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Transformations on Irreducible Binary
Polynomials

Jean-Francis Michon and Philippe Ravache

Université de Rouen, LITIS EA 4108
BP 12 - 76801 Saint-Étienne du Rouvray cedex, France.
{jean-francis.michon, philippe.ravache}@litislab.fr

Abstract. Using the natural action of GL2(F2) ' S3 over F2[X], one
can define different classes of polynomials strongly analogous to self-
reciprocal irreducible polynomials. We give transformations to construct
polynomials of each kind of invariance and we deal with the question of
explicit infinite sequences of invariant irreducible polynomials in F2[X].
We generalize results obtained by Varshamov, Wiedemann, Meyn and
Cohen and we give sequences of invariant irreducible polynomials. More-
over we explain what happens when the given constructions fail. We also
give a result on the order of the polynomials of one of the classes: the
alternate irreducible polynomials.
Keywords: irreducible polynomials, finite fields, sequences of irreducible
invariant polynomials.

1 Introduction

In [6], we studied the natural action of the 6 elements group S3 ' GL2(F2) '
PGL2(F2) on the set

I = {P ∈ F2[X]| P irreducible} \ {X,X + 1}.

This action of S3 on I, is defined by the two operations

P+(X) = P (X + 1)

P ∗(X) = XdegPP (
1
X

).

The action of all other elements of S3 are obtained by compositions of these two
operations. We shall write for example P ∗+ for (P ∗)+.

Definition 1 The hexagon of P ∈ I is the orbit of P :

Hex(P ) = {Pσ|σ ∈ S3}.

The degree of a hexagon is the degree of its polynomials. When Card(Hex(P )) <
6 we say that the hexagon is degenerate.



Such an orbit has 1, 2, 3 or 6 elements according to the isotropy subgroup of P .
In S3, apart from the trivial subgroups, we have 3 subgroups of order 2, and one
of order 3. Each of them will give a family of invariant irreducible polynomials.
The case of 1 element hexagon is easy : I(2) = {X2+X+1} is the only 1 element
degenerate hexagon. This polynomial is the only fixed point of the action.

Let us define for any integer n > 1

I(n) = {P ∈ I|degP = n},

then this grading of I is stable under the action (but this is not true for n = 1).

2 Self-reciprocity and the 3 Elements Degenerate
Hexagons

Self-reciprocal polynomials are invariant under the action of one subgroup of
order 2 (generated by ∗ operation). In fact there is no reason to focus on one
subgroup because they are all conjugate.

2.1 The Invariant Polynomials

Definition 2 Let P be a polynomial, P is said to be self-reciprocal (resp.
periodic, median) if P ∗ = P (resp. P+ = P , P ∗+∗ = P+∗+ = P ). We easily
check that these polynomials are of even degree.

Definition 3 Let P and Q, P 6= Q, be two polynomials of I, {P,Q} is said
to be a reciprocal pair (resp. periodic pair, median pair) if Q = P ∗ (resp.
Q = P+, Q = P ∗+∗). As the polynomials of a pair have the same degree, by
extension, it will also be the degree of the pair.

Definition 4 A 3 elements degenerate hexagon is made of a self-reciprocal
irreducible polynomial P , a median irreducible polynomial Q and a periodic ir-
reducible polynomial R such that:
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The next theorem extends Meyn’s one (see [4], Theorem 1) to the periodic
and median polynomials:

Theorem 1 i) Each self-reciprocal (resp. periodic, median) irreducible polyno-
mial of degree 2n (n ≥ 1) is a factor of the polynomial

Hr,n(X) = X2n+1 + 1

(resp. Hp,n(X) = X2n

+X + 1, Hm,n(X) = X2n

+X2n−1 + 1).

ii) Each irreducible factor of degree ≥ 2 of Hr,n (resp. Hp,n, Hm,n) is a
self-reciprocal (resp. periodic, median) polynomial of degree 2d, where d divides
n such that n/d is odd.



Proof. In [4], Meyn proves the theorem for self-reciprocal polynomials. We triv-
ially extend it to the periodic (resp. median) polynomials noting that, on the one
hand, Hp,n = H+∗

r,n (resp. Hm,n = H+
r,n) and on the other hand, a periodic (resp.

median) irreducible polynomial is obtained from a self-reciprocal one, applying
the transformation +* (resp. +) on it.

