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1 Introduction

This article can be seen as a step in understanding the general effect of the
curvature operator of the interior of a manifold with boundary on the topo-
logy and the geometry of its boundary. To motivate our precise setting, let us
recall some previous works in this area. In [18], inspired by questions arising
in general relativity such as the positivity of the Brown-York quasi-local mass
[2], Shi and Tam shed light on how the scalar curvature affects the total mean
curvature of the boundary. Namely, if (Mn+1, g) is a compact Riemannian
spin manifold – for basics on spinors and Dirac operators, see e.g. [1, 5, 8, 10] –
with nonnegative scalar curvature such that its boundary can be isometrically
embedded into the Euclidean space as a strictly convex hypersurface, then
the total mean curvature of the boundary cannot be greater than the one of
the Euclidean embedding. More precisely, if H (resp. H0) denotes the mean
curvature of the boundary ∂M in M (resp. in the Euclidean space) then

∫

∂M

H dµg ≤

∫

∂M

H0 dµg, (1)

and the equality is attained if and only if the manifold M is isometric to a
domain in the Euclidean space. This result has a lot of deep and important
consequences both in mathematics and physics. In particular, although its
proof relies on the Positive Mass Theorem (PMT), it is shown to be actually
equivalent to this famous result of mathematical general relativity.

In the same spirit and with an alternative method, Hijazi and Montiel [9]
showed that an inequality similar to (1) can be deduced from a general inte-
gral inequality which holds for any spinor field defined on ∂M . Such inequa-
lities will be referred to as Poincaré type inequalities in the following. More
precisely, they proved that if (Mn+1, g) is a compact Riemannian spin ma-
nifold with mean convex smooth boundary ∂M (endowed with the induced
Riemannian and spin structures) and if D denotes the Dirac operator acting
on the spinor bundle Σ∂M over ∂M , then

n2

4

∫

∂M

H|ϕ|2 dµg ≤

∫

∂M

|Dϕ|2

H
dµg (2)

for all ϕ ∈ Γ(Σ∂M). When the boundary ∂M can be isometrically immersed
into another Riemannian spin manifold carrying a parallel spinor ϕ with
mean curvature H0, the restriction of such a spinor field to ∂M provides a
solution to the Dirac equation

Dϕ =
n

2
H0ϕ and |ϕ| = 1.
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Using this spinor field in the inequality (2) yields

∫

∂M

H dµg ≤

∫

∂M

H2
0

H
dµg (3)

and equality is characterized by both immersions having the same shape ope-
rators. Even if this inequality is a straightforward consequence of (1) and the
Cauchy-Schwarz inequality, it has interesting counterparts. First, it holds un-
der less stringent conditions since it only requires mean convexity while strict
convexity is needed in the Shi-Tam inequality. Moreover, the assumption of
existence of an isometric immersion in the Euclidean space is relaxed to allow
more general ambient spaces, which include, among others, Calabi-Yau and
hyperkähler manifolds. A further interesting property is that, although the
proof of the inequality (3) does not use the PMT, it still implies this result,
at least in the case n = 2.

Motivated by those results, Miao and Wang [13] considered the same geome-
tric set-up as before but without assuming the spin condition. They showed
that inequalities similar to (3) could be proved by requiring a lower bound,
say K, on the Ricci curvature of the Riemannian manifold (Mn+1, g) instead
of the scalar curvature. The condition on the Ricci curvature comes naturally
in this context and, in a first step, a Poincaré type inequality [13, Theorem
2.1] can be established via the Reilly formula and which reads as

∫

∂M

〈S∇f,∇f〉 dµg ≤

∫

∂M

1

H
(∆f − tf)2 dµg (4)

for any smooth function f on ∂M , any constant t ≤ 1
2
K, and where ∆ is the

Laplace operator acting on functions on M and S is the second fundamental
form of ∂M in M . Assuming furthermore the existence of an isometric im-
mersion X : ∂M → R

m of ∂M into some Euclidean space Rm with m ≥ n+1
and using the components xj of this immersion in (4) for all j = 1, . . . , m,
Miao and Wang deduced that

∫

∂M

H dµg ≤

∫

∂M

| ~H0|
2

H
dµg (5)

where ~H0 is the mean curvature vector of the immersion X . Note that the
existence of such an immersion is guaranteed by the Nash embedding theo-
rem. As a corollary of that inequality, Miao and Wang obtain rigidity results
for manifolds with boundary and Ricci curvature bounded from below. It is
also important to note that the inequality (4) has a natural physical inter-
pretation since, as noticed in [11, 12], it appears in the second variation of
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the Wang-Yau quasi-local mass [19].

In the present article, we generalize (4) to differential forms of arbitrary de-
gree, assuming suitable but very general curvature conditions on the interior
as well as on the boundary of the manifold, see inequality (8) in Theorem 3.1
as well as Theorem 3.5. The special case where (8) is an equality turns out to
be very rigid, imposing restrictions on the differential form and the geometry
of the underlying manifold. In view of the Shi-Tam inequality, we look at the
particular case where the boundary is isometrically immersed in Euclidean
space and are able to both simplify the inequality and deduce a rigidity result
extending Miao and Wang’s one in case the boundary is one-codimensional
in some affine subspace, see Theorem 3.3. When the boundary can be im-
mersed in a round sphere, the corresponding inequality turns out to be strict,
see Theorem 3.6. In a next step, we adapt to the differential-form-framework
the celebrated Ros inequality [15, Theorem 1] involving the integral of the
inverse of the mean curvature over the boundary. Assuming the existence of a
nonzero parallel form on the manifold, a new inequality relating the integral
of the inverse of some σp-curvature on the boundary with the volume of the
manifold can be deduced from the so-called Reilly formula, see Theorem 4.1.

The article is structured as follows. After preliminaries about basic formulae
and notations in Section 2, the main Poincaré-type inequality (8) is presented
and proved in Section 3. When the boundary can be isometrically immersed
in Euclidean space, the inequality can be simplified as we mentioned above,
while the case where the interior curvature condition is relaxed is presented
in Theorem 3.5. In Section 4, a differential-form-version of the Ros inequality
is established.

Acknowledgment: We are very grateful to theMathematisches Forschungs-
institut Oberwolfach (MFO) and the Centre International de Rencontres Ma-
thématiques (CIRM, Luminy) where most of the work was carried out. The
second-named author also thanks the Alfried Krupp Wissenschaftskolleg for
its support.

2 Preliminaries and notations

In this section, we briefly introduce the geometric setting and fix the nota-
tions of this paper.

