get

𝑃(𝑢2,Ψ)𝑃(𝑢1,Ψ) ·𝑊 =



𝑟1,1 𝑟1,2
0 𝑟2,2

𝑟1,3 · · · 𝑟1,𝑚
𝑟2,3 · · · 𝑟2,𝑚

0 0
...

...
...

...
...

...

0 0

∗


∈ R𝑛×𝑚

Iterating the argument and denoting 𝑃 𝑗 = 𝑃(𝑢 𝑗 ,Ψ) for all 𝑗 ∈ {1, . . . , 𝑚}, we get

𝑃𝑚𝑃𝑚−1 · · · 𝑃1𝑊 =

[
𝑅

0(𝑛−𝑚)×𝑚

]
(16)

where 𝑅 ∈ R𝑚×𝑚 is upper-triangular by construction. Recalling that 𝑃2
𝑗
= 𝐼𝑛 for all 𝑗 ∈ {1, . . . , 𝑚}, we

deduce

𝑊 = 𝑃1𝑃2 · · · 𝑃𝑚

[
𝑅

0(𝑛−𝑚)×𝑚

]
(17)

If we sketch the above equation, we get

Ψ𝑊 = Ψ𝑃1𝑃2 · · · 𝑃𝑚

[
𝑅

0(𝑛−𝑚)×𝑚

]
Using the third point of Proposition 3.1, we get

Ψ𝑊 = 𝑃(Ψ𝑢1) · · · 𝑃(Ψ𝑢𝑚) · Ψ
[

𝑅

0(𝑛−𝑚)×𝑚

]
= 𝑃(Ψ𝑢1) · · · 𝑃(Ψ𝑢𝑚) ·

[
𝑅

0ℓ×𝑚

]
where 𝑃(Ψ𝑢1), . . . 𝑃(Ψ𝑢𝑚) are the standard Householder reflectors of R𝑒𝑙𝑙+𝑚 associated with vectors
Ψ𝑢1 . . .Ψ𝑢𝑚 ∈ Rℓ+𝑚, which shows the equivalence of the two factorizations. The thin Q factor of the
RHQR factorization is

𝑄 = 𝑃1 · · · 𝑃𝑚

[
𝐼𝑚

0(𝑛−𝑚)×𝑚

]
hence

Ψ𝑄 = 𝑃(Ψ𝑢1) · · · 𝑃(Ψ𝑢𝑚) ·
[
𝐼𝑚
0ℓ×𝑚

]
which is the thin Q factor of the Householder QR factorization, hence it is orthogonal, hence 𝑄 is
sketch-orthogonal.

Finally, the 𝜖-embedding property of Ψ follows from the Pythagorea’s theorem and the 𝜖-embedding
property of Ω. □

3.2 Algorithms

We detail the randomized Householder vector computation in Algorithm 1 (RHVector). We stress
that in Algorithm 1 and in a distributed environment, supposing that sketches are available to all
processors after synchronization, then by design of Ψ the scalings in lines 11 and 12 do not require
further synchronization. The scaling in line 12 is more precise than sketching again.
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Algorithm 1: Computation of randomized Householder vector

Input: 𝑑 ∈ R𝑛− 𝑗+1 where 𝑗 ∈ {1, . . . , 𝑚}, Ω ∈ R(ℓ−𝑚)×𝑛
Output: 𝑣, 𝑣′, 𝜎, 𝜌, 𝛽 such that 0 𝑗−1 ⊘ 𝑣′ = Ψ(0 𝑗−1 ⊘ 𝑣) and

𝑃(0 𝑗−1 ⊘ 𝑣,Ψ) · (𝑐 ⊘ 𝑑) = 𝑐 ⊘ (−𝜎𝜌𝑒𝑛
𝑗
) for all 𝑐 ∈ R 𝑗−1, with Ψ defined in (11)

1 function RHVector(𝑦, Ω):
2 𝑣 ← 𝑑

3 𝑎 ← first 𝑚 − 𝑗 + 1 coordinates of 𝑣
4 𝑏 ← last 𝑛 − 𝑚 coordinates of 𝑣
5 Sketch Ω𝑏

6 𝑣′← 𝑎 ⊘ Ω𝑏

7 𝜎 ← sign of first entry of 𝑣′

8 𝜌 ← ∥𝑣′∥
9 Add 𝜎𝜌 to the first entry of 𝑣 and to the first entry of 𝑣′

10 Choose 𝛼 = first entry of 𝑣′ or 𝛼 = ∥𝑣′∥/
√
2

11 𝑣 ← 𝑣/𝛼
12 𝑣′← 𝑣′/𝛼
13 𝛽← 2/∥𝑣′∥2 # for second choice of 𝛼, just set 𝛽 = 1
14 return 𝑣, 𝑣′, 𝜎, 𝜌, 𝛽

We detail the process from the proof of Theorem 3.5 in its simplest form in Algorithm 2 (right-
looking RHQR). One sketching is performed in the RHVector routine called in line 5, which induces
one synchronization. During this synchronization, it is possible to perform the sketching in line 10.
This algorithm can be performed almost in place, since 𝑈 is lower-triangular by construction, and 𝑅 is
upper-triangular by construction. Both can almost fit in the original 𝑊 , while the diagonal of either
𝑅 or 𝑈 can be stored in some additional space. Then, a small additional space is required for Ψ𝑈 (𝑆
in the algorithm). We stress that, in a distributed environment where the sketches are available to all
processors after synchronization, then all processors have access to the 𝑚 ×𝑚 upper-block of 𝑊, 𝑅,𝑈 by
design of Ψ. This version of RHQR may be the simplest conceptually, it is clearly not optimal in terms
of flops, as it requires to sketch 𝑚 − 𝑗 + 1 vectors at step 𝑗 . This issue is addressed by the left-looking
RHQR factorization.

In the light of the compact formulas (9) for the composition of multiple randomized Householder
reflectors, we introduce the main algorithm for computing the RHQR factorization in Algorithm 3. Only
the 𝑗-th column of 𝑊 is modified at iteration 𝑗 . At the beginning of this iteration, the compact form of
the previously computed reflectors is used to apply them to the 𝑗-th column of𝑊 . Then the randomized
Householder reflector of the resulting column is computed, and the compact factorization is updated.
After refreshing the vector 𝑤 in line 7, one synchronization is made at line 8. If the next vector 𝑤 𝑗+1 is
already available (e.g QR factorization, 𝑠-step and block Krylov methods), its sketch can be computed
in the same synchronization, hence avoiding a further synchronization in line 5. This algorithm can be
executed almost in place, with the same recommendations as for the right-looking version, and a minor
additional storage space for the matrix 𝑇 . The sole high-dimensional operations in Algorithm 3 are the
two sketches in Lines 5 and 8, and the update of the 𝑗-th column in Line 7. The cost of the update
is dominated by that of 𝑈 𝑗−1 · (𝑇 𝑡

𝑗−1𝑆
𝑡
𝑗−1𝑧), which is 2𝑛 𝑗 flops, for a final cost of 2𝑛𝑚2 flops. Unlike

the Householder QR factorization, updating the 𝑇 factor has a negligible cost. The two sketches add
2𝑛 log(𝑛) flops. The cost of the whole factorization is then essentially 2𝑛𝑚2 + 2𝑛 log(𝑛). This shows
that the left-looking RHQR requires twice less flops than Householder QR, essentially the cost of an
LU factorization of 𝑊 or that of RGS. We note that, similarly to RGS, mixed precision can be used.
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Algorithm 2: Randomized-Householder QR factorization (right-looking)

Input: Matrix 𝑊 ∈ R𝑛×𝑚, matrix Ω ∈ Rℓ×(𝑛−𝑚), 𝑚 < 𝑙 ≪ 𝑛 − 𝑚
Output: 𝑅,𝑈, 𝑆, such that 𝑆 = Ψ𝑈 and (15) holds

1 function RHQR right(𝑊, Ω):
2 for 𝑗 = 1 : 𝑚 do
3 𝑟 𝑗 ← (𝑤 𝑗 )1: 𝑗−1
4 𝑤 ← 𝑤 𝑗

5 𝑣, 𝑣′, 𝜌, 𝜎, 𝛽 = RHVector((𝑤) 𝑗 :𝑛, Ω)
6 𝑢 𝑗 ← 0 𝑗−1 ⊘ 𝑣

7 𝑠 𝑗 ← 0 𝑗−1 ⊘ 𝑣′

8 𝑟 𝑗 ← 𝑟 𝑗 ⊘ (−𝜎𝜌) ⊘ 0𝑚− 𝑗
9 if 𝑗 < 𝑚 then

10 Sketch Ω𝑊𝑚+1:𝑛, 𝑗+1:𝑚
11 𝑋 ←

[
𝑊1:𝑚, 𝑗+1:𝑚; Ω𝑊𝑚+1:𝑛, 𝑗+1:𝑚

]
# i.e 𝑋 ← Ψ𝑊

12 𝑊 𝑗+1:𝑚 ← 𝑊 𝑗+1:𝑚 − 𝛽 · 𝑢 𝑗 · 𝑠𝑡𝑗 𝑋

13 return 𝑅 = (𝑟 𝑗 ) 𝑗≤𝑚, 𝑈 = (𝑢 𝑗 ) 𝑗≤𝑚, 𝑆 = (𝑠 𝑗 ) 𝑗≤𝑚

For example, one could use half or single precision for storing and computing with high-dimensional
matrices and for the sketching operation, while performing the low-dimensional operations in double
precision, see experiments in Section 7.

