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Abstract—Total Flow Analysis (TFA) is a method for the worst-
case analysis of time-sensitive networks. It uses service curve
characterizations of the network nodes and arrival curves of flows
at their sources; for tractability, the latter are often taken to be
linear functions. For periodic flows, which are common in time-
sensitive networks, linear arrival curves are known to provide
less good bounds than ultimately pseudo-periodic (UPP) arrival
curves, which exactly capture the periodic behaviours. However,
in existing tools, applying TFA with many flows and UPP curves
quickly becomes intractable because when aggregating several
UPP curves, the pseudo-period of the aggregate might become
extremely large. We propose a solution to this problem, called
Finite-Horizon TFA. The method computes finite horizons over
which arrival and service curves can be restricted without affect-
ing the end-results of TFA. It can be applied to networks with
cyclic dependencies. We numerically show that, while remaining
computationally feasible, the method significantly improves the
bounds obtained by TFA when using linear curves.

I. INTRODUCTION

We are interested in delay bounds for the worst case, as is

typical in the context of deterministic networking and time-

sensitive networks. We assume that flows are grouped into

classes, packets inside one class are processed first in first out

(FIFO) and classes are isolated using schedulers. The number

of bits that flows can generate is limited at sources by arrival

curve constraints; this is necessary for the existence of a finite

delay bound. Network calculus [1], [2] is a standard approach

to find delay bounds. Specifically, network calculus abstracts,

by means of a service curve, the service offered by a node to a

class. Then, by combining the service curve of the node with

the aggregate arrival curves of flows at this node, a bound on

the worst-case delay at a node is obtained. The results equally

apply to real-time systems, by mapping flow to task, packet

to job, packet size to job-execution time, and service curve to

“delivery curve” [3], [4].

Total Flow Analysis (TFA) [5], [6] obtains end-to-end delay

bounds in FIFO networks and can be applied to per-class

networks that are FIFO per class, where a service curve is

known at every node and an arrival curve is known for every

flow at the source. When the network is feed-forward, validity

and correctness of TFA are shown with arrival curves and

service curves of generic shapes. TFA is extended to networks

with cyclic dependencies by FixPoint-TFA (FP-TFA) [7] and

its variants such as SyncTFA [8], however with the restriction

that arrival and service curves should be linear (i.e., token-

bucket arrival curves and rate-latency service curves). Such a

restriction often results in bounds that are pessimistic as they

cannot accurately abstract the arrival model and the service

model. For instance, for periodic flows, common in real-time

and time-sensitive networks, a pseudo-periodic arrival curve,

a stair function, exactly captures the periodic behaviour of

the flow traffic (see Fig. 2). As another example, non-convex

service curves for schedulers such as Deficit Round-Robin

[9], Weighted Round-Robin [10], and Credit Base Shaper [11]

are known to improve delay bounds compared to rate-latency

ones, as they accurately capture the scheduler’s behavior (see

Fig. 2). For time-sensitive networks, as in the context of

IEEE TSN and IETF Detnet, cyclic dependencies are linked

to certain primary properties such as improving availability

and decreasing reconfiguration effort, hence are important and

cannot be ignored. However, as of today, methods that analyze

networks with cyclic dependencies are restricted to only linear

curves, hence are potentially pessimistic.

Our first step is to generalize the theory of FP-TFA to arrival

and service curves of generic shapes, which provides tighter

bounds for networks with cyclic dependencies. Specifically,

we present a new version of FP-TFA, called Generic FP-TFA

(GFP-TFA), and prove its validity and correctness for arrival

and service curves with generic shapes (Theorem 3). GFP-

TFA is not a practical algorithm when there are many periodic

sources, as we explain next, however, it serves as a theoretical

reference; furthermore, it is used as a building block in the

main algorithm later presented in this paper.

Tools such as RTaW [12], Nancy [13], DiscoDNC [14],

etc. use infinite precision arithmetic (with rational numbers)

and implement Ultimately Pseudo-Periodic (UPP) curves; UPP

curves have a transient part at the beginning, followed by

a periodic pattern. UPP curves are of interest in practice as

they have a finite representation, and moreover, they capture

periodic behaviors (see Fig. 1a). For instance, in the case

of periodic flows, UPP curves can accurately describe their

periodic arrival curve, and in the case of service curves,

UPP curves can describe non-convexity. However, applying

GFP-TFA with many flows and UPP curves quickly becomes

intractable. This is because when aggregating several UPP

curves, the pseudo-period of the aggregate function might

become extremely large; moreover, the required memory to



store the aggregate function might explode as the number of

segments required to describe the aggregate function quickly

grows (see Fig. 3). An example where this issue occurs is

the avionic onboard communication system analyzed in [15].

More industrial examples can be found in Section VII.

An attempt to overcome this issue consists in replacing

periods by smaller values such that the hyper-periods remain

small, e.g., when aggregating three UPP curves with pseudo-

periods equal to 3, 4, and 8, the hyper-period becomes 24;

but, the pseudo-period 3 can be safely replaced by 2 thus

the hyper-period becomes 8. However, this increases the load,

hence the bounds, and moreover, it is not robust: It should be

reapplied whenever a change happens, e.g., a period changes

or a new periodic flow is added. Also, if a network is highly

loaded, tweaking periods might violate local stability and the

network analysis fails. This is why, for tractability, TFA is

generally applied with linear arrival curves. In summary, on

one hand, we have UPP curves that provide good bounds

but applying GFP-TFA with many periodic flows and UPP

curves might be practically intractable; on the other hand, we

have linear curves, which are very tractable but provide less

good bounds. Authors in [16] show that the network-calculus

delay-computation (i.e., horizontal deviation) only depends on

a finite part at the beginning of the arrival curve and the

service curve and not the complete curves. This motivates us to

find a middle point, namely, curves that follow original, UPP

curves up to a finite horizon, and beyond that, follow simpler,

linear curves. An Ultimately Affine (UA) curve can exactly

capture this: a UA curve has a transient part at the beginning,

followed by a linear curve (see Fig. 1b); working with UA

curves mitigates the description complexity of UPP curves for

an aggregate curve (see Fig. 3). Moreover, as UA curves are a

subset of UPP curves, one can use a UPP implementation to

handle UA curves. The main problem is now how to carefully

construct such UA curves, from original, UPP curves and their

linear upper/lower bounds, such that the end-results are not

affected, i.e., as good as those obtained with original, UPP

curves.

In order to solve this problem, we propose a second new

version of TFA, called Finite-Horizon TFA (FH-TFA), which

can be viewed as an efficient, practical replacement for GFP-

TFA, and hence can be applied to networks with cyclic

dependencies. The method computes sufficient finite horizons

for every UPP arrival and service curve by adopting the

compact domains of [16]. Note that the results about compact

domains in [16] that are presented for a single node do

not directly apply to TFA or FP-TFA; indeed, in a network

analysis, arrival curves of flows increase as flows go deeper

into the network, hence the compact domains required for

delay computations increase as well. To address this, FH-

TFA first applies FP-TFA using linear curves; this is very fast

and provides enough information to compute sufficient finite

horizons. Next, it constructs UA curves where the duration

of the transient part is set to the computed sufficient finite

horizons (see Fig. 4). Last, it applies GFP-TFA with these

UA curves; the complexity is small due to the replacement of

UPP curves by UA curves. In the common case where service

curves are super-additive, we prove that FH-TFA produces the

very same bounds as the intractable GFP-TFA (Theorem 4).

Since FH-TFA is considerably less complex, this provides a

tractable, efficient solution to the analysis of networks with

UPP curves.

The contributions of this paper are as follows:

• We develop and validate FH-TFA, an algorithm that

provides delay bounds for deterministic networks with

generic topology, and generic arrival and service curves

that are implemented as UPP or UA curves (Theorem 4).

In contrast, for networks with cyclic dependencies, ex-

isting versions of TFA are limited to linear arrival and

service curves, which may affect the quality of the delay

bounds.

• We develop and validate GFP-TFA, an algorithm that

generalizes the theory of existing versions of TFA (FP-

TFA) to arrival curves and service curves of generic

shapes, and provides tighter bounds for networks with

generic shapes (Theorem 3). GFP-TFA is used to derive

a building block of FH-TFA and to establish the validity

of FH-TFA. GFP-TFA is of independent interest, but

in practice applying it with many periodic sources with

different periods might be intractable. In the common

case where the service curves are super-additive, FH-TFA

produces the very same bounds as the GFP-TFA (item (2)

of Theorem 4) but at considerably less complexity.

• FH-TFA always provides valid delay bounds that are

guaranteed to be less than or equal to those obtained by

FP-TFA (item (1) of Theorem 4).

• FH-TFA is thus the only known method that obtains

formally proven delay bounds with TFA, and can handle

many periodic sources with different periods.

We give a numerical application to real, industrial cases

provided by industrial partners of RTaW, a leading company

in Ethernet TSN design, performance evaluation and auto-

mated configuration tools; these examples are anonymized and

slightly changed. We observe the following:

• GFP-TFA with UPP curves cannot be applied to any of

the examples we tested, as it produces a memory size

error.

