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Abstract
Tackling the increase in complexity, which is now the main
factor of improvement in deep learning, this paper proposes a
new algorithm of data selection for training speaker recogni-
tion systems. The method starts from an initial training dataset,
then the algorithm scans new data to determine the most useful
speakers for completing the initial ones. The resulting training
dataset improves the model, in terms of accuracy and ability
to generalize, while maintaining the learning complexity rea-
sonable. This algorithm is unsupervised, as it does not need
any metadata on the new utterances and, therefore, compatible
with self-supervised learning. By selecting only 30% of the
speakers from a new database, the proposed algorithm is able to
achieve very similar performances to the system with all speak-
ers added.
Index Terms: subset selection, speaker recognition, embed-
dings, deep learning, x-vectors

1. Introduction
The success of Deep Neural Network (DNN) discriminative ap-
proaches in Speaker Recognition (SR), as in many areas of ma-
chine learning, relies on the large amount of observations used
to train the model. These discriminative models do not tend
to saturate as quickly as their probabilistic counterparts: ex-
perimentation has shown that their accuracy can be further im-
proved by expanding the training databases, with no limits de-
tected at this time. The availability of an increasing number of
open datasets, the continuous inflation of information gathered
by companies, have enriched these databases. In addition, the
introduction of the self-supervised learning [1, 2], which allows
the use of large unlabeled datasets, has definitely made it possi-
ble to build giga-databases. Consequently, their processing for
modeling makes the learning phase much more complex. More-
over, data augmentation, which makes systems more robust,
multiplies the size of the dataset. Even if this increasing com-
putation burden comes with technological advances in terms of
calculation speed, data storage and access, it raises some issues:
on the one hand, collecting unlimited amount of data and using
them for DNN training is restricted to gigantic corporations. On
the other hand, as remarked in [3], ”deep neural network train-
ing spends most of the computation on examples that are prop-
erly handled, and could be ignored.”

The challenge of training systems with a limited amount of
data or a selection of the most efficient data has been addressed
in several studies and from various views. Some studies have
revealed the relativity of training data in terms of modeling in-
formation [4, 5]. Importance sampling schemes have been pro-
posed [3, 5, 6, 7, 8, 9, 10, 11], which emphasize the most infor-
mative examples during the iterative learning process, in order

to improve and accelerate the training of neural network [12].
Training a system for SR with limited amount of data has been
analyzed [13, 14], focusing on the number of speakers, sessions
per speaker, duration of the utterance, etc...

The task of subset selection attempts to find a small subset
of most informative items from a ground set. It has found nu-
merous applications (see for example references 1-20 of [6]).
Finding a well-optimized subset is an NP-hard problem [15],
which requires heuristics or meta-heuristics to find near-optimal
solutions. Genetic algorithms have been used, as an under-
sampling technique [16] or to optimize parameters and select
features [17]. To be applied to SR, a subset selection algorithm
must fit the current x-vector representation produced by deep
learning.

The problem addressed here is described in the following.
To the best of our knowledge, this problem has not been tackled
in SR, nor in related fields. First, a DNN model was learned
using an initial training dataset. Next, a new utterance dataset,
comprised of a large number of speakers unknown to the sys-
tem, is collected. Their identities can be available or estimated
by pseudo-labels. Then, the initial model is used to extract the
x-vectors of the new utterances. The goal of this study is to
select a small sample of this new dataset, by using an unsuper-
vised method (no other information provided about these utter-
ances: language, gender, channel, background noise, sound en-
vironment, other metadata), then to use this selected sample as
additional corpus for training a new DNN. The algorithm should
be done in a way that significantly improves the accuracy and
ability to generalize of the system, while keeping a reasonable
learning complexity. The proposed method will select speakers,
not single utterances one by one, to avoid gathering outliers or
degraded segments.

The paper is organized as follows: Section 2 describes the
framework of our approach and the resulting algorithm, Sec-
tion 3 details our experimental setup and discusses the results
we obtained on various evaluation corpora, then we conclude in
Section 4.

2. Subset selection method
The subset selection method presented here is based on output
distributions and clusterings. We detail them below, then intro-
duces our proposed selection metric and algorithm.