If the thin Q factor is needed, one needs to perform the following operation:

𝑄 =

[
𝐼𝑚

0(𝑛−𝑚)×𝑚

]
−𝑈𝑇𝑈𝑡

1:𝑚,1:𝑚 .

The cost is dominated by that of the matrix-matrix multiply 𝑈𝑚 · (𝑇𝑚𝑈𝑡
1:𝑚,1:𝑚), which is 2𝑛𝑚2.

To conclude this section, we detail in Algorithm 4 a block version of Algorithm 3. The matrix
𝑊 ∈ R𝑛×(𝑚𝑏) is now considered as formed by vertical slices 𝑊 (1) , · · ·𝑊 (𝑏) ∈ R𝑛×𝑏. Algorithm 3 is then

applied consecutively to each block. For each𝑊 ( 𝑗), we denote 𝑈 ( 𝑗)𝑚 ,Ψ𝑈
( 𝑗)
𝑚 , 𝑇

( 𝑗)
𝑚 the output of Algorithm 3

applied to 𝑊 ( 𝑗). As to the storage space and the communications, we refer to the comments made
for Algorithm 3. The update of columns ( 𝑗 − 1)𝑏 + 1, . . . , 𝑗 𝑏 of 𝑊 is presented as such in line 7 for
simplicity, however it should be done in place.

3.3 RHQR reconstructed from HQR

If 𝑊 is entirely available at the begining of the procedure, we remark that in exact arithmetics, all
elements of RHQR can be deduced from the output of the Householder QR factorization of Ψ𝑊 . Indeed,
in the light of Theorem 3.5, the latter writes[

𝑊1

Ω𝑊2

]
=

(
𝐼ℓ+𝑚 −

[
𝑈1

Ω𝑈2

]
𝑇

[
𝑈𝑡
1 (Ω𝑈2)𝑡

] ) [
𝑅

0ℓ×𝑚

]
(HQR factorization),

where 𝑈1, 𝑈2 denote respectively the first 𝑚 rows and last 𝑛−𝑚 rows of 𝑈𝑚 output by RHQR of 𝑊 , 𝑇 is
their shared T factor, and 𝑅 is their shared R factor. To retrieve 𝑈2, we may follow the construction of

the randomized Householder vectors 𝑢1, . . . , 𝑢𝑚, focusing on their last 𝑛 − 𝑚 entries 𝑢(2)1 , . . . , 𝑢
(2)
𝑚 . With

the same notations as in Algorithms 1 and 3, it is straightforward to see that 𝑢(2)1 is simply 𝑤
(2)
1 divided

by 𝛼1 from line 10 of Algorithm 1. Then for 𝑢(2)
𝑗
, 𝑗 ≥ 2,
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Algorithm 3: Randomized-Householder QR (RHQR) (left-looking)

Input: Matrix 𝑊 ∈ R𝑛×𝑚, matrix Ω ∈ Rℓ×𝑛, 𝑚 < 𝑙 ≪ 𝑛

Output: 𝑅,𝑈, 𝑆, 𝑇 such that 𝑆 = Ψ𝑈, with Ψ as in (11), and such that (15) holds. Q factor
implicit : 𝑄 = (𝐼𝑛 −𝑈𝑇𝑆𝑡) [𝐼𝑚; 0ℓ×𝑚], 𝑊 = 𝑄𝑅.

1 function RHQR left(𝑊, Ω):
2 for 𝑗 = 1 : 𝑚 do
3 𝑤 ← 𝑤 𝑗

4 if 𝑗 ≥ 2 then
5 Sketch Ω(𝑤)𝑚+1:𝑛
6 𝑧 ← (𝑤)1:𝑚 ⊘ Ω(𝑤)𝑚+1:𝑛 # i.e 𝑧 ← Ψ𝑤

7 𝑤 ← 𝑤 𝑗 −𝑈 𝑗−1𝑇 𝑡
𝑗−1𝑆

𝑡
𝑗−1𝑧 #𝑈 𝑗−1 = (𝑢𝑖)𝑖≤ 𝑗−1, idem 𝑆 𝑗−1, 𝑇𝑗−1 = first 𝑗 − 1 rows of

(𝑡𝑖)𝑖≤ 𝑗−1
8 𝑣, 𝑣′, 𝜌, 𝜎, 𝛽 = RHVector((𝑤) 𝑗 :𝑛, Ω),
9 𝑢 𝑗 ← 0 𝑗−1 ⊘ 𝑣

10 𝑠 𝑗 ← 0 𝑗−1 ⊘ 𝑣′

11 𝑟 𝑗 ← (𝑤)1: 𝑗−1 ⊘ (−𝜎𝜌) ⊘ 0𝑚− 𝑗
12 𝑡 𝑗 ← 0 𝑗−1 ⊘ 𝛽 ⊘ 0𝑚− 𝑗
13 if 𝑗 ≥ 2 then
14 (𝑡 𝑗 )1: 𝑗−1 = −𝛽 · 𝑇1: 𝑗−1,1: 𝑗−1𝑆𝑡𝑗−1𝑠 𝑗

15 return 𝑅 = (𝑟 𝑗 ) 𝑗≤𝑚, 𝑈 = (𝑢 𝑗 ) 𝑗≤𝑚, 𝑆 = (𝑠 𝑗 ) 𝑗≤𝑚, 𝑇 = (𝑡 𝑗 ) 𝑗≤𝑚

Algorithm 4: Block Randomized-Householder QR (block RHQR)

Input: 𝑊 =
[
𝑊 (1) · · ·𝑊 (𝑏)

]
∈ R𝑛×𝑚𝑏, matrix Ω ∈ R(ℓ+𝑚𝑏)×(𝑛−𝑚𝑏), 𝑚𝑏 < 𝑙 ≪ 𝑛

Output: 𝑅, (𝑈 ( 𝑗) , 𝑆( 𝑗) 𝑇 ( 𝑗))1≤ 𝑗≤𝑏 such that 𝑊 =

(∏𝑏
𝑗=1(𝐼𝑛 −𝑈 ( 𝑗)𝑇 ( 𝑗) (𝑆( 𝑗))𝑡)

)
· [𝑅; 0ℓ×𝑚𝑏]

1 function blockRHQR(𝑊, Ω):
2 for 𝑗 = 1 : 𝑏 do
3 𝑀 ← 𝑊 ( 𝑗)

4 for 𝑘 = 1 : 𝑗 − 1 do
5 Sketch Ω𝑀𝑚𝑏+1:𝑛,1:𝑚
6 𝑍 ←

[
𝑀1:𝑚𝑏,1:𝑚; Ω𝑀𝑚𝑏+1:𝑛,1:𝑚

]
# i.e 𝑍 ← Ψ𝑀 = Ψ𝑊 ( 𝑗)

7 𝑀 ← 𝑀 −𝑈 ( 𝑗) (𝑇 ( 𝑗))𝑡 (𝑆( 𝑗))𝑡𝑍
8 Sketch Ω𝑀𝑚𝑏+1:𝑛,1:𝑚
9 𝑍 ←

[
𝑀1:𝑚𝑏,1:𝑚,Ω𝑀𝑚𝑏+1:𝑛,1:𝑚

]
10 𝑅1:( 𝑗−1)𝑏, ( 𝑗−1)𝑏+1: 𝑗 𝑏 ← 𝑀1:( 𝑗−1)𝑏, ( 𝑗−1)𝑏+1: 𝑗 𝑏
11 𝑅( 𝑗) ,𝑈 ( 𝑗) , 𝑆( 𝑗) , 𝑇 ( 𝑗) = RHQR left(𝑊 ( 𝑗) ,Ω)

12 𝑅( 𝑗−1)𝑏+1: 𝑗 𝑏, ( 𝑗−1)𝑏+1, 𝑗 𝑏 ← 𝑅( 𝑗)

13 Return 𝑅,
{
𝑈 ( 𝑗) , 𝑆( 𝑗) , 𝑇 ( 𝑗)

}
𝑗≤𝑏
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1. 𝑤 (2) ← 𝑤
(2)
𝑗
−𝑈2𝑇

𝑡 (Ψ𝑈)𝑡Ψ𝑤 𝑗𝑥

2. 𝑢
(2)
𝑗
← 𝛼−1 · 𝑤 (2)

which corresponds to the formula 𝑊2 = 𝑈2𝑇
𝑡 (Ψ𝑈)𝑡Ψ𝑊. This formula should be consistent with that

obtained by writing the last 𝑛 − 𝑚 lines of the RHQR factorization of 𝑊 , namely 𝑊2 = −𝑈2𝑇𝑈
𝑡
1𝑅.