• In contrast, FH-TFA with UPP curves applies and remains

tractable in all examples we tested, even in a very large,

industrial network with cyclic dependencies and many

periodic flows.

• Bounds obtained with FH-TFA and UPP curves (recall

that they are the same as would be obtained with GFP-

TFA) are considerably less than those obtained with linear

approximations of the UPP curves.

The rest of the paper is organized as follows. Section II gives

the necessary background and state-of-the-art. Section III de-

scribes the problem definition, the system model, the network

under study, and the resulting graph. Section IV describes

GFP-TFA, a theoretical solution to the problem at hand, and

proves its validity. Section V describes FH-TFA, a practical
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Fig. 1: Left: Function f , a UPP curve with a representation
([s1, s2, s3, s4] , T, p, I) where [s1, s2, s3, s4] are the 4 affine seg-
ments in [0, T + p), T is the rank (size of the transient part), p is
the pseudo-period, and I is the increment. Values outside this
interval can be computed on demand by ∀t > T, f(t + kp) =
f(t) + kI. Right: Function f , a UA curve with a representation
([s1, s2, s3] , T, p, I) where [s1, s2, s3] are the 3 affine segments
in [0, T ), T is the rank, b and r are the burst and the slope of
the linear part with ∀t ≥ T, f(t) = b+ r(t− T ).

solution to the problem at hand, and proves its validity.

Section VI contains proofs of theorems. Section VII applies

FH-TFA to some industrial networks, and gives the obtained

delay bounds and run-times. Section VIII concludes the paper.

II. BACKGROUND AND STATE-OF-THE-ART

A. Family of Functions and Operators

In this section, we define UPP and UA functions, and

explain how to represent such functions with a finite amount

of information. We also provide some background on network

calculus and operators used in the paper.
1) UPP and UA Curves: We follow the terminology in [17,

Definition 1]. Let F denote the set of piece-wise linear and

wide-sense increasing functions f : Q+ 	→ Q+∪{+∞} where

Q+ is the set of non-negative rational numbers. For f ∈ F :
• f is Ultimately Affine (UA) if there exist T, r, b ∈ Q+ such

that for all t ≥ T, f(t) = r(t− T ) + b; T is called a rank of

function f , and the smallest possible value for T is the rank

of the function; r and b are called the rate and the burst of

the linear part (see Fig. 1b).
• f is Ultimately Pseudo-Periodic (UPP) if there exist

T, I ∈ Q+ and p ∈ Q+ \ {0} such that ∀t > T and every

non-negative integer k, f(t + kp) = f(t) + kI; p is called a

pseudo-period and I is called an increment (see Fig. 1a).

The tuple (S, T, p, I) is a finite representation for a UPP

function f : S represents values of f in the interval [0, T + p),
then values of f beyond this interval can be computed

using S, pseudo-period p, and increment I . S is defined

as follows: S = [s1, . . . , sk] is a list of affine segments

where for i ∈ [0, k], si = (ti, ti+1, f(ti), f(ti+), f(ti+1−))
such that ∀t ∈]ti, ti+1[, f(t) is the affine function that con-

nects points (ti, f(ti+)) and (ti+1, f(ti+1−)), with f(t+) =
limε→0 f (t+ ε) and f(t−) = limε→0 f (t− ε). We require

that (1) t1 = 0, (2) there exists i0 where ti0 = T , and (3)

tk < T + p and tk+1 = T + p. We assume that S is the

minimal set, i.e., at each ti, there is either a discontinuity or

a change of slope (see Fig. 1a).

The tuple (S, T, r, b) is a finite representation for a UA

function f ; S is defined in a similar manner as UPP functions

with tk+1 = T , and ∀t ≥ T, f(t) = b+r(t−T ) (see Fig. 1b).

It is shown that UPP (resp. UA) functions are closed under

addition, subtraction, min-plus convolution, min-plus decon-

volution (see Section II-A2 for definitions), minimum and

maximum of two functions [17]. Moreover, such operations

are automated in tools such as RealTime-at-Work (RTaW)

[12], Nancy [13], DiscoDNC [14], and etc. [17]–[19]; these

interpreters provides efficient implementations of min-plus

convolution, min-plus deconvolution, horizontal deviation, and

a maximum and minimum of functions. All computations

use infinite precision arithmetic (with rational numbers), and

functions are represented as UPP or UA functions.

2) Network Calculus Background: We say that a flow has

α ∈ F as arrival curve if the number of bits generated by

this flow for any t′ ≤ t is upper bounded by α(t − t′). An

arrival curve α can always be assumed to be sub-additive, i.e.,

to satisfy α(t′ + t) ≤ α(t′) + α(t) for all t, t′, as otherwise

it can be replaced by its sub-additive closure [20]. A periodic

flow that sends up to b bits every p time units has, as arrival

curve, the stair function, defined by νp,b(t) = b
⌈

t
p

⌉
; it is

UPP. Another frequently used arrival curve is the token-bucket

function α = γr,b, with rate r and burst b, defined by γr,b(t) =
rt+b for t > 0 and γr,b(t) = 0 for t = 0; it is UA (see Fig. 2).

Both of these arrival curves are sub-additive.

Consider a system and a flow through the system. We say

that a system offers a strict service curve β ∈ F to the flow

if the number of bits of the flow output by the system in any

backlogged interval (t′, t] is at least β(t− t′). A strict service

curve is a special case of service curves; the exact definition

of a non-strict service curve (known as minimum or min-plus

minimal service curve) can be found in [2, Section 5.2]. A

strict service curve β can be always assumed to be super-

additive (i.e., to satisfy β(t′ + t) ≥ β(t′) + β(t) for all t, t′),
otherwise, it can be replaced by its super-additive closure

[2]. Service curves of schedulers such as Deficit Round-

Robin [9], Weighted Round-Robin, and Interleaved Weighted

Round-Robin [10] are strict hence super-additive. Non-strict

service curves are often super-additive but not always. Service

curves of Credit-Based Shapers [11] and Non-Preemptive

Static Priority [2] are not strict, however, it can be shown that

in the common cases they are super-additive. A frequently

used service curve is the rate-latency function βc,L ∈ F , with

rate c and latency L, defined by βc,L(t) = c[t − L]+, where

we use the notation [x]+ = max {x, 0} (see Fig. 2); it is UA

and super-additive.

Assume that a flow, constrained by an arrival curve α, tra-

verses a FIFO system that offers a service curve β. The delay

of the flow is upper bounded by the horizontal deviation de-

fined by hDev(α, β) = supt≥0{inf{d ≥ 0|α(t) ≤ β(t+ d)}}.
The backlog for the flow is upper-bounded by the vertical

deviation defined by vDev(α, β) = supt≥0{α(t)− β(t)}.
For f, g ∈ F , the min-plus convolution is defined by

(f ⊗ g)(t) = inf0≤t′≤t{f(t − t′) + g(t′)} and the min-plus

deconvolution by (f � g)(t) = supt′≥0{f(t+ t′)− g(t′)} [1],

[2], [21]. The pure delay function with parameter d is defined

by δd(t) = 0 for t ≤ d and δd(t) = ∞ for t > d. We use
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Fig. 2: Left: the stair function νb,p ∈ F defined for t ≥ 0 by
νb,p(t) = b
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and token-bucket function γr,b ∈ F defined for

t > 0 by γr,b(t) = b + rt and for t = 0 by γr,b(0) = 0 (in
the figure, we have r = b

p
). Right: a non-convex service curve

and a rate-latency βc,L ∈ F that lower bounds it with βc,L(t) =
max (0, c (t− L)).

(f � δd) (t) = f(t+ d) (left-shift).

B. Total Flow Analysis (TFA)

Total Flow Analysis (TFA) [5]–[8] is a method for obtaining

worst-case delay and backlog bounds in a FIFO network. In

a network where a service curve is known at every node and

an arrival curve for every flow is known at the source, one

run of TFA returns a valid delay bound at every node and

propagated burstiness for flows. Although TFA is simple and

modular, it takes into account the effect of packetizer and line-

shaping. When the graph induced by flows is feed-forward

(i.e, cycle-free), each node is visited in the topological order,

whereby a delay bound and output burstiness bounds of flows

are computed; output burstiness of flows are used as an input

by the following nodes. If the graph induced by flows has

cyclic dependencies, a topological order cannot be defined;

instead an iterative method is used and a fixpoint is computed

[7], [8]. The method in [7], called FP-TFA, requires to first

make some artificial cuts in the induced graph in order to

create a feed-forward network. It then computes estimated

burstiness of flows at cuts and iterates. It is shown that, if

the iteration converges, the obtained fixpoint is a valid bound

on the burstiness of flows at cuts, and the network is stable.

Other versions of TFA that do not make cuts are presented

in [8], where it is shown that they are equivalent to FP-

TFA, i.e., they provide the same bounds and stability regions

[8]. For networks with cyclic dependencies, all versions of

TFA assume only token-bucket arrival curves and rate-latency

service curves, and the validity of the results are shown with

these assumptions. In Section IV, we provide a new version

of FP-TFA, called Generic FP-TFA (GFP-TFA), that can be

applied with any arrival curves and service curves of generic

shapes, including UPP and UA ones. When arrival curve are

token-bucket and service curves are rate-latency, GFP-TFA is

essentially the same as FP-TFA.

