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A B S T R A C T

Missing values in environmental time series are common and must be imputed before carrying out an analysis
requiring complete data. We propose an imputation method for the time series of a target station using
information of neighboring stations measuring the same variable. The method allows these neighboring stations
to have missing values themselves. The multivariate dataset comprising the time series of the target station
and its neighboring stations is jointly modeled by a vine copula and parametric margins. Multiple imputation
takes into account the uncertainty of missing data by generating several plausible values for each missing
value in the time series of the target station. This is done in a Bayesian framework by sampling the posterior
distribution of a missing value, which is conditional on the observed stations for the date. The method is
suitable for extremes because the vine copula can model the eventual tail dependence between stations. The
application to a skew surge time series is presented, with cross-validated results and a focus on the performance
for the upper extremes.
1. Introduction

The presence of missing values in time series is a recurring issue
in environmental sciences and many other disciplines. Data may be
missing for various reasons, such as measurement device failure or
measurement error (Kalteh and Hjorth, 2009). Many common analyses
applied to environmental variables, such as spectral analysis or extreme
value analysis, require complete time series (Gao et al., 2018). The
analysis can be performed on a subset of the dataset for which there
are no missing values, but this can severely limit the length of the time
series and thus negatively impact the results. Values can also be missing
in a systematic way and introduce bias in an analysis. As an example,
the probability of missingness can be higher during extreme events
due to measurement device failure, which would artificially reduce the
frequency of extremes in the recorded time series. Therefore, a prior
imputation of the missing data is often necessary. Even for an analysis
that can accommodate missing values, imputing rather than ignoring
them can improve results by increasing the length of the time series
and reducing the potential bias caused by the missingness mechanism.

Our interest is in the imputation of the time series at a given station
(referred to as the target station thereafter), using the information
of other stations (the neighboring stations) measuring the same vari-
able in an homogeneous region. The imputation method must allow
neighboring stations to have missing values, as they are also subject
to missingness. This homogeneous region is defined according to the
objective of the subsequent analysis of the imputed dataset. Hamdi
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et al. (2019) and Andreevsky et al. (2020) defined this region based
on the ratio of common extreme events between the target station and
each neighboring station, which is adapted if the interest is in the
extremes. Since the analysis of extreme values is of particular interest in
environmental sciences, e.g., for risk assessment, the imputation must
retain good performance for the tails of the distribution in addition to
its bulk, and must take into account the uncertainty associated with
missing data (Serinaldi and Kilsby, 2015).

The imputation methods available for environmental sciences have
been extensively reviewed (Kalteh and Hjorth, 2009; Ben Aissia et al.,
2017; Gao et al., 2018; Hamzah et al., 2020). The time series of the
target station and its neighboring stations constitute a multivariate
dataset. Joint modeling of this dataset with a parametric distribution
is a suitable approach if the extremes are of interest, as the tails of
the distribution are explicitly modeled. Furthermore, the uncertainty
can be accounted for with multiple imputation by repeated sampling
from the multivariate distribution. Multiple imputation involves replac-
ing missing values with several plausible values of what could have
been observed (Little et al., 2014). In a Bayesian framework, multiple
imputation amounts to sampling several values from the posterior
distribution of a missing value.

Copulas are a popular option for constructing multivariate distri-
butions in many fields, including environmental sciences (Tootoonchi
et al., 2022). A copula is a multivariate distribution with uniform
vailable online 28 June 2023
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margins on [0, 1] which models a dependence structure (Größer and
khrin, 2022). For a 𝑑-dimensional random vector 𝑈 ∈ [0, 1]𝑑 , a copula

𝐶 is defined by:

𝐶(𝑢1,… , 𝑢𝑑 ) = Pr(𝑈1 ≤ 𝑢1,…𝑈𝑑 ≤ 𝑢𝑑 ). (1)

Each dimension of a dataset can be transformed to be uniform over
(0, 1) with its probability integral transformation (Yan, 2007). A 𝑑-
dimensional joint distribution 𝐹 with margins 𝐹1,… , 𝐹𝑑 has a unique
copula 𝐶, such that:

𝐹 (𝑥1,… , 𝑥𝑑 ) = 𝐶{𝐹1(𝑥1),… , 𝐹𝑑 (𝑥𝑑 )}. (2)

Thus, copulas allow separate modeling of the margins and the depen-
dence between dimensions. Many parametric families of two-
dimensional copulas (referred to as pair-copulas thereafter) exist to
model a variety of dependence structures, but the choice becomes much
more restricted for copulas in higher dimensions (Aas et al., 2009).
Furthermore, the existing families of copulas usable in three or more
dimensions, such as the Gaussian or Student 𝑡 copulas, can impose a
too restrictive dependence structure for a given dataset.

Copulas have already been applied to multiple imputation. Hollen-
bach et al. (2014) used Gaussian copulas in two or more dimensions,
but this is not appropriate for the extremes because the dimensions
are asymptotically independent in the Gaussian copula (i.e., it cannot
model the eventual tail dependence). Di Lascio et al. (2015) con-
sidered the Gaussian and 𝑡 copulas in high dimension, or several
families of pair-copulas. The high-dimensional 𝑡 copula has the inverse
drawback compared to the Gaussian copula, as it forces a positive
tail dependence. The imputation with a single pair-copula (i.e., not
several pair-copulas organized as a vine copula) is restricted to two-
dimensional datasets. Vine copulas solve both limitations of copulas by
constructing high-dimensional dependence structures as assemblages
of pair-copulas, taking advantage of the rich diversity of pair-copula
families and allowing the dependence structure (including the tail
dependence) to vary for each pair of dimensions. Ahn (2021) applied
a D-vine copula to estimate streamflow at a partially gauged site
conditionally on observations at neighboring stations, with the latter
having complete records in their time series. Ahn (2021) compared the
performance of the D-vine with six other imputation methods, including
geostatistical methods with inverse distance weighting and Kriging, and
found the D-vine to outperform them. Hasler et al. (2018) developed
the imputation of a multivariate dataset with a D-vine copula for the
case where each dimension may have missing values. The approach of
Hasler et al. (2018) was restricted to monotone missingness patterns
(i.e., only the lower and/or upper dimensions of the ordered dimensions
of the D-vine are missing), and assumed the data to be missing com-
pletely at random (MCAR, meaning that the probability of missingness
is independent on the actual data value). Hasler et al. (2018) compared
the performance of their method with five alternatives, different from
the six alternatives tested by Ahn (2021), and also found the D-vine
to outperform them. In particular, the D-vine outperforms alternatives
when the extremes are considered because it accounts for the eventual
tail dependence. Jane et al. (2016) applied copulas to extend wave
height time series beyond their measurement period using regional
information. This can be achieved by considering the dates outside of
the observation period as missing values, which does not require addi-
tional development of the multiple imputation model. Valle and Kaplan
(2019) applied a Gaussian copula for a counterfactual analysis of a
dataset where every dimension can have missing values, which shows
that the ability of copulas to handle missing values has applications
beyond imputation.

Since our objective is to have a multiple imputation method suitable
for the extremes, we followed the methodologies of Ahn (2021) and
Hasler et al. (2018) by using a D-vine copula to model the joint
distribution of the target station and its neighboring stations. The
selection of the family for each pair-copula of the D-vine is critical
2

to account for the eventual tail dependence, or the tail independence,
so the parametric families are selected with a Bayesian framework
(Min and Czado, 2011). The generation of plausible values for multiple
imputation is also performed in a Bayesian framework to account for
uncertainty through credible intervals.

This paper is organized as follows. Section 2 presents the method-
ology. An application to a skew surge station located on the French
Atlantic coast is presented in Section 3. The methodology and results
are discussed in Section 4, along with a conclusion.

2. Methods

The time series at the target station and its neighbors constitute
a multivariate dataset. The margins of this dataset are modeled with
univariate parametric distributions. The marginal nonexceedance prob-
abilities of the observations at each station are obtained from their
respective margins. The dependence structure of the multivariate prob-
abilities are then modeled with a vine copula, each station correspond-
ing to a dimension of this multivariate distribution. For a given date,
values are sampled from the vine copula for the missing dimensions,
conditionally on the observed one. The multiple imputation accounts
for the uncertainty of the values generated (Little et al., 2014). Finally
the multiple imputed probabilities are transformed back to quantiles.