Indeed,

Ψ𝑊 =

[
𝑅

0ℓ×𝑚

]
− Ψ𝑈𝑚 · 𝑇𝑚 ·𝑈𝑡

1𝑅

Then
(Ψ𝑈)𝑡Ψ𝑊 = 𝑈𝑡

1𝑅 − (Ψ𝑈)
𝑡Ψ𝑈 · 𝑇𝑈𝑡

1𝑅 = 𝑈𝑡
1𝑅 − (𝑇

−1 + 𝑇−𝑡) · 𝑇𝑈𝑡
1𝑅 = −𝑇−𝑡𝑇𝑈𝑡

1

Finally multiplying on the left by 𝑇 𝑡 , we get 𝑇 𝑡 (Ψ𝑈)𝑡Ψ𝑊 = −𝑇𝑈𝑡
1𝑅 (which shows that it is upper-

triangular), hence 𝑈2𝑇
𝑡 (Ψ𝑈)𝑡Ψ𝑊 = 𝑈2𝑇𝑈

𝑡
1𝑅. Also, according to Theorem 3.5, the coefficient 𝛼 𝑗 scaling

the 𝑗-th randomized Householder is equal to that scaling the 𝑗-th Householder vector in Householder
QR of Ψ𝑊 . These computations yield Algorithm 5 (reconstructRHQR). This algorithm makes a single
synchronization in line 2. There are multiple ways of carrying out the computations retrieving 𝑈2

in line 5. We choose the explicit recursion using the coefficients (𝛼 𝑗 )1≤ 𝑗≤𝑚 retrieved from the Householder
factorization of Ψ𝑊 . Experiments show that on some very difficult examples, this algorithm is more
stable than Randomized Cholesky QR [2], see experiments in Section 7.

Algorithm 5: RHQR reconstructing randomized Householder vectors (reconstructRHQR)

Input: Matrix 𝑊 ∈ R𝑛×𝑚, matrix Ω ∈ Rℓ×𝑛, 𝑚 < 𝑙 ≪ 𝑛

Output: 𝑅,𝑈, 𝑆, 𝑇 such that 𝑆 = Ψ𝑈, with Ψ defined as in (11)
1 function reconstructRHQR(𝑊, Ω):
2 Sketch Ω𝑊𝑚+1:𝑛,1:𝑚
3 𝑍 ←

[
𝑊1:𝑚,1:𝑚; Ω𝑊𝑚+1:𝑛,1:𝑚

]
# i.e 𝑍 ← Ψ𝑊

4 𝑆, 𝑇, 𝑅 ← HouseholderQR(𝑍) #Householder vectors 𝑆 = Ψ𝑈 ∈ R(ℓ+𝑚)×𝑚, T factor, R factor
5 Backward solve for 𝑋 in 𝑊𝑚+1:𝑛,1:𝑚 = 𝑋 · ut(𝑇 𝑡𝑌 𝑡𝑍)
6 return 𝑅, 𝑈 =

[
𝑆1:𝑚,1:𝑚; 𝑋

]
, 𝑆, 𝑇

Remark 3.6. The unique LU factorization of
[
𝐼𝑚; 0(𝑛−𝑚)×𝑚

]
−𝑄 yielded by Householder QR translates

in the unique LU factorization of both
[
𝐼𝑚; 0(𝑛−𝑚)×𝑚

]
− 𝑄 and [𝐼𝑚; 0ℓ×𝑚] − Ψ𝑄 yielded by the RHQR

factorization. Indeed, writing the thin Q factor yielded by RHQR,

𝑄 =

[
𝐼𝑚

0(𝑛−𝑚)×𝑚

]
−𝑈𝑚𝑇𝑚𝑈

𝑡
1 ⇐⇒

[
𝐼𝑚

0(𝑛−𝑚)×𝑚

]
−𝑄 = 𝑈︸︷︷︸

lower-triangular,
diagonal of ones

· 𝑇𝑈𝑡
1︸︷︷︸

upper-triangular

(18)

which is the unique LU factorization of
[
𝐼𝑚; 0(𝑛−𝑚)×𝑚

]
−𝑄. Now sketching this equation, and by design

of Ψ which preserves the upper block of the sketched matrix,[
𝐼𝑚
0ℓ×𝑚

]
− Ψ𝑄 =

[
𝑈1

Ω𝑈2

]
︸ ︷︷ ︸

lower-triangular,
diagonal of ones

· 𝑇𝑈𝑡
1︸︷︷︸

upper-triangular

. (19)
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which is the unique LU factorization of [𝐼𝑚; 0ℓ×𝑚]−Ψ𝑄. Hence both the randomized Householder vectors
and their sketches can be obtained from 𝑄 and Ψ𝑄. In turn, if another orthonormalization process of 𝑊
yields a factor 𝑄 such that Range(𝑄) = Range(𝑊), (Ψ𝑄)𝑡Ψ𝑄 = 𝐼𝑚, the randomized Householder vectors
can be obtained from the LU factorization of [𝐼𝑚; 0ℓ×𝑚] − Ψ𝑄. The L factor of the latter is Ψ𝑈, from
which we can deduce 𝑈1. 𝑇 can be deduced from Ψ𝑈𝑚 thanks to (10), but can also be deduced from
the upper-triangular factor of the LU factorization, which is 𝑈𝑡

1𝑇 . If 𝑅 is not given, it can be retrieved
as (Ψ𝑄)𝑡Ψ𝑊 . The factor 𝑈2 can be retrieved in many ways, for example as in reconstructRHQR.

4 Application to Arnoldi and GMRES

As in [14, Algorithm 6.3, p163], the left-looking RHQR factorization is straightforwardly embedded into
the Arnoldi iteration, yielding Algorithm 6. Before detailing the algorithm, let us justify right away
that it computes a basis of the Krylov subspace:

Proposition 4.1. Algorithm 6 applied to 𝐴 ∈ R𝑛×𝑛, 𝑏, 𝑥0 ∈ R𝑛, and Ω ∈ Rℓ×(𝑛−𝑚) produces 𝑄𝑚+1 =

[𝑄𝑚 | 𝑞𝑚+1] ∈ R𝑛×(𝑚+1) and 𝐻𝑚+1,𝑚 ∈ R(𝑚+1)×𝑚 such that

𝐴𝑄𝑚 = 𝑄𝑚+1𝐻𝑚+1,𝑚 . (20)

and 𝑞1 is a multiple of 𝑏 − 𝐴𝑥0.

Proof. The proof is almost identical to that found in [14]. Note that P−1𝑚 ≠ P𝑡
𝑚 for randomized House-

holder reflectors, which has no consequence in the proof. By the definition of the vector 𝑧 at line 13,
once the randomized Householder reflector is applied at line 8, we obtain:

ℎ 𝑗 = 𝑃 𝑗+1𝑃 𝑗 · · · 𝑃1 · 𝐴𝑞 𝑗 . (21)

Since the coordinates 𝑗 + 2, 𝑗 + 3 · · · 𝑛 of ℎ 𝑗 are zero, it is invariant under the remaining reflectors:

ℎ 𝑗 = 𝑃𝑚 · · · 𝑃 𝑗+2ℎ 𝑗 = 𝑃𝑚 · · · 𝑃1𝐴𝑞 𝑗 . (22)

This relation being true for all 𝑗 , we obtain the factorization:

𝑃𝑚 · · · 𝑃1 [𝑟0 𝐴𝑞1 . . . 𝐴𝑞𝑚] = [ℎ0 ℎ1 · · · ℎ𝑚] .

Multiplying on the left by the reflectors in reverse order 𝑃1 · · · 𝑃𝑚, we obtain:

[𝑟0 𝐴𝑞1 . . . 𝐴𝑞𝑚] = 𝑃1 · · · 𝑃𝑚 [ℎ0 ℎ1 · · · ℎ𝑚] = P−1𝑚 [ℎ0 ℎ1 · · · ℎ𝑚]

which concludes the proof. □

As Householder-Arnoldi costs more than MGS-Arnoldi, RHQR Arnoldi costs more than RGS Arnoldi.
The reason is similar : the vector 𝑧 used as input for the 𝑗+1-th RHQR iteration (𝑧 in Algorithm 6) is not
𝐴𝑞 𝑗 , but 𝑃 𝑗 · · · 𝑃1𝐴𝑞 𝑗 . This induces an additional generalized matrix vector product in line 13, and in
our context, an additional sketch and thus an additional synchronization in line 15. This additional cost
(one generalized matrix vector product and one sketch) is put into perspective by the greater stability of
RHQR-Arnoldi when compared to RGS-Arnoldi on difficult examples in simple precision, see Section 7.
Since this work concerns large-scale contexts, we choose the current presentation in which the Arnoldi
basis is its implicit form. This form is sufficient to compute the coordinates of an element from the
Krylov subspace in the computed basis. However, one can also store the vectors 𝑟 from Algorithm 6
along the iteration if the storage space is available.

We also adapt the GMRES process to the RHQR-Arnoldi from Algorithm 6 as in [14][Algorithm
6.10, p174].