C. Compact Domains for Delay Computation

It has been observed in [15] that, for some systems, the

computation of the delay bounds does not require to handle

the full function (i.e., all values of the function for all time

t in [0,+∞)), but only its values on a finite prefix domain.

However, the theory in [15] lacks a proof that computation

in such compact domains does not affect the accuracy of

the end-results. The challenge consists in computing in each

node a value h such that the computation on the compact

domain [0, h] is sufficient to get accurate result on this node

but also on the next ones along the flow path. The intuition

is the following: Consider a flow that traverses two nodes in

sequence. Assume that the first node (resp. the second node)

requires that the arrival curve of the flow at the input of the

node is accurate in [0, h] (resp. [0, h′]). As the arrival curve

of the flow increases along the path and some information

is lost at propagation, arrival curve of the flow at the input

of the first node should be accurate for some [0, h′′] where

h′′ > max(h, h′) is large enough.

Authors in [22] derive compact domains where they prove

that the accuracy of the end-results are not affected; their

results and proofs only hold for input/output relations in

acyclic network of the Greedy-Processing Component (GPC),

used in Real-Time Calculus (RTC).

Authors in [16] derive such compact domains, in a more

general context. They show that, at a single node where an

arrival curve and a service curve are known, network calculus

operations, including delay computations, can be restricted

to finite domains without affecting the end-results. Here, we

rewrite one of their findings that we use in the paper, using

our notation:

Theorem 1 (Theorem 4 of [16]). Consider a flow constrained
by an arrival curve α that traverse a node that offers a super-
additive service curve β. Let α′ and α′′ be a lower bound and
upper bound, respectively, for α, i.e., α′ ≤ α ≤ α′′. Also, let
β′ and β′′ be an upper bound and lower bound, respectively,
for β, i.e., β′′ ≤ β ≤ β′. Define

hα def
= max (u, v) and hβ def

= max (u+D′′, v) (1)

with

D′ = hDev (α′, β′) (2)

B′ = vDev (α′, β′) (3)

u = sup
t≥0
{α′′(t) ≥ β′′(t+D′)} (4)

v = sup
t≥0
{α′′(t) ≥ β′′(t) +B′} (5)

D′′ = hDev (α′′, β′′) (6)

Then, the horizontal deviation hDev(α, β) and the vertical
deviation vDev(α, β) depend only on the values of α(t) for
t ∈ [0, hα] and β(t) for t ∈ [

0, hβ
]

(see Section II-A2 for
definitions of super-additive service curve, hDev and vDev.)

Note that in the above, α′′ and β′′ are valid, safe arrival

curve and service curve, respectively; however, α′ and β′

are unsafe arrival curve and service curve, respectively. Note

that the method requires that service curves are super-additive

(see Section II-A2). Authors in [16] also find such compact

domains for min-plus deconvolution, and explain how to

integrate such compact domains with Pay-Burst-Only-Once

(PBOO) [14] and Pay-Multiplexing-Only-Once (PMOO) [14]

principles in sink-tree networks with arbitrary multiplexing.



TABLE I: Notation List

f A flow
Ecut Cutset: removing Ecut creates a feed-forward graph
G = (N , E) The graph induced by flows of class
path(f) The sequence of output ports in the path of flow f
N , n The set of all output ports, an output port
E, e The set of edges, an edge
In(n) The set of edges of that are incidents at node n
flows(n) The set of flows at output port n
αn Aggregate arrival curve of all flows at the input of node n
αfresh
n Aggregate arrival curve of all fresh flows at the input of node n

αtransit
n Aggregate arrival curve of all transit flows at the input of node n

αf,n An arrival curve for flow f at the input of node n
α0
f An arrival curve for flow f at the source

βn A service curve offered to node n
α0 Collection of arrival curves of all flows at the source
d Collection of delay bound dn for every node n
τ cut Collection of delay-jitter bounds τf,n for every flow f at cuts
τ Collection of delay-jitter bounds τf,n for every flow f at every node n in its path
β Collection of service curves of all nodes
dn Delay bound at node n
τf,n Delay-jitter bound for flow f from the source to the input of node n
h Sufficient horizon
lmax
f Maximum packet size for flow f

lmin
f Minimum packet size for flow f

Δ Minimum resolution of times, e.g., 1 nanosecond
cn Transmission rate of the line fed by output port n
δd Pure delay function with δd(t) = 0 for t ≤ d and δd(t) = ∞ for t > d
βc,L Rate-latency function with βc,L(t) = max (0, c(t− L))
Q+ Set of non-negative rational numbers

νp,b Stair function with νp,b(t) = b
⌈

t
p

⌉

γr,b Token-bucket function with γr,b(0) = 0 and γr,b(t) = rt+ b for t > 0
hDev Horizontal deviation hDev(α, β) = supt≥0{inf{d ≥ 0|α(t) ≤ β(t+ d)}}
⊗ Min-plus convolution (f ⊗ g)(t) = inf0≤s≤t{f(t− s) + g(s)}
� Min-plus deconvolution (f � g)(t) = sups≥0{f(t+ s)− g(s)}
vDev Vertical deviation vDev(α, β) = supt≥0{α(t)− β(t)}

Later, authors in [23], generalize the work of [22], using

the findings of [16], to be independent of GPC’s operational

semantics. Lastly, authors in [2, Prop. 5.13] provide looser

bounds than those of Theorem 1.

III. SYSTEM MODEL

We consider a packet-switched network. We assume that

flows are grouped into static classes, and packets inside a

class are processed First-In-First-Out (FIFO). Every device

represents switches or routers and consists of input ports,

output ports, and a switching fabric. Each packet enters a

device via an input port and is stored in a packetizer. A

packetizer releases a packet only when the entire packet is

received. Then, the packet goes through a switching fabric.

Then, the packet, based on its class, is either queued in a

FIFO-per-class queue or exits the network via a terminal port.

In the rest of the paper we focus on one class of interest.

We assume that the service offered to the aggregate of all

flows that use some output port, say n, from exit of the

packetizer (on an input port) to the transmission line fed by

output port n can be modelled with a service curve βUPP
n ,

where βUPP
n is a UPP function (see Section II-A). Let cn

denote the transmission rate of the line fed by output port

n. Each flow f of the class of interest is constrained at

source by an arrival curve α0,UPP
f , where α0,UPP

f is a UPP

function (see Section II-A). In the case of periodic flows,

arrival curves are stair function (see Section II-A2). We assume

that α0,UPP
f (0+) ≥ lmax, where f(t+) = limε←0 f(t+ε). Also,

flows are statically assigned to a path, and let path(f) denote

a sequence of nodes in the path of flow f . Let flows(f) denote

set of flows at node n.

We assume that the network is locally stable, i.e., the

aggregate long-term arrival rate to each output port is strictly

less than the long-term service rate.
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Fig. 3: We consider a single node that offers a rate-latency
service curve βc,L with c = 1Gb/s and L = 16μs. We assume 6
fresh, periodic flows that are constrained by stair function νp,b
with p ∈ {2, 4, 5, 10, 33, 100}ms and b ∈ {3, 3, 3, 10, 30, 3} ∗
100bytes. The aggregated arrival curve has the pseudo-period
equal to 3300 and moreover, 2020 segments are required to
represent it; here we only plot values in [0, 100]. Whereas, only
13 segments are required to represent the UA curve computed
using our method. The sufficient horizon in this example is 16.37.

The graph G = (N , E) induced by flows is the directed

graph defined as follows: 1) Let N denote the subset of all

non-terminal output ports used by at least one flow. 2) The

directed edge e = (n, n′) ∈ E exists if there is at least one flow

that traverses n and n′ in this order. We say that G has a cyclic

dependency if it contains at least one cycle. Let Ecut ⊆ E be a

cut such that artificially removing the edges in Ecut creates a

feed-forward graph. Such cuts can be obtained by any traversal

graph algorithm [24]. Without loss of generality, output ports

are labeled in a topological order of the cut graph, starting

from output ports at edges. Such topological orders exists as

the cut network is feed-forward.

Problem Statement: The first problem is to provide, and

prove the validity of, a new version of TFA that handles arrival

and service curves of generic shapes in networks with generic

topologies. The second problem is to apply the concept of

sufficient horizon and obtain a new version of TFA for generic

topologies that remains tractable with many UPP curves.

IV. GFP-TFA: A NEW VERSION OF FP-TFA THAT

HANDLES ARRIVAL CURVES AND SERVICE CURVES OF

GENERIC SHAPES

In this section, we present GFP-TFA, an adaptation of FP-

TFA, that can be applied with arrival curves and service curves

of generic shapes. GFP-TFA is an algorithm that exactly

solves the problem (see Section III), but, GFP-TFA has high

computational complexity and in practice, applying GFP-TFA

with many UPP curves might be intractable. However, it serves

as a theoretical reference, and it is used as a building block

in the main algorithm, FH-TFA, presented in Section V.