2.1. Marginal distribution

Joint modeling with copulas is often performed in a semiparametric
way through the pseudo-likelihood method, which uses the rank of
observations obtained from the empirical distribution of the margins
(Genest and Favre, 2007). The pseudo-likelihood method is not suitable
when the extremes are of interest, because the empirical distribution is
not precise enough in the tails where there are few observations, so a
parametric distribution for the margins is required.

For time series with support on R, the skewed generalized t distri-
bution can offer a good fit in most cases and is used in this study. Its
distribution is given by:

𝑓𝑆𝐺𝑇 (𝑦|𝜇, 𝜎, 𝜆, 𝑝, 𝑞) = 𝑝
[

2𝜎𝑞
1
𝑝 𝐵

(

1
𝑝
, 𝑞
)]−1

(

1 + 1
𝑞
[1 + 𝜆 sign(𝑦 − 𝜇)]−𝑝

|

|

|

|

𝑦 − 𝜇
𝜎

|

|

|

|

𝑝)−(𝑞+ 1
𝑝 )
, (3)

where 𝜇 is a location parameter, 𝜎 is a positive scale parameter, 𝜆 con-
rols the skewness with 𝜆 ∈ (−1, 1), 𝑝 is a positive parameter controlling
he peakedness of the density, 𝑞 is a positive parameter controlling the
ails and 𝐵(⋅, ⋅) is the beta function (Kerman and McDonald, 2013). This
istribution is implemented in the sgt R package (Davis, 2015).

The adequacy of the margins is assessed with quantile–quantile
lots. Note that different parametric distributions could be used to
odel the margins of the different dimensions of the joint distribution.

.2. Vine copulas

A 𝑑-dimensional vine copula is composed of 𝑛𝑐 = 𝑑(𝑑 − 1)∕2 pair-
opulas. For the case of a 3-dimensional distribution, the density can
e modeled with:
(𝑥1, 𝑥2, 𝑥3) =𝑓 (𝑥1) 𝑓 (𝑥2) 𝑓 (𝑥3)

𝑐12{𝐹 (𝑥1), 𝐹 (𝑥2)} 𝑐23{𝐹 (𝑥2), 𝐹 (𝑥3)}

𝑐13|2{𝐹 (𝑥1|𝑥2), 𝐹 (𝑥3|𝑥2)},

(4)

here 𝑐12 and 𝑐23 are the densities of the pair-copulas between the
orresponding dimensions, and 𝑐13|2 is the density of the pair-copula
etween dimensions 1 and 3, conditional on dimension 2. 𝐹 (𝑥1|𝑥2) and
(𝑥3|𝑥2) are the marginal conditional distributions given by:

(𝑢|𝑣) =
𝜕 𝐶𝑢𝑣{𝐹 (𝑢), 𝐹 (𝑣)}

, (5)

𝜕 𝐹 (𝑣)
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Fig. 1. 5-dimensional D-vine, with four trees from top to bottom (T1 to T4). The dimensions of the pair-copulas are indicated by the edges between the nodes, with unconditional
pair-copulas in T1 and conditional ones in the subsequent trees. As an example, the edge labeled 13|2 on the second tree represents the pair-copula between dimensions 1 and 3,
conditional on dimension 2. The labels of the nodes show how the construction of a vine copula is systematic, with the two dimensions of the pair-copulas on a given tree and
their set of conditioning dimensions depending on the previous tree. The dashed and dotted areas give examples of subsets of the D-vine to smaller ones with dimensions 1 to 4
including the six pair-copulas 12, 23, 34, 13|2, 24|3 and 14|23, and dimensions 3 to 5 including the three pair-copulas 34, 45 and 35|4.
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where 𝐶𝑢𝑣 is the distribution of a pair-copula (Aas et al., 2009). For vine
copulas in dimension higher than three, (5) is used recursively to obtain
the marginal distributions conditional on more than one dimension.
A vine copula can be represented as a graph with nodes and edges,
the latter corresponding to the pair-copulas (Fig. 1). These nodes and
edges are organized by trees, with the two dimensions and conditioning
dimensions of a pair-copula in a given tree being specified by nodes
on the lower tree. Thus, a tree contains the pair-copulas conditional
on the same number of dimensions (with unconditional pair-copulas
in the first tree). The D-vine is a special case of vine copulas which is
fully specified by the order of the dimensions in its first tree (Fig. 1).
A joint density 𝑓 (𝑥1,… , 𝑥𝑑 ) with a D-vine for the dependence between
variables is given by:

𝑓 (𝑥1,… , 𝑥𝑑 ) =
𝑑
∏

𝑚=1
𝑓 (𝑥𝑚)

𝑑−1
∏

𝑗=1

𝑑−𝑗
∏

𝑖=1
𝑐𝑖,𝑖+𝑗|𝑖+1,…,𝑖+𝑗−1{𝐹 (𝑥𝑖|𝑥𝑖+1,… , 𝑥𝑖+𝑗−1), 𝐹 (𝑥𝑖+𝑗 |𝑥𝑖+1,… , 𝑥𝑖+𝑗−1)}, (6)

here 𝑐𝑖,𝑖+𝑗|𝑖+1,…,𝑖+𝑗−1 is the pair-copula density between the dimensions
𝑖 and 𝑥𝑖+𝑗 transformed to probabilities with their respective margins
(𝑥𝑖|𝑥𝑖+1,… , 𝑥𝑖+𝑗−1) and 𝐹 (𝑥𝑖+𝑗 |𝑥𝑖+1,… , 𝑥𝑖+𝑗−1) (Hasler et al., 2018).

.3. D-vine with missing data

The construction of vine copulas by an assemblage of pair-copulas
akes them nested models. Depending on its structure, a vine cop-
la of a given dimension can be reduced to a smaller one of lesser
imension if the remaining pair-copulas are not conditional on the
emoved dimensions. In the case of the D-vine structure, this subsetting
f the model results in a smaller D-vine. Fig. 1 presents a 5-dimensional
xample, with the dashed and dotted lines delineating smaller D-vines
btained when the dimensions 1 and 2, or 5, respectively, are removed.
asler et al. (2018) exploited this property of the D-vine to compute

he likelihood corresponding to each date (i.e., to each multivariate
bservation). Assuming the data MCAR, the contribution of each date
o the likelihood is the observed-data likelihood, given by:

(𝑥𝑜𝑏𝑠) = ∫ 𝑓 (𝑥𝑜𝑏𝑠, 𝑥𝑚𝑖𝑠) 𝑑𝑥𝑚𝑖𝑠, (7)

here 𝑥𝑜𝑏𝑠 and 𝑥𝑚𝑖𝑠 are the observed and missing dimensions of this
3

ate, respectively. For the example of a 4-dimensional D-vine, the s
ontribution to the likelihood of a date having the last fourth dimension
i.e., the rightmost) missing is:

(𝑥1, 𝑥2, 𝑥3) = ∫ 𝑓 (𝑥1,… , 𝑥4) 𝑑𝑥4,

hich after integrating (6) results in the joint density of (4). This is
pplied recursively if the third dimension is missing along the fourth
ne. The same applies if one or several leftmost dimensions are missing.
ote that dimensions could be missing on either side of the D-vine, but

he remaining dimensions need to be continuously ordered (e.g., if only
he third dimension of a four-dimensional D-vine is missing, a valid
maller D-vine cannot be obtained by removing this third dimension
nly).