Let (Mn+1, g) be a compact oriented (n + 1)-dimensional Riemannian ma-
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nifold with smooth nonempty boundary ∂M and let ι : ∂M → M be the
inclusion map. Let dµg be the Riemannian measure induced by g on both M

and ∂M . In the following, any metric – being g on TM or any metric induced
by g on further bundles – will be denoted by 〈· , ·〉, with associated pointwise
norm | · |. Let ν denote the inward unit normal along ∂M and S := −∇ν be
the associated Weingarten endomorphism-field, where ∇ denotes the Levi-
Civita connection on TM . Let H := 1

n
tr(S) denote the mean curvature of

∂M in M . For any integer p ∈ {0, . . . , n + 1}, let Ωp(M) := Γ(ΛpT ∗M) be
the space of differential forms of degree p on M , that is the space of sections
of the exterior bundle ΛpT ∗M → M . Let ⋆ : ΛpT ∗M → Λn+1−pT ∗M denote
the pointwise Hodge star operator. For any (1, 1)-tensor A and p-form ω, let
A[p]ω be the p-form that is pointwise defined by the following identity: for all
tangent vectors X1, . . . , Xp,

(A[p]ω)(X1, . . . , Xp) :=

p∑

j=1

ω(X1, . . . , AXj, . . . , Xp).

In the particular case where A = S, we denote for each k ∈ {1, . . . , n} by σk

the pointwise k-curvature of ∂M , that is the sum of the k smallest principal
curvatures (i.e., the eigenvalues of S) of ∂M . Note that, since the eigenvalues
of S are the sums of exactly p among the n principal curvatures,

〈S [p]ω, ω〉 ≥ σp|ω|
2

for any ω ∈ ΛpT ∗∂M , with equality if and only if S [p]ω = σpω. Moreover, for
all 1 ≤ p ≤ q ≤ n, we have σp

p
≤ σq

q
, with equality when p < q if and only if

the q smallest principal curvatures are equal.

Let d resp. δ denote the exterior derivative resp. codifferential on p-forms and
∇ be the covariant derivative induced by ∇ on ΛpT ∗M . Recall the so-called
Reilly formula [14, Theorem 3] for differential p-forms with p ≥ 1: for any
ω ∈ Ωp(M),
∫

M

(
|dω|2 + |δω|2 − |∇ω|2 − 〈W [p]ω, ω〉

)
dµg

=

∫

∂M

(
2〈νyω, δ∂M(ι∗ω)〉+ 〈S [p]ι∗ω, ι∗ω〉+ 〈S [n+1−p]ι∗(⋆ω), ι∗(⋆ω)〉

)
dµg,(6)

where δ∂M denotes the codifferential on ∂M and W [p] the curvature term
involved in the Weitzenböck formula for p forms: denoting by ∆ := dδ + δd

the Hodge Laplace operator on p-forms,

∆ω = ∇∗∇ω +W [p]ω
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for any p-form ω. By convention, we let W [p] = 0 and S [p] = 0 for all p ≤ 0.
Note that [14, Theorem 3]

〈S [n+1−p]ι∗(⋆ω), ι∗(⋆ω)〉 = nH|νyω|2 − 〈S [p−1](νyω), νyω〉, (7)

for any p-form ω.

3 A Poincaré-type inequality for p-forms

We first prove a generalized version of the integral inequality for functions
obtained by Miao and Wang in [13, Eq. (1.3)]:

Theorem 3.1 Let (Mn+1, g) be any compact oriented (n + 1)-dimensional
Riemannian manifold with smooth nonempty boundary ∂M . Fix p ∈ {1, . . . , n}
and assume that W [p] ≥ 0 on M as well as σn+1−p > 0 along ∂M . Then, for
any exact p-form ω on ∂M , we have

∫

∂M

|δ∂Mω|2

σn+1−p
dµg ≥

∫

∂M

〈S [p]ω, ω〉dµg. (8)

Moreover, if (8) is an equality for some non-zero ω, then for the p-form ω̂ on
M satisfying dω̂ = 0 = δω̂ on M as well as ι∗ω̂ = ω on ∂M , the identities
δ∂Mω = −σn+1−pνy ω̂, S

[p−1](νy ω̂) = (nH−σn+1−p)νy ω̂ hold along ∂M and
the p-form ω̂ must be parallel – hence W [p]ω̂ = 0 must hold – on M .

Proof: The proof mainly follows that of [14, Theorem 5]. Let ω be an exact
p-form on ∂M , that is ω = d∂Mα for some α ∈ Ωp−1(∂M). By [4, Theorem 2],
there exists a (p−1)-form α̂ onM such that δdα̂ = 0 onM with ι∗α̂ = α along
∂M . Let ω̂ := dα̂ ∈ Ωp(M), then ω̂ satisfies dω̂ = 0, δω̂ = δdα̂ = 0 onM with
ι∗ω̂ = ι∗(dα̂) = ω along ∂M . Actually such a p-form ω̂ on M with dω̂ = 0 =
δω̂ on M as well as ι∗ω̂ = ω along ∂M is uniquely determined by ω. Namely,
because of W [p] ≥ 0 by assumption and the property ⋆W [p]⋆−1 = W [n+1−p],
we know that W [n+1−p] ≥ 0. Together with the assumption σn+1−p > 0 we
can deduce from [14, Theorem 4] that Hn+1−p

abs (M) = 0 holds, where

Hk
abs(M) :=

{
α ∈ Ωk(M) | dα = 0 = δα and νyα = 0

}

is, for every 0 ≤ k ≤ n+1, the kth absolute de Rham cohomology group. By
Poincaré duality, Hk

abs(M) ∼= Hn+1−k
rel (M), where

Hk
rel(M) :=

{
α ∈ Ωk(M) | dα = 0 = δα and ι∗α = 0

}
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is the kth relative de Rham cohomology group. Therefore, Hp
rel(M) = 0, so

that ω̂ is uniquely determined by ω.

We apply identity (6) to ω̂: since dω̂ = δω̂ = 0 by construction of ω̂ and
〈W [p]ω̂, ω̂〉 ≥ 0 by assumption, as well as |∇ω̂|2 ≥ 0, we have from (6) that

0 ≥

∫

∂M

(
2〈νy ω̂, δ∂Mω〉+ 〈S [p]ω, ω〉+ 〈S [n+1−p]ι∗(⋆ω̂), ι∗(⋆ω̂)〉

)
dµg.

By definition of the k-curvatures and the identity ι∗(⋆ω̂) = (−1)pνy⋆(νy ω̂) =
⋆∂M(νy ω̂), we have

〈S [n+1−p]ι∗(⋆ω̂), ι∗(⋆ω̂)〉 ≥ σn+1−p|ι
∗(⋆ω̂)|2 = σn+1−p|νy ω̂|

2 (9)

on ∂M . Moreover, because σn+1−p is assumed to be positive along ∂M , we
write

2〈νy ω̂, δ∂Mω〉 =

∣∣∣∣∣∣
σ

1

2

n+1−pνy ω̂ +
1

σ
1

2

n+1−p

δ∂Mω

∣∣∣∣∣∣

2

− σn+1−p|νy ω̂|
2 −

|δ∂Mω|2

σn+1−p

≥ −σn+1−p|νy ω̂|
2 −

|δ∂Mω|2

σn+1−p
,

so that

0 ≥

∫

∂M

(
−
|δ∂Mω|2

σn+1−p
+ 〈S [p]ω, ω〉

)
dµg,

which is Inequality (8).