FP-TFA assumes that arrival curves are token-bucket, then

only the burst of arrival curves increases along the path, called

propagated burstiness, and the rate remains unchanged; thus

one of the variables that FP-TFA iterates on is the propagated

burstiness. However, for arrival curves of generic shapes,

propagated burstiness is not defined. To address this, in GFP-

TFA, we replace propagated burstiness by delay-jitter bound

from the source to the point of interest (variable τ ): This is

because an arrival curve for a flow at the point of interest is the

one at the source, shifted to the left by a delay-jitter bound

from the source to the point of interest; unlike propagated

burstiness, this result holds for arrival curves of the generic

shapes, thus GFP-TFA can be applied with any types of arrival

curves. Also, FP-TFA uses a result on the effect of packetizer

that is only expressed for token-bucket arrival curves, and

needs to be adapted for arrival curves of generic shapes. We

do this adaption in Theorem 2. The transformation of FP-

TFA into GFP-TFA is otherwise straightforward, but for the

sake of completeness, we describe GFP-TFA in details. The

validity of GFP-TFA, which is less straightforward, is given

in Theorem 3.

Recall that, as explained in Section II-B, FP-TFA first cuts

the network and analyzes the resulting cut network, which

is feed-forward, and iterates on propagated burstiness at cuts

until a fix-point is reached. We follow the same structure, with

some adaptation.

A. FF-TFA: TFA for Feed-Forward Networks

FF-TFA is a building block of GFP-TFA. It applies to the

feed-forward network obtained after removing a cutset and is

described in Algorithm 1. It takes as input the collection α0

of arrival curves of all flows at the sources, the collection β
of service curves of all nodes, the cutset Ecut, and a collection

τ cut of delay-jitter bounds from source to cut for every flow

that is cut. It outputs a collection d of per-node delay bounds

and a collection τ of delay-jitter bounds for every flow from

its source to each node in its path.

The delay-jitter bound for every flow f at every node in its

path is initialized to zero (line 1); for a flow at a cut, it is

initialized to the corresponding value in τ cut (lines 2-4). Then,

nodes are visited in the topological order of the cut network;

an aggregate arrival curve at the input of node n is computed

(lines 5-6) by using the function aggregateArrivalCurven de-

fined at line 14. This function implements the effect of line

shaping (line 19) and packetizer (line 21). Line shaping [25],

[26] addresses the fact that when some flows are known to

arrive from the same link (i.e., carried by the same edge), a

better arrival curve can be computed for the aggregate of flows;

specifically, for an edge e, αe, an aggregate arrival curve for

flows carried by edge e, can be replaced by αe ⊗ γce,0 where

ce is the maximum link speed of the edge e. For the packetizer

(see Section III), [7] studies the effect of packetizer when the

aggregate flow is constrained by a token-bucket arrival; here

we present a minor adaptation of [7, Theorem 1] that applies

to arrival curves of generic shapes.

Theorem 2 (Output Arrival Curve at the Output of Packetizer).
Consider a packetizer that is placed on a transmission line
with a fixed rate c, and assume that it serves an aggregate
flow, constrained by an arrival curve α; also, let lmax be the
maximum packet size of the aggregate flow. Then, α� δ lmax

c
,

is an arrival curve for the aggregate flow at the output of the
packetizer.

The proof is in Section VI. Note that α� δ lmax
c

is equal to

α shifted to left by lmax

c , i.e., (α� δ lmax
c

)(t) = α(t+ lmax

c ).

Combining αn, an arrival curve for the aggregate of flows

at the input of node n with βn, the service curve offered

by node n, the improved network calculus delay bound is

computed as in [27] (line 8): When an output port is followed

by a transmission line, authors in [27, Theorem 5] find delay

bounds that improve on the classical network calculus result

(which is equal to horizontal deviation between the arrival and

the service curve, i.e., hDev (αn, βn)); this is implemented in

line 8. Then, the delay-jitter of node n is added for flows at

successors of node n (lines 9-11); note that a delay-jitter at

node n is obtained by the subtraction of the worst-case and

best-case delay bound at a node, i.e., subtraction of dn and

the transmission time of a packet of minimum size.

B. GFP-TFA

GFP-TFA is described in Algorithm 2: It takes as input α0,

a collection of arrival curves for each flow at the source, β, a

collection of service curves offered by each node, and a cutset

Ecut such that the cut network is feed-forward. In lines 1-7,

it first computes τ̄ cut, a collection of valid delay-jitter bounds

from the sources to the cuts for every flow at cuts. It initializes

delay-jitter bounds from the source to the cut to zero for

every flow at the cut (line 2). It then iteratively calls FF-TFA,

described in Algorithm 1, to compute new values for delay-

jitter bounds of flows from source to cut. Note that since the

initial values of τ̄ cut are 0, the scheme is monotonically non-

decreasing, and thus either converges or goes to ∞. To force

termination, the values are rounded up to an integer number

of a chosen time resolution Δ (this is similar to rounding of

burstiness to an integer number of bits in the original version

of FP-TFA); then the iteration stops either when τ̄ cut becomes

stationary, or reaches a very large value called “infinite”.

Then, if τ̄ cut is finite, FF-TFA is called one last time, and

hence a collection of valid, finite delay bounds at each node

and a collection of valid, finite delay-jitters bounds for every

flow from the source to each node in its path are obtained

(because the cut network is feed-forward and locally stable).

Otherwise, if the obtained τ̄ cut bounds are infinite, GFP-TFA

returns infinite bounds; in this case the network might or might

not be stable.

Theorem 3 (Validity of GFP-TFA). Consider a FIFO network,
as described in Section III, and apply Algorithm 2. Then,(
d̄, τ̄

)
are upper bounds on per node delay and per-flow jitter.

The proof is in Section VI. Note that if the original network

is feed-forward, the cutset Ecut is empty and GFP-TFA applies



Algorithm 1: (d, τ) = FF-TFA
(
α0, β, Ecut, τ cut

)
Input :

(
α0, β, Ecut, τ cut

)
, collection of arrival curves

of all flows at sources, collection of service

curves of all nodes, a cutset that creates a

feed-forward network, and a collection of

delay-jitter bounds from source to cut, for

every flow that is present at a cut edge.

Output: (d, τ), a collection of per-node delay bounds

and a collection of delay-jitter bounds for

every flow from its source to input of every

node on its path.

1 τf,n ← 0, ∀flow f and ∀node n ∈ path(n);
2 for each edge e = (n′, n) ∈ Ecut do
3 for each flow f carried by edge e do
4 τf,n ← τ cut

f,n;

5 for each node n in the topological order of the cut
network do

6 αn ← aggregateArrivalCurven
(
α0, τ

)
;

7 lmin
n ← minf∈In(n) l

min
f ;

8 dn ← hDev
(
αn − lmin

n , βn

)
+

lmin
n

cn
;

9 for each edge e = (n, n′) in the original, uncut
network do

10 for each flow f carried by edge e do

11 τf,n′ ← τf,n + (dn − lmin
n

cn
);

12 return (d, τ);
13 Function αn = aggregateArrivalCurven

(
α0, τ

)
14 αfresh

n ←∑
freshf∈In(n) α

0
f ;

15 for each edge e ∈ In(n) do
16 for each flow f carried by edge e do
17 αf,n ← α0

f � δτf,n ;

18 αe ←
∑

f∈e αf,n ;

// Effect of line-shaping Section IV-A

19 αe ← αe ⊗ γce,0 ;

// Effect of packetizer Section IV-A

20 lmax
e ← maxf∈e l

max
f ;

21 αe ← αe � δ lmax
e
ce

;

22 αtransit
n ←∑

e∈In(n) αe ;

23 αn ← αtransit
n + αfresh

n ;

24 return αn;

FF-TFA only once. When arrival curves α0
f of every flow f

at the source are token-bucket and service curves βn offered

by every node n are rate-latency, GFP-TFA is essentially the

same as FP-TFA of [7].

V. FH-TFA: A PRACTICAL VERSION OF GFP-TFA

In this section, we present our second new version of TFA,

FH-TFA, which provides the exact same bounds as theoretical

GFP-TFA (when service curves are super-additive), while

reducing the complexity.

The main difference between GFP-TFA and FH-TFA is as

follows: Instead of working with original, UPP curves, FH-

TFA only keeps a part of each UPP curve that affects the end-

Algorithm 2:
(
d̄, τ̄

)
= GFP-TFA

(
α0, β, Ecut

)
Input :

(
α0, β, Ecut

)
, collection of arrival

curves of all flows at the source,

collection of service curves of all

nodes, and a cutset such that

removing them creates a

feed-forward network, respectively.

Output :
(
d̄, τ̄

)
, a collection of valid per-node

delay bound at every node and a

collection of delay-jitter bound for

every flow from the source to each

node in its path, respectively.

