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1 Introduction

This article can be seen as a step in understanding the general effect of the
curvature operator of the interior of a manifold with boundary on the topo-
logy and the geometry of its boundary. To motivate our precise setting, let us
recall some previous works in this area. In [18], inspired by questions arising
in general relativity such as the positivity of the Brown-York quasi-local mass
[2], Shi and Tam shed light on how the scalar curvature affects the total mean
curvature of the boundary. Namely, if (M™"! g) is a compact Riemannian
spin manifold — for basics on spinors and Dirac operators, see e.g. [1,[5, 8, 10] —
with nonnegative scalar curvature such that its boundary can be isometrically
embedded into the Euclidean space as a strictly convex hypersurface, then
the total mean curvature of the boundary cannot be greater than the one of
the Euclidean embedding. More precisely, if H (resp. Hy) denotes the mean
curvature of the boundary 0M in M (resp. in the Euclidean space) then

Hdp, < / Hydp,g, (1)
oM oM

and the equality is attained if and only if the manifold M is isometric to a
domain in the Euclidean space. This result has a lot of deep and important
consequences both in mathematics and physics. In particular, although its
proof relies on the Positive Mass Theorem (PMT), it is shown to be actually
equivalent to this famous result of mathematical general relativity.

In the same spirit and with an alternative method, Hijazi and Montiel [9]
showed that an inequality similar to ([II) can be deduced from a general inte-
gral inequality which holds for any spinor field defined on OM. Such inequa-
lities will be referred to as Poincaré type inequalities in the following. More
precisely, they proved that if (M™*! g) is a compact Riemannian spin ma-
nifold with mean convex smooth boundary OM (endowed with the induced
Riemannian and spin structures) and if D denotes the Dirac operator acting
on the spinor bundle >0M over OM, then

2

n | D¢
| Hipldp, < /
4 Jonr "= Jonr H

| 2

dpig (2)

for all ¢ € I'(X0M). When the boundary dM can be isometrically immersed
into another Riemannian spin manifold carrying a parallel spinor ¢ with
mean curvature Hy, the restriction of such a spinor field to OM provides a
solution to the Dirac equation

Dy = gHogo and lp| = 1.



Using this spinor field in the inequality () yields

2

H
Hdp, < / ?0 dpg (3)
oM oM

and equality is characterized by both immersions having the same shape ope-
rators. Even if this inequality is a straightforward consequence of ([Il) and the
Cauchy-Schwarz inequality, it has interesting counterparts. First, it holds un-
der less stringent conditions since it only requires mean convexity while strict
convexity is needed in the Shi-Tam inequality. Moreover, the assumption of
existence of an isometric immersion in the Euclidean space is relaxed to allow
more general ambient spaces, which include, among others, Calabi-Yau and
hyperkéahler manifolds. A further interesting property is that, although the
proof of the inequality ([B]) does not use the PMT, it still implies this result,
at least in the case n = 2.

Motivated by those results, Miao and Wang [13] considered the same geome-
tric set-up as before but without assuming the spin condition. They showed
that inequalities similar to (B]) could be proved by requiring a lower bound,
say K, on the Ricci curvature of the Riemannian manifold (M™!, g) instead
of the scalar curvature. The condition on the Ricci curvature comes naturally
in this context and, in a first step, a Poincaré type inequality [I3, Theorem
2.1] can be established via the Reilly formula and which reads as

1
S (A —tf)?
| svrvnan< [ Gar-inta, )

for any smooth function f on OM, any constant ¢ < %K , and where A is the
Laplace operator acting on functions on M and S is the second fundamental
form of OM in M. Assuming furthermore the existence of an isometric im-
mersion X : M — R™ of OM into some Euclidean space R™ with m > n+1
and using the components z; of this immersion in {) for all j = 1,...,m,
Miao and Wang deduced that

| Hol”
Hdp, < H dpig (5)
oM oM

where ﬁo is the mean curvature vector of the immersion X. Note that the
existence of such an immersion is guaranteed by the Nash embedding theo-
rem. As a corollary of that inequality, Miao and Wang obtain rigidity results
for manifolds with boundary and Ricci curvature bounded from below. It is
also important to note that the inequality () has a natural physical inter-
pretation since, as noticed in [I1I, 12], it appears in the second variation of
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the Wang-Yau quasi-local mass [19].

In the present article, we generalize (@) to differential forms of arbitrary de-
gree, assuming suitable but very general curvature conditions on the interior
as well as on the boundary of the manifold, see inequality () in Theorem B.1]
as well as Theorem B3 The special case where () is an equality turns out to
be very rigid, imposing restrictions on the differential form and the geometry
of the underlying manifold. In view of the Shi-Tam inequality, we look at the
particular case where the boundary is isometrically immersed in Euclidean
space and are able to both simplify the inequality and deduce a rigidity result
extending Miao and Wang’s one in case the boundary is one-codimensional
in some affine subspace, see Theorem When the boundary can be im-
mersed in a round sphere, the corresponding inequality turns out to be strict,
see Theorem B.6l In a next step, we adapt to the differential-form-framework
the celebrated Ros inequality [I5, Theorem 1] involving the integral of the
inverse of the mean curvature over the boundary. Assuming the existence of a
nonzero parallel form on the manifold, a new inequality relating the integral
of the inverse of some o,-curvature on the boundary with the volume of the
manifold can be deduced from the so-called Reilly formula, see Theorem [4.1]

The article is structured as follows. After preliminaries about basic formulae
and notations in Section 2] the main Poincaré-type inequality (&) is presented
and proved in Section [3l When the boundary can be isometrically immersed
in Euclidean space, the inequality can be simplified as we mentioned above,
while the case where the interior curvature condition is relaxed is presented
in Theorem BAl In Section @] a differential-form-version of the Ros inequality
is established.

