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Dynamics of non-equilibrium concentration fluctuations

during free-diffusion in highly stratified solutions of glycerol and water

I. INTRODUCTION

A layer of fluid under non-equilibrium conditions exhibits long-range fluctuations [START_REF] Ortiz De Zárate | Hydrodynamic fluctuations in fluids and fluid mixtures[END_REF][START_REF] Croccolo | Non-local fluctuation phenomena in liquids[END_REF] . Non-equilibrium conditions can be typically attained by imposing a macroscopic temperature or concentration gradient to the fluid. Non-equilibrium fluctuations (NEFs) arise from the coupling of velocity fluctuations to the macroscopic gradient. When a spontaneous velocity fluctuation determined by the thermal agitation of the fluid displaces a parcel of fluid, it generates a local vortex and, in turn, a local variation of the density, which is not the case of equilibrium conditions. The mean squared amplitude of the fluctuations diverges as 1/q 4 at small wave numbers q, a feature that was first predicted theoretically [START_REF] Kirkpatrick | Fluctuations in a nonequilibrium steady state: Basic equations[END_REF][START_REF] Kirkpatrick | Light scattering by a fluid in a nonequilibrium steady state. I. Small gradients[END_REF][START_REF] Kirkpatrick | Light scattering by a fluid in a nonequilibrium steady state. II. Large gradients[END_REF][START_REF] Ronis | Nonlinear resonant coupling between shear and heat fluctuations in fluids far from equilibrium[END_REF][START_REF] Schmitz | Fluctuations in a fluid under a stationary heat flux II. Slow part of the correlation matrix[END_REF][START_REF] Schmitz | Fluctuations in nonequilibrium fluids[END_REF][START_REF] Schmitz | Fluctuations in a nonequilibrium colloidal suspension[END_REF] and then verified experimentally [START_REF] Law | Light-scattering observations of long-range correlations in a nonequilibrium liquid[END_REF][START_REF] Law | Fluctuations in fluids out of thermal equilibrium[END_REF][START_REF] Law | Lightscattering measurements of entropy and viscous fluctuations in a liquid far from thermal equilibrium[END_REF][START_REF] Segrè | Rayleigh scattering in a liquid far from thermal equilibrium[END_REF][START_REF] Segrè | Light-scattering measurements of nonequilibrium fluctuations in a liquid mixture[END_REF][START_REF] Li | Small-angle rayleigh scattering from nonequilibrium fluctuations in liquids and liquid mixtures[END_REF][START_REF] Li | Nonequilibrium fluctuations in liquids and liquids mixtures subjected to a stationary temperature gradient[END_REF] . The divergence of the mean squared amplitude of fluctuations is inhibited by the gravity force [START_REF] Segrè | Light-scattering measurements of nonequilibrium fluctuations in a liquid mixture[END_REF][START_REF] Vailati | q divergence of nonequilibrium fluctuations and its gravity-induced frustration in a temperature stressed liquid mixture[END_REF][START_REF] Vailati | Giant fluctuations in a free diffusion process[END_REF] . In fact, if the region of the fluid affected by the velocity fluctuation is large enough, buoyancy brings it back to the layer of fluid with the same density that originated the fluctuation before its dissolution by diffusion. Experiments performed in the absence of gravity have shown that in this case the divergence of fluctuations is inhibited only by the finite physical size of the fluid [START_REF] Takacs | Thermal fluctuations in a layer of liquid CS2 subjected to temperature gradients with and without the influence of gravity[END_REF][START_REF] Vailati | Fractal fronts of diffusion in microgravity[END_REF][START_REF] Croccolo | Shadowgraph analysis of non-equilibrium fluctuations for measuring transport properties in microgravity in the gradflex experiment[END_REF] . The experiments performed in space in the framework of the GRADFLEX project of the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) have provided convincing evidence that linearised hydrodynamics achieves an accurate quantitative modelling of the static and dynamic properties of the fluctuations under ideal non-equilibrium conditions [START_REF] Takacs | Thermal fluctuations in a layer of liquid CS2 subjected to temperature gradients with and without the influence of gravity[END_REF][START_REF] Vailati | Fractal fronts of diffusion in microgravity[END_REF][START_REF] Croccolo | Shadowgraph analysis of non-equilibrium fluctuations for measuring transport properties in microgravity in the gradflex experiment[END_REF] , such as steady state diffusion processes driven by small macroscopic density gradients [START_REF] Ortiz De Zárate | Hydrodynamic fluctuations in fluids and fluid mixtures[END_REF] .

The theoretical modelling of non-equilibrium fluctuations determined by transient diffusion processes in the presence of large density gradients is made difficult by the fact that under these conditions an analytic description of the static and dynamic statistical properties of the fluctuations is not possible. However, the investigation of non-equilibrium fluctuations under these non-ideal conditions is highly desirable, because most natural and technological diffusion processes occur under non-ideal transient conditions in the presence of large gradients. Theoretical advances in this direction have been obtained recently by investigating the role of giant fluctuations in turbulent flows at high Schmidt number at sub-Kolmogorov scales [START_REF] Eyink | High schmidt-number turbulent advection and giant concentration fluctuations[END_REF] . Exact modelling of nonlinear advection of concentration fluctuations obtained by applying the methods from the Kraichnan model of turbulent advection showed that the static and dynamic structure functions reproduce exactly the ones obtained from linearised hydrodynamics [START_REF] Eyink | The kraichnan model and non-equilibrium statistical physics of diffusive mixing[END_REF] . As far as simulations of non-equilibrium fluctuations are concerned, traditional computational methods can be hardly applied to this kind of problem, due to the presence of a range of lengthscales and timescales spanning several orders of magnitude. During the last 15 years, the solution to this challenging problem has come through the development of staggered schemes based on fluctuations hydrodynamics [START_REF] Usabiaga | Staggered schemes for fluctuating hydrodynamics[END_REF] . Very recently, these methods have also be extended to non-isothermal systems, thus allowing the computational investigation of non-equilibrium fluctuations driven by the Soret and Dufour effects [START_REF] Srivastava | Staggered scheme for the compressible fluctuating hydrodynamics of multispecies fluid mixtures[END_REF] .

Beyond nonlinear theoretical modelling, a quantitative characterisation of non-equilibrium fluctuations under nonideal conditions can be achieved by means of experiments and simulations. In this context, the Giant Fluctuations and TechNES projects of ESA will investigate the non-equilibrium fluctuations occurring in complex fluids during diffusion processes under microgravity conditions [START_REF] Baaske | The NEUF-DIX space project -non-EquilibriUm fluctuations during DIffusion in compleX liquids[END_REF][START_REF] Vailati | Giant fluctuations induced by thermal diffusion in complex liquids[END_REF] . These projects will typically investigate transient and stationary processes in multi-component fluids, whose stability on Earth is impaired by the presence of double diffusion processes that lead to the onset of convective motions even in the presence of an initially stable density profile.