2.2 The Quadratic Transformations

Definition 5 We define the maps φp, φm, φr: F2[X]→ F2[X] by

φp(P ) = P (X2 +X)

φm(P ) = φp(P )∗ = X2n P (
X + 1
X2

)

φr(P ) = φp(P )∗+ = (X2 + 1)n P (
X

X2 + 1
).

The image by φp (resp. φm, φr) of a polynomial of I(n) is a periodic (resp.
median, self-reciprocal) polynomial of degree 2n but is not always irreducible.

Proposition 1 Let P ⊂ F2[X] be the subset of periodic polynomials, then P is
a sub algebra of F2[X] and φp : F2[X]→ P is an algebra isomorphism.

Proof. Only φp surjectivity deserves proof. Let Q be a periodic polynomial, its
degree is an even integer 2n. Then, Q+ (X2 +X)n is a periodic polynomial of
degree < 2n. Iterating this process, we obtain a polynomial P of degree n such
that φp(P ) = Q.

We call trace of a polynomial P 6= 0 of degree n, and write Tr(P ), the Xn−1

coefficient.
The following theorem and corollary can be seen as an extension of Meyn’s

Lemma (see [4], Lemma 4):

Theorem 2 Let P ∈ I(n). If Tr(P ) = 1, then φp(P ) is a periodic irreducible
polynomial of degree 2n, else, φp(P ) is the product of two irreducible polynomials
of degree n, which form a periodic pair.

Conversely, let Q be an irreducible periodic polynomial of degree 2n (resp.
{R,R+} a periodic pair of degree n), then, there exists a unique P ∈ I(n) such
that φp(P ) = Q (resp. φp(P ) = RR+).

Proof. Let P ∈ I(n) and let h be a root of φp(P ), then h2 + h is a root of P by
definition and generates the field F2n . This implies that F2[h] ⊃ F2[h2+h] = F2n .
In turn h cannot be a root of a polynomial whose degree is < n. We conclude that
the irreducible decomposition of φp(P ) contains only polynomials of degree ≥ n.
This leaves only two cases: φp(P ) is irreducible of degree 2n or is the product of
two irreducible polynomials A and B of degree n.

Suppose we are in the second case : AB being periodic, we have two pos-
sibilities: B = A+ or A and B are themselves periodic. This last event cannot



occur because if φp(P ) = AB with A and B periodic and irreducible, then by
Proposition 1, there exist U and V such that φp(U) = A and φp(V ) = B.
Then φp(P ) = φp(U)φp(V ) = φp(UV ) and P = UV . This would contradict the
irreducibility of P .

We now prove that the trace dispatches the two cases. Suppose φp(P ) = AB,
then we have h ∈ F2n . We call a = h2+h ∈ F2n , then Tr(a) = Tr(h2)+Tr(h) = 0
and Tr(P ) = 0 because a is a root of P . Conversely if Tr(P ) = 0 then Tr(a) = 0
for any root a of P . Then it is well known that the equation X2 + X = a has
roots in F2n (using the ”half-trace”) . This means that φp(P ) has a root in F2n

, so it is reducible.

We prove now the ”conversely” part of the theorem.
Let Q be an irreducible periodic polynomial of degree 2n and let h be a root of
Q, then, h+1 is also a root of Q and, from Theorem 1, we know that h+1 = h2n

.
Now, if

E = {h2i

|0 ≤ i < n},

Q =
∏
h∈E

(X + h)(X + h+ 1) =
∏
h∈E

(X2 +X + h(h+ 1)).

We take
P =

∏
h∈E

(X + h(h+ 1)),

it is then clear that φp(P ) = Q. Let h(h+ 1) be a root of P , then any other root
can be written h2k

(h2k

+1) = [h(h+1)]2
k

for some integer k ≥ 1. In other terms,
the roots of P are conjugate by Frobenius. This implies that P ∈ F2[X]. If P
is reducible, say P = ST then φp(P ) = φp(S)φp(T ) = Q. This decomposition
is trivial because Q is irreducible. This forces S or T to be trivial and P to be
irreducible. Now, if P is not unique, there exists another irreducible polynomial
S such that φp(S) = Q, then h(h + 1) is a root of S by definition, so S and P
have the same roots and consequently, S = P .