Assume now (8) to be an equality for some non-zero ω. Let ω̂ be the p-form
on M such that dω̂ = 0 = δω̂ on M and ι∗ω̂ = ω on ∂M ; as mentioned above.
By the sequence of pointwise inequalities used in the above proof of inequality
(8), we can deduce that∇ω̂ = 0 onM , that is ω̂ is parallel onM and, further-
more, δ∂Mω = −σn+1−pνy ω̂ and S [n+1−p]ι∗(⋆ω̂) = σn+1−pι

∗(⋆ω̂) must hold on
∂M . As a straightforward consequence, W [p]ω̂ = 0 onM . Thanks to the iden-
tity S [n+1−p](⋆∂Mα) = −⋆∂MS [p−1]α+nH⋆∂Mα which is valid pointwise for all
(p− 1)-forms α, the latter is equivalent to S [p−1](νy ω̂) = (nH − σn+1−p)νy ω̂
along ∂M . This concludes the proof of Theorem 3.1. �

Remark 3.2 Note that, for 1 ≤ p ≤ n, if the bundle ΛpT ∗M → M is
trivialized by such parallel p-forms ω̂, then on the one hand the manifold M

is flat and, on the other hand, S [p−1] = (nH−σn+1−p)·Id must hold pointwise
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on Λp−1T ∗∂M . The first statement is a consequence from the fact that the
curvature of the manifold M vanishes as soon as that of ΛpT ∗M does. The
second statement comes from the map ΛpT ∗

xM → ΛpT ∗
x∂M ⊕ Λp−1T ∗

x∂M ,
ω 7→ (ι∗ω, ν∧(νyω)), being an isomorphism at any x ∈ ∂M . In case p ≥ 2 (for
p = 1 that identity is trivial because of S [0] = 0 by convention and σn = nH

by definition), this shows that ι : ∂M → M must be totally umbilical.

Next we turn to the case where the boundary of M is assumed to be isomet-
rically immersed in some Euclidean space.

Theorem 3.3 Let (Mn+1, g) be any compact oriented (n + 1)-dimensional
Riemannian manifold with smooth nonempty boundary ∂M . Assume that
W [p] ≥ 0 on M as well as σn+1−p > 0 along ∂M for a given p ∈ {1, . . . , n}.
Assume also that there exists an isometric immersion ι0 : ∂M → R

n+m, with
mean curvature vector H0. Then

∫

∂M

n|H0|
2 − p−1

n(n−1)
Scal∂M

σn+1−p
dµg ≥

∫

∂M

Hdµg, (10)

where Scal∂M denotes the scalar curvature of ∂M . Equality holds in (10)
when M is the (n + 1)-dimensional flat disk D

n+1 standardly embedded in
some (n+ 1)-dimensional affine subspace of Rn+m. Conversely, if (10) is an
equality, ∂M is connected, p ≥ 2 and ι0(∂M) is contained in some (n + 1)-
dimensional affine subspace of Rn+m, then, up to rescaling the metrics on M

and on R
n+m, the manifold M is isometric to the (n + 1)-dimensional flat

disk D
n+1 standardly embedded in that subspace.

Proof: We take the standard coordinates (x1, . . . , xn+m) on R
n+m and, for any

i1, . . . , ip ∈ {1, . . . , n+m}, we denote by dxI := dxi1∧ . . .∧dxip ∈ Λp(Rn+m)∗

and by ωI := ι∗0dxI ∈ Ωp(∂M). Note that, since dxI is exact, so is ωI .
Replacing ω by ωI in (8), we obtain

∫

∂M

|δ∂MωI |
2

σn+1−p

dµg ≥

∫

∂M

〈S [p]ωI , ωI〉dµg. (11)

We now want to deduce from (11) a more explicit inequality. For this, we
sum (11) over I, meaning that we compute the sum

∑n+m
i1,...,ip=1 of both sides;

mind that the indices i1, . . . , ip vary independently and hence are repeated.
On the one hand, by [16, Lemma 2.2],

∑

I

|δ∂MωI |
2 = p!

(
n

p

)
p

(
n|H0|

2 −
p− 1

n(n− 1)
Scal∂M

)
. (12)
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On the other hand, we use the pointwise identity

∑

j

ej ∧ (ejyα) = kα,

which is valid for any k-form α and any pointwise o.n.b. (ej)j of TM or T∂M .
As a straightforward consequence,

n∑

j=1

〈ej ∧ α, ej ∧ β〉 = (n− k)〈α, β〉,

for any k-forms α, β on an n-dimensional space. Thus we may compute the
sum of the r.h.s. of (11) as follows: Let A : T∂M → T∂M be any symmetric
endomorphism of ∂M and denoting by dxT

i := ι∗0dxi and by (ej)1≤j≤n a
pointwise o.n.b. of T∂M , we may write

∑

I

〈A[p]ωI , ωI〉 =

n+m∑

i1,...,ip=1

〈A[p](dxT
i1 ∧ . . . ∧ dxT

ip), dx
T
i1 ∧ . . . ∧ dxT

ip〉

=

n+m∑

i1=1

n+m∑

i2,...,ip=1

n∑

j,k=1

〈dxT
i1, ej〉〈dx

T
i1, ek〉〈A

[p](ej ∧ dxT
i2,...,ip), ek ∧ dxT

i2,...,ip〉

=

n∑

j,k=1

(
n+m∑

i1=1

〈dxi1 , ej〉〈dxi1 , ek〉

)

︸ ︷︷ ︸
δjk

n+m∑

i2,...,ip=1

〈A[p](ej ∧ dxT
i2,...,ip), ek ∧ dxT

i2,...,ip〉

=

n∑

j=1

n+m∑

i2,...,ip=1

〈A[p](ej ∧ dxT
i2,...,ip

), ej ∧ dxT
i2,...,ip

〉

=
n∑

j1,...,jp=1

〈A[p](ej1 ∧ . . . ∧ ejp), ej1 ∧ . . . ∧ ejp〉

= p

n∑

j1,...,jp=1

〈Aej1 ∧ ej2 ∧ . . . ∧ ejp, ej1 ∧ . . . ∧ ejp〉

= p(n− p+ 1)

n∑

j1,...,jp−1=1

〈Aej1 ∧ ej2 ∧ . . . ∧ ejp−1
, ej1 ∧ . . . ∧ ejp−1

〉

= p(n− p+ 1) · · · (n− 1)
n∑

j1=1

〈Aej1 , ej1〉

= p!

(
n

p

)
p

n
tr(A). (13)
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When A = S is the associated Weingarten endomorphism-field, we get that

∑

I

〈S [p]ωI , ωI〉 = p!

(
n

p

)
pH. (14)

Integrating both (12) (after dividing by σn+1−p) and (14) over ∂M , we de-
duce inequality (10) from (11).