Since the thermophysical properties of a fluid mixture depend on its concentration, the presence of a strong stratification gives rise to non-linear terms in the diffusion equation, and thus to a superposition of modes with different amplitudes and relaxation times arising from different layers of fluid at any wave number. Non-equilibrium fluctuations are typi-cally investigated by using static and dynamic light scattering techniques, including newly developed near field techniques [START_REF] Cerbino | Near-field scattering techniques: Novel instrumentation and results from time and spatially resolved investigations of soft matter systems[END_REF] such a Near Field Scattering [START_REF] Giglio | Space intensity correlations in the near field of the scattered light: A direct measurement of the density correlation function[END_REF] , Dynamic Shadowgraphy [START_REF] Croccolo | Nondiffusive decay of gradient-driven fluctuations in a free-diffusion process[END_REF] and Differential Dynamic Microscopy [START_REF] Cerbino | Differential dynamic microscopy: Probing wave vector dependent dynamics with a microscope[END_REF] . All these optical methods work by illuminating the sample with a beam of light and collecting on a matrix sensor the light scattered by the sample. As a result, the light collected by the sensor is the superposition of the contributions of the light scattered by different layers of sample, which can be characterised by different thermophysical properties depending on the local concentration. In the presence of a small concentration gradient, the dependence of thermophysical properties from concentration can be neglected, while for larger gradients the analysis of the signal requires a non-trivial modelling of the properties of the stratified fluid. As a first approximation, the contributions arising from the different layers can be assumed to be uncorrelated and the modelling of the scattered intensity can be obtained by integrating the intensity of the scattered light across the sample thickness [START_REF] Vailati | Nonequilibrium fluctuations in time-dependent diffusion processes[END_REF] . This approximation is expected to hold when the wave numbers are significantly larger than the finite-size wave number q f s = 2π/h associated to the finite thickness h of the sample, even in the presence of a significant dependence of the thermophysical properties from the temperature or the concentration [START_REF] Zapf | Nonlinearities in shadowgraphy experiments on non-equilibrium fluctuations in polymer solutions[END_REF] . More generally, non-equilibrium fluctuations are expected to be correlated also in the direction parallel to the gradient [START_REF] Brogioli | Correlations and scaling properties of non-equilibrium fluctuations in liquid mixtures[END_REF] , the correlation length being of the order of 1/q. Therefore, a proper modelling of the light scattered at small wave numbers would require to take these long-range correlations into account.

In this work we investigate non-equilibrium concentration fluctuations during diffusion in mixtures of water and glycerol subjected to strong concentration gradients. Experiments are performed in an isothermal free-diffusion configuration, where two solutions of water and glycerol with different concentration are initially brought into contact in the stable configuration where the denser mixture lies at the bottom of the sample cell [START_REF] Brogioli | Giant fluctuations in diffusion processes[END_REF] . To perform these experiments we take advantage of a unique three-dimensional flowing junction cell able to generate an interface between the two mixing phases free of spurious disturbances [START_REF] Croccolo | Cylindrical flowing-junction cell for the investigation of fluctuations and pattern-formation in miscible fluids[END_REF] . The strong dependence of the viscosity and diffusion coefficient of the mixture on the concentration of glycerol determines a highly non-linear concentration profile, which in turn determines a wide range of relaxation times of the non-equilibrium concentration fluctuations at any wave number, leading to a non-exponential relaxation of the time correlation function at a fixed wave number [START_REF] Croccolo | Nondiffusive decay of gradient-driven fluctuations in a free-diffusion process[END_REF] . We develop an empirical model for the time correlation function of the scattered light and we find that the assumption of uniformly distributed relaxation times provides a quantitatively accurate description of the deviation from a Single Exponential (SE) relaxation of the correlation function. Under these conditions, the dynamics of the system at each wave number can be completely described in terms of the fastest and slowest relaxation times of the system. We discuss this result in comparison with the traditional particle sizing methods commonly used in Dynamic Light Scattering to characterise the dispersion of relaxation times in polydisperse samples, such as the cumulant analysis [START_REF] Berne | Dynamic light scattering: with applications to chemistry, biology, and physics[END_REF] and the Schulz distribution [START_REF] Mailer | Particle sizing by dynamic light scattering: non-linear cumulant analysis[END_REF] .

The article is organised as follows: first, the theory of nonequilibrium fluctuations is presented, both for an ideal thin sample, for which the concentration gradient is uniform, and for a non-ideal thick stratified sample. Then, we develop an interpretative model for the latter case, which is compared with numerical simulations, with the ideal model for a thin sample and with the model based on the Schulz distribution. After explaining the theory in detail, we discuss results and we show that our proposed model provides a more accurate fitting of experimental results when compared to the other models discussed. Finally, we extract from the analysis of the experimental results the thermophysical coefficients describing the state of the sample, and compare them with reference ones.

II. THEORY

The non-equilibrium mass flow induced by the presence of a macroscopic concentration gradient generates concentration fluctuations δ c, whose amplitude is orders of magnitude larger than the one of equilibrium fluctuations. A suitable theoretical modelling of these fluctuations under ideal conditions of small macroscopic concentration gradients has been achieved by using fluctuating hydrodynamics [START_REF] Landau | Fluid Mechanics[END_REF] , where the equation of hydrodynamics for a fluid at rest are linearised with respect to small perturbations of the hydrodynamic variables [START_REF] Ortiz De Zárate | Hydrodynamic fluctuations in fluids and fluid mixtures[END_REF][START_REF] Ronis | Nonlinear resonant coupling between shear and heat fluctuations in fluids far from equilibrium[END_REF] . Fluctuating hydrodynamics allows to recover both the static and dynamic correlation properties of the fluctuations, which are accessible experimentally by performing light scattering experiments [START_REF] Berne | Dynamic light scattering: with applications to chemistry, biology, and physics[END_REF] . Most theoretical studies involve the investigation of systems under stationary non-equilibrium conditions, but it has been shown that the theoretical investigation of transient diffusion is made possible by the introduction of an adiabatic approximation into the hydrodynamic equations, which allows to linearise them to obtain expressions for the static and dynamic correlation properties compatible with those for a system at steady state [START_REF] Vailati | Nonequilibrium fluctuations in time-dependent diffusion processes[END_REF] .

A. Uniform concentration gradient

Static Structure Factor

Quite generally, we consider a layer of a binary mixture, characterised by a concentration c, a mass diffusion coefficient D(c) and a kinematic viscosity ν(c). The layer is under the action of a vertical -stabilising -concentration gradient ∇c and we assume that the gradient is uniform across it. This is typically the case of a thin layer of fluid. Under these hypotheses, it can be shown that the Static Structure Factor S(q) of the non-equilibrium concentration fluctuations is [START_REF] Vailati | Nonequilibrium fluctuations in time-dependent diffusion processes[END_REF] :

S(q) = S eq   1 + ∇c ∇c grav -1 1 1 + q q ro 4    (1) 
where the ∼ sign over S(q) stands for the property in a layer of fluid with uniform concentration gradient, q ro is the char-acteristic roll-off wave number below which the relaxation of fluctuations determined by buoyancy is faster than the one determined by diffusion:

q ro (c) = β g • ∇c ν(c)D(c) 1/4 (2) 
where β = (1/ρ)(∂ ρ/∂ c) is the solutal expansion coefficient, ρ is the density of the mixture, and g is the gravitational acceleration;

∇c grav = β g ∂ c ∂ µ p,T (3) 
represents the equilibrium concentration gradient induced by barodiffusion and

S eq = k B T 16π 4 ρ ∂ c ∂ µ p,T (4) 
is the q-independent static structure factor of Equilibrium Fluctuations, where T is the temperature of the isothermal sample, k B is the Boltzmann constant, and (∂ c/∂ µ) p,T is the osmotic compressibility. Equation (1) holds under the assumption of large Schmidt number Sc = ν(c)/D(c) 1 and under the assumption that (q ro /q) [START_REF] Kirkpatrick | Light scattering by a fluid in a nonequilibrium steady state. I. Small gradients[END_REF] Sc. As far as the first assumption is concerned, for the glycerol-water mixtures under investigation in this work the typical range of the mass diffusion coefficient is [START_REF] Bouchaudy | Steady microfluidic measurements of mutual diffusion coefficients of liquid binary mixtures[END_REF] (1.02 • 10 -05 -1.54 • 10 -07 ) cm 2 /s while the range on kinematic viscosity is [START_REF] Cheng | Formula for the viscosity of a glycerol-water mixture[END_REF] (0.009 -1.29) cm 2 /s, and consequently the large Schmidt number assumption holds in the explored concentration range. Due to the large Schmidt number, the second assumption also holds in the range of wave numbers explored by us, with the exception of very small wave numbers q q ro , where the strong gravitational stabilisation can give rise to propagating modes [START_REF] Croccolo | Propagating modes in a binary liquid mixture under thermal stress[END_REF] .