Acknowledgment: We are very grateful to the Mathematisches Forschungs-
institut Oberwolfach (MFO) and the Centre International de Rencontres Ma-
thématiques (CIRM, Luminy) where most of the work was carried out. The
second-named author also thanks the Alfried Krupp Wissenschaftskolleg for
its support.

2 Preliminaries and notations

In this section, we briefly introduce the geometric setting and fix the nota-
tions of this paper.

Let (M™! g) be a compact oriented (n + 1)-dimensional Riemannian ma-



nifold with smooth nonempty boundary OM and let : OM — M be the
inclusion map. Let dji, be the Riemannian measure induced by g on both M
and OM. In the following, any metric — being g on T'M or any metric induced
by g on further bundles — will be denoted by (-, -), with associated pointwise
norm | - |. Let v denote the inward unit normal along OM and S := —Vv be
the associated Weingarten endomorphism-field, where V denotes the Levi-
Civita connection on T'M. Let H := %tr(S ) denote the mean curvature of
OM in M. For any integer p € {0,...,n+ 1}, let QP(M) = I'(APT*M) be
the space of differential forms of degree p on M, that is the space of sections
of the exterior bundle APT*M — M. Let x: APT*M — A"*'=PT*M denote
the pointwise Hodge star operator. For any (1, 1)-tensor A and p-form w, let
AlPly be the p-form that is pointwise defined by the following identity: for all
tangent vectors Xi,..., X,

p

(APlw) (X, X)) =) w(Xy, ... AX

j,...7

X,).

J=1

In the particular case where A = S, we denote for each k € {1,...,n} by oy
the pointwise k-curvature of OM, that is the sum of the k smallest principal
curvatures (i.e., the eigenvalues of ) of 9M. Note that, since the eigenvalues
of S are the sums of exactly p among the n principal curvatures,

(8P, w) > oplw?

for any w € APT*OM, with equality if and only if SPlw = o,w. Moreover, for
all 1 < p < ¢ <n, we have % < %, with equality when p < ¢ if and only if
the ¢ smallest principal curvatures are equal.

Let d resp. § denote the exterior derivative resp. codifferential on p-forms and
V be the covariant derivative induced by V on APT*M. Recall the so-called
Reilly formula [14, Theorem 3] for differential p-forms with p > 1: for any
we QP (M),

/ (Jdw|® + [dw]* = |Vw|* — <W[p]w,w>) dug

M

= / (2(vaw, M (w)) + (Sl e, ¥ w) + (SRl (ww), (xw))) dpg,(6)
oM

where 6™ denotes the codifferential on M and WP the curvature term

involved in the Weitzenbock formula for p forms: denoting by A := dd + dd
the Hodge Laplace operator on p-forms,

Aw = V*Vw + WPy



for any p-form w. By convention, we let W = 0 and S/ = 0 for all p < 0.
Note that [14, Theorem 3]

(SPHPl* (hw), 1 (hw)) = nH [vow|? — (SP U (vow), voaw), (7)

for any p-form w.

3 A Poincaré-type inequality for p-forms

We first prove a generalized version of the integral inequality for functions
obtained by Miao and Wang in [13, Eq. (1.3)]:

Theorem 3.1 Let (M™" g) be any compact oriented (n + 1)-dimensional
Riemannian manifold with smooth nonempty boundary OM. Fizp € {1,...,n}
and assume that WP > 0 on M as well as 0,11, > 0 along OM. Then, for
any ezxact p-form w on M, we have

58Mw 2
/ | | duQZ/ (SPlw, wydp,. (8)
B oM

M On+l—p

Moreover, if [8) is an equality for some non-zero w, then for the p-form & on
M satisfying do = 0 = dw on M as well as *& = w on OM, the identities
My = —0pq praw, SPU(ad) = (nH — 0,11_)va @ hold along OM and
the p-form & must be parallel — hence WP\ = 0 must hold — on M.

Proof: The proof mainly follows that of [I4, Theorem 5. Let w be an exact
p-form on OM, that is w = d® « for some o € QP~1(OM). By [4, Theorem 2],
there exists a (p—1)-form & on M such that dda = 0 on M with t*& = « along
OM. Let w := da € (M), then w satisfies dw = 0, dw = dd& = 0 on M with
' = 1*(d&) = w along OM. Actually such a p-form w on M with do =0 =
0w on M as well as t*@w = w along M is uniquely determined by w. Namely,
because of W) > 0 by assumption and the property *WPrx—1 = WWinti-rl
we know that W+1=21 > 0. Together with the assumption Onti—p > 0 we
can deduce from [14, Theorem 4] that H!:'"P(M) = 0 holds, where

HE (M) == {a € Q"(M)|da=0=0a and via =0}

is, for every 0 < k < n+1, the k*" absolute de Rham cohomology group. By
Poincaré duality, H¥ (M) = H"7%(M), where

abs rel

Hk

rel

(M) :={ace QF(M) |da = 0 = 6 and Fa=0}



is the k' relative de Rham cohomology group. Therefore, H” (M) = 0, so

rel
that @ is uniquely determined by w.