In the same manner, let {R,R+} be a periodic pair of degree n and F be the
set of the n roots of R then taking

P =
∏
a∈F

(X + a(a+ 1)),

we obtain a P ∈ F2[X] such that φp(P ) = RR+.
Suppose P = ST with two non constant polynomials in F2[X], then φp(P ) =

φp(S)φp(T ) = RR+. Consequently, we can write φp(S) = R and this is a contra-
diction because φp(S) is periodic and R is not, so P is irreducible. The unicity
of P is proved like previously.

Corollary 1 Let P ∈ I(n), if Tr(P ) = 1, then, φr(P )(resp. φm(P )) is a self-
reciprocal (resp. median) irreducible polynomial of degree 2n, else, it is the prod-
uct of two irreducible polynomials of degree n, which form a reciprocal (resp.
median) pair.



Conversely, let Q be an irreducible self-reciprocal (resp. median) polynomial
of degree 2n, then, there exists P ∈ I(n) such that φr(P ) = Q (resp. φm(P ) =
Q). In the same way, let {R,R∗} (resp. {R,R+∗+}) be a reciprocal (resp. median)
pair of degree n, then, there exists a unique P ∈ I(n) such that φr(P ) = RR∗

(resp. φm(P ) = RR+∗+).

Proof. We prove the corollary only for the self-reciprocal case, the median case
being similar.

If Tr(P ) = 1, from Theorem 2, we know that φp(P ) is periodic in I(2n). Us-
ing Definitions 4 and 5, we see that φr(P ) is self-reciprocal in I(2n). If Tr(P ) =
0, there exists a periodic pair {S, S+} of degree n such that φp(P ) = SS+. Now,
as the transformations * and + are distributive with regard to the multiplication
in F2[X], φr(P ) = (SS+)∗+ = S∗+S+∗+ = S∗+(S∗+)∗, which is a reciprocal pair
of degree n.

Using Theorem 2, Definitions 4 and 5, the proof of the second part is obvious.

We get a simple way to construct 3 and 6 elements hexagons: let P be an irre-
ducible polynomial of degree n such that Tr(P ) = 1, then {φr(P ), φm(P ), φp(P )}
is a 3 elements degenerate hexagon of degree 2n. This is illustrated by the left-
side diagram. If Tr(P ) = 0, we have the right-side diagram, where {Q1, Q2},
{Q3, Q4} and {Q5, Q6} are the pairs such that φr(P ) = Q1Q2, φm(P ) = Q3Q4

and φp(P ) = Q5Q6 respectively.
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Fig. 1. Construction of hexagons by φr, φm and φp from an irreducible polyno-
mial P such that Tr(P ) = 1 (left) and Tr(P ) = 0 (right).

2.3 Infinite Sequences of Self-reciprocal, Median and Periodic
Irreducible Polynomials

Let P ∈ I(n), we denote c1(P ) the coefficient of X in P .



Sequences of invariant irreducible polynomials appear implicitely in Var-
shamov [8] and more explicitely in Wiedemann [9], Meyn [4] and Cohen [1]. These
sequences appear in papers devoted to a more general problem: the construction
of irreducible polynomials (see Kyuregyan [2] and [3] for recent references).

Our approach shows that, actually, there are three strongly analogous families
of invariant irreducible polynomials corresponding to the three conjugated 2-
groups of S3. The following theorem is an easy extension of the construction of
sequences of self-reciprocal irreducible polynomials given by Meyn and Cohen
to the median and periodic cases.

Theorem 3 Let P ∈ I(n) be such that c1(P ) = Tr(P ) = 1. Starting from φr(P )
(resp. φm(P ), φp(P )) and iterating the transformation P → φr(P ) (resp. P →
φm(P+), P → φp(P ∗+)) one generates an infinite sequence of self-reciprocal
(resp. median, periodic) irreducible polynomials of degree 2in, i > 0.