If M = D
n+1 is the (n + 1)-dimensional flat disk standardly embedded in

some (n + 1)-dimensional affine subspace of R
n+m, then |H0| = 1 = H ,

σn+1−p = n+1−p and Scal∂M = n(n−1) along ∂M = S
n (the n-dimensional

round sphere of sectional curvature 1), so that (10) is an equality.

Conversely, if (10) is an equality, then for any tuple I, (11) must be an
equality. For any I, we denote by ω̂I the p-form on M such that dω̂I = 0 =
δω̂I on M and ι∗ω̂I = ωI along ∂M ; the existence and uniqueness of ω̂I is
guaranteed by [4, Theorem 2] and the vanishing of H

p
rel(M), see proof of

Theorem 3.1 above. Then Theorem 3.1 implies that, for any I, the p-form
ω̂I is parallel on M , that δ∂MωI = −σn+1−pνy ω̂I and that S [p−1](νy ω̂I) =
(nH − σn+1−p)νy ω̂I hold along ∂M . By (12), this implies

σn+1−p

∑

I

|νy ω̂I |
2 =

∑

I

|δ∂MωI |
2

σn+1−p

= p!

(
n

p

)
p

(
n|H0|

2 − p−1
n(n−1)

Scal∂M

σn+1−p

)
. (15)

Next we show that
∑

I |νy ω̂I |
2 is constant along ∂M . Differentiating along

any X ∈ T∂M and using the fact that ω̂I is parallel on M , we have

X

(
1

2

∑

I

|νy ω̂I |
2

)
=

∑

I

〈∇X(νy ω̂I), νy ω̂I〉

= −
∑

I

〈SXy ω̂I, νy ω̂I〉

= −
∑

I

〈ι∗(SXy ω̂I), νy ω̂I〉

= −
∑

I

〈SXyωI, νy ω̂I〉

= −
∑

I

〈(SXy dxI)
T , νy ω̂I〉.
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In the following, we will prove that the last sum vanishes. For this, we will
express the (p−1)-form νy ω̂I in terms of the data of the immersion ι0 : ∂M →
R

n+m. That identity will be used at several places in the proof. We denote
by II the second fundamental form of ι0. Using [16, Eq. (3.3)], we have that,
for each p-tuple I,

δ∂MωI =

p∑

k=1

(−1)k+1II
[p−1]

dx⊥

ik

(dxT
i1
∧ . . . ∧ d̂xT

ik
∧ . . . ∧ dxT

ip)

−n

p∑

k=1

(−1)k+1〈H0, dx
⊥
ik
〉dxT

i1
∧ . . . ∧ d̂xT

ik
∧ . . . ∧ dxT

ip

=

p∑

k=1

m∑

a=1

(−1)k+1〈dxik , νa〉II
[p−1]
νa (dxT

i1
∧ . . . ∧ d̂xT

ik
∧ . . . ∧ dxT

ip)

−n

p∑

k=1

(−1)k+1〈H0, dxik〉dx
T
i1
∧ . . . ∧ d̂xT

ik
∧ . . . ∧ dxT

ip

=

m∑

a=1

II[p−1]
νa ((νay dxI)

T )− (nH0y dxI)
T , (16)

where (νa)1≤a≤m is a pointwise o.n.b. of T⊥∂M seen as a subspace of Rn+m.
Because of δ∂MωI = −σn+1−pνy ω̂I , we obtain

νy ω̂I = −
1

σn+1−p
·

(
m∑

a=1

II[p−1]
νa ((νay dxI)

T )− (nH0y dxI)
T

)
. (17)

Therefore, in order to show that
∑

I〈(SXy dxI)
T , νy ω̂I〉 = 0, it is suffi-

cient to show that both sums
∑

I〈(SXy dxI)
T ,
∑m

a=1 II
[p−1]
νa ((νay dxI)

T )〉 and∑
I〈(SXy dxI)

T , (nH0y dxI)
T 〉 vanish. Let us make the computation for the

first sum, the second can be done in the same way. We denote by eJ =
ej1∧. . .∧ejp−1

with j1 < j2 < . . . < jp−1 the orthonormal frame of Λp−1T ∗
x∂M

induced by a local orthonormal frame {e1, . . . , en} of T∂M . For any a =

11



1, . . . , m

∑

I

〈(SXy dxI)
T , II[p−1]

νa ((νay dxI)
T )〉 =

∑

I,J

〈(SXy dxI)
T , eJ〉〈II

[p−1]
νa ((νay dxI)

T ), eJ〉

=
∑

I,J

〈SXy dxI , eJ〉〈νay dxI , II
[p−1]
νa (eJ)〉

=
∑

I,J

〈dxI , SX ∧ eJ〉〈dxI , νa ∧ II[p−1]
νa (eJ)〉

=
∑

J

〈SX ∧ eJ , νa ∧ II[p−1]
νa (eJ)〉

= 0,

because of νa ⊥ T∂M . Similarly,
∑

I〈(SXy dxI)
T , (nH0y dxI)

T 〉 = 0 by
H0 ⊥ T∂M . If ∂M is connected, which will be assumed from now on, then∑

I |νy ω̂I |
2 is constant along ∂M . By (15) and the assumption that (10) is

an equality, this constant is given by

∑

I

|νy ω̂I |
2

∫

∂M

σn+1−pdµg = p!

(
n

p

)
p

∫

∂M

n|H0|
2 − p−1

n(n−1)
Scal∂M

σn+1−p

dµg

= p!

(
n

p

)
p

∫

∂M

Hdµg,

that is,
∑

I

|νy ω̂I |
2 = p!

(
n

p

)
p

∫
∂M

Hdµg∫
∂M

σn+1−pdµg

. (18)

Injecting (18) again into (15), we deduce that

n|H0|
2 − p−1

n(n−1)
Scal∂M

σn+1−p
=

∫
∂M

Hdµg∫
∂M

σn+1−pdµg

· σn+1−p. (19)

Note that (19) holds in any codimension m.

Next we look at the space of parallel forms onM . Let ω̂ := (ω̂I)I ∈
⊕

I Ω
p(M).

Fixing a pointwise o.n.b. (ej)1≤j≤n of T∂M , the family

{eJ , ν ∧ eK | 1 ≤ j1 < . . . < jp ≤ n, 1 ≤ k1 < . . . < kp−1 ≤ n}

is a pointwise o.n.b. of ΛpT ∗M . Decomposing each ω̂I in that pointwise ba-
sis and the canonical basis (dxI)I of Λp(Rn+m)∗ (where the p-tuples I are
ordered) respectively allows us to consider ω̂ as a pointwise matrix with

12



(
n+m
p

)
rows and

(
n+1
p

)
columns. Note that, because the pointwise linear map

ι∗0 : Λ
p(Rn+m)∗ → ΛpT ∗∂M is surjective, the (ωI = ι∗0(dxI))I obviously span

ΛpT ∗∂M , which already shows that the
(
n
p

)
first columns of the matrix ω̂,

namely (ω̂I(eJ))I,J , must be linearly independent since that matrix has
(
n
p

)

linearly independent rows. Next we would like to show that the rank of the
whole matrix ω̂ is maximal, i.e. equal to

(
n+1
p

)
.