The purpose of subsetting the full 𝑑-dimensional D-vine into smaller
nes is to use more dates to compute the likelihood. In the case of
asler et al. (2018), their dataset only had a monotone missingness
attern, so these subsets allowed every observation to contribute to
he likelihood. In our case, the missingness patterns of some dates do
ot correspond to a valid D-vine subset, when the observed dimensions
re not ordered continuously in the full D-vine, therefore these dates
annot contribute to the likelihood. Despite not being able to use
very observation for the likelihood of the D-vine, this approach still
ses much more information compared to only using dates without
ny missing value. Subsetting the full D-vine is also useful to reduce
he computational requirement when sampling from the model for
mputation, as will be presented in Section 2.5.

Let 𝑆 be the set of missingness patterns corresponding to a sub-
ettable D-vine, including the full D-vine. Let 𝑥.,𝑠 be the observations
or which a valid subset 𝑠 ∈ 𝑆 exists, and 𝑚𝑠 ⊆ 1,… , 𝑑 the observed
imensions of this subset. The likelihood of the D-vine computed with
ts subsets 𝑆 is given by:

𝑆 (𝜃|𝑥) =
∏

𝑠∈𝑆

[ 𝑑−1
∏

𝑗=1

𝑑−𝑗
∏

𝑖=1
𝑐𝑖,𝑖+𝑗|𝑖+1,…,𝑖+𝑗−1{𝐹 (𝑥𝑖,𝑠|𝑥𝑖+1,𝑠,… , 𝑥𝑖+𝑗−1,𝑠),

𝐹 (𝑥𝑖+𝑗,𝑠|𝑥𝑖+1,𝑠,… , 𝑥𝑖+𝑗−1,𝑠)}
|

|

|

𝑖, 𝑖 + 𝑗 ∈ 𝑚𝑠

]

, (8)

here 𝜃 is the parameter vector of all the 𝑛𝑐 pair-copulas of the D-vine.
ote that compared to the density in (6), the likelihood in (8) only
oncerns the dependence structure modeled by the D-vine and does not
nclude the margins.

The target station and its 𝑑 − 1 neighboring stations each corre-
pond to a dimension of the 𝑑-dimensional D-vine. The dimensions
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(i.e., stations) in the D-vine are ordered by considering two criteria. The
first criterion is to order the dimensions with the highest pairwise tail
dependence next to each other, so that the corresponding pair-copulas
are in the first trees of the D-vine. The first tree has unconditional pair-
copulas and the lower trees are conditional on fewer dimensions than
the higher trees (Fig. 1). The pairwise tail dependence is estimated by
fitting the 𝑡 pair-copula on the observations of two stations transformed
to probabilities with their respective margins. For the 𝑡 copula, the
lower and upper tail dependence 𝜆 is the same, given by:

𝜆 = 2 𝑡𝜂+1

(

−
√

𝜂 + 1
√

1 − 𝜔
1 + 𝜔

)

, (9)

where 𝑡𝜂+1 is the 𝑡 distribution with 𝜂 + 1 degrees of freedom, 𝜔
is the parameter of the 𝑡 pair-copula and 𝜂 its degrees of freedom
(Nagler et al., 2022). The estimate of 𝜆 given by (9) is always positive,
therefore, the tail dependence is also tested with the method based on
the Neyman–Pearson lemma described in Reiss and Thomas (2007).
Since the time series in the application have serial correlation and that
this test requires the data to be independent and identically distributed,
it is applied to 100 resamples of 1000 values for each pair of stations to
break the serial correlation, and the mean of the 100 𝑝-values is used.

The second criterion for this ordering is placing the dimensions
with the highest ratio of missing values on the edges of the D-vine,
to allow for more dates to be used in the likelihood computation
with (8). Furthermore, less observations are unusable for the likelihood
computation if the dimensions closer to the edge of the D-vine have
their missing values at the same date.

2.4. Selection and adjustment of pair-copulas by reversible jump Markov
chain Monte Carlo (RJMCMC)

Once the dimensions are ordered, the selection of the pair-copula
families in the D-vine and the adjustment of their parameters is done
jointly via reversible jump Markov chain Monte Carlo (RJMCMC)
(Green, 1995). This RJMCMC algorithm applied to a D-vine is a
modified version of the one developed by Min and Czado (2011). It
alternates between Stay steps, during which the parameters of every
pair-copula are updated with a Metropolis–Hastings move, and Jump
steps, during which the family of one pair-copula changes with a
reversible jump move. Only uniform priors are specified. The D-vine
is fitted on the nonexceedance probabilities of the observations, which
are obtained with the probability integral transformation of the skewed
generalized t margins.

Six families of pair-copula are considered in the D-vine to model
different types of dependence between its dimensions (Table 1). The
independence pair-copula accounts for the independence between two
dimensions of the D-vine, or for conditional independence in trees
higher than the first one. The Gaussian copula covers cases when two
dimensions are dependent for the bulk of the data but asymptotically
independent (i.e., absence of tail dependence), and allows for a positive
or negative correlation. Both the survival Clayton and Gumbel copulas
have upper tail dependence. The BB1 and survival BB1 copulas are
mixtures based on the Gumbel copula with dependence in both lower
and upper tails. These pair-copulas are selected to allow a good fit
of the D-vine for the upper extremes in particular, but if the lower
extremes were of interest instead, the survival Clayton and Gumbel
copulas could be swapped for the Clayton and survival Gumbel copulas,
which have a positive lower tail dependence. If the Gaussian copula
was not considered, all the families other than the independence copula
would have a positive upper tail dependence, which could force the
model to have asymptotic dependence between some dimensions.

More families could be considered but it is preferable to limit the
set of families so that relevant pair-copulas are proposed more often
during the Jump steps of the RJMCMC algorithm. The Student 𝑡 copula
is not considered because the evaluation of its likelihood takes much
more time than for the six families mentioned previously (with the
4

Table 1
Parameter boundaries, lower and upper tail dependence of the six families of pair-
copula (with 0 and + indicating the absence and positive tail dependence, respectively).
The boundaries of the copula parameters and the code for each family in the VineCopula
R package are also provided.

Code Family 𝑙𝜌 𝑢𝜌 𝑙𝜈 𝑢𝜈 Lower t.d. Upper t.d.

0 Independence 0 0
1 Gaussian −1 1 0 0

13 survival Clayton 0 28 0 +
4 Gumbel 1 17 0 +
7 BB1 0 5 1 6 + +

17 survival BB1 0 5 1 6 + +

VineCopula R package). If the method is applied to a smaller dataset, the
RJMCMC can be run for more iterations, so a larger set of pair-copula
families can be tested. Likewise the 𝑡 copula could be included for a
small dataset, since the difference in computation time would then be
negligible.

The D-vine is initialized with the selection method described in
Hasler et al. (2018), where the pair-copula in each tree is selected
recursively from the first to the last tree. The estimate of the parameter
vector 𝜃 of the D-vine and the family of each pair-copula obtained by
this initial selection are used as starting values in the RJMCMC. The
algorithm of Hasler et al. (2018) is adapted to our setting by using
only the observations with missingness patterns corresponding to valid
D-vine subsets 𝑠 ∈ 𝑆, as for the likelihood in (8).

2.4.1. Stay step: updating of pair-copula parameters
During the Stay step, the parameters of each pair-copula are up-

dated sequentially. Let 𝑖 ∈ 1,… , 𝑛𝑐 be the index of the pair-copulas of
the D-vine. Let 𝜃 be the parameter vector of the entire D-vine. Let 𝑘
be the index of the pair-copula for which new parameter values are
proposed, with 𝜃𝑘 = {𝜌𝑘} or 𝜃𝑘 = {𝜌𝑘, 𝜈𝑘} the parameter vector of this
𝑘th pair-copula, for a family with one or two parameters, respectively.
We denote by 𝑙𝜌,𝑖 and 𝑢𝜌,𝑖 the lower and upper bounds, respectively,
for the first parameter of the family of the 𝑖th pair-copula. We use the
similar notation 𝑙𝜈,𝑖 and 𝑢𝜈,𝑖 for the eventual second parameter. These
bounds are specific to each pair-copula family (Table 1).