Dynamic Structure Factor

The Onsager regression hypothesis and linearised hydrodynamics allow to determine the dynamic properties of nonequilibrium fluctuations in a thin layer of fluid. A statistical characterisation of these properties can be achieved through the time autocorrelation function of the fluctuations 1 : S(q, ∆t) = S(q) • exp (-γ∆t)

where the relaxation rate γ = 1/τ c (q) is the reciprocal of the decay time of the fluctuations:

γ(q) = D(c)q 2 • 1 + q ro (c) q 4 ( 6 
)
The relaxation rate exhibits a power-law dependence from q at small and large wave numbers [START_REF] Vailati | Nonequilibrium fluctuations in time-dependent diffusion processes[END_REF] . At large wave numbers γ(q) ≈ D(c)q 2 and the relaxation of fluctuations occurs diffusively. At small wave numbers γ(q) ≈ D(c)q 4 ro /q 2 and the relaxation process is governed by buoyancy, which determines a restoring force that brings back the fluctuations in the layer with the same density that originated them. The crossover between these two regimes occurs at the roll-off wave number q ro , which represents the slowest mode of relaxation [START_REF] Croccolo | Effect of gravity on the dynamics of nonequilibrium fluctuations in a freediffusion experiment[END_REF] . In a thin layer of fluid the variation of D(c) and q ro associated to the presence of the concentration gradient is small, and these two parameters can be assumed to be constant, while in the presence of a strongly stratified sample, like the one dealt with in the present work, their dependence from the concentration cannot be neglected and the decay time of the fluctuations at a certain wave number becomes strongly dependent on concentration.

B. Stratified mixture with non-linear concentration profile

Having set out the expressions for S(q) and S(q, ∆t) for a thin layer of a binary mixture with a uniform concentration gradient, we can now model the case of a strongly stratified sample as a superposition of thin layers of fluid with different concentration gradients. The first aim is the numerical characterisation of the macroscopic gradient and concentration profiles of the sample along the z-coordinate, which will allow us to calculate expressions for the static and dynamic structure factor of the stratified sample and to compare them with the experimental data.

Macroscopic State

In this section, our aim is to characterise quantitatively the time evolution of the macroscopic concentration profile c(z,t) of a solution undergoing a free-diffusion process when two horizontal layers of a binary liquid mixture at different concentrations are brought into contact at time t 0 = 0. In the gravitationally stable configuration where the denser phase is layered at the bottom of the lighter one, the mixing occurs through a diffusive process.

To obtain quantitative information about the concentration profile c(z,t) and the gradient profile ∇c(z,t) we can formalise the problem using the one-dimensional diffusion equation for the concentration, since the process is uniform in the x and y directions. In the presence of a dependence of the diffusion coefficient from concentration, the non-linear diffusion equation can be written as:

∂ c ∂t = ∂ ∂ z D(c) • ∂ c ∂ z (7) 
To solve this equation we need to explicit the dependence of D(c) on c and define the initial and boundary conditions. In the case of D(c), we have used a polynomial law which accurately describes the concentration dependence in a glycerolwater mixture of interest in this paper [START_REF] Bouchaudy | Steady microfluidic measurements of mutual diffusion coefficients of liquid binary mixtures[END_REF] :

D(c) = (10.25 -13.08 • c + 8.62 • c 2 -17.65 • c 3 + 11.98 • c 4 ) • 10 -06 cm 2 /s (8)
In the case of a free-diffusion process the initial condition is a step function:

c(z,t 0 ) = c 1 , z ∈ (0, h 2 ) c 2 z ∈ ( h 2 , h) (9) 
where t 0 = 0 is the initial time and h is the thickness of the two superimposed layers. To finish setting up the problem we need to specify the boundary conditions. In our case the walls of the sample are impermeable to the mass flow, which results in the condition:

∂ c ∂ z = 0| z=0,h (10) 
To obtain the time evolution of the concentration profile during the diffusion process we used the MatLab PDE solver to solve numerically Eqn. (7) with the initial and boundary conditions specified by Eqns. ( 9)- (10), respectively. In the case of an extremely large initial gradient (95% glycerol against pure water), the concentration and gradient profiles develop a strong asymmetry during their time evolution, determined by the non-linearity of Eqn. (7) (Fig. 1a,c).

This result is remarkably different from the one that can be calculated in the presence of small gradients, where the diffusion equation is solved assuming that D(c) is constant. In this last case Eqn. (7) would have reduced to Fick's second law ∂ c/∂t = D(∂ 2 c/∂ z 2 ) and would present symmetry around the position of the interface z/h = 1/2 at any time. Instead, in our case, one can clearly see that while for small times the concentration and the gradient profiles actually show symmetry along the z-coordinate, as the evolution of the macroscopic state advances this symmetry is lost.

After a time larger than the mean diffusive time t c , defined by

t c = h 2 D(c) π 2 (11) 
the system reaches an equilibrium state, characterised by a uniform concentration profile. From Fig. 1, one can also appreciate how, as time passes, the thickness of the region involved in diffusive remixing grows, until it affects the whole sample. This modelling of the macroscopic state is fundamental to describe the case of a strongly stratified sample and for interpreting the results. 

Static Stratified Structure Factor

Experiments on non-equilibrium fluctuations are usually performed by means of light scattering or shadowgraphy, in a configuration where a beam of light crosses the sample parallel to the concentration gradient. In this configuration, the light impinging on the detector is the superposition of the light scattered by the layers of fluid inside the stratified sample.

The evaluation of the static structure factor of the thick layer of a strongly stratified fluid can be achieved by combining the results of sections II.A.1 and II.B.1 and adding up the contributions to the static power spectrum determined by the different layers, which are characterised by different thermophysical properties. For this reason, it is useful to define a structure factor averaged across the thickness of the sample, because this quantity can be easily compared to experimental results. An expression for the average structure factor can be obtained by integrating S(q) across the sample thickness. Assuming that our system is far from equilibrium, so that S eq S(q) and ∇c grav ∇c, the Static Stratified Structure factor is defined by the relation:

S(q) = h 0 dz h S(q) = h 0 dz h S eq ∇c grav    ∇c 1 + q q ro 4    . ( 12 
)
The ratio S eq /∇c grav is constant along the z-coordinate, so that it is possible to numerically integrate the static structure factor obtaining the result shown in Fig. 2, where we have also highlighted how the different layers contribute to the final result.