We apply identity (@) to @: since dwo = 6w = 0 by construction of & and
(WG, &) > 0 by assumption, as well as |[V&|? > 0, we have from (@) that

0> / (2(va@, 8Mw) + (SPlw, W) + (SIHI=Pl (x), (*@))) dpg.
oM

By definition of the k-curvatures and the identity *(xw) = (—=1)Pva*x(vow) =
*xom (Vow), we have

(ST (k) 1 (50)) > Ot (G0)[* = O1p Vo @] )

on OM. Moreover, because 0,41, is assumed to be positive along OM, we
write

2

~ SOM 3 - L com e [0%Mw)?
22w, 07 w) = |og raw+ — 0Mw| — opg1plvow|” —
0'5 0n+1—p
n+1—p
o |58Mw|2
> _O-n+1*p‘y—lw| - )
On+1—p
so that 5OM, 2
w
02/ (—ujL(S[p]w,w))dug,
oM On+1-p

which is Inequality (8]).

Assume now (§]) to be an equality for some non-zero w. Let @ be the p-form
on M such that do =0 = d@w on M and ¢*@ = w on OM; as mentioned above.
By the sequence of pointwise inequalities used in the above proof of inequality
([®), we can deduce that Vw = 0 on M, that is @ is parallel on M and, further-
more, §°Mw = —0,41_pva@ and S (xD) = 0,41 p0* (%) must hold on
OM. As a straightforward consequence, W&y = 0 on M. Thanks to the iden-
tity Sl (xgpra) = —xgnr SPHa+nHxgpra which is valid pointwise for all
(p — 1)-forms «, the latter is equivalent to SP~U(v1@) = (nH — 0,11_p)va@
along OM. This concludes the proof of Theorem Bl OJ

Remark 3.2 Note that, for 1 < p < n, if the bundle APT*M — M is
trivialized by such parallel p-forms w, then on the one hand the manifold M
is flat and, on the other hand, S~ = (nH —0,,,,_,)-Id must hold pointwise
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on AP~'T*OM. The first statement is a consequence from the fact that the
curvature of the manifold M vanishes as soon as that of APT*M does. The
second statement comes from the map APTM — APTXOM & AP7'TrOM,
w i (fw, vA\(raw)), being an isomorphism at any = € M. In case p > 2 (for
p = 1 that identity is trivial because of S = 0 by convention and o, = nH
by definition), this shows that ¢: OM — M must be totally umbilical.

Next we turn to the case where the boundary of M is assumed to be isomet-
rically immersed in some Euclidean space.

Theorem 3.3 Let (M™ g) be any compact oriented (n + 1)-dimensional
Riemannian manifold with smooth nonempty boundary OM. Assume that
Wl >0 on M as well as 6,11, > 0 along OM for a given p € {1,...,n}.
Assume also that there exists an isometric immersion vo: OM — R with
mean curvature vector Hy. Then

n|Ho|? — n(”n__ll)ScalaM
/ dpg 2/ Hdyg, (10)
oM oM

On+1—p

where Scal®™  denotes the scalar curvature of OM. Equality holds in ()
when M is the (n + 1)-dimensional flat disk D" standardly embedded in
some (n + 1)-dimensional affine subspace of R"*™. Conversely, if (I0) is an
equality, OM is connected, p > 2 and 1o(OM) is contained in some (n + 1)-
dimensional affine subspace of R™™ then, up to rescaling the metrics on M
and on R™™  the manifold M is isometric to the (n + 1)-dimensional flat
disk D" standardly embedded in that subspace.

Proof: We take the standard coordinates (1, .. ., Tpim) on R and, for any
i1, -0 € {1,...,n+m}, we denote by dz; := dx;, A.. . Adx;, € AP(R")*
and by w; = fdx; € QP(OM). Note that, since dx; is exact, so is wy.
Replacing w by wy in (8), we obtain

%M or " o
——dpy, > (SPlwr, wr)dp,. (11)
G oM

M On+l-p

We now want to deduce from () a more explicit inequality. For this, we
sum (III) over I, meaning that we compute the sum E?fmzp:l of both sides;
mind that the indices ¢,...,%, vary independently and hence are repeated.