Proof. We know by Theorem 2 that φr(P ) is self-reciprocal and irreducible. By
explicit computation, we see that Tr(φr(P )) = 1 and because of self-reciprocity,
c1(φr(P )) = 1. So by recurrence, we get a sequence of self-reciprocal irreducible
polynomials. Then, using the Definitions 4 and 5, we obtain sequences of median
and periodic polynomials.

2.4 Equivalent Transformations

In Definition 5 we defined φm and φr from φp in a natural way. Other transfor-
mations can be used instead of φp. They are obtained by choosing one ”right”
action by an element of the group S3 before applying φp.

We construct in this way new transformation φ′p and consequently new φ′m
and φ′r. We recover in this way the transformation φ′r quoted in Section 2.3 which
is more frequently used in the mathematical literature for constructing self-
reciprocal polynomial. The results of the preceding sections can be transposed
with small changes. The following table lists these transformations:

φ′p φ′m = ∗ ◦ φ′p φ′r = + ◦ ∗ ◦ φ′p

P (X2 +X + 1) = φp(P
+) X2nP (X

2+X+1
X2 ) (X2 + 1)nP (X

2+X+1
X2+1

)

(X2 +X + 1)nP ( 1
X2+X+1

) = φp(P
∗+) (X2 +X + 1)nP ( X2

X2+X+1
) (X2 +X + 1)nP ( X2+1

X2+X+1
)

(X2 +X + 1)nP ( X2+X
X2+X+1

) = φp(P
+∗+) (X2 +X + 1)nP ( X+1

X2+X+1
) (X2 +X + 1)nP ( X

X2+X+1
)

(X2 +X)nP (X
2+X+1
X2+X

) = φp(P
+∗) (X + 1)nP (X

2+X+1
X+1

) XnP (X
2+X+1
X

)

(X2 +X)nP ( 1
X2+X

) = φp(P
∗) (X + 1)nP ( X2

X+1
) XnP (X

2+1
X

)

Table 1. Equivalent quadratic transformations.



3 Alternate Polynomials and 2 Elements Degenerate
Hexagons

We introduced in [6] the class of alternate polynomials over F2 :

Definition 6 – A polynomial P is said to be alternate if P ∗+ = P+∗ = P .
– Let P ∈ I, if P is not alternate, then {P, P ∗+, P+∗} is said to be an alter-

nate triplet. P , P ∗+ and P+∗ are of the same degree, so by extension, the
degree of an alternate triplet is the degree of its polynomials.

– A 2 elements degenerate hexagon is made of two distinct alternate ir-
reducible polynomials P and Q such that:

P Qoo
+/∗

// .

We refer again to [6] for the details of the following :

Proposition 2 The irreducible alternate polynomials are exactly the irreducible
factors of the polynomials

Bk(X) = X2k+1 +X + 1,

for k ∈ N.
If P is alternate then degP ≡ 0 mod 3 or P = X2 +X+1. If degP = 3m then
either P divides Bm and B∗2m, or P divides B∗m and B2m. In the first case we
say that P has type 1, in the second P has type 2.

Corollary 2 The order of an alternate irreducible polynomial of degree 3n di-
vides 22n + 2n + 1.

Proof. Let P ∈ I(n) be alternate. We suppose P is of type 1. Let a be a root of P ,
then, from Proposition 2, a2n+1+a+1 = 0. We put this equation to the 2n, we get
a2n(2n+1)+a2n

+1 = 0. Now, multiplying by a, we have a2n(2n+1)+1+a2n+1+a =
0. Finally, we replace the term in the middle using the first equation, we obtain
a2n(2n+1)+1 + 1 = 0.

If P is of type 2, then P ∗ is of type 1 and as P and P ∗ have same order, this
concludes the proof.

3.1 The Cubic Transformation

Let P ∈ F2[X] of degree n, we define the map ψ : F2[X]→ F2[X] by

ψ(P )(X) = (X2 +X)n P (
X3 +X2 + 1
X2 +X

).