16



Algorithm 6: Randomized Householder Arnoldi

Input: Matrix 𝐴 ∈ R𝑛×𝑛, 𝑥0, 𝑏 ∈ R𝑛, 𝑚 ∈ N∗, matrix Ω ∈ Rℓ×𝑛, 𝑚 < 𝑙 ≪ 𝑛,
Output: Matrices 𝑄𝑚, 𝐻𝑚+1,𝑚 such that (20) holds (𝑄𝑚 in compact form)

1 function RHQR Arnoldi(𝐴, 𝑏, 𝑥0,Ω):
2 𝑤 ← 𝑏 − 𝐴𝑥0
3 𝑧 ← Ψ𝑤

4 for 𝑗 = 1 : 𝑚 + 1 do
5 𝑣, 𝑣′, 𝜌, 𝜎, 𝛽← RHVector((𝑤) 𝑗 :𝑛, Ω)
6 𝑢 𝑗 ← 0 𝑗−1 ⊘ 𝑣

7 𝑠 𝑗 ← 0 𝑗−1 ⊘ 𝑣′

8 ℎ 𝑗−1 ← (𝑤)1: 𝑗−1 ⊘ (−𝜎𝜌) ⊘ 0𝑚+1− 𝑗
9 Update 𝑇𝑗 as in Algorithm 3

10 if 𝑗 ≤ 𝑚 then
11 𝑞 𝑗 ← 𝑒ℓ+𝑚

𝑗
−𝑈 𝑗𝑇𝑗𝑆

𝑡
𝑗
𝑒ℓ+𝑚
𝑗

# Optional : store 𝑞 𝑗

12 Compute 𝑦 = 𝐴𝑞 𝑗 , sketch Ω(𝑦)𝑚+1:𝑛
13 𝑤 ← 𝑦 −𝑈 𝑗𝑇

𝑡
𝑗
𝑆𝑡
𝑗
[(𝑦)1:𝑚 ⊘ Ω(𝑦)𝑚+1:𝑛] # i.e 𝑤 ← 𝐴𝑞 𝑗 −𝑈 𝑗𝑇

𝑡
𝑗
𝑆𝑡
𝑗
Ψ𝐴𝑞 𝑗

14 Sketch Ω(𝑤)𝑚+1:𝑛
15 𝑧 ← 𝑤1:𝑚 ⊘ Ω(𝑤)𝑚+1:𝑛 # i.e 𝑧 ← Ψ𝑤

16 Set 𝐻 as the first 𝑚 + 1 rows of [ℎ1 ℎ2 . . . ℎ𝑚], discard ℎ0.
17 return (𝑢 𝑗 ) 𝑗≤𝑚+1, (𝑠 𝑗 ) 𝑗≤𝑚+1, (𝑡 𝑗 ) 𝑗≤𝑚+1, 𝐻 #𝑆 = Ψ𝑈. Optional : return (𝑞 𝑗 )1≤ 𝑗≤𝑚

Algorithm 7: Randomized Householder GMRES

Input: Matrix 𝐴 ∈ R𝑛×𝑛, 𝑥0, 𝑏 ∈ R𝑛, 𝑚 ∈ N∗, matrix Ψ ∈ Rℓ×𝑛, 𝑚 < 𝑙 ≪ 𝑛,
Output: 𝑥𝑚 ∈ K 𝑗 (𝐴, 𝑟0) such that (23) holds

1 function RHQR GMRES(𝐴, 𝑏, 𝑥0,Ω):
2 Sketch Ω(𝑏)𝑚+1:𝑛
3 𝛽 = ∥(𝑏)1:𝑚 ⊘ Ω(𝑏)𝑚+1:𝑛∥ # i.e 𝛽 = ∥Ψ𝑏∥
4 [𝑈 | 𝑢] , [𝑆 | 𝑠] , [𝑇 | 𝑡] , 𝐻 ←RHQR Arnoldi(𝐴, 𝑏, 𝑥0,Ω)

5 Solve Hessenberg system 𝐻𝑦 = 𝛽𝑒𝑚+11
6 𝑥 ← (𝐼𝑛 −𝑈𝑇𝑆𝑡) (𝑦 ⊘ 0ℓ)
7 return 𝑥
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Proposition 4.2. Let 𝐻𝑚+1,𝑚, 𝑄𝑚 and 𝑄𝑚+1 be the Arnoldi relation output by RHQR-Arnoldi in Algo-
rithm 6. Let us pick

𝑥𝑚 = 𝑄𝑚𝑦, 𝑦 := argmin
𝑦∈R𝑚

∥𝛽𝑒1 − 𝐻𝑚+1,𝑚𝑦∥, 𝛽 = ∥Ω𝑏∥.

Then

𝑥𝑚 = argmin
𝑥∈K𝑚 (𝐴,𝑥0)

∥Ψ(𝑏 − 𝐴𝑥)∥. (23)

In particular, if 𝑊 denotes any basis of K𝑚 (𝐴, 𝑥0) and if Ω is an 𝜖-embedding for Range(𝑊2), then

∥𝑏 − 𝐴𝑥𝑚 ∥ ≤
1 + 𝜖
1 − 𝜖 argmin

𝑥∈R𝑛
∥𝑏 − 𝐴𝑥∥

Proof. Just as in RGS, it follows from the orthogonality of the sketch Ψ𝑄𝑚+1 of the Arnoldi basis built
by Algorithm 6:

argmin
𝜌∈R𝑚

∥𝛽𝑒1 − 𝐻𝑚+1,𝑚𝜌∥ = argmin
𝜌∈R𝑚

∥Ψ𝑄 𝑗+1
[
𝛽𝑒1 − 𝐻𝑚+1,𝑚𝜌

]
∥ = argmin

𝜌∈R𝑚
∥Ψ

[
𝑏 − 𝐴𝑄 𝑗 𝜌

]
∥

□

5 Randomized Modified Gram-Schmidt

In this section, we derive a randomized Modified Gram-Schmidt (RMGS) process based on the RHQR
algorithm applied to matrix 𝑊 ∈ R𝑛×𝑚 topped by a 𝑚 × 𝑚 bloc of zeros.

Let us take Ω ∈ Rℓ×𝑛, and suppose that 𝑊 and Ω𝑊 are full-rank (hence the RHQR factorization
does not crash). Let us form Ψ ∈ R(ℓ+𝑚)×(𝑛+𝑚), and perform the RHQR factorization of the also full rank
matrix

𝑊 =

[
0𝑚×𝑚
𝑊

]
∈ R(𝑛+𝑚)×𝑚 . (24)

We stress that in such context, the sign in the construction of the randomized Householder vectors is
never flipped. Let us denote 𝑢1 . . . 𝑢𝑚 ∈ R𝑛+𝑚 the randomized Householder vectors, forming the matrix
𝑈. Let us also scale them such that the diagonal of 𝑈 ∈ R𝑛×𝑚 is the identity matrix 𝐼𝑚. Let us denote
𝑇 the associated T factor. By construction, 𝑈 and its sketch Ψ𝑈 are of the form

𝑈 =

[
𝐼𝑚
𝑈

]
∈ R𝑛×𝑚, Ψ𝑈 =

[
𝐼𝑚
Ω𝑈

]
∈ R(ℓ+𝑚)×𝑚, 𝑈 ∈ R𝑛×𝑚 .

Supposing that [0𝑚×𝑚;𝑊] is full rank and seeing as the composition of the randomized Householder
reflectors is non-singular, 𝑅 is also non-singular. Hence, writing the factorization in its compact form,
we get (in exact arithmetics) [

𝑅 − 𝑇𝑅
−𝑈𝑇𝑅

]
=

[
0𝑚×𝑚
𝑊

]
=⇒

{
𝑇 = 𝐼𝑚

−𝑈𝑅 = 𝑊

Let us write 𝑄 the thin Q factor output by RHQR. In this context,

𝑄 =

[
𝐼𝑚

0(𝑛+𝑚)×𝑚

]
−

[
𝑇

𝑈

]
𝑇

[
𝐼𝑚 (Ω𝑈)𝑡

]
·
[
𝐼𝑚
0ℓ×𝑚

]
=

[
𝐼𝑚

0(𝑛+𝑚)×𝑚

]
−

[
𝑇

𝑈

]
= −

[
0𝑚×𝑚
𝑈

]
.
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Ψ𝑄 is orthogonal by construction, hence, denoting 𝑄 = −𝑈, we see that Ω𝑄 is orthogonal. Hence
𝑊 = 𝑄𝑅 is a randomized QR factorization.

Let us then study in detail the arithmetics of one iteration. Remembering that we choose to scale
𝑢1 such that its first coordinate is +1, it is clear that it is given by

𝑧1 ←
[
0𝑚
𝑤1

]
− ∥Ω𝑤1∥𝑒1, 𝑢1 ←

1

−∥Ω𝑤1∥
· 𝑧1 =

[
𝑒1

−𝑤1/∥Ω𝑤1∥

]
:=

[
𝑒1
−𝑞1

]
, ∥Ψ𝑢1∥2 = 2, ∥Ω𝑞1∥ = 1

(remark that both scaling of 𝑢1 are equivalent in this context). Hence the first vector 𝑞1 is the same
as that built by RGS on 𝑊 with sketching matrix Ω. At iteration 𝑗 ≥ 2, denoting 𝑇𝑗−1 the T factor
at iteration 𝑗 − 1 denoting 𝑈 𝑗−1 the matrix formed by 𝑢1, . . . 𝑢 𝑗−1, denoting 𝑄 𝑗−1 the matrix formed by
𝑞1, . . . 𝑞 𝑗−1, we first write

𝑧 𝑗 ← P 𝑗−1


0 𝑗−1
0𝑚− 𝑗+1
𝑤 𝑗

 =


0 𝑗−1
0𝑚− 𝑗+1
𝑤 𝑗

 −


𝐼 𝑗−1
01×(𝑚− 𝑗+1)
−𝑄 𝑗−1

 𝑇 𝑡
𝑗−1

[
𝐼 𝑗−1 0(𝑚− 𝑗+1)×1 (−Ω𝑄 𝑗−1)𝑡

] 
0 𝑗−1
0𝑚− 𝑗+1
𝑤 𝑗


yielding

𝑧 𝑗 ←


𝑇 𝑡
𝑗−1(Ω𝑄 𝑗−1)𝑡Ω𝑤 𝑗

0𝑚− 𝑗+1
𝑤 𝑗 −𝑄 𝑗−1𝑇 𝑡

𝑗−1(Ω𝑄 𝑗−1)𝑡Ω𝑤 𝑗

 =:


𝑥

0𝑚− 𝑗+1
𝑦

 .
By design of the RHQR algorithm, 𝑥 (i.e the first 𝑗 − 1 entries of 𝑧 𝑗) gives the first 𝑗 − 1 entries of the
𝑗-th column of the R factor. Now computing the vector 𝑢 𝑗 ,

𝑢 𝑗 ←
[
0𝑚
𝑦

]
− ∥Ω𝑦∥𝑒 𝑗 , 𝑢 𝑗 ←

1

−∥Ω𝑦∥ · 𝑢 𝑗 =


0 𝑗−1
1

0𝑚− 𝑗
−𝑦/∥Ω𝑦∥

 =

[
𝑒 𝑗
−𝑞 𝑗

]
By design of the RHQR algorithm, the 𝑗-th entry of the 𝑗-th column of 𝑅 is given by ∥Ω𝑦∥. Seeing as
𝑇𝑚 = 𝐼𝑚 in exact arithmetics, we are supposed to get

𝑞 𝑗 ← 𝑤 𝑗 −𝑄 𝑗−1(Ω𝑄 𝑗−1)𝑡Ω𝑤 𝑗 , 𝑞 𝑗 ←
1

∥Ω𝑞 𝑗 ∥
· 𝑞 𝑗

i.e the factor 𝑄 is precisely that output by RGS in exact arithmetics.