On the one hand, by [16, Lemma 2.2],
-1
Z 16%M | = p! (n>p (n|H0|2 - piScalaM) . (12)
n P n(n —1)

8



On the other hand, we use the pointwise identity

Zej A (ejoa) = ka,

J

which is valid for any k-form o and any pointwise o.n.b. (e;); of M or TOM.
As a straightforward consequence,

n

> lejNaye; AB) = (n—k)a, B),

j=1
for any k-forms «, 8 on an n-dimensional space. Thus we may compute the
sum of the r.h.s. of (1) as follows: Let A : TOM — TOM be any symmetric
endomorphism of M and denoting by dz! := idz; and by (e;)i<j<n a
pointwise o.n.b. of TOM, we may write

n+m
Z(AMMI,WI) = Z (AP(da? A.Nda)) dal AN da))
I 11,00 tp=1

n+m n+m

-y ¥ Z (daT, e;)(dal, en) (AP (e; A dal, ), e Adal )

11=1142,...,ip=1 j,k=1

n n+m n+m
= Z (Z <d'ri17 ej) <d'ri17 ek)) Z <A[p]<ej N d'rg;...,ip)v A d'rg;,...,ip>

jk=1 \i1=1 igyip=1
NS o
Vv
n n+m
_ T
= Z e] A dx ,z‘p)a ej N\ dxig,...,i;;)

=1 1g,...,0p=1

n

= Z (A[p](ejl/\.../\ejp),ejl/\.../\ejp)

J15ensJp=1

=p Z (Aej, Nej, Ao Nej e N...Nej,)

Jiyesdp=1
n

= p(n—p+1) Z <A6j1/\6j2/\.../\6jp71,6j1/\.../\6jp71>

- p(n—p+1)---(n—1)Z(Aej1,ejl)
_ (™2
= p! (p) nt (A). (13)



When A = S is the associated Weingarten endomorphism-field, we get that

S5 arn) =t () ot (14

1

Integrating both (I2)) (after dividing by 0,11-,) and (I4) over OM, we de-
duce inequality (I0) from (II]).

If M = D" is the (n + 1)-dimensional flat disk standardly embedded in
some (n + 1)-dimensional affine subspace of R"*™ then |Hy| = 1 = H,
Ont1-p = n+1—pand Scal®™ = n(n—1) along IM = S" (the n-dimensional
round sphere of sectional curvature 1), so that (I0) is an equality.

Conversely, if ([I0) is an equality, then for any tuple I, (II]) must be an
equality. For any I, we denote by @w; the p-form on M such that dw; =0 =
owr on M and t*@w; = wy along OM; the existence and uniqueness of w; is
guaranteed by [4, Theorem 2] and the vanishing of H? (M), see proof of
Theorem B.1] above. Then Theorem B.1] implies that, for any I, the p-form
&y is parallel on M, that 6°Mw; = —0pt1—pVswr and that S[p_”(lu wr) =
(nH — 0y41-p)vawy hold along OM. By (I2)), this implies

S ST
I

I On+1-p

n n|Hol? — 2= ScalaM
= p!( )p( . (15)
D O'nJrl*p

Next we show that >, [va@;|* is constant along OM. Differentiating along
any X € TOM and using the fact that wy is parallel on M, we have

X (%Z|VJ(;}]|2> = Z<VX(VJ(2}]),I/J(;}]>

1

= — Z<SXJCZ)], I/JCZ)[)

|58Mw1|2

= —Z SX_ILU[ I/_I(IJ[>
= —Z SX jwr,var)
I

= =) (SXadxp)", vady).
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In the following, we will prove that the last sum vanishes. For this, we will
express the (p—1)-form v, @, in terms of the data of the immersion ¢o: OM —
R™*™ That identity will be used at several places in the proof. We denote
by I the second fundamental form of . Using [16 Eq. (3.3)], we have that,
for each p-tuple I,

p
My = Z(—l)k“]lg’ }(d:c Ao Ndzl AL A dal)
k=1

—nz DY Hy, da; )d:vl-Tl/\.../\cEc?Tk/\.../\da:T

ip
—_—

= ZZ D (g, , v ) TP (dal A Az AL A da)

k=1 a=1

—nz V) (Ho, da;, yda] A ..o Adal AL A da]

ip

= Z 1P (v, der)’) — (nHooday)", (16)

where (v,)1<qa<m 1S a pointwise o.n.b. of T+OM seen as a subspace of R*™.
Because of My, = —Opy1-pV2 Wy, We obtain

N p— 1 T
Viwr 0n+1—p <Z]I (Vaadxp)T) — (nHyodxy) ) (17)
Therefore, in order to show that >, ((SX.dz;)",viwr) = 0, it is suffi-
cient to show that both sums > ((SX sdzy)”, S0 TP Y((v,0da;)T)) and
S A(SX adar)T, (nHoadxr)') vanish. Let us make the computation for the
first sum, the second can be done in the same way. We denote by e; =
ej N...Nej,_, with j; < ja < ... < jp_1 the orthonormal frame of AP~'T*0M
induced by a local orthonormal frame {ey,...,e,} of TOM. For any a =

11



1,....m

D ((SXadry)" T2 ((vaude))")) = Y ((SXaday)", e (T (vaadar)"), e))

= Z(SXJ dxr,ey)(Vaodry, ]IB?;H(GJ»

1,0

= Y (doy, SX Aeg){dzr,vg AP (e )
I,J

= S (SX Nes,va NIZ Y (ey))
J

= 0,

because of v, L TOM. Similarly, > ((SXdx;)T, (nHysdz;)T) = 0 by
Hy L TOM. If OM is connected, which will be assumed from now on, then
>, lva@r|? is constant along OM. By (IH) and the assumption that (I0) is
an equality, this constant is given by

n|Ho* — npnill) Scal®M

- n
S o / Ouriplpy = p!( )p / ( dy
7 oM p oM Ont+1—p

n
- pl( )p Hdy,,
p oM

Hd
S il = o (”)p Jons Helbts 18)
I

P)" Jonr Onr1-pdity
Injecting (I8) again into (), we deduce that

that is,

n|Hyl? — n(py;_ll)SCalaM faM Hdy,

On+t1-p faM Tnt1-pliig

*On41—p- (19)
Note that (I9) holds in any codimension m.