1 k ← 0;

2 τ cut,k
f,n ← 0, ∀flow f and ∀e = (n′, n) ∈ Ecut;

3 while (τ cut,k > τ cut,k−1) and (τ cut,k < infinite ) do
4 k ← k + 1;

// FF-TFA is described in Algorithm 1

5 (d, τ)← FF-TFA
(
α0, β, Ecut, τ cut,k−1

)
;

6 Extract new values for τ cut,k from τ and round

them up to an integer number of the minimum

resolution Δ (e.g., 1 nanosecond);

7 τ̄ cut ← τ cut,k;

8 if all element of τ̄ cut are finite then
9

(
d̄, τ̄

)← FF-TFA
(
α0, β, Ecut, τ̄ cut

)
10 else
11

(
d̄, τ̄

)←∞;

12 return
(
d̄, τ̄

)
;

result, and beyond that, uses linear upper-bounds (resp. lower-

bounds) of arrival (resp. service) curves. Specifically, FH-TFA

first computes sufficient finite horizons for every curve by

applying the compact domains of [16], presented in Theo-

rem 1. Note that, with TFA, arrival curves of flows increase

as we go deeper into the network, hence the compact domains

required for delay computations increase as well. To address

this, FH-TFA first applies GFP-TFA using linear curves, i.e.,

token-bucket arrival curves and rate-latency service curves;

this is very fast and provides enough information to compute

sufficient finite horizons. It then replaces every UPP curve by

a UA curve that follows the UPP curve up to the computed

sufficient horizon, and beyond that follows a linear upper-

bound (resp. lower-bound) of the UPP arrival (resp. service)

curve (see Fig. 4).

We first describe FH-TFA, and we then prove its validity

and accuracy in Theorem 4.

A. Description of FH-TFA

FH-TFA is described in Algorithm 3:

• Arrival curves of all flows at the source (resp. ser-

vice curves at all nodes) are lower-bounded and upper-

bounded by token-bucket (resp. rate-latency) curves (lines

1-6); see Section V-A1.

• We obtain compact domains, required for delay compu-

tation, as in equation (1) of Theorem 1 at every node. As

(1) requires to know a lower-bound and an upper-bound



for the arrival curve at a node, we run two instances of

GFP-TFA (using linear curves) once with safe curves,

(i.e., upper-bounds of arrival curves and lower bounds of

service curves), and once with unsafe curves. When this

is done, we obtain compact domains at every node n,

i.e.,
(
hα
n, h

β
n

)
(lines 7-14). Note that if the application of

GFP-TFA with safe curves returns infinite bounds (i.e.,

(d̄L
′′
, τ̄L

′′
) at line 7 are infinite), we then cannot find

finite compact domains and thus the rest of the algorithm

is skipped, and GFP-TFA is applied with UPP, original

curves (line 23). Such cases might happen in networks

with cyclic dependencies that are highly loaded.

• We then compute a sufficient horizon for the arrival curve

of each flow at the source; as the arrival curve of the

flow increases along its path, this horizon should be large

enough such that the arrival curve of the flow respects the

compact domains at every node in its path (lines 15-18);

see Section V-A2.

• A UA curve is constructed, for each UPP curve, that

follows the original, UPP curve up to the computed

sufficient horizon, and beyond that, follows the linear

upper (resp. lower for service curves) of the original, UPP

curve (lines 18-20); see Section V-A3 and Fig. 4.

• Lastly, GFP-TFA is run using UA curves (line 21).

1) Linear Upper and Lower Bounds of UPP Curves: This

section describes the four functions used in lines 2, 3, 5, and 6

of Algorithm 3. Note that upper-bounds and lower-bounds of

original, UPP curves can be freely chosen, as they are used in

the method only to compute sufficient horizons, and they do

not affect the end-results obtained by FH-TFA. We propose to

use token-bucket curves (for arrival curves) and rate-latency

curves (for service curves) as they can be easily computed,

and are very tractable.

Consider flow f . We find two token-bucket curves α0,L′
f

and α0,L′′
f such that α0,L′

f ≤ α0,UPP
f ≤ α0,L′′

f . Specifically, we

compute the token-bucket function that upper (resp. lower)

bounds α0,UPP
f , and achieves the minimum (resp. maximum)

possible rate; let p and I be the period and increment of α0,UPP
f ,

then α0,L′′
f = γrf ,b′′f and α0,L′

f = γrf ,b′f with rf = I
p and

b′′f = min
t≥0
{α0,UPP

f − rf t} and b′f = max
t≥0

{α0,UPP
f − rf t} (7)

Observe that the long-term rate of α0,UPP
f , which is equal to

rf = I
p , is the minimum (resp. maximum) possible rate that

α0,L′′
f (resp. α0,L′

f ) can achieve, otherwise they are not an

upper (resp. a lower) bound of α0,UPP
f . Then, burstiness b′′f

(resp. b′f ) are chosen to be as small (resp. large) as possible.

In a frequent case, where α0,UPP
f is a stair function, say νpf ,bf

(i.e., a periodic flow that sends bf bits each pf seconds), rf =
bf
pf

, b′′f = bf , and b′f = 0 (see Fig. 2).

Consider node n. We find two rate-latency curves βL′′
n and

βL′
n such that βL′′

n ≤ βUPP
n ≤ βL′

n . Specifically, we compute

the rate-latency function that lower (resp. upper) bounds βUPP
n ,

and achieves the maximum (resp. minimum) possible rate; let

Algorithm 3:
(
d̄, τ̄

)
= FH-TFA

(
α0,UPP, βUPP, Ecut

)
Input :

(
α0,UPP, βUPP, Ecut

)
: collection of UPP arrival

curves of all flows at the source, collection of

UPP service curves of all nodes, and a cutset

that creates a feed-forward network.

Output:
(
d̄, τ̄

)
, a collection of valid per-node delay

bound at every node and a collection of

delay-jitter bounds for every flow from

source to every node in its path.

1 for each flow f do
// see Section V-A1

2 α0,L′′
f ← smallestAffineUpperBoundMinRate(α0,UPP

f );

3 α0,L′
f ← largestAffineLowerBoundMaxRate(α0,UPP

f );

4 for each node n do
// see Section V-A1

5 βL′′
n ← largestRateLatencyLowerBoundMaxRate(βUPP

n );

6 βL′
n ← smallestRateLatencyUpperBoundMinRate(βUPP

n );

7 (d̄L
′′
, τ̄L

′′
)← GFP-TFA

(
α0,L′′

, βL′′
, Ecut

)
;

8 (d̄L
′
, τ̄L

′
)← GFP-TFA

(
α0,L′

, βL′
, Ecut

)
;

9 if (d̄L
′′
, τ̄L

′′
) is finite then

10 for each node n do
// see Function in Algorithm 1

11 αL′′
n ← aggregateArrivalCurven

(
α0,L′′

, τ̄L
′′′
)

;

12 αL′
n ← aggregateArrivalCurven

(
α0,L′

, τ̄L
′
)

;

13
(
hα, hβ

)← apply (1) in Theorem 1 with

α′ = αL′
n , α′′ = αL′′

n , β′ = βL′
n , β′′ = βL′′

n ;

14 hα
n ← hα and hβ

n ← hβ ;

15 for each flow f do
// see Section V-A2

16 sf ← sink of flow f ;

17 hα
f ← τ̄L

′′
f,sf

+maxn∈path(f) h
α
n;

// see (9) in Section V-A3

18 α0,UA
f ← uaArrivalCurve

(
α0,UPP
f , α0,L′′

f , hα
f

)
;

19 for each node n do
// see (10) in Section V-A3

20 βUA
n ← uaServiceCurve

(
βUPP
n , βL′′

n , hβ
n

)
;

21
(
d̄, τ̄

)← GFP-TFA
(
α0,UA, βUA, Ecut

)
;

22 else
23

(
d̄, τ̄

)← GFP-TFA
(
α0,UPP, βUPP, Ecut

)
;

24 return
(
d̄, τ̄

)
;

p and I be the pseudo-period and increment of βUPP
n , then

βL′′
n = βcn,L′′

n
and βL′

n = βcn,L′
n

with cn = I
p and

L′′
n = min

t≥0
{t− βUPP

n (t)

cn
} and L′

n = max
t≥0

{t− βUPP
n (t)

cn
} (8)

Observe that the long-term rate of βUPP
n , which is equal to

cn = I
p , is the maximum (resp. minimum) possible rate that

βL′′
n (resp. βL′

n ) can achieve, otherwise they are not a lower

(resp. an upper) bound of βUPP
n . Observe that latency L′′

n (resp.

L′
n) are computed to be as small (resp. large) as possible.
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Fig. 4: α0,UPP
f (resp. βUPP

n ) is the original, UPP arrival curve for
flow f at the source (resp. service curve of node n), α0,L′′

f (resp.
βL′′
n ) is the smallest token-bucket (resp. largest rate-latency) that

upper bounds α0,UPP
f (resp. lower bounds βUPP

n ), and hα
f (resp.

hβ
n) is a sufficient horizon for the arrival curve of flow f (resp.

service curve of node n). Then, α0,UA (resp. βUA
n ) follows α0,UPP

f

(resp. βUPP
n ) in [0, hα

f ] (resp. [0, hβ
n]) and beyond that follows

α0,L′′
f (resp. βL′′

n ).