Let 𝑜𝑙𝑑 and 𝑛𝑒𝑤 refer to the current and proposed states of the
chains, respectively. A value 𝜃𝑛𝑒𝑤𝑘 is drawn from an adaptive pro-
posal 𝑁(𝜃𝑜𝑙𝑑𝑘 , 𝛴𝑘) in one or two dimensions, truncated to (𝑙𝜌,𝑘, 𝑢𝜌,𝑘) and
(𝑙𝜈,𝑘, 𝑢𝜈,𝑘) for each dimension, respectively. The variance or covariance
matrix of this proposal is given by:

𝛴𝑘 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(1 − 𝛽) 2.42 𝑆𝑎𝑚𝑉 𝑎𝑟𝑘
+𝛽 (𝑢𝜌,𝑘 − 𝑙𝜌,𝑘)∕1000, if 𝜃𝑘 = {𝜌𝑘}

(1 − 𝛽) 2.42∕2𝑆𝑎𝑚𝑉 𝑎𝑟𝑘
+𝛽 diag(𝑢𝜌,𝑘 − 𝑙𝜌,𝑘, 𝑢𝜈,𝑘 − 𝑙𝜈,𝑘)∕1000, if 𝜃𝑘 = {𝜌𝑘, 𝜈𝑘}

(10)

where 𝑆𝑎𝑚𝑉 𝑎𝑟𝑘 is the sample variance or covariance matrix of the
chains for the current family sampled so far for the 𝑘th pair-copula,
and diag(𝑎, 𝑏) is a two-dimensional diagonal matrix with 𝑎 and 𝑏 on the
main diagonal. This adaptive proposal is used when the one or two
chains of 𝜃𝑘 contain at least 50 sampled values each, with 𝛽 = 0.01. Up
until this point, the proposal is nonadaptive with 𝛽 = 1 (Roberts and
Rosenthal, 2009; Craiu and Rosenthal, 2014).

The uniform prior of the D-vine is given by:

𝜋(𝜃) =
𝑛𝑐
∏

𝑖=1
(𝑢𝜌,𝑖 − 𝑙𝜌,𝑖)−1(𝑢𝜈,𝑖 − 𝑙𝜈,𝑖)−1, (11)

where (𝑢𝜈,𝑖 − 𝑙𝜈,𝑖)−1 = 1 if the family of the 𝑖th pair-copula has only one
parameter and (𝑢𝜌,𝑖 − 𝑙𝜌,𝑖)−1 = 1 as well for the independence copula.

The new parameter vector 𝜃𝑛𝑒𝑤 of the entire D-vine is assembled
ith:

𝑛𝑒𝑤
𝑖 =

{

𝜃𝑛𝑒𝑤𝑖 , if 𝑖 = 𝑘
𝑜𝑙𝑑 (12)
𝜃𝑖 . if 𝑖 ≠ 𝑘
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The acceptance probability of this Metropolis–Hastings move is
given by:

𝛼𝑠𝑡𝑎𝑦 = min

{

1,
𝐿𝑆 (𝜃𝑛𝑒𝑤|𝑥)
𝐿𝑆 (𝜃𝑜𝑙𝑑 |𝑥)

𝜋(𝜃𝑛𝑒𝑤)
𝜋(𝜃𝑜𝑙𝑑 )

𝜙(𝜃𝑜𝑙𝑑𝑘 )
𝜙(𝜃𝑛𝑒𝑤𝑘 )

}

, (13)

where 𝐿𝑆 (𝜃|𝑥) is the likelihood of the D-vine computed with its subsets
given by (8), and 𝜙(𝜃𝑘) is the density of the one or two dimensional
truncated normal proposal (depending if the 𝑘th pair-copula has one
or two parameters). The uniform priors in (13) cancel out since the
families of pair-copulas are unmodified during the Stay step.

Note that the Gibbs sampler cannot be used instead of the
Metropolis–Hastings sampler because the full conditional distribution
of the D-vine is not known (Min and Czado, 2010).

2.4.2. Jump step: modification of pair-copula families
During the Jump step, one pair-copula of the D-vine is uniformly

selected to propose a modification of its family. Let 𝑛𝑓 be the number
of pair-copula families considered and 𝑓𝑘 the family of the 𝑘th pair-
copula selected. Each family other than the current one has a 1∕(𝑛𝑓 −1)
probability of being proposed for a Jump step.

Once the pair-copula and the proposed family are selected, new
parameter values 𝜃𝑛𝑒𝑤𝑘 are generated from a one or two dimensional
normal distribution 𝑁(𝜃∗𝑘 , 𝛴𝑘) truncated to (𝑙𝜌,𝑘, 𝑢𝜌,𝑘) and (𝑙𝜈,𝑘, 𝑢𝜈,𝑘),
respectively. 𝛴𝑘 is defined as (10) for each combination of pair-copula
of the D-vine and family. If the family 𝑓𝑘 has not been sampled at least
50 times for the 𝑘th pair-copula the proposal is nonadaptive, with 𝛽 = 1.

𝜃∗𝑘 is obtained by adjusting the proposed pair-copula to its marginal
probabilities, which are given by 𝐹 (𝑥𝑖|𝑥𝑖+1,… , 𝑥𝑖+𝑗−1) and 𝐹 (𝑥𝑖+𝑗 |𝑥𝑖+1,
… , 𝑥𝑖+𝑗−1) for a copula between dimensions 𝑖 and 𝑖+ 𝑗 of the D-vine (as
was mentioned in Section 2.3). The marginal probabilities are obtained
recursively from conditional distributions given by (5). As an example,
the marginal probabilities for the pair-copula 𝐶14|23 on the third tree
of the D-vine would be conditional on two dimensions (Fig. 1). The
marginal probabilities for the first dimension of this pair-copula are
obtained with:

𝐹 (𝑥1|𝑥2, 𝑥3) =
𝜕 𝐶13|2{𝐹 (𝑥1|𝑥2), 𝐹 (𝑥3|𝑥2)}

𝜕 𝐹 (𝑥3|𝑥2)
,

where 𝐶13|2 is the pair-copula on the second tree between dimensions
1 and 3 and conditional on dimension 2, and 𝐹 (𝑥1|𝑥2) and 𝐹 (𝑥3|𝑥2) are
marginal probabilities obtained from the copulas 𝐶12 and 𝐶23 on the
first tree, respectively (Hasler et al., 2018). The proposed pair-copula
is adjusted on its two marginal probabilities time series by maximum
likelihood. The marginal probabilities are obtained with the complete
observations of the concerned dimensions, e.g., for the 𝐶14|23 pair-
copula, the marginal probabilities are obtained from the observations
without missing values in dimensions {1,… , 4}. Min and Czado (2011)
estimated the location parameter of the proposal by adjusting the entire
D-vine with the modified pair-copula family by maximum likelihood.
Instead, estimating 𝜃∗𝑘 only by adjusting the proposed pair-copula on
its marginal probabilities does not required evaluating the likelihood
of the entire D-vine, which is the costliest part of the algorithm.
This modification of the algorithm makes a significant difference in
computation time for applications with a large dataset.

As in the Stay step with (12), the full parameter vector 𝜃𝑛𝑒𝑤 is
assembled with 𝜃𝑛𝑒𝑤𝑘 , whose family and parameters are modified, and
the family and parameters of the pair-copulas other than the 𝑘th that
remain unmodified. The Jacobian of this bijection is equal to 1.

The acceptance probability of the jump is given by:

𝛼𝑗𝑢𝑚𝑝 = min

{

1,
𝐿𝑆 (𝜃𝑛𝑒𝑤|𝑥)
𝐿𝑆 (𝜃𝑜𝑙𝑑 |𝑥)

𝜋(𝜃𝑛𝑒𝑤)
𝜋(𝜃𝑜𝑙𝑑 )

𝑔(𝑓 𝑛𝑒𝑤
𝑘 → 𝑓 𝑜𝑙𝑑

𝑘 )

𝑔(𝑓 𝑜𝑙𝑑
𝑘 → 𝑓 𝑛𝑒𝑤

𝑘 )

𝜙(𝜃𝑜𝑙𝑑𝑘 )
𝜙(𝜃𝑛𝑒𝑤𝑘 )

}

, (14)

where 𝑔(𝑎 → 𝑏) is the probability of proposing a jump from family 𝑎 to
𝑏 (which in our case is the same for each family, thus the corresponding
ratio cancels out), and 𝜙(𝜃𝑘) is the density of the one or two dimensional
truncated normal proposal. 𝜋(𝜃) is the prior defined in (11), which does
not cancel out in (14), compared to (13) (Min and Czado, 2011; Gruber
and Czado, 2018).
5
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2.5. Sampling the D-vine conditionally on the observed dimensions

Multiple imputation is performed by sampling from the missing
dimensions of the D-vine conditionally on the observed dimensions. The
sampled values are nonexceedance probabilities, which are transformed
to quantile with the margins.