6 Randomized reflectors with partial sketching

We showcase here another randomization of the Householder reflector, allowing for another RHQR
process (trimRHQR) which produces accurate factorizations and well conditioned bases in all cases
of our test set. This modified algorithm does not compute a basis whose sketch is orthogonal, but
experimentally we observed that the sampling size is smaller than the one required by RHQR.

Let us pick a matrix Ω ∈ Rℓ×𝑚 with unit columns. Let us rule out the possibility that the 𝑚 first
columns of Ω are orthogonal to the last 𝑛 − 𝑚, nor that they are orthogonal to each other. One can
verify as in Proposition 3.4 that with any such matrix Ω, it is possible to eliminate all coordinates of an
input vector below its first entry, setting 𝑢 = 𝑤 ± ∥Ω𝑢∥𝑒1, and using the fact that ∥Ω𝑒1∥ = 1:

𝑃(𝑢,Ω) · 𝑤 = ±∥Ω𝑤∥𝑒1

If we denote 𝑤 = 𝑐 ⊘ 𝑑, 𝑑 ∈ R𝑛−1, if we denote 𝑤′ = 0 ⊘ 𝑑 and set 𝑢 = 𝑤′ − ∥Ω𝑤′∥𝑒2, one will remark
that the operator 𝑃(𝑢,Ω) should modify the first entry of some input vector. This comes from the
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Algorithm 8: Randomized Modified Gram-Schmidt (RMGS)

Input: Matrix 𝑊 ∈ R𝑛×𝑚, matrix Ω ∈ Rℓ×𝑛
Output: Matrices 𝑅, 𝑄 such that 𝑊 = 𝑄𝑅

1 for 𝑗 = 1 : 𝑚 do
2 𝑤 ← 𝑤 𝑗

3 if 𝑗 ≥ 2 then
4 𝑧 ← Ω𝑤

5 𝑟 𝑗 ← 𝑇 𝑡
𝑗−1𝑆

𝑡
𝑗−1𝑧 #𝑆 𝑗−1 = (𝑠𝑖)1≤𝑖≤ 𝑗−1, 𝑇𝑗−1 = first 𝑗 rows and 𝑗 columns of (𝑡𝑖)1≤𝑖≤ 𝑗

6 𝑤 ← 𝑤 𝑗 −𝑄 𝑗−1𝑟 𝑗 #𝑈 𝑗−1 = (𝑢𝑖)1≤𝑖≤ 𝑗−1
7 𝑧 ← Ω𝑤

8 𝜌 = ∥Ω𝑧∥
9 𝑞 𝑗 ← 𝜌−1 · 𝑤, 𝑠 𝑗 ← 𝜌−1 · 𝑠

10 𝑟 𝑗 ← 𝑟 𝑗 ⊘ 𝜌 ⊘ 0𝑚− 𝑗
11 𝑡 𝑗 ← 0 𝑗−1 ⊘ 1 ⊘ 0𝑚− 𝑗
12 (𝑡 𝑗 )1: 𝑗−1 ← −𝑇1: 𝑗−1,1: 𝑗−1 · 𝑆𝑡𝑗−1𝑠 𝑗
13 Optional : 𝑄 𝑗 ← 𝑄 𝑗 · 𝑇𝑚
14 return (𝑟 𝑗 ) 𝑗≤𝑚, (𝑞 𝑗 ) 𝑗≤𝑚

geometric properties that we ruled out for the first 𝑚 columns of Ω (this observation motivated for the
design of Ψ from Section 3 in the first place). We can still enforce the behavior we seek. Let us denote
Ω′ ∈ Rℓ×(𝑛−1) the matrix formed by the last 𝑛−1 columns of Ω. For the same reasons as before, denoting
𝑢′ = 𝑑 − ∥Ω′𝑑∥𝑒1 ∈ R𝑛−1, we can build a reflector 𝑃(Ω′, 𝑢′) ∈ R(𝑛−1)×(𝑛−1) that is sketch isometric with
respect to Ω′, and that verifies

𝑃(Ω′, 𝑢′) · 𝑤′ = ∥Ω′𝑤′∥𝑒1 ∈ R𝑛−1

Denoting now

𝐻′ =


1

𝑃(Ω′, 𝑢′)

 ∈ R
𝑛×𝑛

we get by design a reflector that was forced to leave the first line of any input untouched, while cancelling
the entries of a given input below its second one. However, we have lost the sketch-isometric property
of the final reflector of R𝑛. It is by design sketch-isometric for the following matrix

Ψ′ =


1

Ω′

 ∈ R
(ℓ+1)×𝑛

Let us generalize this construction. First, we define the sequence of sampling matrices

Ψ1 := Ω; ∀ 𝑗 ∈ {2 . . . 𝑚}, Ψ 𝑗 :=


𝐼 𝑗−1

Ω 𝑗 :𝑛

 ∈ R
(ℓ+ 𝑗−1)×𝑛 (25)

and the modified randomized Householder reflectors

∀𝑧 ∈ R𝑛 \Ker
(
Ψ 𝑗

)
, 𝐻 (𝑧,Ω, 𝑗) := 𝑃(𝑧,Ψ 𝑗 )) = 𝐼𝑛 −

2

∥Ψ 𝑗 𝑧∥2
· 𝑧 · (Ψ 𝑗 𝑧)𝑡Ψ 𝑗 ∈ R𝑛×𝑛. (26)
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We remark that if 𝑢 𝑗 is a vector which first 𝑗 −1 entries are nil, then (26) can be equivalently formulated

𝑃(𝑢 𝑗 ,Ψ 𝑗 ) = 𝐻 (𝑢 𝑗 ,Ω, 𝑗) = 𝐼𝑛 −
2

∥Ω𝑢 𝑗 ∥2
· 𝑢 𝑗 (Ω𝑢 𝑗 )𝑡

[
0ℓ×( 𝑗−1) Ω 𝑗 :𝑛

]
(27)

We summarize their properties in the following proposition:

Proposition 6.1. Let 𝑗 ∈ {1, . . . , 𝑚}, let 𝑤 ∈ R𝑛, where 𝑤 = 𝑐 ⊘ 𝑑, with 𝑐 ∈ R 𝑗−1 and 𝑑 ∈ R𝑛−( 𝑗−1),
where Ω ∈ Rℓ×𝑛 has unit first 𝑚 columns. Let us denote 𝑤′ = 0 𝑗−1 ⊘ 𝑑. Suppose that Ω𝑑 ≠ 0 and that 𝑤′

is not a multiple of 𝑒 𝑗 . Define 𝑢 𝑗 = 𝑤′ − ∥Ω𝑤′∥𝑒 𝑗 ∈ R𝑛. Then 𝐻 (𝑢 𝑗 ,Ω, 𝑗) · 𝑤 = 𝑐 ⊘ (∥Ω𝑤′∥𝑒𝑛− 𝑗+11 ).

Proof. The proof is identical to that of Proposition 3.4, only with the important hypothesis that the
vectors Ω𝑒1 . . .Ω𝑒𝑚 are unit vectors. □

Using successive modified randomized Householder reflectors 𝐻 (𝑢1,Ω, 1), . . . , 𝐻 (𝑢𝑚,Ω, 𝑚), it is then
possible to get the following factorization

𝐻 (𝑢𝑚,Ω, 𝑚) · · ·𝐻 (𝑢1,Ω, 1) ·𝑊 =

[
𝑅

0(𝑛−𝑚)×𝑚

]
⇐⇒ 𝑊 = 𝐻 (𝑢1,Ω, 1) · · ·𝐻 (𝑢𝑚,Ω, 𝑚) ·

[
𝑅

0(𝑛−𝑚)×𝑚

]
(28)

where 𝑅 ∈ R𝑚×𝑚 is upper-triangular by construction. We show this procedure in Algorithms 9 and 10.
In line 2 of Algorithm 9, one communication is made to sketch 𝑤′. If the sketches of the first 𝑚 canonical
vectors are available, then no further synchronization is required. In Algorithm 10, we make the same
memory management indications as in Algorithm 2. We note that the sketching made in line 8 can be
done in the communication made before to compute the modified randomized Householder vector.