2.1. Framework of the method

Once the learning phase is achieved, it is possible to extract,
from both training and test utterances, the conditional distribu-
tions over labels i ∈ {1...N} given the x-vector x through a
softmax function p (i|x) = eszi/

∑N
j=1 e

szj where zi are the
logits and s is a temperature scaling. The penalty margin [18],



typically used during the learning phase for fastening conver-
gence and limiting overfitting, is ignored in the rest of the paper.

Our method of selection also relies on clustering. An ag-
glomerative hierarchical clustering (AHC) is carried out on the
output distributions of the initial training dataset. The distance
between two training speakers can be the symmetric Kullback-
Leibler divergence (often referred to as Jeffreys divergence)
between the speaker samples. Denoting by χ1 , χ2 the sam-
ples of two initial training speakers s1, s2 and by p (x) =
[p (i|x)]i=1,N the output distribution presented above, this dis-
tance is equal to:

J (s1, s2) =
1

|χ1 | |χ2 |
∑

x1∈χ1

∑
x2∈χ2

[DKL (p (x1) ||p (x2)) +DKL (p (x2) ||p (x1))]
(1)

As these output distributions are fitted by the model during
the learning phase to discriminate the speaker labels, clustering
should be inefficient on it: indeed, the output distributions of
the initial speaker utterances are, ideally, one-hot-target vectors
equal to 1 for the target label 0 otherwise, leading to infinite
entropy between the speakers.

AHC allows to provide clusterings in any number of
classes. The good results we observed with these clusterings, in
terms of inter-class variability, confirmed their ability to capture
the latent variabilities contained in the training data. These la-
tent variables are more or less independent of the speaker iden-
tity and interfere with it during modeling. Therefore, they tend
to limit the discrimination between the speakers used for train-
ing, maintaining some proximity between speaker-groups. This
property of AHC on training data is an opportunity to identify
underlying speech attributes that are underrepresented in the ini-
tial training dataset.

2.2. Metric used for selection

It can be remarked that a great entropy of an output distribution
(too smooth, too spread between the speaker labels) can reveal
a difficulty of the model to classify a new speaker, thus its orig-
inality with regard to the initial training speakers. But analyses
we conducted have shown that the current metrics of the infor-
mation theory are too poor to detect the most useful data of a
new dataset.

To find out the most complementary samples inside an
available new speaker dataset, the measure proposed here re-
lies on the ratio of probability of an observation x (an x-vector)
a posteriori of a class (in one of the previous clusterings, car-
ried out on the initial training dataset) and a priori. Defining the
output distribution of the sample χ of a new speaker s as the av-
erage vector p (i|s) =

[
1
|χ|

∑
x∈χ p (i|x)

]
i=1,N

this ratio can

be written:
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where C(K)
k is the kth class for the clustering of the initial train-

ing dataset in K classes, f (K)
k its frequencies
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Figure 1: Three examples of series of lifts (equation 2) from
the clustering of the initial training dataset in 20 classes, for
three speakers: English, Chinese and Persian. The value in the
legend is the criterion of equation 3.

the notation i ∈ C
(K)
k means that the ith training speaker be-

longs to C
(K)
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)
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(K)
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probability of the speakers inside a class) and the probability
of a label a posteriori of a speaker s is identified to the out-
put distribution p (i|s). In what follows, we refer to this ratio

l
(
s, C

(K)
k

)
as the lift, by analogy with the theory of association

rules [19].

2.3. Originality criterion

A value of lift greater than 1 indicates that the knowledge of a
class increases the probability of the observation. Conversely, a
low value reflects some independence between the observation
and the class. The series of lifts of a new speaker along classes
1 to K of a K-size clustering can provide useful information
about the originality of this speaker. When some lifts are higher
than one while the majority are low, it means that this speaker
sample contains some values of latent variables that are well
represented in the initial training dataset, hence can be consid-
ered as in-domain. Conversely, a too smooth series of lifts indi-
cates that this speaker does not match these variabilities.