FIG. 2. Simulated static structure factor S(q) as function of wave number q for initial condition c 1 = 95% and c 2 = 0% and at diffusion time t/t c = 0.07 (∼ 350 min after the start of evolution). Different colours represent S(q) at different z-coordinates (as indicated by the arrow). The black data are the integral of S(q) layer by layer, over z, Eqn. (12), the red solid line is the fit with the model of Eqn. (13).

One can clearly see that S(q) integrated over the whole sample thickness (black data points) presents a trend very similar to the one integrated over the central thin layers (purple data points), which provide the largest contributions to the average. For this reason, the shape of the stratified static structure factor is not particularly affected by the contributions of the different layers, and a suitable model for the interpolation of the stratified structure factor is:

S(q) S(0) = 1 1 + q q ro 4 ( 13 
)
which allows to estimate the effective roll-off wave number determined by the stratification.

As a word of caution, we notice that when we have written Eqn. (12), we have assumed that each layer provides an independent contribution to the integrated structure factor, which implies that non-equilibrium fluctuations are not correlated in the direction of the macroscopic gradient, which in this case is the vertical direction. This is not true in general, as it can be shown that the non-equilibrium fluctuations are indeed also correlated in the vertical direction, with a correlation length very similar to the one in the direction orthogonal to the concentration gradient [START_REF] Brogioli | Correlations and scaling properties of non-equilibrium fluctuations in liquid mixtures[END_REF] . However, when the condition q 2π/h holds, one can assume that the correlation between contributions to the integrated structure factor determined by different layers is negligible [START_REF] Zapf | Nonlinearities in shadowgraphy experiments on non-equilibrium fluctuations in polymer solutions[END_REF] . For the results shown in Fig. 2 the largest wave number is 50 cm -1 , which is much larger than 2π/h ≈ 6cm -1 associated with the finite size of the sample.

Dynamic Stratified Structure Factor

In order to derive an expression for the Dynamic Stratified Structure Factor S(q, ∆t), we can average contributions coming from different layers with an approach similar to the one adopted for the Static Stratified Structure Factor. In the dynamic case, the stratification of the sample determines a dispersion of the relaxation rate of non-equilibrium fluctuations at a fixed wave number q, due to the dependence on the concentration of the diffusion coefficient and the roll-off wave number in Eqn. (6).

For this reason, it is convenient to use the relaxation rate γ as a suitable integration variable for the stratified structure factor rather than the z coordinate:

S(q, ∆t) = S(q) • γ M γ m G(γ) exp (-γ∆t) dγ (14) 
where G(γ) is the probability density function of decay rates γ within the sample while γ m and γ M are the minimum and maximum decay rates within the sample, respectively.

We can then write the Dynamic Stratified Structure Factor in the form S(q, ∆t) = S(q) • g(q, ∆t), where we have defined the stratified correlation function:

g(q, ∆t) = γ M γ m G(γ) exp (-γ∆t) dγ (15) 
Physically, this function is the one resulting from the superposition of all S(q, ∆t) describing the correlation dynamics of NEFs occurring at different layers, and consequently at different relaxation rates γ. To find a model representing g(q, ∆t) it is necessary to identify the function G(γ) that provides an adequate description of the experimental results. In the following we will adopt a Uniform Distribution (UD) model, where we assume that G(γ) is uniformly distributed between a minimum γ m and maximum γ M relaxation rate. Due to the discussion made in the section on the macroscopic state, the assumption of a uniform distribution is not strictly compatible with the asymmetry of the concentration profiles; however, this simple approximation provides a remarkably better agreement between the theoretical and experimental time correlation functions, much better than the one that can be achieved with the thin-layer model where the concentration gradient is uniform, Eqn. (5).

The integration of Eqn. (15) with the UD model allows us to find an analytic expression for the stratified correlation function g(q, ∆t):

g(q, ∆t) = -e -γ M ∆t + e -γ m ∆t ∆t(γ M -γ m ) = exp (-Γ∆t) • sinh (σ ∆t) σ ∆t (16) 
where

Γ = γ M + γ m 2 (17) σ = γ M -γ m 2 (18) 
The form of Eqn. ( 16) is particularly appealing, because the correlation function is written in terms of a single exponential relaxation, multiplied by a hyperbolic sine cardinal function that characterises the presence of a dispersion of relaxation times. With this form, it is apparent that for σ ∼ 0 we return to the ideal single exponential relaxation for a thin layer of Eqn. (5), where non-equilibrium fluctuations relax with a single characteristic time.

To extract quantitative parameters characterising the sample, it is necessary to investigate the theoretical dependence of Γ and σ on q. For the thin-layer case, the two parameters that determine the quantitative dependence of γ on q, Eqn. ( 6) are the diffusion coefficient D and the roll-off wave number q ro . For the thick sample case, the new variables Γ(q) and σ (q) are linear combinations of the decay rates γ m (q) and γ M (q), which have the same dependence on q of the thin layer, Eqn. (6). Therefore, a linear combination of these rates does not change the dependence on q. By combining the Eqn. ( 17), (18) with the Eqn. (6), it is possible to determine the dependence of Γ and σ on q:

Γ(q) = D M + D m 2 q 2 • 1 + D M • q 4 M + D m • q 4 m (D M + D m ) • q 4 (19) σ (q) = D M -D m 2 q 2 • 1 + D M • q 4 M -D m • q 4 m (D M -D m ) • q 4 ( 20 
)
Where D M and q M are the diffusion coefficient and rolloff wave number of the thin layer with the maximum decay rate γ M , while D m and q m are the ones for the layer with the minimum decay rate γ m . It is possible to simplify the notation by introducing the parameters

D Γ = D M + D m 2 (21) 
q 4 Γ = D M • q 4 M + D m • q 4 m (D M + D m ) (22) 
D σ = D M -D m 2 (23) 
q 4 σ = D M • q 4 M -D m • q 4 m (D M -D m ) (24) 
so that Eqn. (20) becomes:

Γ(q) = D Γ q 2 • 1 + q Γ q 4 ( 25 
)
σ (q) = D σ q 2 • 1 + q σ q 4 ( 26 
)
D Γ and D σ represent respectively the mean value and the width of the distribution of the true diffusion coefficients present in the stratified sample, Eqn. ( 8), as confirmed by both simulations (Fig. 3) and experimental data (Fig. 10). The wave number q Γ represents an average of the two wave numbers q m and q M , weighted by the smallest and largest diffusion coefficients of the systems D m and D M , while q σ is analogously related to the wave numbers difference.

Figure 3 shows the trends of Γ(q) and σ (q), calculated by fitting the numerically generated data of Dynamic Stratified Structure Factor, Eqn. (14) with the model of Eqn. (16). The results of the fit are shown at three different initial concentrations; the different panels represent data simulated at the instants t/t c = 0.07, t/t c = 0.7, and t/t c = 2

For large concentration differences between the two initial mixtures (green symbols) and small times t/t c < 1 the values of σ (triangles) are perfectly superimposed on those of Γ (circles) (left and centre panels of Fig. 26). This means that for each q, the dispersion of G(γ) is so large that it is comparable to the mean value Γ. As the difference between the initial concentration conditions decreases (orange and red data), the difference between Γ and σ increases. This becomes particularly evident for c 1 = 95% and c 2 = 80% (red symbols) (centre and right panel of Fig. 26), where the mean value of Γ relaxation rates is lower than in the green case, and where σ dispersion (red triangles) is distinctly lower than Γ (red circles).