Algorithm 9: Computation of modified randomized Householder vector (trimRHVector)

Input: vector 𝑤̃ ∈ R𝑛− 𝑗+1, 𝑗 ∈ {1, . . . , 𝑚}, Ω̃ ∈ Rℓ×(𝑛− 𝑗+1) with unit first 𝑚 − 𝑗 + 1 columns
Output: 𝑣, 𝑣′, 𝜌, 𝜎, 𝛽 such that 𝑤̃ − 𝛽⟨𝑣′, Ω̃𝑤̃⟩𝑣 = −𝜎𝜌𝑒

𝑛− 𝑗+1
1

1 function trimRHVector(𝑤̃, Ω̃):

2 Sketch Ω̃𝑤̃

3 𝜌 ← ∥Ω̃𝑤̃∥
4 𝜎 = sign⟨𝑤̃, 𝑒1⟩
5 𝑣 ← 𝑤̃ + 𝜎𝜌𝑒1

6 Sketch Ω̃𝑣

7 𝑣′← Ω̃𝑣

8 Choose 𝛼 as the first entry of 𝑣′ or as
√
2/∥𝑣′∥

9 𝑣 ← 𝛼𝑣

10 𝑣′← 𝛼𝑣′

11 𝛽 = 2/∥𝑠∥2 # for second choice of 𝛼, just set 𝛽 = 1
12 return 𝑣, 𝑣′, 𝜌, 𝜎, 𝛽

We focus now on the formulas that allow to handle multiple modified randomized Householder
reflectors efficiently, allowing for the left-looking version.
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Algorithm 10: trimRHQR (right-looking)

Input: Matrix 𝑊 ∈ R𝑛×𝑚, matrix Ω ∈ Rℓ×𝑛, 𝑚 < 𝑙 ≪ 𝑛

Output: 𝑅,𝑈, 𝑆 such that 𝑆 = Ω𝑈 and (28) holds
1 function trimRHQR right(𝑊, Ω):
2 for 𝑗 = 1 : 𝑚 do
3 𝑟 𝑗 ← (𝑤 𝑗 )1: 𝑗−1
4 𝑤 ← 𝑤 𝑗

5 𝑢 𝑗 , 𝜌 𝑗 , 𝜎, 𝛽 = trimRHVector(𝑤 𝑗 , Ω, 𝑗)

6 𝑟 𝑗 ← 𝑟 𝑗 ⊘ (−𝜎𝜌) ⊘ 0𝑚− 𝑗
7 if 𝑗 ≥ 2 then
8 𝑋 ←

[
0ℓ×( 𝑗−1) Ω 𝑗 :𝑛

]
𝑊 𝑗+1:𝑛

9 𝑊 𝑗+1:𝑚 ← 𝑊 𝑗+1:𝑚 − 𝛽𝑢 𝑗 𝑠
𝑡
𝑗
𝑋

10 return (𝑟 𝑗 )1≤ 𝑗≤𝑚, (𝑢 𝑗 )1≤ 𝑗≤𝑚, (𝑠 𝑗 )1≤ 𝑗≤𝑚

Proposition 6.2. Let 𝑢1 . . . 𝑢𝑚 be the Householder vectors generated by Algorithm 10. For all 𝑗 ∈
{1, . . . , 𝑚}, define 𝛽 𝑗 = 2/∥Ω𝑢 𝑗 ∥2. Define by induction the matrix 𝑇𝑗 for all 1 ≤ 𝑗 ≤ 𝑚 as

𝑇1 ∈ R1×1, 𝑇1 = [𝛽1]

∀1 ≤ 𝑗 ≤ 𝑚 − 1, 𝑇𝑗+1 =

[
𝑇𝑗 −𝛽 𝑗 · 𝑇𝑗 (Ω𝑈 𝑗 )𝑡Ω𝑢 𝑗+1
01× 𝑗 𝛽 𝑗

]
(29)

Then for all 1 ≤ 𝑗 ≤ 𝑚, we have the factored form:

H−1𝑗 := 𝐻 (𝑢1,Ω, 1) · · ·𝐻 (𝑢 𝑗 ,Ω, 𝑗) = 𝑃(𝑢1,Ψ1) · · · 𝑃(𝑢 𝑗 ,Ψ 𝑗 ) = 𝐼 −𝑈 𝑗𝑇𝑗ut
(
(Ω𝑈 𝑗 )𝑡Ω

)
. (30)

Proof. See appendix.
□

Proposition 6.3. With the previous notations, and regardless of the scaling of the modified randomized
Householder vectors, we get

∀ 𝑗 ∈ {1, . . . , 𝑚}, 𝑇−1𝑗 + 𝑇−𝑡𝑗 = (Ω𝑈 𝑗 )𝑡Ω𝑈 𝑗 , 𝑇𝑗 =

[
ut

(
(Ω𝑈 𝑗 )𝑡Ω𝑈 𝑗

)
− 1

2
Diag

(
(Ω𝑈 𝑗 )𝑡Ω𝑈 𝑗

) ]−1
(31)

In particular, when the randomized Householder vectors are scaled such that their sketched norm is
√
2,

we get

∀ 𝑗 ∈ {1, . . . , 𝑚}, 𝑇𝑗 =
[
ut

(
(Ω𝑈 𝑗 )𝑡Ω𝑈 𝑗

)
− 𝐼 𝑗

]−1
(32)

Proof. The T factor from Proposition 6.3 has the same formula as that of the composition of randomized
Householder reflectors from Section 3. □

If the right-wise compositions admit the same T factor as for the randomized Householder reflectors
from section 3, the left-wise compositions 𝑃(𝑢𝑚,Ψ𝑚) · · · 𝑃(𝑢1,Ψ1) = 𝐻 (𝑢𝑚,Ω, 𝑚) · · ·𝐻 (𝑢1,Ω, 1) feature
a T factor that slightly differs from 𝑇 𝑡 . Straightforward computations yield the following result:
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Proposition 6.4. Define by induction the matrix 𝑇𝑗 for all 1 ≤ 𝑗 ≤ 𝑚 as

𝑇1 ∈ R1×1, 𝑇1 = [𝛽1]

∀1 ≤ 𝑗 ≤ 𝑚 − 1, 𝑡̃ 𝑗 = −𝛽 · 𝑇1: 𝑗−1,1: 𝑗−1
( [
0ℓ×( 𝑗−1) Ω 𝑗 :𝑛

]
𝑈 𝑗−1

) 𝑡
Ω𝑢 𝑗 ∈ R( 𝑗−1)×1

∀1 ≤ 𝑗 ≤ 𝑚 − 1, 𝑇𝑗+1 =

[
𝑇𝑗 𝑡̃ 𝑗

01×( 𝑗−1) 𝛽 𝑗+1

] . (33)

Then for all 1 ≤ 𝑗 ≤ 𝑚, we have the factored form

H 𝑗 = 𝐻 (𝑢 𝑗 ,Ω, 𝑗) · · ·𝐻 (𝑢1,Ω, 1) = 𝑃(𝑢 𝑗 ,Ψ 𝑗 ) · · · 𝑃(𝑢1,Ψ1) = 𝐼 −𝑈 𝑗𝑇
𝑡
𝑗ut

(
(Ω𝑈 𝑗 )𝑡Ω

)
. (34)

We also get an equivalent formulation for 𝑇𝑗 from the Woodburry-Morrison formula:

Proposition 6.5. With the previous notations, and regardless of the scaling of the modified randomized
Householder vectors,

𝑇 𝑡
𝑗 = −

[
ut

(
(Ω𝑈 𝑗 )𝑡Ω𝑈 𝑗

)
− 1

2
Diag

(
(Ω𝑈 𝑗 )𝑡Ω𝑈 𝑗

)
− ut

(
(Ω𝑈 𝑗 )𝑡Ω

)
𝑈 𝑗

]−1
= −

[
𝑇−1𝑗 − ut

(
(Ω𝑈 𝑗 )𝑡Ω

)
𝑈 𝑗

]−1
(35)

Proof. See appendix. □

All these formulas allow to identify the compact factorizations

𝑊 =

(
𝐼𝑛 −𝑈𝑚𝑇𝑚ut

(
(Ω𝑈𝑚)𝑡Ω

) )
·
[

𝑅

0(𝑛−𝑚)×𝑚

]
⇐⇒

(
𝐼𝑛 −𝑈𝑚𝑇

𝑡
𝑚ut

(
(Ω𝑈𝑚)𝑡Ω

) )
·𝑊 =

[
𝑅

0(𝑛−𝑚)×𝑚

]
(36)

and to derive the left-looking version of trimRHQR, given in Algorithm 11. We make the same memory
management indications as in Algorithm 3. If needed, the output can be used to produce the thin factor
𝑄𝑚 = H−1𝑚 𝐼1:𝑚. As to Line 6, the main challenge is the application of ut

(
(Ω𝑈 𝑗 )𝑡Ω

)
, which can be done

in several ways. For example, one can first compute (Ω𝑈 𝑗 )𝑡Ω𝑥, then substract the vector

0
⟨Ω𝑢2, 𝑥1Ω1:1⟩
⟨Ω𝑢3,Ω1:2𝑥1:2⟩

...

⟨Ω𝑢 𝑗 ,Ω1: 𝑗𝑥1: 𝑗 ⟩


.

If Ω is not stored as a dense matrix but can only be applied to a vector (e.g SRHT OSE), one can also
compute explicitly along the iterations

slt
(
(Ω𝑈 𝑗 )𝑡Ω

)
=



0 0 0 . . . . . . 0
⟨Ω𝑢2,Ω𝑒1⟩ 0 0 . . . . . . 0
⟨Ω𝑢3,Ω𝑒1⟩ ⟨Ω𝑢3,Ω𝑒2⟩ 0 . . .