The D-vine is subsetted before sampling values according to a date
missingness pattern, similarly to the subsets for the likelihood with (8).
The purpose of sampling from subsets of the D-vine instead of the full
𝑑-dimensional one is to reduce the computational requirement. For a
given date, the continuously missing dimensions of neighboring stations
from each end of the D-vine can be removed without losing any usable
dependency from a pair-copula.

Formally, let 𝑖 ∈ 1,… , 𝑑 be the index of the ordered dimensions of a
D-vine, with 𝑖𝑧 the dimension of the target station to be imputed. For a
given observation 𝑥𝑡 (i.e., a 𝑑-dimensional vector corresponding to the
date 𝑡), let:

𝑎𝑡,𝑖 =

{

1, if 𝑥𝑡,𝑖 is observed or if 𝑖 = 𝑖𝑧
0, otherwise

(15)

and

𝑏𝑡,𝑖 =
𝑖

∑

1
𝑎𝑡,𝑖

𝑖
∑

𝑑
𝑎𝑡,𝑖. (16)

The valid D-vine subset for 𝑥𝑡 corresponds to the dimensions for which
𝑏𝑡,𝑖 > 0.

As an example, let us consider a 5-dimensional D-vine, as in Fig. 1,
where the third dimension would be the target station. If the dimen-
sions 1, 2 and 4 were observed and the fifth dimension missing along
the third, sampling only the third from a D-vine subsetted to dimensions
{1,… , 4} (the dashed area in Fig. 1) would be equivalent and faster
compared to sampling jointly the third and fifth dimensions from the
full D-vine, considering that only the third is of interest. However, if
the second and fifth dimensions were missing, the valid subset would
remain the same, with dimensions {1,… , 4}, and sampling jointly from
both the second and third dimensions would be required, because the
pair-copulas between the first dimension and the third and fourth are
conditional on the second one. Thus, the computational requirement
for sampling an observation depends on its missingness pattern, and
subsetting the D-vine reduces this requirement for most patterns.

For a given date 𝑡 with a missing value for the target station,
let 𝑦𝑡 be the subset of 𝑥𝑡 for which 𝑏𝑡,𝑖 > 0 (i.e., the subset of the
observation vector corresponding to the dimension of the valid D-vine
subset for this date). This subsetted observation vector 𝑦𝑡 contains 𝑚 ≥ 1
missing values, with at least the missing value of the target station.
Nonexceedance probabilities are sampled for these 𝑚 dimensions of the
D-vine subset (or full D-vine if 𝑦𝑡 = 𝑥𝑡) with a Metropolis–Hastings
algorithm.

The adaptive proposal is a 𝑚-dimensional normal distribution 𝑁𝑚
(𝑦𝑜𝑙𝑑𝑡,𝑚 , 𝛴𝑚) truncated to the hypercube [0, 1]𝑚, where 𝑦𝑡,𝑚 corresponds to
the 𝑚 missing dimensions of 𝑦𝑡. The variance or covariance matrix 𝛴𝑚
is defined similarly to (10), with:

𝛴𝑚 = (1 − 𝛽) 2.42∕𝑚𝑆𝑎𝑚𝑉 𝑎𝑟𝑚 + 𝛽 diag𝑚(10−4), (17)

where diag𝑚(10−4) is a 𝑚 × 𝑚 diagonal matrix with 10−4 on the main
diagonal and 𝑆𝑎𝑚𝑉 𝑎𝑟𝑚 is the sample variance or covariance matrix of
the 𝑚 chains sampled so far. 𝛽 = 0.01 when at least 100 values have
been sampled for each 𝑚 dimension, otherwise 𝛽 = 1. The acceptance
probability is given by:

𝛼 = min

{

1,
𝐿𝑠(𝜃|𝑦𝑛𝑒𝑤𝑡 )

𝐿𝑠(𝜃|𝑦𝑜𝑙𝑑𝑡 )

𝜋(𝑦𝑛𝑒𝑤𝑡 )

𝜋(𝑦𝑜𝑙𝑑𝑡 )

𝜙(𝑦𝑜𝑙𝑑𝑡,𝑚 )
𝜙(𝑦𝑛𝑒𝑤𝑡,𝑚 )

}

, (18)

here 𝑦𝑡 is the vector of observation assembled from the non missing
alues of 𝑦𝑡 and the values 𝑦𝑜𝑙𝑑𝑡,𝑚 or 𝑦𝑛𝑒𝑤𝑡,𝑚 sampled for the previous or cur-
ent iteration of the algorithm, respectively, 𝐿 (𝜃|𝑦 ) is the likelihood
𝑠 𝑡
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of the D-vine given by (8) for the subset 𝑠 ∈ 𝑆 corresponding to 𝑦𝑡, and
(𝑦𝑡) is a uniform prior whose corresponding ratio cancels.

Convergence of the Markov chains is assessed following Gelman
t al. (2015) with the 𝑅 test by running two or more times the 𝑚 chains

for a given date. The 𝑅 value indicates the potential scale reduction of
the posterior distribution if the chains of length 𝑛 were ran further,
declining to 1 as 𝑛 → ∞. As a rule of thumb, the convergence is
considered satisfactory if 𝑅 < 1.1. For simplicity, this convergence test
is performed only for the chains corresponding to the target station.

2.6. Model validation

The performance of the imputation is assessed by 𝑘-fold cross-
validation, with 𝑘 = 5 (James et al., 2017). The 𝑘 training and
validation sets are obtained by repeating and nonoverlapping blocks
of size 𝑏, using 𝑏 = 70 because the autocorrelation of the daily skew
surge approaches nonsignificative levels at this lag (not shown). The
value of 𝑘 is kept low to reduce computation time.

For each 𝑘 model, the observations of the validation set at the target
station are considered missing and are imputed by MCMC. For the sake
of simplicity, the convergence of the chains were not assessed for the
cross-validation. A highest posterior density credible interval is com-
puted for each imputed date. These credible intervals are computed on
the quantiles rather than their nonexceedance probabilities because the
posterior distributions of the latter are skewed, with a negative (posi-
tive) skew for the upper (lower) extremes. The highest density intervals
would be affected by the skewness of the probabilities (Hyndman,
1996). This skewness disappears when the sampled probabilities are
transformed back to quantile. The ratios of observations falling within
their respective 90% credible interval, or below and above, indicate
the validity of the imputation’s uncertainty obtained by the D-vine. A
perfect model would have 90% of observations inside their respective
credible intervals. The highest density intervals are computed with the
hdrcde R package (Hyndman et al., 2021).

The validity of the model is further assessed with the Nash–Sutcliffe
efficiency (NSE) score, given by:

NSE = 1 −
∑𝑇

𝑡=1(𝑋
𝑖𝑚𝑝
𝑡 −𝑋𝑜𝑏𝑠

𝑡 )2
∑𝑇

𝑡=1(𝑋
𝑜𝑏𝑠
𝑡 −𝑋𝑜𝑏𝑠)2

, (19)

where 𝑇 is the total number of timesteps of the observed values, 𝑋𝑖𝑚𝑝
𝑡

is the mean of the values generated by MCMC for the date 𝑡, 𝑋𝑜𝑏𝑠
𝑡 is

he observed value for the date 𝑡 and 𝑋𝑜𝑏𝑠 is the mean of the observed
values (Knoben et al., 2019). NSE = 1 indicates that the model perfectly
reproduces the observations, while NSE = 0 indicates that it has
the same explanatory power as the mean. The NSE is also computed
through the 𝑘-fold cross-validation, with 𝑘 NSE values.