2) Sufficient Horizons for Arrival Curves of Flows at the
Source: Consider flow f . As the arrival curve of flow f
increases along its path, this horizon should be large enough

such that arrival curve of the flow, respects the compact

domain at every node in its path. Specifically, consider node

n in the path of flow f . Then, at the input of node n, arrival

of flow f is its arrival curve at the source, but shifted to left

by a delay-jitter bound from the source to node n, say τUPP
f,n .

Hence, sufficient horizon of flow f should be larger than or

equal to hα
n + τUPP

f,n at every node n in its path. Thus, we use

hα
f = maxn∈path(f) h

α
n + τ̄L

′′
f,sf

where sf is the sink of flow

f ; note that τ̄L
′′

f,sf
is an upper-bound on the the end-to-end

delay-jitter, for flow f , hence τ̄L
′′

f,sf
≥ τUPP

f,n .

Observe that the already computed compact domain hβ
n is

a sufficient horizon for the service curve of node n.

3) Construction of UA Curves: Consider flow f . Function

α0,UA
f = uaArrivalCurve

(
α0,UPP
f , α0,L′′

f , hα
f

)
, at line 18 of

Algorithm 3, constructs this UA curve as follows (see Fig. 4):

α0,UA
f (t) =

{
α0,UPP
f (t) if t ≤ hα

f

α0,L′′
f (t) otherwise

(9)

Consider node n. Function βUA
n =

uaServiceCurve
(
βUPP
n , βL′′

n , hβ
n

)
, at line 20 of Algorithm 3,

constructs this UA curve as follows (see Fig. 4):

βUA
n (t) =

{
βUPP
n (t) if t ≤ hβ

n

min
(
βUPP
n (hβ

n), β
L′′
n (t)

)
otherwise

(10)

B. Validity and Accuracy of FH-TFA

Theorem 4 (Validity and Accuracy of FH-TFA). Consider a
FIFO network, as described in Section III and Algorithms 2
and 3. Then, (1) FH-TFA provides valid bounds. (2) If original,
UPP service curves of all nodes are super-additive, FH-TFA
and GFP-TFA provide the exact same bounds.

The proof is in Section VI. In the common case where

service curves are super-additive, FH-TFA and GFP-TFA

return the same output, i.e., FH-TFA returns finite bounds if

and only if GFP-TFA returns finite bounds and, if bounds are

finite, both algorithms provide the same bounds. FH-TFA is

thus a practical alternative to GFP-TFA, which may become

too complex when there are many UPP curves.

FH-TFA is always applicable and provides valid bounds,

as stated in item (1) in the theorem, and super-additivity of

service curves is not a requirement for FH-TFA; furthermore,

the obtained bounds by FH-TFA are guaranteed to be less

than or equal to those obtained by FP-TFA (which uses linear

curves). We use super-additivity of service curves only to

prove that bounds obtained by FH-TFA are exactly equal

to those of GFP-TFA. When service curves are not super-

additive, it is not clear whether they are equal to those

that would be obtained by GFP-TFA (using original, UPP

curves), and this is left for further study. Note that service

curves of frequent schedulers, including DRR, WRR, IWRR,

CBS, and Non-Preemptive Strict-Priority, are super-additive,

as explained in Section II-A2.

Remarks on time and space complexity: GFP-TFA itera-

tively calls function FF-TFA (line 5 of Algorithm 2) and

the number of iterations cannot be determined in advance,

however, we analyze the complexity of one instance of FF-

TFA. FF-TFA (Algorithm 1) includes operations such as

addition, min-plus convolution, horizontal deviation, etc. on

UPP or UA functions; [17] formally studies the compu-

tational complexity of such operations, the addition being

the most costly [17, Proposition 10]. FF-TFA calls once

function aggragteArrivalCurven for each node n (line 6 of

Algorithm 3). With the addition being the most costly, the

complexity of aggragteArrivalCurven is in the order of the

complexity of summing arrival curves of all flows. Specifically,

assume that there are F flows with UPP arrival curves α0,UPP
f

with a pseudo-period pf and a rank Tf for f ∈ [1, F ] (see

Section II-A1). Let p be the hyper-period of the aggregate

and T = maxf∈[1,F ] Tf , and let Mf be the number of

segments required to define α0,UPP
f in [0, T+p) for f ∈ [1, F ].

Then, by [17], the required space to compute
∑F

f=1 α
0,UPP
f

is
∑F

f=1Mf and the addition can be computed in time

O((
∑F

f=1Mf ) log2 F ). Thus, as we have N nodes, one

instance of FF-TFA inside GFP-TFA (using UPP curves) is

run in time O(N(
∑F

f=1Mf ) log2 F ); the required space for

GFP-TFA is O(N(
∑F

f=1Mf ) log2 F ) plus the space required

to store service curves βUPP
n for all node n.

However, FH-TFA restricts UPP functions to a finite horizon

(i.e., UA functions) and applies GFP-TFA with UA curves.

Specifically, it applies GFP-TFA with α0,UA
f defined in (9). Let

Mh
f be the number of segments required to define α0,UPP

f in

[0, hα
f ) (i.e., the number of segments required to define α0,UA

f ;

see Figure 4) for f ∈ [1, F ]. With the same reasoning as the

previous paragraph, one instance of FF-TFA inside GFP-TFA,

using UA curves, is run in time O(N(
∑F

i=1M
h
f ) log2 F );

the required space for FH-TFA (GFP-TFA using UA curves)

is O(N(
∑F

i=1M
h
f ) log2 F ) plus the space required to store



service curves βUA
n for all node n. As the number of segments

in the horizon,
∑F

f=1M
h
i (i.e., transient part) might be ex-

tremely smaller than those of the hyper-period,
∑F

f=1Mf (see

Figure 3 where
∑F

f=1M
h
i = 13 and

∑F
f=1Mf = 2020.), FH-

TFA might significantly reduce the time and space complexity

compared to GFP-TFA. As observed in Section VII, GFP-

TFA has high computational complexity and is an impractical

method, while FH-TFA is successfully applied to each of our

industrial case studies.

VI. PROOFS

Proof of Theorem 2. As the packetizer is fed by a transmis-

sion link with rate c, it follows that when a packet of size l
arrives to the packetizer, it is released after a time equal to
l
c . Hence, the release time of any packet is upper-bounded by
lmax

c . Then, by [2, Theorem 6.2], it follows that a pure delay

δ lmax
c

is a service curve for the packetizer, hence the output

arrival curve is min-plus deconvolution of the input arrival

curve and δ lmax
c

.

Proof of Theorem 3. The proof follows similar steps as in the

proof of Theorem 2 of [7]. Let F be the mapping that maps

τ cut,k−1 to τ cut,k in lines 1-6 of Algorithm 2.

Fix an acceptable trajectory scenario, i.e., the set of all

cumulative arrival functions at all nodes in the networks such

that arrival curve and service curve constraints are met. Let

tprop be the minimum of all link propagation delays and

θ = tprop

2 , so that 0 < θ < tprop. Consider an arbitrary η ≥ 0.
• Let W (resp. U ) represents the set of point located just

before (resp. just after) the cuts. Note that in the original, uncut

network, U and W are connected via some links. Also, the

network between U and W is feed-forward.
• Let V represent the points located exactly θ seconds before

W . As θ < tprop and tprop is the minimum propagation delay,

V is on the same links as W .
• For M = {U, V,W}, let CM represent the collection

of cumulative arrival functions; let Cη
M represent the col-

lection of cumulative arrival functions stopped at time η,

i.e., Cη
M (t) = min (CM (t), CM (η)); let C

′η
M represent the

collection of cumulative arrival functions when inputs at U
and all sources are stopped at time η.
• For M = {U, V,W}, we denote by τM the collection

of worst-case delay jitter from the source to M for all flows

at M ; we denote by τηM collection of worst-case delay jitter

from the source to M for all flows at M observed up to time

η; we denote by τ
′η
M collection of worst-case delay jitter from

the source to M for all flows at M when inputs at U and all

sources are stopped at time η.

First, observe that τηM and τ
′η
M are finite. This is because

as η is finite and as sources are constrained at the source, a

finite number of bits ever entered the network, hence delays

are finite. Then:

1) observe that τηV ≤ τ
′η
V ; This is implied by the fact that

the network is causal, and hence, ∀t ≤ η, C
′η
M (t) = Cη

M (t)

and ∀t > η,C
′η
M (t) ≥ Cη

M (t).

2) As the network between U and W is feed-forward,

function F computes a bound on the delay-jitters from the

source to W , given delay-jitters from the source to U , and

hence, τ
′η
W ≤ F (τηU ).

3) As there is a constant delay θ between V and W , ∀t ≥
0, C

′η
W (t + θ) = C

′η
V (t); it follows that τ

′η
W ≤ F (τηU ) τ

′η
V =

τ
′η
W .

Combine 1), 2), and 3) and obtain

τηV = F (τηU ) (11)

Observe that τηV = τη+θ
W . This is because the exact same

traffic that is observed by V between 0 to η is observed by

W between θ to η + θ, and the difference is only a constant

delay θ; this does not change the delay-jitter. Also, as in the

original, uncut network U and W are connected, τηW = τη+θ
U .