...
. . .

⟨Ω𝑢 𝑗 ,Ω𝑒1⟩ ⟨Ω𝑢 𝑗 ,Ω𝑒2⟩ . . . ⟨Ω𝑢 𝑗 ,Ω𝑒 𝑗−1⟩ 0 . . . 0


. (37)

Then, the computation of ut
(
(Ω𝑈 𝑗 )𝑡Ω

)
𝑥 is replaced by that of (Ω𝑈 𝑗 )𝑡Ω𝑥 followed by the substraction

of slt
(
(Ω𝑈 𝑗 )𝑡Ω

)
𝑥. The same approach can be used to compute the update of 𝑇𝑗 when using (33).

We note that a block version of Algorithm 11 can be straightforwardly derived as for Algorithms 3
and 4.
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Algorithm 11: trimRHQR (left-looking)

Input: Matrix 𝑊 ∈ R𝑛×𝑚, matrix Ω ∈ Rℓ×𝑛, 𝑚 < 𝑙 ≪ 𝑛

Output: 𝑅,𝑈𝑚,Ω𝑈𝑚, 𝑇𝑚, 𝑇𝑚 such that (36) holds
1 function trimRHQR left(𝑊, Ω):
2 for 𝑗 = 1 : 𝑚 do
3 𝑤 ← 𝑤 𝑗

4 if 𝑗 ≥ 2 then
5 Sketch Ω𝑤, compute ut

(
(Ω𝑈 𝑗−1)𝑡Ω

)
· 𝑤 # e.g using (37)

6 𝑤 ← 𝑤 −𝑈 𝑗−1𝑇 𝑡
𝑗−1ut

(
(Ω𝑈 𝑗−1)𝑡Ω

)
· 𝑤

7 𝑣, 𝑠 𝑗 , 𝜌, 𝜎, 𝛽 = trimRHVector((𝑤) 𝑗 :𝑛, Ω)
8 𝑢 𝑗 ← 0 𝑗−1 ⊘ 𝑣

9 𝑟 𝑗 ← (𝑤)1: 𝑗−1 ⊘ (−𝜎𝜌) ⊘ 0𝑚− 𝑗
10 𝑡 𝑗 ← 0 𝑗−1 ⊘ 𝛽 ⊘ 0𝑚− 𝑗
11 𝑡̃ 𝑗 ← 0 𝑗−1 ⊘ 𝛽 ⊘ 0𝑚− 𝑗
12 if 𝑗 ≥ 2 then
13 (𝑡 𝑗 )1: 𝑗−1 ← −𝛽 · 𝑇1: 𝑗−1,1: 𝑗−1𝑆𝑡𝑗 𝑠 𝑗
14 (𝑡̃ 𝑗 )1: 𝑗−1 ← −𝛽 · 𝑇1: 𝑗−1,1: 𝑗−1

( [
0ℓ×( 𝑗−1) Ω 𝑗 :𝑛

]
𝑈 𝑗−1

) 𝑡
𝑠 𝑗

15 return 𝑅 = (𝑟 𝑗 )1≤ 𝑗≤𝑚, 𝑈 = (𝑢 𝑗 )1≤ 𝑗≤𝑚, 𝑆 = (𝑠 𝑗 )1≤ 𝑗≤𝑚, 𝑇 = (𝑡 𝑗 )1≤ 𝑗≤𝑚

7 Numerical experiments

In this section, we test numerically the algorithms derived in this work. We first detail the matrices of
our test set. We then compare left-looking RHQR to RGS on a difficult example where RHQR is the
most stable, both in simple and double precision. We then compare reconstructRHQR and Randomized
Cholesky QR (both algorithms perform a single synchronization) on the same difficult example, where
reconstrcutRHQR is the most stable. Next, we compare RGS-GMRES and RHQR-GMRES on medium
and high difficulty problems, and the results are consistent with those of the QR factorization. We then
compare RMGS with RGS on the same difficult example, and observe a slight advantage for RMGS.
We finally showcase the performance of trimRHQR on the same difficult examples, and observe that
trimRHQR is as stable as RHQR. Furthermore, with sampling size inferior to the column dimension of
𝑊 , it is stabler than RGS.

The first example is formed by uniformly discretized parametric functions, also used in [3], that we
denote 𝐶𝑚 ∈ R50000×𝑚. For all floating (and thus rational) numbers 0 ≤ 𝑥, 𝜇 ≤ 1, the function is defined
as

𝑓 (𝑥, 𝜇) = sin (10(𝜇 + 𝑥))
cos (100(𝜇 − 𝑥)) + 1.1

and the associated matrix is

𝐶𝑚 ∈ R𝑛×𝑚, 𝐶𝑖, 𝑗 = 𝑓

(
𝑖 − 1
𝑛 − 1 ,

𝑗 − 1
𝑚 − 1

)
, 𝑖 ∈ {1 . . . 𝑛}, 𝑗 ∈ {1, . . . , 𝑚}. (38)

The condition number of 𝐶1500 in double precision is displayed in Figure 1a, and that of 𝐶600 in single
precision in Figure 2a.

For all experiments, the 𝜖-embedding property of drawn matrix Ω is tested by first computing a
deterministic QR factorization of 𝑊 . If the factorization is accurate to machine precision, we check that
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Name Size Cond. Origin
𝐶𝑚 50000 × 𝑚 ∞ synthetic functions
SiO2 155331 ≈ 2300 quantum chemistry problem
El3D 32663 ≈ 1028 Near incompressible regime elasticity prob-

lem

Table 1: Set of matrices used in experiments
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Figure 1: Randomized Householder QR in double precision (RHVector in the graphs) and comparison
with RGS.

the condition number of the sketch of the Q factor is 1 + O(𝜖). The least squares problem that needs to
be solved in RGS is computed using LAPACK’s pivoted QR at each iteration.

Figure 1 displays the accuracy obtained in double precision for both RHQR (Algorithms 2 and 3)
and RGS ([3, Algorithm 2]) , in terms of condition number of the computed basis and the accuracy of
the obtained factorization. Figure 1a shows the condition number of 𝑊 as the number of its vectors
increases from 1 to 1500. The condition number grows exponentially and the matrix becomes numerically
singular when approximately the 500-th vector is reached. Figure 1b displays in red (and circle points)
the condition number of the basis and the sketched basis obtained through RHQR from Algorithm 3,
and in blue (and triangle points) those obtained by RGS for reference. We observe that for similar
sampling size, RGS and RHQR have similar performance. However, around the 500-th vector (which
coincides with the moment the matrix becomes numerically singular), we see that RGS experiences some
instabilities, while the behavior of RHQR does not change. We observe that the sketched basis of RHQR
(a posteriori sketch of the output thin Q factor) remains numerically orthogonal. Figure 1c shows the
relative Frobenius error of the QR factorization obtained by RHQR (in red) and RGS (in blue). Both
algorithms produce accurate factorizations, with a slight advantage for RGS, but that becomes negligible
when 𝑚 grows.

Figure 2 showcases the same experiments but in single precision. As to the comparison between
RHQR and RGS, we make the same observations as in Figure 1, and we stress that the sketch of the
RHQR basis remains numerically orthogonal. We also display the results obtained by Classical Gram-
Schmidt (CGS), Modified Gram-Schmidt (MGS) and Householder QR (HQR). We can see that the basis
computed by CGS is ill-conditioned very early in the iterations, yet the factorization remains accurate.
The performance of RGS is similar to that of MGS, as pointed out in [3]. Finally, the basis produced
by Householder QR is numerically orthogonal, just as the sketched basis output by RHQR, with an
accurate factorization.

Figure 3 showcases the same experiment but in mixed precision. The input matrix 𝑊 = 𝐶1200 is
given in half precision. All sketching operations are computed in half precision, and the sketches are
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Figure 2: Randomized Householder QR in single precision (RHouse in the graphs) and comparison with
RGS.
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Figure 3: Randomized Householder QR compared to RGS in mixed half/double precision.

then converted to double precision. The computation of 𝜌 𝑗 in Algorithm 1 (RHVector) is then done in
double precision. It is integrated to the sketch 𝑠 𝑗 in double precision, and to the randomized Householder
vector 𝑢 𝑗 in half precision. Then in Algorithm 3, the matrix 𝑇𝑗 is computed in double precision. In
turn, the factor 𝑇 𝑡

𝑗−1𝑆
𝑡
𝑗−1𝑧 in Line 7 is computed in double precision, then converted in half precision to

perform the update. We apply the same method to RGS: the input matrix is given in half precision,
the sketching is made in half precision, the sketches are then converted in double precision. The least
squares problem is computed in double precision. Its output is then converted back to half precision to
perform the vector update. The result of the update is sketched again and converted to double precision.
The norm of the sketch is computed in double precision, and the scaling of the obtained basis vector is
performed in half precision. In [3], authors mixed single and double precision, whereas we mix half and
double precision on a more difficult matrix. We make the same observations as in Figures 1 and 2, and
stress again that the sketch of the basis output by RHQR remains numerically orthogonal.