We verify that ψ(P ) is alternate.
Let ε and ε2 be the roots of X2 +X+ 1. For any irreducible P 6= X2 +X+ 1

in F2[X] we have P (ε) ∈ {1, ε, ε2}. The main result of this section is:



Theorem 4 – Let P ∈ I(n), n > 2. If P (ε) 6= 1 then ψ(P ) is an irreducible
alternate polynomial of degree 3n, else, ψ(P ) = RST , where {R,S, T} is an
alternate triplet of degree n.

– Conversely, let Q ∈ I(3n), n > 1 be an alternate polynomial (resp. {R,R+∗, R∗+}
an alternate triplet of degree n), then there exists a unique P ∈ I(n) such
that ψ(P ) = Q (resp. ψ(P ) = RR+∗R∗+).

To complete the theorem, we precise that the irreducible (alternate) polynomials
of degree 3 are obtained from X and X + 1:

ψ(X) = X3 +X2 + 1 and ψ(X + 1) = X3 +X + 1,

and for the particular case X2 +X + 1 (whose value in ε is 0), we have:

ψ(X2 +X + 1) = (X2 +X + 1)3.

Before going into the proof of Theorem 4, we need to establish some results.
Let us take P ∈ I(n) with n > 2, K = F2n the splitting field of P , and h a

root of ψ(P ), then h 6= 0, 1 and

a =
h3 + h2 + 1
h2 + h

= h+
1
h

+
1

h+ 1
(1)

is a root of P . This implies K ⊂ K(h).
As h 6= 0, 1, h is a root of the polynomial

Ta(X) = X3 + (1 + a)X2 + aX + 1. (2)

3.2 Proof of the First Part of Theorem 4

Proposition 3 Let w be a cubic root of (ε+a)(ε+a2), then the roots of (2) are

hi = 1 + a+ εiw +
b

εiw
,

with i = 0, 1 or 2, and b = a2 + a + 1. Moreover, they verify the relations
h1 = 1/(h0 + 1) and h2 = 1 + 1/h0.

Proof. The formulas for the hi are obtained by the classical Cardan’s method:
The first step is to cancel the X2 coefficient in

X3 + (a+ 1)X2 + aX + 1 = 0.

We take X ′ = X + 1 + a and b = 1 + a+ a2:

X ′3 + bX ′ + b = 0.

The second step is to use two variables u, v and take X ′ = u+ v:

u3 + v3 + (u+ v)(uv + b) + b = 0.



Choosing uv = b, if we can solve{
uv = b

u3 + v3 = b

in K, we will have the roots of (2), they would be the

1 + a+ u+ v.

We can write: {
u3v3 = b3

u3 + v3 = b,

which is equivalent to a second degree problem. If Y = u3 then:

Y 2 + bY + b3 = 0,

and dividing by b2 we get:
Y 2

b2
+
Y

b
+ b = 0.

We take Z = Y/b (because b 6= 0):

Z2 + Z + b = 0

Z2 + Z + 1 + a+ a2 = 0

(Z + a)2 + (Z + a) + 1 = 0.

So the solutions are Z = a+ ε and Z = a+ ε2. And we find:

u3 = (1 + a+ a2)(a+ ε2),

which can be written equivalently:

u3 = (a+ ε)(a+ ε2)(a+ ε2)

= (a+ ε)(a2 + ε).

So we can choose u as one of the three cubic roots of (a+ε)(a2 +ε). The quantity
v = b/u is then determined uniquely. The roles of v and u can be exchanged.

We now establish the relations between the roots:

1 +
1
h0

= h2
0 + (1 + a)h0 + a+ 1 (from (2))

= w2 +
b2

w2
+ (1 + a)(w +

b

w
) + a+ 1

=
w3

w
+
b2w

w3
+ (1 + a)(w +

b

w
) + a+ 1

= [
b2

w3
+ 1 + a]w + [

w3

b
+ 1 + a]

b

w
+ a+ 1.



Then using b = (ε+ a)(ε2 + a) and w3 = (ε+ a)(ε+ a2) we find:

1 +
1
h0

= ε2w +
b

ε2w
+ a+ 1 = h2.

The first relation can be obtained by the same trick.

Lemma 1 If P (ε) = 1 and n is even (resp. odd), then (ε+ a)(ε+ a2) has cubic
roots in K = F2n (resp. K(ε)).