This already allows for finding expressions for the inner products of columns
of the matrix ω̂. Namely, fix eJ and ν ∧ eK as above, then using Equation
(17), we compute

∑

I

ω̂I(eJ)ω̂I(ν ∧ eK) =
∑

I

〈ω̂I , eJ〉 · 〈νy ω̂I , eK〉

= −
1

σn+1−p

∑

I

〈dxI , eJ〉〈

m∑

a=1

II[p−1]
νa ((νay dxI)

T )

− (nH0y dxI)
T , eK〉

= −
1

σn+1−p

∑

I

〈dxI , eJ〉〈dxI ,

m∑

a=1

νa ∧ II[p−1]
νa eK

− nH0 ∧ eK〉

= −
1

σn+1−p
〈eJ ,

m∑

a=1

νa ∧ II[p−1]
νa eK − nH0 ∧ eK〉

= 0

because of both νa, H0 ⊥ T∂M . This shows that every among the
(

n
p−1

)

last columns of ω̂, corresponding to the matrix (ω̂I(ν ∧ eK))I,K, is pointwise
orthogonal to any of the

(
n
p

)
first ones which correspond to the full-ranked

matrix (ω̂I(eJ))I,J .
We now look at the rank of the matrix (ω̂I(ν∧eK))I,K . For any (p−1)-tuples

13



J,K, we compute

∑

I

ω̂I(ν ∧ eJ)ω̂I(ν ∧ eK) =
∑

I

〈νy ω̂I , eJ〉〈νy ω̂I , eK〉

=
1

σ2
n+1−p

∑

I

〈dxI ,

m∑

a=1

νa ∧ II[p−1]
νa eJ − nH0 ∧ eJ〉

· 〈dxI ,

m∑

a=1

νa ∧ II[p−1]
νa eK − nH0 ∧ eK〉

=
1

σ2
n+1−p

〈

m∑

a=1

νa ∧ II[p−1]
νa eJ − nH0 ∧ eJ ,

m∑

a=1

νa ∧ II[p−1]
νa eK − nH0 ∧ eK〉

=
1

σ2
n+1−p

( m∑

a=1

〈II[p−1]
νa eJ , II

[p−1]
νa eK〉

− 2〈II
[p−1]
nH0

(eJ ), eK〉+ n2|H0|
2〈eJ , eK〉

)
.

Here we notice that, in the particular case where all IIνa are simultane-
ously diagonalizable, i.e. if [IIνa, IIνb] = 0 for all a, b, we can choose (ej)1≤j≤n

so as to simultaneously diagonalize all IIνa . Then it is easy to show that∑
I ω̂I(ν ∧ eJ )ω̂I(ν ∧ eK) = 0 for all J 6= K. However, the

∑
I ω̂I(ν ∧ eJ)

2

cannot be shown to be positive. This means that, even if [IIνa , IIνb ] = 0 for all
a, b, one column of the matrix (ω̂I(ν ∧ eK))I,K may vanish, in which case ω̂

will not be of full rank.

From now on we furthermore assume that ι0(∂M) ⊂ V , where V is an (n+1)-
dimensional affine subspace of Rn+m. Choosing a pointwise o.n.b. (νa)1≤a≤m

of T⊥∂M ⊂ R
n+m such that ν1 ∈ V and νa ⊥ V for all a ≥ 2, we obviously

have IIνa = 0 for all a ≥ 2 since V ⊂ R
n+m is totally geodesic. Therefore,

choosing (ej)1≤j≤n as an eigenbasis for the endomorphism IIν1 of T∂M , we
have IIν1ej = κjej for all 1 ≤ j ≤ n and the sum

∑
I ω̂I(ν ∧ eJ )ω̂I(ν ∧ eK)

14



computed above simplifies to

∑

I

ω̂I(ν ∧ eJ)ω̂I(ν ∧ eK) =
1

σ2
n+1−p

(
〈II[p−1]

ν1
eJ , II

[p−1]
ν1

eK〉

− 2〈IInH0
(eJ), eK〉+ n2|H0|

2〈eJ , eK〉
)

=
1

σ2
n+1−p

(
(
∑

j∈J

κj)
2

− 2〈nH0, ν1〉(
∑

j∈J

κj) + 〈nH0, ν1〉
2
)
δJK

=
1

σ2
n+1−p

(∑

j∈J

κj − 〈nH0, ν1〉

)2

δJK

=
1

σ2
n+1−p


∑

j /∈J

κj




2

δJK ,

where δJK = 0 if J 6= K and 1 if J = K. Now since ι0 : ∂M → V is an iso-
metric immersion of an n-dimensional manifold into an (n + 1)-dimensional
Euclidean space, there exists a point x ∈ ∂M for which κj(x) > 0 for all
1 ≤ j ≤ n holds, see e.g. [6, p. 255]. At that point x, we can conclude that∑

I ω̂I(ν ∧ eJ )ω̂I(ν ∧ eK) > 0 if J = K and vanishes otherwise. Therefore the
columns of (ω̂I(ν ∧ eK))I,K form an orthogonal system of nonzero vectors at
x, from which can be deduced that the whole matrix ω̂ has full rank

(
n+1
p

)

at x. In turn, this implies that, at x, there are
(
n+1
p

)
linearly independent

rows in ω̂, that is
(
n+1
p

)
linearly independent ω̂I . Necessarily there must exist(

n+1
p

)
linearly independent parallel forms among the ω̂I on M , which is the

maximal number allowed. As a first consequence, (Mn+1, g) must be flat (re-
member that 1 ≤ p ≤ n). As a second consequence, at each point of ∂M , the
family (νy ω̂I)I must span Λp−1T ∗∂M , so that ι : ∂M → M must be totally
umbilical by the identity S [p−1](νy ω̂I) = (nH−σn+1−p)νy ω̂I for all I and the
assumption p ≥ 2, see Remark 3.2. Since M is flat and ι is totally umbilical
in the Einstein manifold M , the mean curvature H must be constant – and
positive because of (n + 1 − p)H ≥ σn+1−p > 0. Up to rescaling g on M as
well as the Euclidean metric on R

n+m, it may be assumed that H = 1 along
∂M . By [14, Theorem 13], because (Mn+1, g) is flat, ι is totally umbilical
and with constant mean curvature 1, the manifold (Mn+1, g) must be iso-
metric to the (n + 1)-dimensional flat disk. Moreover, identity (19) implies
that |H0| = 1 = H along ∂M . But then by the proof of the equality case in
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[13, Theorem 1.2], there exists an isometric immersion M → V extending ι.
Since ∂M ∼= S

n has constant sectional curvature 1, the immersion ι0 must
be an embedding by standard results due to Hadamard and Cohn-Vossen,
see e.g. [3]. Again by the proof of [13, Theorem 1.2], the above isometric
immersion M → V extending ι is an embedding. This shows that (Mn+1, g)
is isometric to the (n + 1)-dimensional flat disk standardly embedded in V .
This concludes the proof of Theorem 3.3. �

Remarks 3.4

1. For p = 1, Inequality (10) reads
∫

∂M

|H0|
2

H
dµg ≥

∫

∂M

Hdµg (20)

assuming Ric = W [1] ≥ 0 on M as well as H = σn

n
> 0 on ∂M . This is

precisely the inequality established by Miao and Wang in [13, Theorem
1.2] whenH > 0. Actually, Inequality (20) implies (10) for all 1 ≤ p ≤ n

if not only σn+1−p > 0 and W [p] ≥ 0 are assumed but also Ric ≥ 0. The
Gauß formula for curvature implies Scal∂M = n2|H0|

2− |II|2 along ∂M .
The Cauchy-Schwarz inequality yields |II|2 ≥ n|H0|

2, so that Scal∂M ≤
n(n − 1)|H0|

2. Fix now p ∈ {1, . . . , n} and assume σn+1−p > 0 along
∂M . Because of

σn+1−p

n+1−p
≤ H , we can deduce that H > 0 along ∂M and

that

n|H0|
2 − p−1

n(n−1)
Scal∂M

σn+1−p

≥
n|H0|

2 − (p− 1)|H0|
2

σn+1−p

≥
|H0|

2

H

holds along ∂M . Therefore, inequality (10) can be deduced from inequa-
lity (20) if Ric ≥ 0 is also assumed. Mind however that our assumption
W [p] ≥ 0 differs from Ric ≥ 0 for 2 ≤ p ≤ n − 1, so that (10) cannot
be deduced from [13, Theorem 1.2] in general.

2. According to [14, Theorem 9], given a compact Riemannian manifold
(Mn+1, g) such that W [p] ≥ 0 for some 1 ≤ p ≤ n+1

2
and with boundary

∂M isometric to the unit round sphere, then M must be isometric to
the Euclidean unit ball as soon as σp ≥ p. Actually this holds true for
an arbitrary p ∈ {1, . . . , n}. Namely if ∂M is isometric to the round
sphere S

n, then by taking ι0 : S
n → R

n+1 the standard embedding, we
get, under the condition σn+1−p > 0 together with the identities H0 = 1
and Scal∂M = n(n− 1):

∫

∂M

n− p+ 1

σn−p+1

dµg ≥

∫

∂M

H dµg.
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Therefore, if σn+1−p ≥ n + 1 − p, then H ≥ 1 and the last inequality
is an equality, therefore M must be isometric to flat Dn+1 by Theorem
3.3.

In the following, we consider the case where W [p] ≥ p(n − p + 1)κ for some
nonvanishing real number κ.

Theorem 3.5 Let (Mn+1, g) be any compact oriented (n + 1)-dimensional
Riemannian manifold with smooth nonempty boundary ∂M . Fix p ∈ {1, . . . , n}
and assume that W [p] ≥ p(n+ 1− p)κ on M for some number κ 6= 0 as well
as σn+1−p > 0 along ∂M . Then, for any (p− 1)-form α on ∂M , we have

∫

∂M

|δ∂Md∂Mα− p(n+1−p)κ
2

α|2

σn+1−p
dµg ≥

∫

∂M

〈S [p]d∂Mα, d∂Mα〉dµg,

with equality if and only if α = 0.

Proof: As in Theorem 3.1, we take the exact form ω = d∂Mα and consider
the extension α̂ on M such that δdα̂ = 0 on M with ι∗α̂ = α along ∂M .
The form ω̂ = dα̂ satisfies dω̂ = 0, δω̂ = 0 on M and ι∗ω̂ = ω. We now
apply identity (6) to ω̂ to get after using that 〈W [p]ω̂, ω̂〉 ≥ p(n+1−p)κ|ω̂|2,
Inequality (9) and the fact |∇ω̂|2 ≥ 0:

0 ≥ p(n+ 1− p)κ

∫

M

|ω̂|2dµg

+

∫

∂M

(
2〈νy ω̂, δ∂Mω〉+ 〈S [p]ω, ω〉+ σn+1−p|νyω̂|

2
)
dµg.

Now, by Stokes formula, we have that

∫

M

|ω̂|2dµg =

∫

M

〈α̂, δdα̂︸︷︷︸
0

〉dµg −

∫

∂M

〈ι∗α̂, νydα̂〉dµg = −

∫

∂M

〈α, νyω̂〉dµg.

Therefore, implementing this last equality into the previous inequality yields

0 ≥

∫

∂M

(
2〈νy ω̂, δ∂Mω −

p(n+ 1− p)κ

2
α〉

+〈S [p]ω, ω〉+ σn+1−p|νyω̂|
2
)
dµg.
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Because σn+1−p is assumed to be positive along ∂M , we write the cross term

t(ω) := 2〈νy ω̂, δ∂Mω − p(n+1−p)κ
2

α〉 as

t(ω) =

∣∣∣∣∣∣
σ

1

2

n+1−pνy ω̂ +
1

σ
1

2

n+1−p

(δ∂Mω −
p(n+ 1− p)κ

2
α)

∣∣∣∣∣∣

2

−σn+1−p|νy ω̂|
2 −

|δ∂Mω − p(n+1−p)κ
2

α|2

σn+1−p

≥ −σn+1−p|νy ω̂|
2 −

|δ∂Mω − p(n+1−p)κ
2

α|2

σn+1−p
. (21)

Thus, we deduce after replacing ω by d∂Mα that

0 ≥

∫

∂M

(
−
|δ∂Md∂Mα− p(n+1−p)κ

2
α|2

σn+1−p
+ 〈S [p]d∂Mα, d∂Mα〉

)
dµg,

which is the required inequality. Notice that, if equality in the last inequality
occurs, then ω̂ is parallel, which implies 0 = 〈W [p]ω̂, ω̂〉 = p(n + 1− p)κ|ω̂|2

and thus ω̂ = 0. In turn this yields ω = 0 and, because of p(n+ 1− p)κ 6= 0,
also α = 0. This ends the proof. �

In the following, we will consider a compact Riemannian manifold (Mn+1, g)
and assume further that its boundary is immersed into the round sphere
S
n+m(κ) of curvature κ.

Theorem 3.6 Let (Mn+1, g) be any compact oriented (n + 1)-dimensional
Riemannian manifold with smooth nonempty boundary ∂M . Assume that
W [p] ≥ p(n+1−p)κ on M for some number κ > 0 as well as σn+1−p > 0 along
∂M for a given p ∈ {1, . . . , n}. Assume also that there exists an isometric
immersion ι0 : ∂M → S

n+m(κ), with mean curvature vector H0. Then

∫

∂M

n|H0|
2 − p−1

n(n−1)
Scal∂M + (np−(p−1)(p−4))κ

4

σn+1−p
dµg >

∫

∂M

Hdµg,

where, as before, Scal∂M denotes the scalar curvature of ∂M .