3. Application

3.1. Data and case study

The imputation method is applied to a dataset of skew surge time
series for nine tide gauges located along the French Atlantic coast
(Fig. 2). The skew surge is defined as the difference between the
maximal observed sea level and the highest predicted astronomical high
tide for a single tidal cycle, which may occur at different times in that
cycle (Saint Criq et al., 2022), resulting in an approximately 12 h and
25 min timestep. Extreme events are of interest for this variable as they
can contribute to coastal flooding. Data availability varies by station,
with measurements starting during the 1970s for most. The method
is applied to a period of 46 years, from 1971 to 2016. This dataset
is characterized by numerous missing values, ranging from 4.4% to
61.8% of the time series depending on the station (Fig. 2). These
missing values are sometimes isolated but at other times extend over
long periods, spanning several years in the worst cases. This dataset
6

was already used in the previous studies of Hamdi et al. (2019) and
Andreevsky et al. (2020) (albeit with a different selection of neighbor
stations).

The skew surge data is assumed to be MCAR. This simplifying
assumption is made to follow the methodology of Hasler et al. (2018)
and to avoid having to model the missingness mechanism. As a result,
the probability of missingness is assumed independent of the value of
the skew surge. For the skew surge this assumption may not always be
valid, as an extreme sea level or tidal event could increase the chance
of measurement device failure. Nonetheless, the methodology is tested
with this assumption to assess the performance offered by the D-vine.

Among the tide gauge dataset spanning the French Atlantic coast,
the target station of La Rochelle is chosen to test the model. This station
has 42.4% missing values over the 46 years of the dataset (Fig. 2). Eight
other neighbor stations for La Rochelle are selected using the method
presented in Hamdi et al. (2019) and Andreevsky et al. (2020). This
method selects neighboring stations according to their ratio of common
extreme events with the target station. The threshold for this ratio,
above which a station is included as a neighboring station, is chosen
to be sufficiently low so that there is enough regional information
to impute each missing date from the target station. However, some
stations with too few observations were not included in the D-vine
to keep its dimensionality low enough for computational reasons, or
because including these stations reduced the number of dates for which
a valid subset can be obtained to compute the D-vine likelihood. The
selection of these neighbors is not the focus of the present study, and
another method of defining a homogeneous region from the standpoint
of extremes could be used instead, e.g., a measure of the pairwise tail
dependence between the target station and each other station, a canon-
ical correlation approach (Cavadias et al., 2001), or with the theory of
complex networks (Han et al., 2020). Furthermore, the threshold for the
metric defining the homogeneous region is chosen so as to have enough
neighboring stations, but some stations are left out because of practical
reasons related to fitting the D-vine with missing data. As a result,
the set of neighboring stations used for imputation is not particularly
sensitive to this metric, as long as it is adapted to the objective.

3.2. Regional skew surge modeled by D-vine

Fig. 3 presents the quantile–quantile plots of the skewed generalized
𝑡 margins for the nine stations. These plots show that this distribution
provides good fits for the skew surge time series, even for upper
extremes which are of particular interest here. The largest observation
is underestimated by the models for some stations, but this observation
is much larger than the second largest observation (in particular for
the target station of La Rochelle). The points deviate from the main
diagonal in the lower tail for some stations (most visibly for Olonne,
bottom left subplot), but this is not a great concern for the skew surges
as the lower extremes are not of interest.

Fig. 2 presents the observed and missing dates for each of the nine
stations. The order of the stations from bottom to top corresponds to
the order of the dimensions of the D-vine. Ordering the stations to
maximize the pairwise tail dependence and Kendall’s 𝜏 (Fig. 4) in the
first tree of the D-vine results in this order being in accordance with the
spatial organization of the stations (i.e., the order of the stations along
the coast, Fig. 2). However, the periods of missing values of the stations
need also to be considered so that a large part of the observations is
usable when computing the likelihood of the D-vine with its subsets.
Furthermore, it is preferable to allow most of the observations at the
target station to be included in the likelihood computation, as this
dimension of the D-vine is of particular interest.

In the case of La Rochelle (station number 4), the six stations to
its North (stations 5 to 9) have few missing dates, except for Olonne
(station 3) during the 1970s and 1980s, while the two stations to its
South have long periods of missingness (stations 1 and 2). If the stations

were ordered solely on the basis of relative spatial position, Olonne



Weather and Climate Extremes 41 (2023) 100591A. Chapon et al.
Fig. 2. Location of the target station (station number 4, La Rochelle) and its eight neighboring stations along the French Atlantic coast (left). Missing and observed dates for each
station, with the percentage of missing values per time series indicated on the right side (right). The station numbers correspond to their order as dimensions of the D-vine copula.
Fig. 3. Quantile–quantile plots of the skewed generalized 𝑡 margins for the nine
stations.

Fig. 4. Pairwise tail dependence 𝜆 and Kendall’s 𝜏 between stations. The tail de-
pendence is significant at the level 𝛼 = 0.05 for every pair of stations (𝑝-values not
shown).
7

Table 2
Acceptance ratios (in percentage) of the RJMCMC after the warm-up period, for
the (a) first parameter of the pair-copulas, (b) second parameter and (c) the jumps
between families. The reader is referred to Appendix for explanations of the matrix
representation of a vine copula used in this Table, with the actual matrix of the D-vine
in Table 3.a. The dashes in the subtable (b) indicate that a two-parameter family has
never been accepted for this pair-copula.

(a) parameter 1

26.2
38.3 35.7
47.3 34.1 25.9
41.0 26.6 40.5 14.0
23.1 24.9 33.4 33.5 25.7
27.5 24.5 41.8 4.4 31.0 39.4
23.4 25.1 26.2 26.8 23.1 22.4 17.7
19.9 8.3 15.2 19.4 17.5 19.9 23.4 26.1

(b) parameter 2

13.1
– –
– 21.9 28.7
– – – –
23.1 – 33.7 35.7 –
28.8 27.1 – – 31.1 –
23.3 28.8 26.0 28.0 23.2 22.3 20.2
19.9 8.3 15.2 19.4 17.5 19.9 23.4 –

(c) jump

4.4
0.7 1.2
6.2 4.1 2.2

19.8 0.0 2.5 0.0
2.0 0.0 4.8 4.3 1.7
8.0 2.1 4.1 0.0 5.7 1.8
3.3 1.9 4.8 3.7 6.1 5.3 7.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(station 3) should be placed between La Rochelle (station 4) and Saint
Nazaire (station 5, Fig. 2). But doing so would result in a D-vine that
could not be subsetted to include both the target station La Rochelle
and the observed stations to its North when Olonne is missing. Instead,
the Olonne station is placed to the other side of the D-vine relatively
to the target station of La Rochelle (Fig. 2).

Fig. 4 shows the pairwise tail dependence between stations. In this
figure the stations follow their ordering as dimensions of the D-vine.
The highest tail dependence values are close to the main diagonal,
indicating that these highest values correspond to pair of stations
ordered next or close to each other in the D-vine. The stations ordered
next to each other have corresponding pair-copulas on the first tree
of the D-vine, which are not conditional on other stations (Fig. 1).
Similarly, the stations that are two orders apart correspond to a pair-
copula on the second tree, solely conditional on one other station. Fig. 4
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Fig. 5. Trace plot of the parameters for each pair-copula. The name of each subplot indicates the two dimensions of the pair-copula and its conditioning dimensions. For each
subplot, only the trace of the pair-copula family in which the algorithm stayed the longest is displayed, which explains why not all traces start at the beginning and why some
are discontinuous. The blue line corresponds to the first parameter 𝜌 of the family and the red line corresponds to the eventual second parameter 𝜈. The independence copula
has no parameter but is nonetheless indicated by a constant value of 0. The lighter part of the traces indicate the first 1000 warm-up values for this family, which are discarded.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
also presents the pairwise Kendall’s 𝜏, for which the same conclusion
can be drawn. Overall the highest values of 𝜏 are found close to the
main diagonal, which indicates that the ordering of the stations is
adequate.