Proof. Case n even: If n = 2m

P (ε) = (ε+ a)(ε+ a2)(ε+ a4)(ε+ a8) . . . (ε+ a22m−2
)(ε+ a22m−1

)

= (ε+ a)(ε+ a2)((ε+ a)(ε+ a2))4 . . . ((ε+ a)(ε+ a2))2
2m−2

.

So P (ε) = [(ε+ a)(ε+ a2)]k with

k = 1 + 4 + · · ·+ 22(m−1) =
2n − 1

3
.

Let w be a cubic root of (ε+a)(ε+a2) in some extension of F2 (it always exists).
Then, from what we have just said:

w2n−1 = w3. 2
n−1
3 = P (ε) = 1,

so w ∈ K.
Case n odd: let n = 2m + 1, we write P (ε) in two different ways, using

Fermat’s little theorem:

P (ε) = (ε+ a)(ε+ a2)(ε+ a4)(ε+ a8) . . . (ε+ a22m−2
)(ε+ a22m−1

)(ε+ a22m

)

P (ε) = (ε+ a22m+1
)(ε+ a22m+2

)(ε+ a22m+3
)(ε+ a22m+4

) . . . (ε+ a24m

)(ε+ a24m+1
).

Multiplying these equalities, we get

P (ε)2 = [(ε+ a)(ε+ a2)][(ε+ a)(ε+ a2)]4 . . . [(ε+ a)(ε+ a2)]2
4m

= [(ε+ a)(ε+ a2)]k,

with

k = 1 + 4 + · · ·+ 24m =
42m+1 − 1

3
=

22n − 1
3

.

Then
w22n−1 = w3. 2

2n−1
3 = P (ε)2 = 1,

and w ∈ K(ε) because [K(ε) : F2] = 2n.

Proposition 4 Let P ∈ I(n) be such that P (ε) = 1, then, ψ(P ) is reducible.



Proof. If n is even this is a direct consequence of the preceding Lemma and
Proposition 3.

If n is odd, w ∈ K(ε) by the preceding lemma, so by Proposition 3 we
have K(h) ⊂ K(ε). If ψ(P ) is irreducible then for any of its root h we have
[K(h) : F2] = 3n and [K(h) : K] = 3. This is a contradiction so ψ(P ) is
reducible.

Proposition 5 Let P ∈ I(n), n > 2, the polynomial ψ(P ) has 3n distinct roots
and

ψ(P ) =
n−1∏
k=0

T
a2k (X),

where a ∈ K is any root of P .

Proof. If a is a root of P and if h is a root of Ta, then h is a root of ψ(P ). Let
a′ be another root of P , distinct from a, then, the set of roots of Ta is disjoint
from the set of roots of Ta′ because of (1). As P is irreducible, all the roots of
P are conjugate and distinct, which concludes the proof of the proposition.

Proposition 6 Let P ∈ I(n), n > 2, if ψ(P ) is reducible in F2[X] then ψ(P ) =
RST , where {R,S, T} is an alternate triplet of degree n, moreover P (ε) = 1.

Proof. Let h be a root of ψ(P ), we have seen that K ⊂ K(h). Thus, the degree of
the minimal polynomial of h is divisible by n and is ≤ 3n. This implies that the
irreducible factors of ψ(P ) in F2[X] are at least of degree n, < 3n and multiples
of n. Consequently, one of the irreducible factor of ψ(P ) is of degree n. Let R
be such a factor.

We consider R∗+ and R+∗. They are polynomials of F2[X] of degree n and
their roots are roots of ψ(P ), thus, they divide ψ(P ). If R is not alternate, then
we obtain an alternate triplet {R,R∗+, R+∗} of degree n, as expected.

If R is alternate let h be a root of R and a such that

a =
h3 + h2 + 1
h2 + h

,

then, like previously, a is a root of P and Ta(X)|R because h, 1
h+1 and h+1

h are

distinct roots of R. As R ∈ F2[X] is irreducible of degree n, its roots are the h2k

,
with 0 ≤ k ≤ n− 1. So, as Frobenius commutes with our group transformations,
T
a2k |R for every k. The T

a2k are distinct because of the preceding proposition.
It follows that R has 3n distinct roots which is a contradiction, so R cannot be
alternate.