In order to compare the dispersion of samples with different initial concentration conditions in a quantitative way, a significant dimensionless parameter is the stratification index :

SI ≡ D σ D Γ (27) 
The values of the stratification index extracted from the data shown in the left panel of Fig. 3 are: SI 95%0% = 0.96, FIG. 3. Simulated dependence on q of the mean relaxation rate Γ and of its dispersion σ . Data are evaluated at the instants t/t c = 0.07 (left) as in Figs. 2,4, t/t c = 0.7 (centre) and t/t c = 2 (right). The different colours represent different initial conditions: c 1 = 95% and c 2 = 80% (red); c 1 = 95% and c 2 = 40% (orange); c 1 = 95% and c 2 = 0% (green). The solid lines are the fit of Γ(q) with Eqn. (25), while the dashed lines are the fit of σ (q) with Eqn. (26). SI 95%40% = 0.90 and SI 95%80% = 0.66. The Stratification Index can also be determined using the reference values of the diffusion coefficient calculated via Eqn. ( 8), leading to SI re f 95%0% = 0.96, SI re f 95%40% = 0.90 and SI re f 95%80% = 0.67, in complete agreement with the values evaluated from the data in the left panel of Fig. 3.

Cumulant methods and Schulz distribution

In dynamic light scattering experiments, the size dispersion of particles undergoing diffusion at equilibrium can be determined with the cumulant method, which relies on the fact that particles of different size contribute to the time autocorrelation function with different relaxation times. For a reasonably narrow distribution of the decay rates G(γ) and for a reasonable range of the normalised delay time γ∆t, it is possible to write the time autocorrelation function as a product of a purely exponential term representative of the dynamics of a monodisperse system of particles with a polynomial in the delay time [START_REF] Pusey | Intensity fluctuation spectroscopy of laser light scattered by solutions of spherical viruses. r17, q.beta., BSV, PM2, and t7. i. lightscattering technique[END_REF][START_REF] Frisken | Revisiting the method of cumulants for the analysis of dynamic light-scattering data[END_REF] :

g(q, ∆t) = exp (-Γ∆t) • 1 + 1 2 µ 2 ∆t 2 - 1 3! µ 3 ∆t 3 + ... (28) 
where the coefficients µ 2 , µ 3 , µ 4 ... allow characterising the dispersion of relaxation times and, in turn, the size polydispersity of the system. An analytical expression for the time correlation function equivalent to the cumulant expansion of Eqn. (28) can be found by assuming that the decay rates follow a Schulz distribution:

G(γ) = 1 Γ (1/σ 2 n ) 1/σ 2 n (1/σ 2 n -1)! γ Γ 1/σ 2 n -1 exp - γ Γσ 2 n ( 29 
)
where Γ is the mean value and σ n the normalised standard deviation of the distribution. Combining Eqns. ( 15) and ( 29), the expression for the correlation function is:

g(q, ∆t) = (1 + σ 2 n Γ∆t) -1/σ 2 n (30) 
A comparison between this correlation function and the one obtained for the UD model can be achieved by comparing Eqn. (28) with the one obtained from a Taylor expansion of the hyperbolic sine cardinal function of the UD model, Eqn. ( 16):

g(q, ∆t) = exp (-Γ∆t) • 1 + σ 2 3! ∆t 2 + σ 4 5! ∆t 4 + ... (31) 
The comparison between the two expansions shows that in the case of the UD model the first three terms are of even degree, while in the case of the expansion obtained from the Schulz distribution a term of degree three is present. In general, the cumulant method is known to be effective in the presence of a relatively narrow distribution with σ n 0.6 [START_REF] Mailer | Particle sizing by dynamic light scattering: non-linear cumulant analysis[END_REF] . In the case of the free-diffusion experiments described in this paper, the dispersion can largely exceed this value. For example, in the case of the most extreme initial conditions (c 1 = 0 and c 2 = 0.95 ) found in our experiments, σ n ∼ 1. Moreover, simulations performed by us under these conditions show that the distribution G(Γ) is substantially flat. For this reason, in this work we adopted a uniform distribution of relaxation times, which gives rise to a time autocorrelation conceptually simpler than the one obtained with the Schulz distribution, Eqn. (29), due to the fact that when σ n = 0 one immediately recovers a purely exponential relaxation To compare the effectiveness of the correlation function obtained with the UD model of Eqn. ( 16) and the one obtained from the Schulz model of Eqn. (30), we checked which one best interpolates the correlation function data generated numerically. These data are calculated by integrating Eqn. (15) on the non-linear macroscopic state discussed in section II.B.1, so to take into account the actual distribution of the relaxation times inside the sample.

We plot in Fig. 4 the correlation function g(q, ∆t) calculated at four wave-numbers, by integrating Eqn. ( 15) across the non-linear concentration profile shown in Fig. 1. The semilogarithmic scale emphasises that g(q, ∆t) is, in general, not a simple exponential as in the thin layer case, which would result in a straight line. Data are therefore fitted with the approximated model proposed in Eqn. ( 16) (solid lines) and with the Schulz function of Eqn. (30) (dashed lines).

It can be noticed that, for the extreme conditions considered, the interpolation obtained with the Schulz function presents large deviations from the simulated data as ∆t and q increase, while the fit with the model of Eqn. ( 16) are in good agreement with the simulated data for wave numbers 285 < q < 600 cm -1 and delay times 0 < ∆t < 60 s, up to values of the correlation function of the order of 0.01. Although outside these limits it might be necessary to find a less stringent approximation for G(γ), the results shown in Fig. 4 demonstrate that in the presence of a large dispersion of decay times (SI act = 0.96), the UD correlation function introduced in Eqn. ( 16) is more effective than the Schulz function, Eqn. (30) in describing the simulated dynamics of non-equilibrium fluctuations in a strongly stratified system. [a.u.] FIG. 4. Simulated stratified correlation functions g(q, ∆t) (circles) as a function of delay time ∆t for a sample with c 1 = 95% and c 2 = 0%, at a diffusion time t/t c = 0.07 (as in Figs. 8, and3). Results are shown for different wave numbers q = 285, 390, 495, and 600 cm -1 , with colour ranging from red (lowest q), to yellow (highest q). Data are fitted with the uniform model Eqn. ( 16) (solid lines) and with the Schulz model Eqn. (30) (dashed lines).

III. EXPERIMENTAL METHODS

A. Set-Up

Performing the free-diffusion experiments discussed in this work requires bringing into contact a mixture of glycerol and water at a weight fraction concentration c 1 with a mixture at concentration c 2 under controlled conditions that avoid the generation of spurious disturbances. Gravity stabilises the system because the latter is prepared in the configuration where the bottom layer of fluid has the highest concentration (c 1 < c 2 ) and density. We performed experiments on different couples of glycerol solutions in water, as expressed in Fig. 5 and in Tab. I. To create the initial condition where the two miscible phases are separated by a sharp -flat -interface we used a flowing junction cell [START_REF] Croccolo | Cylindrical flowing-junction cell for the investigation of fluctuations and pattern-formation in miscible fluids[END_REF] . The cell is made by two superimposed chambers, shown in light blue and violet in Fig. 6. In the initial stage, the two mixtures are injected continuously, the denser one in the bottom chamber and the lighter one in the top chamber. Injection occurs at room temperature (average temperature 27 • C) through two annular porous septa, which favour a radial distribution of the inlet flow. The two mixtures come into contact at the mid-height of the cell. To maintain a sharp interface between them, the mixing fluid phases at the interface are continuously sucked out of the cell through a thin annular slit. Once the system is prepared in the condition just described, an experimental run can be started by interrupting the fluid flow, defining the time t = 0 at which the two phases can diffuse one into the other through a free-diffusion process. Under these conditions, the concentration profile evolves as shown in Fig. 1. The cell contains a 3.36 cm thick sample and the interface between the two mixtures is placed exactly in the middle, at a height of 1.68 cm.