As the series of lifts is not a probability distribution, en-
tropy cannot be computed on it. Moreover, the originality crite-
rion must take into account the specificity of the lift ratio. The
criterion proposed here for selecting new speakers is:

L (s) =
1

KM − 1

KM∑
K=2

maxk∈[1,K] l
(
s, C

(K)
k

)
mink∈[1,K] l

(
s, C

(K)
k

) (3)

The selected speakers are those who minimize this criterion 1.
Figure 1 shows an example of series of lifts, for three speakers,
English, Chinese and Persian, unknown to the model, with the
clustering in K = 20 classes computed on the initial training
dataset of Voxceleb2 (details in Section 3). The values of the
criterion L (s) are reported in the legend. It can be seen that
the series of lift of the English speaker, which is ”in-domain”
since the majority of VoxCeleb2 speakers are English-native,
is more varied than those of the other two, leading to a high
value of the criterion (= 10.27). The value of the criterion
for the Persian speaker is slightly higher than for the Chinese
speaker, due to a peak for the 17th class. Even if this graph
only depicts a single example, it confirms the link between this
clustering and the latent variable of language contained in the

1Note that other criteria that we tested (based on variance, etc...)
proved to be less efficient.



utterances, and recalls that this variability is preserved in the x-
vectors. This allows the method to be tested on other underlying
speech attributes.

3. Experiments

Table 1: Number of speakers per family of language in the
5994-size Voxceleb2 training dataset.

language #spk language #spk

Arabic 60 1% Misc 416 6.9%
East Asia 198 3.3% North-Europa 926 15.4%
English 2875 48% South-Europa 694 11.6%
Indian 472 7.9% Spanish 353 5.9%

Table 2: The new dataset candidate to complete the initial Vox-
Celeb2 training dataset: numbers of utterances, speakers and
percentage of each corpus among the 4245 new speakers.

corpus language #utt #spk % spk

LibriSpeech English 281241 2338 55,1%
MLS French 15173 142 3,3%

German 23155 176 4,1%
Italian 11309 65 1,5%
Polish 1254 11 0,3%
Portuguese 2073 42 1%
Spanish 12945 86 2%

DeepMine Persian 85764 588 13,9%
Cn-celeb1 Chinese 107951 797 18,8%
Total 540865 4245 100%

3.1. Experimental setup

The x-vector extractor used in this paper is a variant based on
ResNet-101. The extractor was trained on the development
part of the Voxceleb 2 dataset [20], cut into 4-second chunks
and augmented with noise, as described in [21] and available
as a part of the Kaldi-recipe. It contains about 1M segments
(+ 4M augmented) of 5994 speakers. As input, we used 60-
dimensional filter-banks. The speaker embeddings are 256-
dimensional and the loss is the angular additive margin with
temperature scaling equal to 30 and margin equal to 0.2. The
ResNet architecture have four residual blocks, each with feature
maps of sizes 128, 128, 256, and 256, and block multipliers of
3, 12, 15, and 3. The activation function used in the ResNet
is SiLU. We use stochastic gradient descent with momentum
equal to 0.9, a weight decay equal to 2.10−4 and initial learning
rate equal to 0.2. The implementation is based on PyTorch. The
loss function minimized during the learning phase is the cross-
entropy completed by label-smoothing [22, 23]. For scoring,
we use the cosine metric.

The method of selection is applied on a dataset comprised
of 4245 speakers gathered from four free datasets :
• the English part of Librispeech [24], a dataset derived from

read audiobooks from LibriVox,
• a sub-corpus of the Multilingual LibriSpeech (MLS) [25], in

which we select all the languages except English,
• the DeepMine [26, 27] dataset of Persian speakers used for

training during SDSV challenge 2020 Task 2 [28],

• Cn-celeb1 speaker recognition training dataset [29], collected
from Chinese celebrities.

Details of the dataset are reported in Table 2. For comparison,
Table 1 reports the families of languages of the initial training
dataset VoxCeleb2.