Proof:We will follow the same idea as in Theorem 3.3. Let ι1 : ∂M → R
n+m+1

be the isometric immersion with mean curvature vector H1, which is the
composition of the standard embedding S

n+m(κ) →֒ R
n+m+1 with ι0. Let us

denote by dxI := dxi1 ∧ . . . ∧ dxip ∈ Λp(Rn+m+1)∗ and by ωI := ι∗1dxI ∈
Ωp(∂M). Let αI the (p−1)-form on ∂M given by αI = xi1 |∂MdxT

i2 ∧ . . .∧dxT
ip

18



where dxT
i = ι∗1dxi. Clearly, we have that ωI = d∂MαI . Now Theorem 3.5

applied to αI gives that

∫

∂M

|δ∂MωI −
p(n+1−p)κ

2
αI |

2

σn+1−p
dµg ≥

∫

∂M

〈S [p]ωI , ωI〉dµg. (22)

Next, we want to sum (22) over I. First the sum of the r.h.s over I is equal
to p!

(
n
p

)
pH by (14). Now, for the l.h.s., we compute the sum

s :=
∑

I

|δ∂MωI −
p(n + 1− p)κ

2
αI |

2

as follows:

s =
∑

I

(|δ∂MωI |
2 +

p2(n+ 1− p)2κ2

4
|αI |

2

−p(n + 1− p)κ〈δ∂MωI , αI〉)

(12)
= p!

(
n

p

)
p

(
n|H1|

2 −
p− 1

n(n− 1)
Scal∂M

)

+
p2(n + 1− p)2κ

4

∑

i2,...,ip

|dxT
i2
∧ . . . ∧ dxT

ip |
2

−p(n + 1− p)κ
∑

I

〈δ∂MωI , αI〉. (23)

Here H1 is the mean curvature of ι1 which is related to the one of ι0 by
|H1|

2 = |H0|
2 + κ. Moreover,

n+m+1∑

i1

x2
i1
=

1

κ

since ι0(∂M) ⊂ S
n+m(κ), sphere of radius κ− 1

2 . In order to compute the
last two sums in the above equality, we take A = Id in (13), and thus,
A[p−1] = (p− 1)Id and tr(A) = n, to get that

∑

i2,...,ip

|dxT
i2 ∧ . . . ∧ dxT

ip|
2 = (p− 1)!

(
n

p− 1

)
.

On the other hand, denoting by II the second fundamental form of the im-
mersion ι1 : ∂M → R

n+m+1, we get from Equation (16) that

∑

I

〈δ∂MωI , αI〉 =
∑

i1,...,ip

xi1〈
m+1∑

a=1

II[p−1]
νa ((νay dxI)

T )−(nH1y dxI)
T , dxT

i2
∧. . .∧dxT

ip〉
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= −κ− 1

2

∑

i2,...,ip

〈
m+1∑

a=1

II[p−1]
νa

(
(νay (ν1 ∧ dxi2 ∧ . . . ∧ dxip))

T
)
, dxT

i2
∧ . . . ∧ dxT

ip〉

+κ− 1

2 〈(nH1y (ν1 ∧ dxi2 ∧ . . . ∧ dxip))
T , dxT

i2
∧ . . . ∧ dxT

ip〉.

In the second equality, we use the fact that, in the local orthonormal basis
{νa}a=1,...,m+1 of T⊥∂M for the immersion ι1 : ∂M → R

n+m+1, it may be

assumed that ν1 = −κ
1

2

∑
i1
xi1dxi1 which is the inner unit normal vector

field for the standard immersion S
n+m(κ) → R

n+m+1. Hence, we proceed

∑

I

〈δ∂MωI , αI〉 = −κ− 1

2

∑

i2,...,ip

〈II[p−1]
ν1

(dxT
i2
∧ . . . ∧ dxT

ip), dx
T
i2
∧ . . . ∧ dxT

ip〉

+κ− 1

2 〈nH1, ν1〉
∑

i2,...,ip

|dxT
i2
∧ . . . ∧ dxT

ip |
2

(13)
= −κ− 1

2 (p− 1)!

(
n

p− 1

)
p− 1

n
tr(IIν1)

+κ− 1

2 〈nH1, ν1〉(p− 1)!

(
n

p− 1

)

= (p− 1)!

(
n

p− 1

)
n− p+ 1

n
κ− 1

2 〈nH1, ν1〉.

Now, the second fundamental form II of the immersion ι1 is the sum of the one
of ι0 and the one of the isometric immersion S

n+m(κ) → R
n+m+1. Therefore,

〈II(X, Y ), ν1〉 = κ
1

2g(X, Y ) for any X, Y ∈ T∂M . Thus, by tracing over an

orthonormal frame of T∂M , we get 〈nH1, ν1〉 = nκ
1

2 . Then

∑

I

〈δ∂MωI , αI〉 = (p− 1)!

(
n

p− 1

)
(n− p+ 1).
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Inserting this last computation into (23), we finally deduce that

s = p!

(
n

p

)
p

(
n|H0|

2 + nκ−
p− 1

n(n− 1)
Scal∂M

)

+
p2(n− p+ 1)2κ

4
(p− 1)!

(
n

p− 1

)
− p!(n− p+ 1)2κ

(
n

p− 1

)

= p!

(
n

p

)
p

(
n|H0|

2 + nκ−
p− 1

n(n− 1)
Scal∂M

)

+(p− 1)!

(
n

p− 1

)
p (p− 4) (n− p+ 1)2κ

4

= p!

(
n

p

)
p
(
n|H0|

2 + nκ−
p− 1

n(n− 1)
Scal∂M +

(p− 4)(n− p+ 1)κ

4

)

= p!

(
n

p

)
p
(
n|H0|

2 −
p− 1

n(n− 1)
Scal∂M +

(np− (p− 1)(p− 4))κ

4

)
.

Integrating the last identity and applying Inequality (22) after simplifying
by p!

(
n
p

)
p, we obtain the desired inequality. If equality holds, then for every

multi-index I, necessarily αI = 0 must hold by Theorem 3.5. But, pointwise,
the αI ’s span Λp−1T ∗∂M , therefore we obtain a contradiction. This shows
that the inequality we obtained is strict and concludes the proof of Theorem
3.6. �

4 A Ros-type inequality for differential forms

In this section, we will generalize the Ros inequality stated in [15, Theorem
1] to the set-up of differential forms.