Next we look at the space of parallel forms on M. Let w := (w;), € @; Q*(M).
Fixing a pointwise o.n.b. (e;)1<j<, of TOM, the family

{es,vhe|1<ji<...<jp<n, 1<k <...<k,_1 <n}

is a pointwise o.n.b. of APT*M. Decomposing each w; in that pointwise ba-
sis and the canonical basis (dxy); of AP(R")* (where the p-tuples I are
ordered) respectively allows us to consider @ as a pointwise matrix with

12



("J;m) rows and (";1) columns. Note that, because the pointwise linear map
o AP(R™™)* — APT*OM is surjective, the (w; = ¢f(dzy)); obviously span
APT*OM, which already shows that the (;) first columns of the matrix @,
namely (W7(es))s,s, must be linearly independent since that matrix has (")
linearly independent rows. Next we would like to show that the rank of the
whole matrix @ is maximal, i.e. equal to (";1).

This already allows for finding expressions for the inner products of columns
of the matrix w. Namely, fix e; and v A ex as above, then using Equation

(7)), we compute

Z@[(GJ)(IJ[(I//\@K) = Z((IJ},GJ)'(I/_I(IJ[,@K>
= L S e (> W (v )

On+1-p i

a=1

— (nHou da:l)T,eK)

1 m
- _ Z(dm, ey){dzxy, Z Va N ]IL[Z_HGK

On+1—p It

a=1

- TLHQ AN 6K>

1 m
= — (eJ,Zua/\]Il[fZ_l]eK—nHo/\eK)

On+1—p

= 0

a=1

because of both v,, Hy L TOM. This shows that every among the (pfl)
last columns of w, corresponding to the matrix (w;(v A ex))r k., is pointwise
orthogonal to any of the (Z) first ones which correspond to the full-ranked
matrix (wr(ey))r,s-

We now look at the rank of the matrix (w;(vAek))r k. For any (p—1)-tuples

13



J, K, we compute

Z @[(l/ A 6])&]](V A €K) = Z<VJ (;.J[, €J> <I/_| (IJ[, €K>
I I

1 m
= Z(dxl,ZVa/\]I[;’;_l]eJ—nHO/\eJ>
ntl-p a=1
-(dxy, Z Vg N\ ]IB':l]eK —nHy N ek)
a=1
1 m

= = (Zl/a/\]ll[f;uej—nHo/\eJ,
n+1—p a=1

Z Vg N\ ]IB':l]eK —nHy A eg)
a=1
1 m
= (o e m Ve

Un-i—l—p

a=1

= 210 (es), exc) +n? [ HolXleg, exc)).

Here we notice that, in the particular case where all II,, are simultane-
ously diagonalizable, i.e. if [I,,,1,,] = 0 for all a,b, we can choose (€;)1<;<n
so as to simultaneously diagonalize all . Then it is easy to show that
Soowrv Aey)wr(v Aek) = 0 for all J # K. However, the Y, @1(v A ey)?
cannot be shown to be positive. This means that, even if [I,,,I,,] = 0 for all
a, b, one column of the matrix (&;(v A ex))r x may vanish, in which case @
will not be of full rank.

From now on we furthermore assume that (o(OM) C V', where V is an (n+1)-
dimensional affine subspace of R"*". Choosing a pointwise o.n.b. (V4)1<a<m
of T*OM C R™™ such that v; € V and v, L V for all a > 2, we obviously
have I,, = 0 for all a > 2 since V' C R™™™ is totally geodesic. Therefore,
choosing (e;)1<j<n as an eigenbasis for the endomorphism I, of TOM, we
have I, e; = kje; for all 1 < j < n and the sum >, w;(v A ey)wr(v A ek)
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computed above simplifies to

Z wrlv Nejwr(v Neg) = > <<]I,[ﬁ_1]6J, Hg’;_uefd
I

Un-i—l—p

= 2Ty (es)sex) + | Ho*(es, i)