To visualise concentration NEFs during the experiments, we used a quantitative Dynamic Shadowgraphy technique (Fig. 7) that is used in our laboratories both for studying NEFs [START_REF] Croccolo | Effect of gravity on the dynamics of nonequilibrium fluctuations in a freediffusion experiment[END_REF][START_REF] Croccolo | Mass transport properties of the tetrahydronaphthalene/n-dodecane mixture measured by investigating non equilibrium fluctuations[END_REF] and convection [START_REF] Cerbino | Scaling behavior for the onset of convection in a colloidal suspension[END_REF][START_REF] Mazzoni | Mutual voronoi tessellation in spoke pattern convection[END_REF][START_REF] Croccolo | Effect of a marginal inclination on pattern formation in a binary liquid mixture under thermal stress[END_REF][START_REF] Fruton | Convective dissolution of carbon dioxide into brine in a threedimensional free medium[END_REF] . The light is emitted by a Superluminous Light Emitting Diode (Superlum, SLD-MS-261-MP2-SM) with a wavelength of λ = (675 ± 13)nm, placed in the focal plane of an achromatic doublet with a focal length of f = 150 mm, which collimates the beam. Dynamic shadowgraph images are then acquired using an scientific-CMOS camera (Hamamatsu C13440, ORCA - 

B. Dynamic Shadowgraphy

Measurements are performed with Dynamic Shadowgraphy, a differential method based on the processing of Shadowgraph images previously subtracted one to the other to get rid of their static components [START_REF] Croccolo | Effect of gravity on the dynamics of nonequilibrium fluctuations in a freediffusion experiment[END_REF] . The power spectrum of the difference between two images taken at different times allows to calculate the StructureFunction P(q, ∆t) = |I(q,t) -I(q,t + ∆t)| 2 , where the brackets identify a time average. Time averaging is done on a thousand pairs of images, taken at different instants of time, but spaced by fixed ∆t. Since the fluctuations are isotropic in the horizontal plane, the structure functions have a circular symmetry, and have been averaged over the azimuth angle of the wave number: P(q, ∆t) = T (q)S(q) • (1g(q, ∆t)) + B(q) + α • ∆t 2 (32) Here the Transfer Function T (q) characterises the response of the optical system to a point-like perturbation of the refractive index inside the sample and S(q) is the Static Stratified Structure Factor. For our experiments, we have used an empirical expression for T (q), borrowed from the one determined by performing an accurate calibration of the transfer function using a reference sample [START_REF] Vailati | Fractal fronts of diffusion in microgravity[END_REF] . B(q) is the power spectrum of the background noise, and g(q,t) is the Stratified Correlation Function, defined by Eqns. ( 13) and ( 16), respectively. We had to add an empirical quadratic contribution in time because the system is in a non-stationary state, a condition that determines a slow drift of the optical background, which modifies the structure function with the term α • ∆t 2 .

In the next section, results of the interpolation of data P(q, ∆t) acquired using the Shadowgraph technique with the UD, Schulz and SE model are shown and compared with each other. Furthermore, our aim is to determine the thermophysical coefficients D Γ , D σ , q Γ and q σ . The fit procedure consists of two steps. Firstly, experimental data of P(q, ∆t) is interpolated at fixed q as a function of ∆t to extract A(q) = T (q)S(q), B(q) and α(q); by fixing q, it is possible to consider these functions as simple parameters, the only independent being ∆t. Secondly, we compute the q-independent parameters D Γ , D σ , q Γ and q σ , by performing a new fit in two variables ∆t), where the parameters extracted from step one A(q), B(q) and α(q) are used as input parameters. This procedure allows to use as little computing power as possible, to increase the performance of the fit. The two steps are applied for the UD, Schulz and SE models described in the previous paragraphs, which we will compare with each other: for the UD model, the correlation function g(q, ∆t) is described in Eqn. (16); in the second step of the fit procedure, Γ and σ are written in the form Eqns. ( 25) and (26), respectively; for the Schulz model, the correlation function in Eqn. ( 30) is used, having substituted σ n = σ /Γ, for Γ and σ the dependence is still the one expressed in Eqns. ( 25) and ( 26); for the SE model, the correlation function is that in Eqn. (5) in which the trend of γ in Eqn. ( 6) is substituted.

We have acquired data for samples prepared under different initial concentration conditions. Furthermore, to observe the of the fluctuations during the evolution of the concentration profile, we acquired measurements at different times the evolution of the system (t i = t/t c ). The conditions of measurements and the timeline are summarised in Table I.

For each of these times and for each of the analysed concentration pairs, two sets of 2000 images were acquired at two different frame rates (10 fps and 100 fps). Due to the wide range of relaxation rates contributing simultaneously to the signal, we have adopted a processing procedure that makes TABLE I. Index of measurements. Columns c 1 and c 2 are the initial bottom and top concentrations of glycerol, respectively. t c identifies the diffusive time across the thickness of the sample, after which the system exits the free-diffusion regime. The other columns represent times, relative to t c , when measurements have been performed during the free-diffusion process. use of concatenated frame-rates to reduce the amount of images and make the data sets more manageable: a faster -, at 100 f ps, to investigate the relaxation occurring at the smallest scales, and a slower one, at 10 f ps.

Considering the rather large diffusion times in our experiments, the system can be assumed in quasi steady state conditions within one measurement run, i.e. at a given t i time. The images taken have a resolution of 2048 × 2048 pixels at 16 bits. The whole procedure has been repeated three times at every initial concentration to check the repeatability of experiments and to enlarge the statistical sample of results.

IV. RESULTS

In this section, we present the experimental results and check the effectiveness of the UD correlation function by providing an accurate evaluation of the experimental parameters.

A. Validation of the model

A first important verification involves the validation of the effectiveness of the model correlation function Eqn. ( 16) to fit the experimentally determined structure functions in the form described by Eqn. (32). Figure 8 (a)-(c) show P(q, ∆t) for three different initial concentration conditions. Data acquired with the Shadowgraph technique at three different wave numbers q are interpolated with the SE, UD and Schulz model discussed in this work.

To evaluate the effectiveness of each model it is useful to determine the residuals R(q, ∆t), defined as the difference between the expected value from each model and the measured data, normalised to the expected value. To better quantify the information contained in the residuals, we introduce the summation over all the time delays:

R(q) = ∑ ∆t [R(q, ∆t)] 2 (33) 
From Fig. 8 one can appreciate that the three models work equally well in fitting the data when the difference between the concentrations is low (panel (a) and (d)), and no notable differences can be appreciated between the three models, in particular between the UD and Schulz model. This means that for a stratification index SI < 0.30, corresponding to the reported in Fig. 8a, the stratification does not significantly influence the structure function measurements P(q, ∆t). When the concentration difference in the sample is increased, some differences between the models become evident: in panel (b) c 1 = 80%, c 2 = 0%, with SI act = 0.79, one cannot still distinguish between the different models, which appear to be overlapping, but looking at the residuals in panel (e), it can be appreciated that the UD and Schulz models perform better than the SE model. This feature is also clearly confirmed by the value of R(q) in panel (g). This result shows that, as the stratification increases, it is necessary to modify the correlation function to take into account the dispersion of relaxation times inside the sample. Observing the residuals at SI act = 0.79, the differences between the UD model and the Schulz one remain minimal and indicate that, in the presence of a moderate dispersion of relaxation times (0.3 < SI act < 0.8), the Schulz distribution is also adequate to characterise the relaxation of NEFs. A pronounced difference between the Schulz model and the UD one becomes apparent at the maximum concentration difference c 1 = 95% and c 2 = 0%; SI act = 0.96 shown in panel (c). In this case, the extreme initial conditions can no longer be modelled by the Schulz model. Looking at the residuals R(q) in panel (g) we observe that the difference between the models increases significantly and that UD model is the one that best interpolates the data under all the conditions described. The data shown so far exhibit an improvement in the quadratic sum of the relative residuals for three specific wave numbers.