We can explicit the decomposition:

ψ(P ) = R(X)(X + 1)nR
( 1
X + 1

)
XnR

(X + 1
X

)
,

with R ∈ F2[X] irreducible of degree n > 2, so ψ(P )(ε) = ε3nR(ε)3 = R(ε)3 = 1.
Then, taking X = ε in the definition of ψ, we get ψ(P )(ε) = P (ε2). Conse-

quently, P (ε2) = P (ε)2 = 1 and P (ε) = 1.



The Propositions 4 and 6 give a demonstration of the first part of Theorem
4.

3.3 Proof of the Second Part of Theorem 4

Proposition 7 let Q ∈ I(3n), n > 1 be an alternate polynomial (resp. {R,R+∗, R∗+}
an alternate triplet of degree n), then, there exists a unique P ∈ I(n) such that
ψ(P ) = Q (resp. ψ(P ) = RR+∗R∗+).

Proof. Let a be a root of Q, suppose type(Q) = 1 (type 2 is similar), then,
1/(1+a) and 1+1/a are also roots of Q, moreover, from Proposition 2, we know
that 1 + 1/a = a2n

and that 1/(1 + a) = a22n

. Now, we take

E = {a2i

|0 ≤ i < n},

from what we have just seen, we can write

Q =
∏
a∈E

(X + a)(X + 1 +
1
a

)(X +
1

1 + a
)

= (X2 +X)n
∏
a∈E

(X3 +X2 + 1
X2 +X

+
a3 + a2 + 1
a2 + a

)
.

We take

P =
∏
a∈E

(
X +

a3 + a2 + 1
a2 + a

)
,

it is then clear that ψ(P ) = Q. Let a3+a2+1
a2+a be a root of P , then any other root

can be written a2k

(1 + 1/a2k

)(1/(1 + a2k

)) = [a(1 + 1/a)(1/(1 + a))]2
k

for some
integer k ≥ 1. In other terms, the roots of P are conjugate by Frobenius. This
implies that P ∈ F2[X].

To show that P is irreducible, we suppose that P = ST , with two non
constant polynomials in F2[X], then, as degST = degS + deg T :

ψ(P ) = ψ(S)ψ(T ) = Q,

and this decomposition is non trivial. This is impossible because Q is irreducible,
so P is irreducible.

And to show that P is unique, we suppose that there exists another irre-
ducible polynomial P1 such that ψ(P1) = Q, then, a3+a2+1

a2+a is a root of P1 by
definition, so P and P1 have the same roots and P = P1.

In the same way, let {R,R+∗, R∗+} be an alternate triplet of degree n and
F the set of the n roots of R, then, taking

P =
∏
a∈F

(
X +

a3 + a2 + 1
a2 + a

)
,



we obtain a P such that ψ(P ) = RR+∗R∗+ and P ∈ F2[X].
If P is reducible, we can write P = ST , with two non constant polynomials

in F2[X], then
ψ(P ) = ψ(S)ψ(T ) = RR+∗R∗+.

Consequently, we can write ψ(S) = R and this is a contradiction because ψ(S)
is alternate and R is not, so P is irreducible. Finally, we can show that P is
unique as we did in the first part.

This completes the proof of Theorem 4.
As we did in the previous section, we propose a simple way to construct 2

elements hexagons: let P ∈ I(n) be such that P (ε) 6= 1, then, using the fact that
ψ ◦ + = + ◦ ψ (the demonstration is obvious), we deduce that {ψ(P ), ψ(P+)}
is a 2 elements degenerate hexagon of degree 3n. This is illustrated by the left-
side diagram. On the other hand, if P (ε) = 1, we have the right-side diagram,
where {Q1, Q3, Q5} and {Q2, Q4, Q6} are the alternate triplets such that ψ(P ) =
Q1Q3Q5 and ψ(P+) = Q2Q4Q6 respectively:

P P+

ψ(P ) ψ(P+)

ψ

��

ψ

��

oo
+

//

oo
+/∗

//

P P+

Q1

Q2

Q3

Q4

Q5

Q6

ψ

ccGGGGGGGGGGGGG

;;wwwwwwwwwwwww

��

ψ

OO

{{wwwwwwwwwwwww

##GGGGGGGGGGGGG

oo
+

//

ss
+ 33 kk ∗

++
OO

∗

��
kk

+ ++ ss ∗

33

OO

+

��

Fig. 2. Construction of hexagons by ψ from an irreducible polynomial P such
that P (ε) 6= 1 (left) and P (ε) = 1 (right).