- 2 1 <<Z “J’)Q

o
=P ey

—2nHo,v1)(Y k) + (nHo, V1>2)5JK

jeJ

= % <Z Kj — (nHO,V1)> 07K

g
ntl=p \jes
2

= 21 Zﬁj dJK,

Opnyi1— )
n+1l—p j¢J

where 6, = 0if J # K and 1 if J = K. Now since tp: M — V is an iso-
metric immersion of an n-dimensional manifold into an (n + 1)-dimensional
Euclidean space, there exists a point € OM for which ;(x) > 0 for all
1 < j < n holds, see e.g. [6, p. 255]. At that point x, we can conclude that
Yowr(vAey)wr(v Aeg) > 0if J = K and vanishes otherwise. Therefore the
columns of (w;(v A ex))r x form an orthogonal system of nonzero vectors at
x, from which can be deduced that the whole matrix @ has full rank (";}Ll)

at x. In turn, this implies that, at x, there are (";1) linearly independent

n+1)

rows in w, that is ( , linearly independent w;. Necessarily there must exist

(";1) linearly independent parallel forms among the w; on M, which is the

maximal number allowed. As a first consequence, (M™! g) must be flat (re-
member that 1 < p < n). As a second consequence, at each point of M, the
family (vo@r)r must span AP~1T*9M, so that t: OM — M must be totally
umbilical by the identity SP~U(vL@;) = (nH —0,,1_p)vo@; for all I and the
assumption p > 2, see Remark 3.2l Since M is flat and ¢ is totally umbilical
in the Einstein manifold M, the mean curvature H must be constant — and
positive because of (n +1—p)H > 0,41-, > 0. Up to rescaling g on M as
well as the Euclidean metric on R*™™ it may be assumed that H = 1 along
OM. By [14, Theorem 13], because (M™"! g) is flat, ¢ is totally umbilical
and with constant mean curvature 1, the manifold (M"*!, g) must be iso-
metric to the (n + 1)-dimensional flat disk. Moreover, identity (I9) implies
that |Ho| = 1 = H along OM. But then by the proof of the equality case in

15



[13, Theorem 1.2], there exists an isometric immersion M — V' extending ¢.
Since M = S" has constant sectional curvature 1, the immersion ¢y must
be an embedding by standard results due to Hadamard and Cohn-Vossen,
see e.g. [3]. Again by the proof of [I3] Theorem 1.2], the above isometric
immersion M — V extending ¢ is an embedding. This shows that (M"*!, g)
is isometric to the (n + 1)-dimensional flat disk standardly embedded in V.

This concludes the proof of Theorem O
Remarks 3.4
1. For p =1, Inequality (I0) reads
H. 2
e (20)
om H oM

assuming Ric = W >0 on M as well as H = e > 0 on oM. This is
precisely the inequality established by Miao and Wang in [I3, Theorem
1.2] when H > 0. Actually, Inequality (20) implies (I0) forall 1 < p <n
if not only 0,,11-, > 0 and WP > 0 are assumed but also Ric > 0. The
CauB formula for curvature implies Scal®™ = n?|Hy|? — |TI|? along OM.
The Cauchy-Schwarz inequality yields |I|> > n|Hy|?, so that Scal? <

n(n — 1)|Hp|?. Fix now p € {1,...,n} and assume o,.;_, > 0 along
OM . Because of 'f:ll — < H, we can deduce that H > 0 along M and
that

n|Hy|* — 1 ScalaM n|H0|2— (p — 1)|Ho[? N | Hy |
Un—l—l—p - Ont+1—p - H

holds along OM . Therefore, inequality (I0) can be deduced from inequa-
lity (20) if Ric > 0 is also assumed. Mind however that our assumption
W > 0 differs from Ric > 0 for 2 < p <n —1, so that (I0) cannot
be deduced from [I3, Theorem 1.2] in general.

2. According to [I4, Theorem 9], given a compact Riemannian manifold
(M™1 g) such that Wl >0 for some 1 < p < ”T“ and with boundary
OM isometric to the unit round sphere, then M must be isometric to
the Euclidean unit ball as soon as o, > p. Actually this holds true for
an arbitrary p € {1,...,n}. Namely if OM is isometric to the round
sphere S™, then by taking ¢o: S® — R™™! the standard embedding, we
get, under the condition 0,41, > 0 together with the identities Hy = 1
and Scal®™ = n(n — 1):

1
/ n—p+1 / Hdp,.
oM  On—p+1
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Therefore, if 0,11, > n+ 1 —p, then H > 1 and the last inequality
is an equality, therefore M must be isometric to flat D"*! by Theorem
5.0l

In the following, we consider the case where W' > p(n — p + 1)x for some
nonvanishing real number k.

Theorem 3.5 Let (M™" g) be any compact oriented (n + 1)-dimensional
Riemannian manifold with smooth nonempty boundary OM. Fizp € {1,...,n}
and assume that WPl > p(n 41— p)x on M for some number  # 0 as well
as Opy1—p > 0 along OM. Then, for any (p — 1)-form o on OM, we have

§OM JOM ., _ p(n+1—p)ﬁa 2

/ ‘ 2 ‘ dﬂg > / <S[p}d8Ma’ daMoz>d,ug,
oM On+1-p oM

with equality if and only if o = 0.
Proof: As in Theorem 3.1 we take the exact form w = d?”«a and consider
the extension & on M such that ddé = 0 on M with *& = « along JM.
The form @ = da& satisfies do = 0,0w = 0 on M and *@w = w. We now
apply identity (6) to & to get after using that (WPD, &) > p(n+1—p)k|@|?,
Inequality (@) and the fact |Vo|* > 0:

0 > pn+1 —p)/i/ | dp,
M
+/ (2(va@, 8Mw) + (SPlw, W) + On1—p|Vo@|?) dpsg.
oM

Now, by Stokes formula, we have that

o2 du :/ &, ddayydp —/ a,vada)du :—/ o, Vaw)dj,.
[ Vo, = [ @ gdaan,— [ avdaydn, (o, v a2}

0 oM

Therefore, implementing this last equality into the previous inequality yields

0o > / (2<,/J@’55Mw_wa>
oM 2

+(SPly, w) + on+1_p|1ud)|2> dtg.
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Because 0,11, is assumed to be positive along OM, we write the cross term
tHw) = 2(va @, §9My — PIHITRE G g

1 1 1-—
T R e
Ufzﬂfp
|69M ¢y — Map
0n+1*p|VJ@‘2_ 2
Ont1—p
§OM , p(n+17p)/f~a 2
> —Op1 |l — | 2 | : (21)
On+1—p

Thus, we deduce after replacing w by d?™ o that

§OM JoM , p(ntl-p)x 12
02/ <—| “ Pl + (SP@?M e @™ ) | dp,,
oM

On+1—p

which is the required inequality. Notice that, if equality in the last inequality
occurs, then & is parallel, which implies 0 = (WP, &) = p(n + 1 — p)k|@|?
and thus @ = 0. In turn this yields w = 0 and, because of p(n+ 1 —p)x # 0,
also o = 0. This ends the proof. O

In the following, we will consider a compact Riemannian manifold (M"*!, g)
and assume further that its boundary is immersed into the round sphere
S™*™ (k) of curvature k.

Theorem 3.6 Let (M™ g) be any compact oriented (n + 1)-dimensional
Riemannian manifold with smooth nonempty boundary OM. Assume that
WP > p(n+1—p)k on M for some number k > 0 as well as Ont1—p > 0 along
OM for a given p € {1,...,n}. Assume also that there exists an isometric
immersion to: OM — S""(k), with mean curvature vector Hy. Then

n(n—

dpig > Hdpy,

/ n|Ho|* — pill)ScalaM + w
oM Ont1—p -

where, as before, Scal®™ denotes the scalar curvature of OM.

Proof: We will follow the same idea as in Theorem 3.3l Let ¢ : OM — RrHm+!
be the isometric immersion with mean curvature vector H;, which is the
composition of the standard embedding S"* (k) < R"™*1 with 1y. Let us
denote by dr; = dx;; A ... Adx;, € AP(R"™™+H)* and by w; = jdz; €
QP(OM). Let ay the (p—1)-form on OM given by ar = w;,|,,, d, A.. . Adx]

‘81&1
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where dax? = iidx;. Clearly, we have that w; = d°a;. Now Theorem
applied to a; gives that

OM p(n+l-p)x 2
/ 0 wl—%al\
oM

On+1-p

dugz/ (SPlwr, wr)dp,. (22)
oM

Next, we want to sum (22)) over . First the sum of the r.h.s over I is equal
to p!(Z)pH by (I4). Now, for the l.h.s., we compute the sum

1—
S 1= 58Mw[ - p—(n i p)KJOé[ 2
2| >
1

as follows:

27’L+1— 2/‘62
D D (e R ARt S
1

—p(n+ 1 —p)r(6®™w;, ar))

—1
@ ()p <n|H1|2 _ Lscalw)
D n(n —1)

2 1— 2
+p(n+ PSR Z dzl AL A da) |

Here H; is the mean curvature of ¢; which is related to the one of ¢y by
|H1|* = |Ho|? + k. Moreover,

n+m+1
1

E 2

IL‘il - —
- K
11

since 19(OM) C S""™(k), sphere of radius k2. In order to compute the
last two sums in the above equality, we take A = Id in (I3]), and thus,
AP~ = (p — 1)Id and tr(A) = n, to get that

> \de;A...Ade;P:(p—1)!( " )

p—1

On the other hand, denoting by II the second fundamental form of the im-
mersion ¢y : M — R"™ 1 we get from Equation (I6]) that

m+1
> (Mo any = > @, (O 1N (veude))T)— (nHiaday)T daf A A
I i1 yeemyip a=1
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m+1

= Kz Z Z]IVG s ANdxg, AN dz)T) L da] /\.../\d:cg;)

+/{_%<(TLH1J (i Ndxgy Ao AN dy)) T dal A A dxz;>

In the second equality, we use the fact that, in the local orthonormal basis
{Vata=1...my1 of THOM for the immersion ¢;: OM — R™™™*+1 it may be
assumed that v, = K2 Zzl x;,dx;, which is the inner unit normal vector
field for the standard immersion S"*(x) — R"™™*1 Hence, we proceed

Z(cSaMwI, ap) = —K Z (]Il[z_”(dxg AW dxg;), del Ao A d:pz;>

I 2,0nsip

+/€7%<7’I,Hl,1/1> Z ‘d.’lf,z];/\ /\d.T |2

e —ff‘?(p—l)!(pﬁ1)p;1tr(ﬂyl)
1k 2<nH1,1/1>(p—1)!< nl)
— (p—1>!<pﬁ1>n_£+lﬁ;WHI’VI)

Now, the second fundamental form II of the immersion ¢; is the sum of the one
of 1y and the one of the isometric immersion S"*™(x) — R" ™! Therefore,
(I(X,Y), 1) = k2g(X,Y) for any X,Y € TOM. Thus, by tracing over an
orthonormal frame of TOM, we get (nHy,v1) = nk2. Then

S (6 wr,ar) = (p— 1) (pﬁ 1) (n—p+1).