The relevance of the subset selection algorithm is tested on
the following evaluation sets. VoxCeleb1-E and H (cleaned ver-
sions) [30, 31]. VoxCeleb1-E Noisy dataset 2, derived from
VoxCeleb1-E cleaned by augmenting it with the Microsoft Scal-
able Noisy Speech Dataset (MS-SNSD) 3 [32]. SdSV challenge
Task 2 Partition 2 [28] in which all the speakers are Persian
native but the second partition consists of cross-language tri-
als where the enrollment utterances are in Persian while the
test utterances are in English. TED-x Spanish 4, derived from
the public-available created from TED talks in Spanish, con-
sisting of segments having a duration range between 3 and 10
seconds in which we randomly selected 2M pairs (1.6M non-
targets pairs and 0.4M targets pairs), all with the same gender.
DiPCo [33], a far-field speaker verification corpus issued from
DiPCo corpus. The results are reported in terms of Equal Error-
Rate (EER) and normalized minimal detection cost (DCF) with
the probability of a target trial set to 0.01 and the cost of miss-
detection and false alarm set to 1. For computing the criterion
of equation 3, the clusterings are swept up to KM = 100.
As the systems reported for evaluation rely on distinct train-
ing datasets, the number of iterations and learning rates of the
network are tailored to their size.

3.2. Results

Table 3 shows the results of four systems used for testing the se-
lection method: the first system, also known as Sys 1, is trained
on the initial dataset of VoxCeleb2 only (5994 speakers). Then,
1200 of the 4245 speakers of the new dataset are added to the
training set: randomly chosen (row 2 of the table, Sys 2) or by
using the selection method (row 3, Sys 3).

For VoxCeleb evaluations (VoxCeleb1-E, 1-H Cleaned and
1-E Noisy), the results obtained are not surprising, as the accu-
racy is increased by inflating the training set. But the randomly
picked up subset in system 2 contains 668 English speakers ver-
sus 269 only in system 3 using the method. These results show
that the unsupervised approach detects the most informative
data and can boost performance on evaluations that are consid-
ered fully in-domain. For VoxCeleb1-E noisy (where the noise
augmented data of the new utterances improve performance),
the method is also slightly more accurate than random. For the
Cn-celeb1 Chinese evaluation, the method yields a much more
accurate system compared to the baseline. In terms of EER
as well as DCF, performance are very competitive, even com-
pared to systems found in the literature that are trained using
larger Chinese datasets. For SdSV Task 2 partition2, as ex-
plained above, this partition combines two difficulties : (1) a
mismatch of language between enrollment and test and (2) ut-
terances of Persian but also non-native English speakers (two
specificities that are underrepresented in the training data). The
gain of adding 1200 new speakers is spectacular. But random
and method selections yield similar performance, highlighting
the difficulty to deal with mismatch between enrollment and test
without asymmetric modeling. For the Spanish evaluation Ted-

2http://dipco-sre.univ-avignon.fr/downloads/
voxceleb1.tar.gz

3https://github.com/microsoft/MS-SNSD
4http://dipco-sre.univ-avignon.fr/downloads/tedx_

spanish.tar.gz



Table 3: Evaluation of the subset selection method: starting from the system of row 1, stated as baseline, comparison of the benefits of
the method over random selection (row 3 vs 2). The last system (row 4), with the overall dataset, allows to estimate the impact of the
method when the training size grows. This impact can be assessed more easily in the last row, with the ratios of relative EER and DCF.

Training dataset Evaluations
VoxCeleb Cn-celeb1 SdSV Ted-X DiPCo

VoxCeleb2 New Total 1-E 1-H 1-E noisy Task 2 Part.2 Spanish Far-Field
#spk #spk #spk EER DCF EER DCF EER DCF EER DCF EER DCF EER DCF EER DCF

sys1 5994 - 5994 1.00 0.105 1.70 0.164 3.84 0.294 11.70 0.513 3.75 0.304 1.94 0.154 5.63 0.337
sys2 5994 1200 (random) 7194 0.92 0.100 1.60 0.151 3.44 0.280 8.77 0.441 2.60 0.231 1.66 0.144 5.81 0.340
sys3 5994 1200 (method) 7194 0.90 0.095 1.55 0.156 3.37 0.268 6.87 0.380 2.51 0.251 1.43 0.105 5.53 0.342
sys4 5994 4245 (all) 10239 0.85 0.093 1.48 0.144 3.21 0.27 6.57 0.363 1.66 0.131 1.39 0.090 5.85 0.320