Theorem 4.1 Let (Mn+1, g) be any compact oriented (n + 1)-dimensional
Riemannian manifold with smooth nonempty boundary ∂M . Fix p ∈ {2, . . . , n}
and assume that the (p− 1)th relative de Rham cohomology group is reduced
to zero, W [p] ≥ 0 on M as well as σn+1−p > 0 along ∂M . Assume also the
existence of a nonzero parallel (p− 1)-form ω0 on M , whose constant length
may be assumed to be 1. Then

(n+ 2− p)Vol(M, g) ≤ (n+ 1− p)

∫

∂M

|ι∗ω0|
2

σn+1−p
dµg. (24)

If equality in (24) is realized, then under the assumptions that Ric ≥ 0 (when
p ≥ 3) and the mean curvature H is constant, the manifold M is the (n+1)-
dimensional flat disk D

n+1.
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Proof: Since we assumed that Hp−1
rel (M) = 0, [17, Theorem 3.2.5] implies the

existence of a p-form ω on M with dω = 0, δω = ω0 on M as well as ι∗ω = 0
along ∂M . We apply (6) to ω. First, because dω = 0, it follows from [7,
Lemme 6.8] that

|∇ω|2 ≥
|δω|2

n− p+ 2
, (25)

and since |δω|2 = |ω0|
2 = 1 and W [p] ≥ 0 on M , we have

∫

M

(
|dω|2 + |δω|2 − |∇ω|2 − 〈W [p]ω, ω〉

)
dµg ≤

∫

M

(
1−

1

n+ 2− p

)
dµg

=
n + 1− p

n + 2− p
Vol(M, g).

Moreover δ∂M (ι∗ω) = 0, S [p]ι∗ω = 0 and

〈S [n+1−p]ι∗(⋆ω), ι∗(⋆ω)〉 ≥ σn+1−p|νyω|
2.

Therefore, (6) yields

n+ 1− p

n+ 2− p
Vol(M, g) ≥

∫

∂M

σn+1−p|νyω|
2dµg.

Now partial integration together with Cauchy-Schwarz inequality give

Vol(M, g) =

∫

M

〈δω, ω0〉dµg

=

∫

M

〈ω, dω0︸︷︷︸
0

〉dµg +

∫

∂M

〈νyω, ι∗ω0〉dµg

=

∫

∂M

〈σ
1

2

n+1−pνyω,
ι∗ω0

σ
1

2

n+1−p

〉dµg

≤

(∫

∂M

σn+1−p|νyω|
2dµg

) 1

2

·

(∫

∂M

|ι∗ω0|
2

σn+1−p
dµg

) 1

2

, (26)

so that ∫

∂M

σn+1−p|νyω|
2dµg ≥

Vol(M, g)2∫
∂M

|ι∗ω0|2

σn+1−p
dµg

.

Injecting that inequality in the last one involving the volume of M , we obtain
(24). Assume now equality in (24) is attained, then equality holds in (25) so
that

∇Xω = −
1

n− p+ 2
X ∧ δω (27)
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for all X ∈ TM . Also, we have that S [n+1−p]ι∗(⋆ω) = σn+1−pι
∗(⋆ω), which

from the identity ∗∂MS [p−1]+S [n−p+1]∗∂M = nH∗∂M valid on (p−1)-forms on
∂M [14, p. 624], is equivalent to saying that S [p−1](νyω) = (nH−σn+1−p)νyω.
The Cauchy-Schwarz inequality in (26) is an equality and, thus, we get that
ι∗ω0 = cσn+1−pνyω for some constant c. The constant c can be determined
by just replacing the last identity into (24) and the second equality in (26)
to deduce that c = n+2−p

n+1−p
. Now, from [14, Lemma 18], we get

d∂M(νyω) = −νydω + ι∗(∇νω)− S [p]ι∗ω = 0. (28)

Here, we use that dω = 0, S [p]ι∗ω = 0 and that the tangential part of ∇νω =
− 1

n−p+2
ν ∧ δω is zero as well. On the other hand, we have that δ∂M(νyω) =

−νyδω = −νyω0. Hence, using (28), we get that

∆∂M (νyω) = −d∂M(νyω0)

= νydω0 − ι∗(∇νω0) + S [p−1]ι∗ω0

= cσn+1−p(nH − σn+1−p)νyω.

Taking now the L2-scalar product of the last identity with νyω yields the
following

c

∫

∂M

σn+1−p(nH − σn+1−p)|νyω|
2 =

∫

∂M

|δ∂M(νyω)|2dµg

=

∫

∂M

|νyω0|
2dµg

= Vol(∂M, g)−

∫

∂M

|ι∗ω0|
2dµg

= Vol(∂M, g)− c2
∫

∂M

σ2
n+1−p|νyω|

2dµg.

Hence, we deduce that

Vol(∂M, g) = c

∫

∂M

σn+1−p(nH + (c− 1)σn+1−p)|νyω|
2dµg.

Now, the second equality in (26) gives that

Vol(M, g) = c

∫

∂M

σn+1−p|νyω|
2dµg.
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Hence, after replacing c by n+2−p
n+1−p

, we deduce that

Vol(∂M, g)

Vol(M, g)
=

∫
∂M

σn+1−p(nH +
σn+1−p

n+1−p
)|νyω|2dµg∫

∂M
σn+1−p|νyω|2dµg

≤

∫
∂M

σn+1−p(nH +H)|νyω|2dµg∫
∂M

σn+1−p|νyω|2dµg

= (n + 1)H.

The last equality uses the assumption that the mean curvature H is constant.
Therefore, we are in the equality case of Ros inequality [15, Theorem 1]. This
allows to deduce the proof. �

Note that, when p = 1, the assumptions of Theorem 4.1 reduce to Ric ≥ 0
on M as well as H > 0 along ∂M , in which case (24) reads

∫

∂M

1

H
dµg ≥ (n+ 1)Vol(M, g),

which is exactly the Ros inequality from [15, Theorem 1].

Remark 4.2 Let us consider the particular case where Mn+1 is a domain
in the Euclidean space R

n+1. For any p, we take i1, . . . , ip−1 ∈ {1, . . . , n+ 1}
such that i1 < i2 < . . . < ip−1 and denote by ω0 := dxi1 ∧ . . . ∧ dxip−1

the
parallel (p− 1)-form in Λp−1(Rn+1)∗ which is of norm 1. By Theorem 4.1, we
have

(n + 2− p)Vol(M, g) ≤ (n+ 1− p)

∫

∂M

|dxT
i1
∧ . . . ∧ dxT

ip−1
|2

σn+1−p
dµg.

Summing over i1 < i2 < . . . < ip−1, we get that

(
n + 1

p− 1

)
(n+ 2− p)Vol(M, g) ≤ (n+ 1− p)

∫

∂M

(
n

p−1

)

σn+1−p
dµg.

Here, we use that, by Equation (13) for A = Id,

∑

i1<i2<...<ip−1

|dxT
i1
∧ . . . ∧ dxT

ip−1
|2 =

1

(p− 1)!

∑

i1,i2,...,ip−1

|dxT
i1
∧ . . . ∧ dxT

ip−1
|2

=

(
n

p− 1

)
.
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Hence, we deduce that

(n + 1)Vol(M, g) ≤ (n + 1− p)

∫

∂M

1

σn+1−p
dµg,

which actually can be deduced from Ros inequality using σn+1−p

n+1−p
≤ H .
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