Thus, τηV = τη+θ
U . Combine this with (11) and obtain τη+θ

U =
F (τηU ). This is valid for every η ≥ 0, apply it with η = kθ

and obtain: ∀k ≥ 0, τ
(k+1)θ
U = F

(
τkθU

)
. As the network is

empty at time zero, τ0U = 0. As F is wide-sense increasing

and F (τ̄) = τ̄ and a simple induction, it follows that τkθU ≤ τ̄
and hence τηU ≤ τ̄ for η ≥ 0. Hence, supη≥0 τ

η
U ≤ τ̄ , i.e.,

for any acceptable trajectory scenario, the worst-case delay

jitter bound from a source to a cut for every flow at cuts is

upper-bounded by τ̄ .

Proof of Theorem 4. The validity of the bounds is directly

implied by the validity of the constructed UA curves. Specifi-

cally, UA curves constructed in FH-TFA, are safe upper/lower

bounds of the original, UPP curves, i.e., α0,UPP ≤ α0,UA and

βUA ≤ βUPP (see Fig. 4). Then, as GFP-TFA is isotone, it

follows that bounds obtained by FH-TFA are larger than or

equal to those obtained by GFP-TFA (using original, UPP

curves), hence valid and (1) is shown.

We now proceed to show item (2) when service curves are

super-additive. We first prove the following lemmas.

Lemma 1. Consider Algorithm 3 and consider node n. Then,
the computation of the delay bound at node n, dUPP

n =

hDev
(
αUPP
n − lmin

n , βUPP
n

)
+

lmin
n

cn
(see line 8 of Algorithm 1),

involves only values of αUPP
n (t) for t ∈ [0, hα

n] and βUPP
n (t)

for t ∈ [
0, hβ

n

]
, where αUPP

n is the aggregate arrival curve
at node n computed by GFP-TFA using UPP curves, lmin

n is
the minimum packet size of flows at node n, and cn is the
transmission rate at node n.

Proof. As α0,L′′
f ≥ α0,UPP

f (resp. α0,L′
f ≤ α0,UPP

f ) and

βL′′
n ≤ βUPP

n (resp. βL′
n ≥ βUPP

n ) and as GFP-TFA is isotone,

it follows that (dL
′
, τL

′
) ≤ (dUPP, τUPP) ≤ (dL

′′
, τL

′′
). Thus,

αL′
n ≤ αUPP

n ≤ αL′′
n . Also, by construction, βL′′

n ≤ βUPP
n ≤

βL′
n . Apply Theorem 1 with α = αUPP

n , α′′ = αL′′
n , α′ = αL′

n ,

β = βUPP
n , β′′ = βL′′

n , and β′ = βL′
n to conclude that

hDev
(
αUPP
n , βUPP

n

)
depends only on values of αUPP

n (t) for

t ∈ [0, hα
n] and βUPP

n (t) for t ∈ [
0, hβ

n

]
. Observe that these

compact domains are also sufficient for the computation of

hDev
(
αUPP
n − lmin

n , βUPP
n

)
.



Lemma 2. Consider Algorithm 3 and assume a τ cut

such that 0 ≤ τ cut ≤ τ̄ cut,L′′
where τ̄ cut,L′′

are
delay-jitters for flows at cuts extracted from τ̄L

′′
, ob-

tained at line 7. Then, FF-TFA
(
α0,UPP, βUPP, Ecut, τ cut

)
=

FF-TFA
(
α0,UA, βUA, Ecut, τ cut

)
where FF-TFA is described in

Algorithm 1.

Proof. First, we show that for every node n,

∀t ∈ [0, hβ
n], βUA

n (t) = βUPP
n (t) (12)

∀f ∈ flows(n), ∀t ∈ [0, hα
n], αUA

f,n(t) = αUPP
f,n (t) (13)

dUA
n = dUPP

n (14)

Observe that (12) is by construction. We now prove (13)

and (14). by induction on node n. Recall that, as explained

in Section III, nodes are labeled in a topological order of the

cut network (such orders exists as the cut network is feed-

forward). We assume, to simplify the notation, that the node

label n is an integer that reflects this topological order. The

base case of our induction is thus for a node n that is an edge

node, i.e., where all flows at node n are either fresh or cut.

Base Case: n is an edge node in the cut network
f is fresh: We show that for every fresh f , ∀t ∈

[0, hα
n], α0,UA

f (t) = α0,UPP
f (t). By construction, α0,UA

f (t) =

α0,UPP
f (t) for t ∈ [0, hα

f ], hence we should show that hα
f ≥ hα

n:

Recall that hα
f = maxn∈Path(f) h

α
n + τ̄L

′′
f,sf

, and as τ̄L
′′

f,sf
≥ 0,

it follows that hα
f ≥ hα

n .

f is cut: For every flow f that is cut at node n (if any), we

show that ∀t ∈ [0, hα
n], α

0,UA
f

(
t+ τ cut

f

)
= α0,UPP

f

(
t+ τ cut

f

)
.

By construction, α0,UA
f (t) = α0,UPP

f (t) for t ∈ [0, hα
f ],

hence we must show that hα
f ≥ hα

n + τ cut
f,n: Recall that

hα
f = maxn∈Path(f) h

α
n + τ̄L

′′
f,sf

; observe that hα
f ≥ hα

n + τ̄L
′′

f,sf
.

Then, as sf ≥ n and as delay-jitter increases along the path,

τ̄L
′′

f,sf
≥ τ̄L

′′
f,n, hence hα

f ≥ hα
n + τ̄L

′′
f,n. By construction, as

τ̄ cut,L′′
is extracted form τ̄L

′′
, we have τ̄L

′′
f,n = τ̄ cut,L′′

f,n , hence

hα
f ≥ hα

n + τ̄ cut,L′′
f,n . Lastly, by hypothesis of the lemma,

τ̄ cut,L′′ ≥ τ cut, and therefore, hα
f ≥ hα

n + τ cut
f,n.

Hence, the base case is shown for (13). Then, by Lemma

1, (12), and (13), it follows that dUA
n = dUPP

n hence the base

case is shown for (14).

Induction Case: n is not an edge node in the cut network
In this case, we assume that for every n′ < n, (13) and (14)

holds, and we prove them at node n. First, observe that, for a

fresh flow or cut flow f ∈ flows(n), the proof of (13) is similar

to the base case. Second, for a transit flow f ∈ flows(n), (13)

can be rewritten as follows:

∀t ∈ [0, hα
n], α0,UA

f (t+ τUA
f,n) = α0,UPP

f (t+ τUPP
f,n ) (15)

By induction hypothesis for (14), we have dUA
n′ = dUPP

n′ for

n′ < n, thus τUA
f,n = τUPP

f,n is implied by the construction.

Hence, (15) can be rewritten as follows:

∀t ∈ [0, hα
n], α0,UA

f (t+ τUPP
f,n ) = α0,UPP

f (t+ τUPP
f,n ) (16)

Recall that α0,UA
f (t) = α0,UPP

f (t) for t ∈ [0, hα
f ], we

need to show that hα
f ≥ τUPP

f,n + hα
n . By construction,

hα
f = maxn∈Path(f) h

α
n + τ̄L

′′
f,sf

≥ hα
n + τ̄L

′′
f,sf

. Observe that

τ̄L
′′

f,sf
≥ τ̄L

′′
f,n and τ̄L

′′
f,n ≥ τUPP

f,n , and hence hα
f ≥ hα

n+τUPP
f,n . This

shows (15) and hence the induction case is shown for (13).

Then, by Lemma 1, (12), and (13), it follows that dUA
n = dUPP

n

hence the induction case is shown for (14). Therefore, (13) and

(14) are shown. Lastly, by (14), both methods return the same

collection of per-node delay bounds, hence also of delay-jitters

for flows.

We now proceed to conclude the proof of item (2) of The-

orem 4. Observe that if one of the components of (d̄L
′′
, τ̄L

′′
),

obtained in line 7 of Algorithm 3, is infinite, then FH-TFA

applies GFP-TFA with the original, UPP curves hence (2)

is concluded. We now proceed by assuming that (d̄L
′′
, τ̄L

′′
)

is finite (thus the network is stable) and show that GFP-

TFA
(
α0,UA, βUA, Ecut

)
returns the same bounds as GFP-

TFA
(
α0,UPP, βUPP, Ecut

)
. First, observe that GFP-TFA starts

with τ cut = 0. Next, as FF-TFA is isotone, bounds obtained at

each iteration inside GFP-TFA, using UA or UPP curves, are

upper-bounded by those obtained using linear curves; hence,

for flows at cuts, delay-jitter bounds obtained at each iteration

using UA or UPP curves are always upper-bounded by the

fix-point τ̄ cut,L′′
. Then, iteratively apply Lemma 2 to conclude

that at each iteration where GFP-TFA calls FF-TFA the same

bounds are obtained using UA and UPP curves. Therefore, FH-

TFA and GFP-TFA provide the exact same finite bounds.