3.4 Infinite Sequences of Irreducible Alternate Polynomials

Proposition 8 If P is an irreducible alternate polynomial of degree > 2, then
ψ(P ) is an irreducible alternate polynomial.

Proof. Let P be an irreducible alternate polynomial, by Theorem 4, P = ψ(Q)
for some irreducible Q, then P (ε) = ε or ε2. By the same theorem ψ(P ) is
irreducible and alternate.

Theorem 5 Let P ∈ I(n) be such that P (ε) = ε or ε2, then the iteration ψ on
P generates a sequence of alternate irreducible polynomials of degree 3in, i > 0.

Proof. Theorem 4 and Proposition 8 prove this theorem.



3.5 Computation of the Type of the Alternate Irreducible
Polynomials

Another consequence of Theorem 4 is that it gives a simple way to compute the
type:

Theorem 6 Let Q be an alternate irreducible polynomial of degree > 2 then its
type is 1 (resp. 2) if and only if Q(ε) = ε (resp. Q(ε) = ε2).

Proof. If degQ = 3, we verify the theorem by calculus. We now suppose that
degQ = 3n, n > 1. We know from the preceding that Q = ψ(P ) ∈ I(3n) for
some irreducible polynomial P and Q(ε) = P (ε)2.

If n is even, let h0 be a root of Q, then with the notations used in Proposition
3 we have h0 = 1 + a+ w + b

w . Consequently:

h2n

0 = 1 + a+ w2n

+
b

w2n .

From the demonstration of Lemma 1 we have w2n

= P (ε)w, and

h2n

0 = 1 + a+ P (ε)w +
b

P (ε)w
.

If Q(ε) = ε (resp. ε2), then P (ε) = ε2 (resp. ε) and using again Theorem 4:

h2n

0 = 1 +
1
h0

( resp. h2n

0 =
1

h0 + 1
).

This is equivalent to say that Q is of type 1 (resp. type 2).
If n is odd the demonstration follows the same line except that we must use

w22n

= P (ε)2w = Q(ε)w . We compute:

h22n

0 = 1 + a+Q(ε)w +
b

Q(ε)w
.

If Q(ε) = ε (resp. ε2), then P (ε) = ε2 (resp. ε). We obtain:

h22n

0 =
1

h0 + 1
( resp. h22n

0 = 1 +
1
h0

).

This implies (by iteration for example) that:

h2n

0 = 1 +
1
h0

( resp. h2n

0 =
1

h0 + 1
),

and Q has type 1 (resp. 2).

3.6 Equivalent Transformations

Other cubic transformations can be used instead of ψ. As previously, they are
obtained by a right action of the group elements on ψ.



ψ′

(X2 +X)nP (X
3+X+1
X2+X

) = ψ(P+)

(X3 +X + 1)nP ( X2+X
X3+X+1

) = ψ(P ∗+)

(X3 +X + 1)nP (X
3+X2+1
X3+X+1

) = ψ(P+∗+)

(X3 +X2 + 1)nP ( X
3+X+1

X3+X2+1
) = ψ(P+∗)

(X3 +X2 + 1)nP ( X2+X
X3+X2+1

) = ψ(P ∗)

Table 2. Equivalent cubic transformations.

4 Conclusion

To conclude, in this paper, we defined the different classes of irreducible poly-
nomials obtained by the action of GL2(F2) on F2[X]. We gave transformations
to get invariant polynomials of each class, ways to generate infinite sequences
of them and we showed the perfect analogy between self-reciprocal irreducible
polynomials and alternate ones.

Now, the perspectives would be to study the action of GL2(Fq) on Fq[X].
For that, the first step would be the action of GL2(F2n) on F2n [X].
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