To provide a more complete overview of the ability of the three models to describe the data, it necessary to compare them on all wave numbers in the observed range. Figure 9 (a) shows the experimentally determined structure function P(q, ∆t) plotted in two dimensions as a function of all wave numbers q (vertical-axis) and of the delay time ∆t (horizontalaxis) in the case c 1 = 95% and c 2 = 0%. In panel (b) it is pos-FIG. 8. (a)-(c): P(q, ∆t) as a function of ∆t, at q 1 = 140 cm -1 , q 2 = 200 cm -1 , q 3 = 300 cm -1 ; all measurements are made after 320 min from the start of the diffusion process, for different initial conditions sible to observe the function P(∆t), at three different fixed q corresponding to the horizontal sections indicated by the dashed lines in panel (a), interpolated by the three models.

To provide an integrated parameter that gives an overall information about the effectiveness of fit, we introduce the relative overall square residual averaged across all wave numbers and delay time range:

R m = 1 N ∑ q ∑ ∆t [R(q, ∆t)] 2 ( 34 
)
where N is the number of independent values of R(q, ∆t) used in the summations. For the case shown in the figure, we obtain R m = 0.0021 for the UD model, R m = 0.0032 for the Schulz model, and R m = 0.0037 for the SE model.

Table II shows the values of R m for all the initial conditions analysed. These data confirm that for small differences in concentration, the three models perform equivalently. As the difference between c 1 and c 2 increases, the difference between the models becomes more and more evident.

Finally, the static power spectrum obtained with the three models can be observed in Fig. 9 c). As predicted by the simulations and detailed in the previous chapters, both the UD, Schulz and SE model show the same result for the static part. In the figure, the three static curves representing the term S(q)T (q) are perfectly superimposed and in excellent agreement with the experimental P(q, ∆t) for ∆t = 90 s.

B. Thermophysical Parameters and Discussion

The two dimensional fitting procedure adopted in this work allows to determine a single value of the average diffusion coefficient and of its dispersion for each experimental run. For times t < t c the system evolves under free-diffusion conditions, and the concentrations at the boundaries of the sample does not change in time. Under these conditions, the time evolution of the concentration profile does not influence significantly the values of D Γ and D σ , allowing the diffusion coefficients to be averaged over all tests and times for each Red continuous line: S(q)T (q) of our two-variable model; green continuous line: S(q)T (q) two-variable Schulz model; blue continuous line: S(q)T (q) two-variable simple exponential model; Dashed black line: theoretical result for S(q). experimental concentration. The fitting of the experimental data allows to estimate the values of D M and D m and, using Eqn. ( 21) and ( 23), to evaluate D σ and D Γ , which are plotted in Fig. 10 a) as a function of the average concentration. To achieve a meaningful statistical relevance of the results, we have performed three measurements for each of the nine couples of concentrations shown in Table I).

Experimental data are compared with the theoretical values calculated from Eqn. ( 21) and ( 23), using the theoretical values of the diffusion coefficients obtained with the empirical modelling of Eqn. (8). It can be observed that the average diffusion coefficient D Γ decreases as the average concentration increases, in agreement with the theoretical prediction (dashed line), although the experimental values are systematically larger than the theoretical ones. The trend for the dispersion of the diffusion coefficient D σ is also in agreement with the theoretical predictions, and a peak at the maximum concentration difference (c 1 = 0, c 2 = 0.95) is observed, even if the experimental data are noisy and differ substantially from the predicted ones. This difference can be also evidenced by comparing the predicted stratification index at each average concentration, with the experimental value, Fig. 10b). Although our Fick diffusivity data do not match exactly with the reference ones on the empirical concentration-dependence of the diffusion coefficient at 298 K derived from Bauchaudy et al. [START_REF] Bouchaudy | Steady microfluidic measurements of mutual diffusion coefficients of liquid binary mixtures[END_REF] , see Eqn. ((8)), the trend of D Γ , D σ , and SI as a function of the average mass fraction of glycerol are in very good agreement with the ones derived from reference data. The deviations observed in Fig. 10 can be associated with the slight difference on the temperature, as well as the correlation itself. As shown in literature, one can expect deviations up to 70% between Fick diffusivity data at large mass fractions of glycerol [START_REF] Nishijima | Diffusion in glycerol-water mixture[END_REF][START_REF] Ternström | Mutual diffusion coefficients of water + ethylene glycol and water + glycerol mixtures[END_REF][START_REF] D'errico | Diffusion coefficients for the binary system glycerol + water at 25 °c. a velocity correlation study[END_REF][START_REF] Rausch | Binary diffusion coefficients of glycerol-water mixtures for temperatures from 323 to 448 k by dynamic light scattering[END_REF] . Propagating these deviations in the reference values depicted by the dashed lines on Fig. 10, not shown for legibility purposes, will lead to matching diffusivity and SI data across the complete range of mass fractions of glycerol used in our study.

Analogously to the analysis performed for D Γ and D σ , it is possible to extract from the experimental data the values of s q Γ and q σ defined in the Eqns. ( 22) and (24), which are a linear combination of the roll-off wave-numbers q m and q M for the largest and smallest concentrations present inside the sample. The investigation of these two parameters allows to characterise the influence of gravity on NEFs in the presence of a significant stratification of the sample. Quite interestingly, we notice that results for time evolution of the roll-off wave number q Γ obtained with all the initial conditions investigated in this work can be scaled onto a single curve, once they are normalised with an arbitrary constant, Fig. 11. To understand the physical origin of this common behaviour, we notice that the only time-dependent term in Eqn. ( 2) is the gradient ∇c, which decreases with time proportionally to t -1/2 . Therefore, we expect that q Γ and q σ evolve in time according to the following expressions [START_REF] Vailati | Giant fluctuations in a free diffusion process[END_REF] :

q Γ = a Γ • t t c -1/8 (35) 
q σ = a σ • t t c -1/8 (36) 
where a Γ and a σ are two characteristic wave numbers that can be obtained by interpolating the time evolution of the rolloff wave numbers with Eqns. (35) and (36) for each experimental run. One can appreciate that the measured values of q Γ (t)/a Γ are well approximated by the theoretical curve, providing an indication of the consistency of the interpretative model proposed by us. On the other hand, the trend of q σ (t)/a σ follows the predictions only for large concentration differences (0vs90, 0vs95, 10vs95 and 20vs95), while for the small ones, the values are very noisy, Fig. 11b). This result can be understood by taking into account that q σ represents the dispersion of roll-off wave numbers, which differs significantly from zero only in the presence of a significant stratification of the sample. This condition is met by the experimental results clustered around the theoretical prediction in Fig. 11b). Under all the other experimental conditions, the value of q σ should be close to zero, and the fitting procedure becomes very noisy because under these conditions q σ is not a relevant parameter to describe the system. Different colours correspond to measurements performed under different initial concentration conditions (top legend). For both panels, the dashed black line represents the theoretical prediction t -1/8 .