VII. NUMERICAL EVALUATION

We use three real, industrial networks provided by industrial

partners of RTaW, a leading company in Ethernet TSN design,

performance evaluation and automated configuration tools;

these examples are anonymized and slightly changed. We first

explain each network, and we then present the results.

A. A Feed-Forward Network

It is illustrated in Fig. 5 (a): This network is feed-forward. It

has 13 end-nodes and 5 switches: Link speeds are c = 2Gb/s

and switches (blue squares) have switching latency equal to

L = 15μs, i.e., nodes offer a rate-latency service curve βc,L

with L = 0 for end-nodes and L = 15 for switches. There

are 50 periodic flows: periods are 0.03, 0.06, 0.12, 0.24, 1,

5, 10, 20, 25, 60, 125, 200, and 1000 ms; packet sizes are

[130, 1360] bytes.

B. A Small-sized Network with Cyclic Dependencies

It is illustrated in Fig. 5 (b): This network has cyclic

dependencies. It has 6 end-nodes and 3 switches: Link speeds

are c = 2Gb/s and switches (blue squares) have switching

latency equal to L = 1.5μs, i.e., nodes offer a rate-latency

service curve βc,L with L = 0 for end-nodes and L = 1.5 for

switches. There are 56 periodic flows: periods are 0.24, 0.25,

0.28, 0.5, 0.8, 1, 1.28, 2, 2.4, 20, 24, 100, 800, 1600, and

2400 ms; packet sizes are [65, 530] bytes.
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Fig. 5: Delay bounds obtained with FP-TFA, which uses token-bucket arrival curves, and our FH-TFA. GFP-TFA with original

UPP curves, fails as we face a memory size error. FH-TFA significantly improves the bounds compared to those obtained by

FP-TFA. Moreover, the improvement is more considerable when we compare the tightness gaps using the simulation values.

See Table II for run-times. Flows are ordered by values of FP-TFA.

C. An Extremely Large Network with Cyclic Dependencies

It is illustrated in Fig. 5 (c): This network has cyclic

dependencies. It has 291 end-nodes and 220 switches: Link

speeds are c = {0.1, 1, 10}Gb/s and switches (blue squares)

have switching latency equal to L = 2μs. There are 486
periodic flows: periods are 0.125, 0.24, 0.28, 0.608, and 10
ms; packet sizes are [96, 1518] bytes.

D. Results

We apply three methods to compute end-to-end delay

bounds: 1) GFP-TFA with original UPP curves, i.e., stair

arrival curve for flows (see Section II-A2); 2) FP-TFA; 3)

FH-TFA. Also, we use RTAW-Pegase tool to do simulation

where we compute some true delays for each flow that serve

as lower-bounds on the worst-case. Note that the true worst-

case is between the simulation bound and the smallest delay

bound, hence this provides a bound on the tightness.

First, we observe that in all three networks, GFP-TFA with

original UPP curves, fails as we face a memory size error.

Indeed as explained before, GFP-TFA has high computational

complexity and is an impractical method that is used to

validate our second version of TFA, FH-TFA. Second, FP-

TFA, which uses token-bucket arrival curves, and FH-TFA

are successfully applied to each network, and obtained delay

bounds are illustrated in Fig. 5: FH-TFA significantly improves

the bounds compared to those obtained by FP-TFA with token-

bucket arrival curves; namely, FH-TFA improves bounds by

around 20% (median) and 65% (maximum) compared to FP-

TFA in our examples. This increases efficiency as more traffic

can be accepted while meeting required deadlines, and making

the network more robust to changes in network conditions and

physical infrastructure. Moreover, the improvement is more

TABLE II: Run-times for networks of Fig. 5

Method Network (a) Network (b) Network (c)
GFP-TFA with UPP curves - - -

FP-TFA (s) [0.053, 0.059] [2.66, 2.68] [10.8, 10.88]
FH-TFA (s) [0.8, 0.82] [7.07, 7.1] [35.17, 35.37]

considerable when we compare the tightness gap using the

simulations value. Note that as service curve are rate-latency,

hence super-additive, by Theorem 4, FH-TFA and GFP-TFA

provide the exact same bounds.

We also provide run-times in Table II: We use the min-

plus interpreter of RTaW [12] that has infinite precision using

rational numbers. We use Java on a 2.6 GHz 6-Core Intel Core

i7 computer. As GFP-TFA with UPP curves fails hence no run-

time is provided; for the other methods, we run the program

ten times, and 95% confidence interval is reported. FH-TFA is

fast and practical, even for the extremely large network. Note

that, in our experiment, we use the minimum resolution Δ
equal to 1 nanosecond (line 6 of Algorithm 2).

VIII. CONCLUSION

TFA quickly becomes intractable when there are large

number of periodic sources and UPP curves. This problem is

frequently observed in time-sensitive and real-time networks.

We provide a practical solution, FH-TFA, that obtains delay

bounds that are formally proven, and can handle large number

of periodic sources with different periods. In future research,

we plan to explore other versions of TFA that do not require

cuts, such as AsyncTFA and AltTFA [8], and to also make

them practical and applicable in the presence of a large number

of periodic sources and UPP curves. This is of interest as FH-

TFA is currently based on GFP-TFA, which is a sequential

algorithm, but other versions of TFA can benefit from parallel

computations, thus might further reduce the run times.



REFERENCES

[1] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Deter-
ministic Queuing Systems for the Internet. Springer Science & Business
Media, 2001, vol. 2050.

[2] A. Bouillard, M. Boyer, and E. Le Corronc, Deterministic Network
Calculus: From Theory to Practical Implementation. Wiley-ISTE.

[3] D. B. Chokshi and P. Bhaduri, “Modeling fixed priority non-preemptive
scheduling with real-time calculus,” in 2008 14th IEEE International
Conference on Embedded and Real-Time Computing Systems and Ap-
plications, Aug 2008, pp. 387–392.

[4] L. Thiele, S. Chakraborty, and M. Naedele, “Real-time calculus for
scheduling hard real-time systems,” in 2000 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), vol. 4, May 2000, pp. 101–104
vol.4.

[5] J. B. Schmitt and F. A. Zdarsky, “The disco network calculator:
A toolbox for worst case analysis,” in Proceedings of the 1st
International Conference on Performance Evaluation Methodolgies
and Tools, ser. valuetools ’06. New York, NY, USA: Association
for Computing Machinery, 2006, p. 8–es. [Online]. Available:
https://doi.org/10.1145/1190095.1190105

[6] A. Mifadoui and T. Leydier, “Beyond the Accuracy-Complexity
Tradeoffs of CompositionalAnalyses using Network Calculus for
Complex Networks,” in 10th International Workshop on Compositional
Theory and Technology for Real-Time Embedded Systems (co-located
with RTSS 2017), Paris, France, December 2017, pp. pp. 1–8. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01690096

[7] L. Thomas, J.-Y. Le Boudec, and A. Mifdaoui, “On cyclic dependencies
and regulators in time-sensitive networks,” in 2019 IEEE Real-Time
Systems Symposium (RTSS), 2019, pp. 299–311.

[8] S. Plassart and J.-Y. Le Boudec, “Equivalent versions of total flow
analysis,” CoRR, vol. abs/2111.01827, 2021. [Online]. Available:
https://arxiv.org/abs/2111.01827

[9] S. M. Tabatabaee and J.-Y. Le Boudec, “Deficit round-robin: A second
network calculus analysis,” IEEE/ACM Transactions on Networking, pp.
1–15, 2022.

[10] S. M. TABATABAEE, J.-Y. L. BOUDEC, and M. BOYER, “Interleaved
weighted round-robin: A network calculus analysis,” IEICE Transactions
on Communications, vol. E104.B, no. 12, pp. 1479–1493, 2021.

[11] H. Daigmorte, M. Boyer, and L. Zhao, “Modelling in network calculus
a TSN architecture mixing Time-Triggered, Credit Based Shaper and
Best-Effort queues,” Jun. 2018, working paper or preprint. [Online].
Available: https://hal.archives-ouvertes.fr/hal-01814211

[12] “RealTime-at-Work online Min-Plus interpreter for Network Cal-
culus,” https://www.realtimeatwork.com/minplus-playground, accessed:
year-month-day.

[13] R. Zippo and G. Stea, “Nancy: an efficient parallel network calculus
library,” 2022. [Online]. Available: https://arxiv.org/abs/2205.11449

[14] S. Bondorf and J. B. Schmitt, “The DiscoDNC v2 – a comprehensive
tool for deterministic network calculus,” in Proc. of the International
Conference on Performance Evaluation Methodologies and Tools,
ser. ValueTools ’14, December 2014, pp. 44–49. [Online]. Available:
https://dl.acm.org/citation.cfm?id=2747659

[15] U. Suppiger, S. Perathoner, K. Lampka, and L. Thiele, “Modular
performance analysis of large-scale distributed embedded systems: An
industrial case study,” Zurich, Report, 2010-11.

[16] K. Lampka, S. Bondorf, and J. Schmitt, “Achieving efficiency without
sacrificing model accuracy: Network calculus on compact domains,” in
2016 IEEE 24th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS),
2016, pp. 313–318.
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