ratios of relative EER and DCF:
valsys1 − valsys3
valsys1 − valsys4

67 % 83 % 68 % 40 % 75 % 108 % 94 % 89 % 59 % 31 % 93 % 77 % (-) -29 %

X, there are 20 Spanish speakers randomly picked up versus
only 13 selected with the method. However, system 3 achieves
a very significant gain of performance, confirming the ability
of the method to expand the scope of the model. For the far-
field corpus DiPCo, system 2 degrades performance, whereas
system 3 yields a significant gain of performance (in terms of
EER), despite the lack of matching data in the training corpus.

System 4 is trained by using all the speakers: initial and
new. Comparing this system to system 3 shows that the method
contributes significantly to reducing error rates as the training
size grows. This can be observed by comparing the ratios of size
1200/4245 ≈ 28% and relative EER or DCF valsys1−valsys3

valsys1−valsys4

which are reported in the last row of Table 3. For DipCo, the
performance in terms of EER, compared to the baseline, is bet-
ter with the method but worse with the overall dataset. This
reminds that inflating the training dataset does not necessarily
make the system more robust. Overall, the system using the
method is much more robust than the original system and much
less complex than the one using all the data.

3.3. Analysis

The method aims to detect and retain all attributes that are un-
derrepresented in the original data, using an unsupervised ap-
proach. We propose to better assess this ability in terms of
linguistic variability. Figure 2 shows the number of selected
speakers per corpus by increasing order of the criterion, from
the most relevant on the left to the first 1200 on the right.
The method automatically selects Chinese speakers primarily,
which are sparsely represented in the initial VoxCeleb2 train-
ing dataset. 85% of the available speakers of Cn-celeb1 are
selected, whereas Cn-celeb1 represents only 19% of the whole
dataset. Similar numbers of speakers of LibriSpeech and SdSV
are selected, but only 12% of the available data from the for-
mer versus 34% from the latter, whereas their frequencies in
the whole dataset are 55% and 14% respectively. Persian and
Chinese languages are poorly represented in VoxCeleb2, but the
figure shows that modeling Persian by analogy with other lan-
guages contained in VoxCeleb2 is easier than for Chinese. Se-
lected speakers from other corpora remind that language is only
one cause of variability in the speech signal.

4. Conclusion
By the time of massive collection of supervised data and of
self-supervised learning, the subset selection of training data is
likely to be a necessity for all organizations wishing to improve
the accuracy of their systems within the limits of their comput-
ing power. Overcoming the issue of sparse training data has
favored the generalization of discriminative neural network ap-
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Figure 2: Number of selected speakers per corpus, in increasing
order of size of the selected subset. The percentages indicate
the proportions of speakers inside the selected subset (e.g. 85%
of Cn-celeb1 corpus are in the 1200 selected) then inside the
whole dataset (e.g. 19% of the speakers belong to Cn-celeb1).

proaches, which perform well when fed with sufficiently large
and various training data. A new algorithm of subset selec-
tion for speaker recognition model training is proposed here,
which takes into account the specificity of the current x-vector
produced by deep neural network and keeps the learning com-
plexity reasonable. Its benefits, in terms of accuracy and gen-
eralization capabilities, are tested and demonstrated on various
evaluation sets.

The selection method is unsupervised (no metadata re-
quired on the utterances to select) and, therefore, more gen-
eral than domain adaptation focused on a specific variability.
The advantage of an unsupervised method stems from the fol-
lowing observation: some underrepresented attributes of the
speech signal can be fitted relatively well by the model, by
combining what is available to it (e.g., a language from a fam-
ily of languages, a sound environment from similar environ-
ments). Therefore, only an unsupervised approach can deter-
mine the most representative samples to efficiently complement
the model.

Future work will extend this study, to test the ability of the
method to detect all underlying speech signal attributes that may
be underrepresented in initial training material. The application
of the method in other fields than speaker recognition will also
be considered.
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