V. CONCLUSIONS

Non-equilibrium fluctuations in free-diffusion under nonideal conditions, such as transient processes and large concentration differences, are characterised by a wide distribution of relaxation times determined by the stratification of the sample. We propose a model based on a uniform distribution of the relaxation times that allows to describe the dynamics of non-equilibrium fluctuations during these processes. The comparison of the uniform distribution model with the Schulz model commonly applied in dynamic light scattering to characterise the polydispersity of samples confirms the better performances of the UD model in the presence of a wide range of relaxations times determined by a strong stratification. For small concentration differences, in the presence of a moderate range of relaxation times, the effectiveness of the three models is comparable. The investigation of the influence of gravity on the dynamics of non-equilibrium fluctuations shows that results obtained under all the stratification conditions can be described by a universal power law that rules the time evolution of the roll-off wave number below which the fluctuations are affected by gravity significantly.

A notable case where the proposed approach can be useful is the investigation of non-equilibrium fluctuations during a free-diffusion process occurring between two phases of a binary liquid mixture close to a consolute critical point [START_REF] Vailati | Giant fluctuations in a free diffusion process[END_REF][START_REF] Cicuta | Capillary-to-bulk crossover of nonequilibrium fluctuations in the free diffusion of a near-critical binary liquid mixture[END_REF][START_REF] Giavazzi | Equilibrium and non-equilibrium concentration fluctuations in a critical binary mixture[END_REF] , where the diffusion coefficient of the mixture exhibits a strong dependence from the concentration. The conceptual framework proposed in this work could also be applied to other types of fluctuations in stratified media, such as temperature fluctuations occurring in fluids under the action of a temperature gradient. Indeed, large temperature gradients could affect thermodynamic coefficients, such as the thermal diffusion coefficient and viscosity, resulting in a dispersion of relaxation times of non-equilibrium temperature fluctuations similar to the one discussed in this paper.

FIG. 1 .

 1 FIG. 1. Time evolution of concentration c(z,t) and gradient |∇c| profiles with initial condition: c 1 = 95% and c 2 = 0%. a) c(z,t) represented by a colour map ranging from blue (low concentration) to red (high concentration). The colour scheme (top colour bar) is on a logarithmic scale; the time is normalised to t c = 3.16 • 10 05 s, while the z-coordinate is normalised to the height of the sample h. b) Vertical sections of Fig. a) at four different times t/t c = 10 -3 (green); 7 × 10 -3 (orange); 7 × 10 -2 (burgundy); 7 × 10 -1 (grey), marked in panel a) with the same colour scheme . c) |∇c| corresponding to concentration profile plotted in a) (same horizontal and vertical axes). The colour map (top colour bar) is logarithmic. d) Vertical sections of Fig. c) at the same times marked in panel a) with the same colour scheme.

FIG. 5 .

 5 FIG. 5. Diagram of the concentration couples used in this work.The dashed line marks the boundary between the stable condition where a denser mixture of concentration c 2 is layered at the bottom of a less dense one of concentration c 1 , and the unstable condition where the denser mixture is at the top. The red shading indicates the predicted value of the stratification index SI. The stratification of the system increases in the horizontal direction towards the right and in the vertical direction towards the bottom.

FIG. 6 .

 6 FIG.6. Vertical cross section of the flowing junction cell. Green parts: sapphire plates that determine the upper and lower boundaries of the sample. Dotted regions outlined in cyan: porous septa, needed for maintaining a radial inlet and outlet flow of the mixtures inside the cell. Blue region: solution with the lowest concentration injected from the top inlet. Red region: solution with the highest concentration injected from the bottom inlet. The presence of an annular slit at the interface where the two liquid phases adjoin allows to avoid their mixing in the initial condition where fluid flow through the slit is allowed.
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 7 FIG. 7. Outline of the optical shadowgraph set-up used during the experiments. The light beam emitted by the LED source is shown in red. After being collimated by the lens, the beam is reflected by a first mirror, passes through the sample and is reflected by a second mirror on the camera sensor. This folded optical configuration allowed us to optimise the space occupied by the setup.

  FIG.8. (a)-(c): P(q, ∆t) as a function of ∆t, at q 1 = 140 cm -1 , q 2 = 200 cm -1 , q 3 = 300 cm -1 ; all measurements are made after 320 min from the start of the diffusion process, for different initial conditions: a)c 1 = 40%, c 2 = 0%; b) c 1 = 80%, c 2 = 0%; c) c 1 = 95%,c 2 = 0%; black circles: P(q, ∆t); Red solid line: UD model; green solid line: Schulz model (not visible due to the close superposition to the red line); blue solid line: SE model; (d)-(f): relative residuals corresponding to the plots above Dashed line: value 0; horizontal solid lines: +0.1 and -0.1 values; residuals resulting from different models are shown with the same colour scheme as in the graphs above. (g): R(q 2 ) for the three values of SI act , plotted with the same colour scheme of the other panels.

FIG. 9

 9 FIG. 9. a) P(q, ∆t) (colour scale indicated in the top bar) acquired for initial condition c 1 = 95%, c 2 = 0%, after 320 min from start of diffusion. (b) Black dots: Structure functions corresponding to the horizontal sections of panel (a). Red solid line: our two-variable model interpolating the data; green solid line: two-variable Schulz model; blue solid line: two-variable simple exponential model. (c) Black dots: section of panel (a) at the vertical dashed line.Red continuous line: S(q)T (q) of our two-variable model; green continuous line: S(q)T (q) two-variable Schulz model; blue continuous line: S(q)T (q) two-variable simple exponential model; Dashed black line: theoretical result for S(q).

FIG. 10

 10 FIG. 10. a) Values of D Γ and D σ as a function of the average mass concentration of the system. b) Values of SI as a function of the average mass concentration of the system. For both panels, the error bars are the standard deviations determined from the three repetitions of the experiments, which in some cases are smaller than the point size; the dashed black lines represent the theoretical predictions for D Γ and D σ and SI.

FIG. 11 .

 11 FIG. 11. (a)q Γ /a Γ , and (b) q σ /a σ , plotted as a function of time. Different colours correspond to measurements performed under different initial concentration conditions (top legend). For both panels, the dashed black line represents the theoretical prediction t -1/8 .

TABLE II .

 II Comparison between the relative mean square residuals obtained with the UD, Schulz and SE models. c 1 and c 2 identify the concentrations of the bottom and top phase, respectively.

				R m	R m	R m
	c 1	c 2	SI	UD	Schulz	SE
	20%	0%	0.132	0.0011	0.0011	0.0007
	40%	0%	0.296	0.0014	0.0015	0.0017
	80%	0%	0.795	0.0015	0.0016	0.0022
	90%	0%	0.915	0.0021	0.0028	0.0032
	95%	0%	0.956	0.0021	0.0032	0.0037
	95%	10%	0.951	0.0020	0.0024	0.0030
	95%	20%	0.943	0.0031	0.0037	0.0049
	95%	40%	0.921	0.0028	0.0034	0.0055
	95%	80%	0.674	0.0120	0.0120	0.0122
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