The RJMCMC algorithm selecting and adjusting the pair-copulas is
run for 5000 iterations. The subsets of the D-vine according to the
missingness patterns allow 38.18% of the dates to be used in the D-
vine likelihood computation (Eq. (8)). Fig. 5 presents the trace plots
of the pair-copulas first parameter. For each pair-copula of the D-
vine, the family most sampled by the RJMCMC is the most probable
among the six considered, and is kept for the final model used for
the subsequent imputation. The first 1000 sampled values for these
most visited families are discarded as warm-up (lighter color in Fig. 5).
Table 2 gives the acceptance ratios of the RJMCMC for the pair-copula
parameters, with most of them being inside the 20 to 80% range
recommended by Min and Czado (2010). The mean acceptance ratio
of 2.98% for the jump steps is satisfactory.
8

The final D-vine obtained by RJMCMC is presented in Table 3.
The BB1 family is selected for seven out of eight unconditional pair-
copulas in the first tree of the D-vine (bottom row of Table 3.c),
with only the pair-copula between station 1 and 2 having no upper
tail dependence. The BB1 family has a positive upper tail-dependence
(Table 1). Similarly in the second tree (second row from the bottom
of Table 3.c), the only pair-copula without upper tail dependence is
between dimensions 1 and 3 (conditional on dimension 2). The two
families without upper pair-dependence (coded 0 for the independence
pair-copula and 1 for the Gaussian pair-copula, Table 1) are more often
selected in higher trees, which are conditional on several dimensions
(Fig. 1). Having pair-copulas with a positive tail dependence in the
lower trees of the D-vine is consistent with the pairwise tail dependence
estimates of Fig. 4 and shows that the final model obtained by RJMCMC
is appropriate for imputation of upper extremes. For comparison, if the
Gaussian family was the most selected in the lower trees of the D-vine,
this would indicate that the regional information becomes less relevant
for imputation as the values increase, making the model inappropriate
for the extremes.
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Table 3
D-vine for the skew surge with La Rochelle as target station (dimension 4), with (a) the vine copula matrix indicating the conditioning set of dimensions for each pair-copula, (b)
their first parameter, (c) their families (see Table 1 for the code of each family) and (d) their second parameter. The reader is referred to Appendix for explanations on the matrix
representation of a vine copula used in this table. The values in the subtables (b, c, d) correspond to the dimensions of the subtable (a); for example the pair-copula between
dimensions 1 and 9 has the family number 13, with a first parameter of 0.23 and no second parameter. The reader is referred to Fig. 2 for the neighbor stations corresponding
to the other dimensions. Note that the main diagonal is empty in the subtables other than (a), which is indicated by the dots. The dashes in the subtables (b) and (d) indicates
that the pair-copula has no first and/or second parameter.

(a) Vine copula matrix (b) Pair-copulas parameter 1

9 .
1 8 0.23 .
2 1 7 −0.07 −0.58 .
3 2 1 6 – 1.07 0.42 .
4 3 2 1 5 – −0.18 −0.25 −0.14 .
5 4 3 2 1 4 0.14 −0.20 0.15 0.16 −0.39 .
6 5 4 3 2 1 3 0.05 0.17 – 0.56 0.12 0.06 .
7 6 5 4 3 2 1 2 0.16 0.32 0.09 0.11 0.34 0.17 0.30 .
8 7 6 5 4 3 2 1 1 0.37 0.38 0.45 0.46 0.60 0.52 0.57 0.90 .

(c) Pair-copulas families (d) Pair-copulas parameter 2

. .
13 . – .
1 1 . – – .
0 4 13 . – – – .
0 1 1 1 . – – – – .

17 1 7 7 1 . 1.03 – 1.03 1.01 – .
17 7 0 1 7 13 . 1.01 1.08 – – 1.03 – .
17 7 7 7 17 17 1 . 1.24 1.25 1.10 1.21 1.18 1.14 – .
7 7 7 7 7 7 7 1 . 3.54 4.35 3.24 3.05 2.60 3.42 2.74 – .
3.3. Multiple imputation of the skew surge

The performance of the multiple imputation is evaluated by consid-
ering the observed values at the target station La Rochelle as missing.
The method is first tested on a period of 100 time steps, from 2011-
10-31 to 2011-12-09. This period is chosen because it has almost no
missing values in the nine stations and includes the second highest
observation at La Rochelle, which happened on 2011-12-16. Fig. 6
presents the multiple imputation of the skew surge for four different
combinations of neighboring stations considered to be missing in ad-
dition to the target station, in order to evaluate the performance of
the method with respect to the information available in the region for
a given date. Fig. 6.a considers that only the target station is missing
and the eight neighboring stations are observed. Fig. 6.b considers the
neighboring stations on either side of the target station (dimension
4) in the D-vine to also be missing (dimensions 3 and 5). Fig. 6.c
considers the stations corresponding to dimensions 2 to 6 to be missing.
Lastly, Fig. 6.d considers only the neighbors on either side of the target
station in the D-vine to be observed (dimensions 3 and 5). For the
four cases, the 100 time steps are imputed by sampling 25 000 values
by MCMC for each (5 chains of 10 000 values, with the first half
of each chain being discarded as warm-up). Fig. 6 presents pseudo-
histograms (color coded) of the posterior density for each date, the
NSE and the mean of the variance of each date sample for the four
combinations of observed and missing neighbors. The NSE is greater
than 0.9 when all eight neighbors are observed but degrades as less
regional information is available. Likewise, the mean variance and the
spread of the posterior both increase as more stations are missing,
indicating greater uncertainty. The order of the missing dimensions
in the D-vine affect the performance. The case of Fig. 6.b has only
two neighbors missing, but these are ordered directly on each side
of the target station, and the remaining six neighbors are observed.
Fig. 6.d presents an opposite case where only the two neighbors missing
in Fig. 6.b are observed and the remaining six are missing. Both the
NSE and the mean variance show that the performance is better in the
case of Fig. 6.d rather than Fig. 6.b, despite more regional information
being available in the latter case. This comparison shows that the
performance of the imputation is conditional on having the information
for neighboring stations with high tail dependence and Kendall’s 𝜏 with

̂
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he target station (Fig. 4). The 𝑅 convergence criterion is less than 1.1
for the 100 dates of the four cases (not shown). Note that the results of
Fig. 6 are not computed through cross-validation.

It can be assumed that the largest order statistics are among the
42.4% missing values at La Rochelle, which the multiple imputation
should be able to recover. Fig. 7 shows the ratio of imputed values
among the ten largest order statistic for 2000 completed time series
(each missing date being imputed with two chains of length 2000, the
first halves being discarded as warm-up). The first to fourth largest
values remain observations in almost all of the completed time series,
but the fifth and sixth largest values are imputed in more than 90% of
cases, and this ratio is above 50% for the seventh to tenth largest values.
This demonstrates that the method is suitable to impute extremes as
it consistently generates values of the largest order. Common extreme
value analysis involves the block maxima approach in which the ex-
tremes are defined as the largest values in blocks of time (typically
years), and the threshold-based approach in which extremes are defined
as exceedances of a high threshold (Coles, 2001). For both approaches,
analyzing the multiple imputed time series would give a better result
than restricting the analysis to the observations, as more extreme
values would be included, resulting in better estimates and reduced
uncertainties (but note that the uncertainty of the multiple imputation
must be propagated to the uncertainty of the extreme value analysis).

For the 𝑘-fold cross-validation, the observations of the target sta-
tions are also treated as missing and are imputed. The mean of the
MCMC sample of each date is used to compare the imputed values to
the observation and to compute the NSE through the cross-validation.
Note that these mean values are not meant to be used for a subsequent
analysis of the imputed time series, as doing so would not take into
account the uncertainty of the imputed values. Fig. 8 shows that there
is an overall good correspondence between the observations and the
means of the imputed values. The differences seem to increases for the
upper extremes, but not to a large extent. The NSE values for the 𝑘-fold
cross-validation are {0.852, 0.862, 0.851, 0.844, 0.876}, with a mean
value of 0.857. This indicates a good performance of the model when
considering the bulk of the data (since this criterion is not specific to
extremes).