Figure 4 displays the performance of reconstructRHQR in single precision on the matrix 𝐶1200,
and is compared to Randomized Cholesky QR since both algorithms perform a single synchronization.
As detailed before, the reconstructRHQR is solved with a backward solve using the scaling coeffi-
cients 𝛼1, . . . , 𝛼𝑚 retrieved from the Householder QR factorization of the sketch Ψ𝑊 . The Randomized
Cholesky QR is performed with a backward solve of the R factor retrieved from the QR factorization of
the sketch. In Figure 4a, we see that both bases output by reconstructRHQR and Randomized Cholesky
QR lose their sketch orthogonality, but the former has a much more favorable trajectory than the latter.
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(b) Accuracy of the factorization

Figure 4: Performance of reconstructRHQR compared to Randomized Cholesky QR
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(b) Accuracy of the Arnoldi relation
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(c) Convergence of GMRES

Figure 5: Performance of RHQR-GMRES compared to that of RGS-GMRES

In Figure 4b, we see that both algorithms compute an accurate factorization, with a slight advantage
for Randomized Cholesky QR.

Figure 5 displays the performance of RHQR-GMRES (Algorithm 7) in single precision on the matrix
SiO2 from [8], compared to that of RGS-GMRES (based on [3, Algorithm 3]). The behavior of the two
solvers is very similar. In Figure 5a, we display the condition number of 𝑄,Ψ𝑄 (built by RHQR) and
of 𝑄,Ω𝑄 (built by RGS). We see that both algorithms are able to produce a numerically orthogonal
sketched Arnoldi basis. The condition number of the basis built by RHQR is slightly better than that
built by RGS in the later iterations. In Figure 5b, we show the accuracy of the Arnoldi factorization
𝐴𝑄 𝑗 = 𝑄 𝑗+1𝐻 𝑗+1, 𝑗 computed by RHQR and RGS. As in the QR factorization of 𝑊 , we see a slight
advantage for RGS. Finally, in Figure 5c, we showcase the convergence of GMRES solvers with RHQR
and RGS variations. In the early iterations, both solvers are indistinguishable. Before the residual
stagnation, we see RHQR performing slightly better than RGS. When residual stagnation is reached,
we see that RGS has a slight advantage over RHQR. On the more difficult El3D matrix, we observe
the same results as in Figures 1 to 3, namely the numerical orthogonality of the sketched Arnoldi basis
output by RHQR, the loss of orthogonality of that output by RGS, the accuracy of both factorizations
with a slight advantage for RGS.

Figure 6 displays the performance of RMGS (Algorithm 8) in single precision, on the matrix 𝐶1200.
As pointed out in Section 5, the truly orthogonal matrix is [𝐼 − 𝑇, Ω𝑄𝑇], which in exact arithmetics is
[0𝑚×𝑚; Ω𝑄], i.e Ω𝑄 would be orthogonal in exact arithmetics. In Figure 6a we showcase (in the order
given by the plot’s legend) the condition numbers of 𝑄, Ω𝑄 output by RMGS (i.e without any correction
from 𝑇); the condition numbers of 𝑄𝑇 and Ω𝑄𝑇 output by RMGS (a partial correction from 𝑇), the
condition numbers of [𝐼 − 𝑇 ; 𝑄𝑇] and [𝐼 − 𝑇 ; Ω𝑄𝑇] output by RMGS (full correction from 𝑇), and
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(b) Accuracy of the factorization

Figure 6: Performance of RMGS compared to RGS
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(b) Factorization error of trimRHQR
and RGS

Figure 7: Performance of trimRHQR and RGS in double precision

finally the comparison with the bases 𝑄 and Ω𝑄 built by RGS. We see that the sketch of the basis built
by RMGS with its full correction is numerically orthogonal. The basis built by RMGS, both with partial
correction and without correction, suffers some instabilities when the matrix 𝑊 becomes numerically
singular, just like RGS. However, both bases built by RMGS are better conditioned than that built by
RGS. In Figure 6b, we display the relative factorization error for the RMGS basis without correction,
with partial correction, and we compare it to that of RGS. We see an interesting feature: while the basis
with partial correction is the better conditioned of the three, the factorization is slightly les accurate
than the one without correction. The factorization without correction is as accurate as that computed
by RGS.

Figure 7 displays the accuracy obtained in double precision for both trimRHQR (Algorithms 10
and 11) and RGS, in terms of condition number of the computed basis and accuracy of the factorization,
on the set of synthetic functions. Figure 7a displays in red (and circle points) the condition number of
the basis obtained through RHQR from Algorithm 11, and in blue (and triangle points) that obtained
by RGS for reference. In this experiment, the linear least squares problem of RGS is solved as before
with LAPACK pivoted QR. We make the same global observations as in Figure 1. We note that the
condition number of the basis output by trimRHQR is, in its stable regime, higher than that of both
RHQR and RGS. Most importantly, we see that trimRHQR with a sampling size ℓ = 1000 < 1500 = 𝑚

is stable, and stabler than RGS with a sampling size of 1550 > 𝑚. We make the same observation in
finite precision in Figure 8.

Figure 8 showcases the performance of Algorithm 11 in single precision. We make the same obser-
vations as in double precision (remark that trimRHQR with sampling size ℓ = 300 < 600 outperforms
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Figure 8: Performance of trimRHQR and RGS in single precision

RGS with ℓ = 800).
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Appendix : trimRHQR’s compact formulas

Proof of Proposition 6.2 This is also proven by straightforward induction on 𝑗 , however this one is
somewhat trickier and we detail it here. For simplicity, we show the computation for the scaling where
for all 𝑗 ∈ {1, · · ·𝑚}, ∥Ω𝑢 𝑗 ∥ =

√
2. Also for simplicity, we will write 𝐻 𝑗 := 𝐻 (𝑢 𝑗 ,Ω, 𝑗) = 𝑃(𝑢 𝑗 ,Ψ 𝑗 ) for all

𝑗 ∈ {1, . . . , 𝑚}. For the case 𝑚 = 2, multiplying 𝐻1 and 𝐻2, we observe that

𝐻1𝐻2 = 𝐼𝑛 −𝑈2𝑇2ut
(
(Ω𝑈2)𝑡Ω

)
,

where ut denotes the upper triangular part and

𝑇2 =

[
1 −⟨Ω𝑢1,Ω𝑢2⟩
0 1

]
.

Let us then suppose that
𝐻1 · · ·𝐻 𝑗 = 𝐼 −𝑈 𝑗𝑇𝑗ut

(
(Ω𝑈 𝑗 )𝑡Ω

)
,

for some matrix 𝑇𝑗 ∈ R 𝑗× 𝑗 . Multiplying by 𝐻 𝑗+1 on the right-side and using associativity, we obtain

𝐻1 · · ·𝐻 𝑗𝐻 𝑗+1 =

𝐼𝑛 − 𝑢 𝑗+1(Ω𝑢 𝑗+1)𝑡
[
0ℓ× 𝑗 Ω 𝑗+1

]
−𝑈 𝑗𝑇𝑗ut

(
(Ω𝑈 𝑗 )𝑡Ω

)
+𝑈 𝑗𝑇𝑗ut

(
(Ω𝑈 𝑗 )𝑡Ω

)
𝑢 𝑗+1(Ω𝑢 𝑗+1)𝑡

[
0ℓ× 𝑗 Ω 𝑗+1

]
.

We first observe that
(Ω𝑢 𝑗+1)𝑡

[
0 𝑗 Ω 𝑗+1

]
=

[
0 𝑗 (Ω𝑢 𝑗+1)𝑡Ω 𝑗+1

]
.

Since the first 𝑗 coordinates of 𝑢 𝑗+1 are zero, we also have:

ut
(
(Ω𝑈 𝑗 )𝑡Ω

)
𝑢 𝑗+1 = (Ω𝑈 𝑗 )𝑡Ω𝑢 𝑗+1,

so that the total composition writes

𝐼𝑛 − 𝑢 𝑗+1
[
0ℓ× 𝑗 (Ω𝑢 𝑗+1)𝑡Ω 𝑗+1

]
−𝑈 𝑗𝑇𝑗


(Ω𝑢1)𝑡Ω
01×1 (Ω𝑢2)𝑡Ω2
...

01×( 𝑗−1) (Ω𝑢 𝑗 )𝑡Ω 𝑗


+𝑈 𝑗

(
𝑇𝑗 (Ω𝑈 𝑗 )𝑡Ω𝑢 𝑗+1

) [
01× 𝑗 (Ω𝑢 𝑗+1)𝑡Ω 𝑗+1

]
,

(39)
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which can be factored as

𝐻1 · · ·𝐻 𝑗𝐻 𝑗+1 = 𝐼 −𝑈 𝑗+1

[
𝑇𝑗 −𝑇𝑗 (Ω𝑈 𝑗 )𝑡Ω𝑢 𝑗+1
01× 𝑗 1

]
ut

(
(Ω𝑈 𝑗+1)𝑡Ω

)
.

The proposition follows by induction.
Proof of Proposition 6.5 : Apply the Woodburry-Morrison formula to H 𝑗 and H−1𝑗 and derive

∀ 𝑗 ∈ {1, . . . , 𝑚}, 𝑇 𝑡
𝑗 = −

[
𝐼 𝑗 − 𝑇𝑗ut

(
(Ω𝑈 𝑗 )𝑡Ω

)
𝑈 𝑗

]−1
𝑇𝑗 . (40)

Set
Δ 𝑗 = (Ω𝑈 𝑗 )𝑡Ω𝑈 𝑗 − ut

(
(Ω𝑈 𝑗 )𝑡Ω

)
𝑈 𝑗

then inject Δ 𝑗 in (40) to find

𝑇 𝑡
𝑗 = (𝑇−𝑡𝑗 − Δ 𝑗 )−1. (41)

Finally, use (31).
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