The validity of the uncertainty obtained by the multiple imputation
framework is also assessed through cross-validation. When all the
observations are considered, 86.6% of them actually fall within their
respective 90% credible intervals, with 6.3% and 7.1% of observations
being below and above their interval bounds, respectively (Table 4).
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Fig. 6. Multiple imputation of the skew surge at La Rochelle for four missingness patterns (rows), from 2011-10-31 to 2011-12-09. The maps on the left column show which
stations are considered observed (blue) and missing (red) for each test. The right column shows pseudo-histograms of the multiple imputation for each date (color coded, with
25 000 sampled values per date) and for each missingness pattern. The white dots indicate the observation value of each date. For each test, the NSE is computed using the mean
value of each date sampled values. Likewise, the mean of the variance of each date sample is computed. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Fig. 7. Ratio of imputed values in the ten largest order statistics for 2000 replicates
of the completed skew surge time series at La Rochelle.

Therefore, when the whole distribution is considered, the uncertainty of
the multiple imputation is only slightly underestimated, with credible
intervals that are a bit narrower than what they should be. When con-
sidering the observations above the quantile 0.9, the proportion falling
inside the intervals is smaller with only 75.3% of values, indicating an
underestimation of the uncertainty, and the ratio of observations above
the upper bound of the credible intervals increases to 19.5%, which
indicates an underestimation of the upper extremes. Although the
lower extremes are not of interest for the skew surge, their imputation
10
Table 4
Comparison of the credible intervals of sampled values from the cross-validated model
with observations. The table indicates the percentage of observations falling inside,
above and below their respective 90% credible intervals. These ratios are indicated for
all the observations as well as for those below the 0.1 and above the 0.9 quantiles of
the skewed generalized t margin, to assess the extent to which the model performance
deteriorates for extremes.

<Lower bound inside 90% CI >Upper bound

<quantile 0.1 17.6 78.0 4.3
All observations 6.3 86.6 7.1
>quantile 0.9 5.2 75.3 19.5

performance deteriorates in a manner comparable to that of the higher
extremes.

4. Discussion and conclusions

A method is developed to impute the missing values of a time
series at a target station using the information of neighboring stations
measuring the same variable, when these neighbors can themselves
have missing values. The core of the proposed approach is to model
the joint distribution of the time series of the target station and its
neighbor stations by a D-vine copula. The uncertainty is accounted for
by multiple imputation in a Bayesian framework.

The method is tested with the imputation of a skew surge time series
at a station on the French Atlantic coast. The overall performance of the
model is good, with a cross-validated NSE of 0.857. When the upper ex-
tremes are considered, the method consistently generates new values in
the ten largest orders in each replicate of the imputed time series, which
indicates that it is able to impute the missing extremes. The completed
time series could subsequently be used for any analysis – including
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Fig. 8. Observations of the skew surge at La Rochelle compared to the means of the multiple imputed values. This imputation is done through the 𝑘-fold cross-validation.
extreme value analysis –, with the uncertainty of the missing values
being accounted for by the multiple imputation approach. However
the cross-validated credible intervals reveal that the uncertainty of the
imputed values is underestimated for the extremes. The performance of
the model decreases for the upper extremes (which are of interest for
the skew surge), but not to an extent suggesting that it is not suitable
for extreme values.

The scope of this study is limited to the classical assumption of
stationarity. Removing this assumption in future work would require
nonstationary models for both the margins and the dependence struc-
ture. The latter could be achieved with a dynamic (i.e., nonstationary)
vine copula, allowing the dependence between stations to vary in time
according to covariates (Chebana and Ouarda, 2021). These covariates
could be climatic variables, such as atmospheric pressure or wind speed
for skew surge, with the parameters of the pair-copulas depending
on them. The fitting of the D-vine by RJMCMC could be expanded
to include the selection of the covariates and the adjustment of their
hyperparameters (El Adlouni and Ouarda, 2009). A similar approach
could be used for nonstationary models of the margins.

The imputation model could also be expanded by adding in the D-
vine variables different from the one measured at the target station.
These additional variables could be any that are sufficiently correlated
with the time series to impute. If the imputation of the extremes is of
interest, it would be preferable to use variables that are tail dependent
with the one to be imputed. This could be useful in a situation where
not enough neighbor stations measuring the same variable are avail-
able, or if they have too many missing values to impute every date of
the target station. Adding these variables of a different nature would
not require additional development of the present model, as long as
they have the same timestep than the variable to impute.

Accounting for the autocorrelation of the time series and the even-
tual time lag of their correlation could further improve the imputation.
Moreover these autocorrelation and time lag could themselves be de-
pendent on covariates, such as storm related variables in the case of
the skew surge.

The MCAR assumption may not be always valid in the case of the
skew surge time series analyzed, as an extreme event can increase the
chance of failure in measurement. Thus the missingness mechanism
should be accounted for in the model.

Only the dates with a monotone missingness pattern are included in
the computation of the D-vine likelihood (Eq. (8)), but more informa-
tion could be used by allowing several D-vine subsets for the same date.
For instance, a 6-dimensional D-vine with only the third dimensions
11
missing could be subsetted to a pair-copula for dimensions {1, 2} and
a 3-dimensional D-vine for dimensions {4, 5, 6}. This would result in
a likelihood value for each subset of a given date, which could be
weighted to obtain a single likelihood value for the date.

As mentioned in the introduction, Ahn (2021) and Hasler et al.
(2018) have both found that the imputation with a D-vine outperforms
alternative methods, and particularly so for the extremes as a vine
copula can model the eventual tail dependence between dimensions.
Thus, although a proper comparison of the performance of our method
with other imputation methods was outside the scope of the article, we
can assume that ours would at least offer a similar performance with
alternatives for the bulk of the data and would outperform those that
do not account for the eventual tail dependence for the extremes.
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Table 5
Matrix representation of a 5-dimensional D-vine.

(a) Vine copula matrix (b) Value 𝑥 for each pair-copula

𝟓 .
1 4 𝑥15|234 .
𝟐 1 3 𝒙𝟐𝟓|𝟑𝟒 𝑥14|23 .
3 2 1 2 𝑥35|4 𝑥24|3 𝑥13|2 .
4 3 2 1 1 𝑥45 𝑥34 𝑥23 𝑥12 .

Appendix. Matrix representation of a vine copula

The matrix representation of a vine copula (Morales Napoles, 2009;
Dißmann et al., 2013) is used for the results of Tables 2 and 3. This
representation is a 𝑑×𝑑 matrix indicating which dimensions correspond
to each pair-copula of the vine, as well as their conditional dimensions
for the trees other than the first one. Table 5.a gives an example
for a 5-dimensional D-vine. The matrix is to be read by columns,
with a number on the diagonal {𝑑,… , 1} denoting a dimension of a
pair-copula and another number below in the same column denoting
the second dimension of this pair-copula. In this same column, any
other number below both dimensions of the pair-copula indicates a
conditioning dimension.

For instance, the pair-copula between dimensions 2 and 5 is indi-
cated in the first column of Table 5.a (in bold), with every dimension
below them both being the conditioning ones, here dimensions 3 and
4 (italicized). The 5-dimensional D-vine of Fig. 1 also shows this 25|34
air-copula in tree T3. Table 5.b is the corresponding representation of
value for each pair-copula (which could be a pair-copula parameter

alue, the Kendall’s 𝜏 of the pair-copula, etc.) The subscript notation
f each value denotes the two dimensions of the pair-copula and its set
f conditioning dimensions. The dots on the diagonal highlight the fact
hat it is empty, compared to Table 5.a. The value corresponding to the
air-copula between dimensions 2 and 5 taken as example is Table 5.a
s indicated in bold.
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