1
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Inserting this last computation into (23]), we finally deduce that

-1
s = p!(n)p <n|H0|2+n/£ b ScalaM)
p n(n —1)
— 1)
+p(n p+ )! " —pln—p+1)°k "
p—1 p—1
p—
(
p

-y (ww_ )

- )( n ) p(p— 4)(n4 +1)%k
= ( ) n|Ho|2 +nk — 7n?n__11)80alaM + (p = 4)(n4— Pt 1)K>
= o ol g« B

Integrating the last identity and applying Inequality (22]) after simplifying
by p!(Z) p, we obtain the desired inequality. If equality holds, then for every
multi-index I, necessarily a; = 0 must hold by Theorem [3.5. But, pointwise,
the a;’s span AP~1T*OM, therefore we obtain a contradiction. This shows
that the inequality we obtained is strict and concludes the proof of Theorem

O

4 A Ros-type inequality for differential forms

In this section, we will generalize the Ros inequality stated in [I5, Theorem
1] to the set-up of differential forms.

Theorem 4.1 Let (M™ g) be any compact oriented (n + 1)-dimensional
Riemannian manifold with smooth nonempty boundary OM. Fizp € {2,...,n}
and assume that the (p — 1)" relative de Rham cohomology group is reduced
to zero, WPl >0 on M as well as Ont1—p > 0 along OM. Assume also the
existence of a nonzero parallel (p — 1)-form wy on M, whose constant length
may be assumed to be 1. Then

|¢*wol?

(n+2—p)Vol(M,g) < (n+1—p) /a dpg. (24)

M On+l1—p

If equality in (24) is realized, then under the assumptions that Ric > 0 (when
p > 3) and the mean curvature H is constant, the manifold M is the (n+1)-
dimensional flat disk D"+,
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Proof: Since we assumed that H”, ' (M) = 0, [I7, Theorem 3.2.5] implies the

rel

existence of a p-form w on M with dw = 0, dw = wy on M as well as t*w =0
along M. We apply (6) to w. First, because dw = 0, it follows from [7,
Lemme 6.8] that

| ?

Vw|? > ———,
n—p+2

(25)

and since |6w|? = |wo|?> =1 and WP > 0 on M, we have

1
dw|? + |6w|?* — |Vw|* — (W) d </1—7d
[P 3 = 19 = WPy < [ (12—,

n+1—p
——Vol(M, g).

Moreover §°M (1*w) = 0, SPl*w = 0 and
(SRl (a0, ¥ (5w)) > Oy plvaw]?.
Therefore, (6]) yields

n+1-—
7\/1]\4 S 2du,.
S TIV(Mg) > [ el

Now partial integration together with Cauchy-Schwarz inequality give
Vol(Lg) = [ (bn)dn,
M

= /M(w, dw0>dug+/aM(u_nw,o*w0>d/,Lg
0

1 tFwo
[ S

n+17p

1 1
2 |¢*wo|? 2
([ ondsstan,) ([ dny) s (26)
OM oM On+1—p

Vol(M, g)*
y/‘ 0ﬁ+1_phAJu42dﬂg '———sza?———
oM Jom -0
Injecting that inequality in the last one involving the volume of M, we obtain
[24)). Assume now equality in (24)) is attained, then equality holds in (23]) so
that

IA

so that

Viw=——— X Adw (27)



for all X € TM. Also, we have that S Pl)*(xw) = 0,41 ,t*(*w), which
from the identity *pp SP~1 4 S=PHls ), = nHxyp, valid on (p—1)-forms on
OM [14], p. 624], is equivalent to saying that SP~U(viw) = (nH—0,,41_,)vow.
The Cauchy-Schwarz inequality in (20) is an equality and, thus, we get that
*wy = copt1-pVow for some constant c. The constant ¢ can be determined
by just replacing the last identity into (24]) and the second equality in (20])
to deduce that ¢ = %' Now, from [I4, Lemma 18], we get

d™ (vaw) = —vadw + 15 (V,w) — SPL*w = 0. (28)

Here, we use that dw = 0, SPl;*w = 0 and that the tangential part of V,w =

—n_;+21/ A dw is zero as well. On the other hand, we have that §9 (v_w) =

—vidw = —viwp. Hence, using (28], we get that

AM(yaw) = —d®™™(vw)
= vadwy — " (Vywo) + S,

= cOpp1-p(NH — Opi1-p)Vw.

Taking now the L2-scalar product of the last identity with v_w yields the
following

c / Onitp(H — o) vs? = / 1697 () Pl
oM oM

= [ sl
oM

= Vol(@M.g) - [ |l
oM

= Vol(0M,g) —02/ oo 1 plvaw[*dpg.
oM

Hence, we deduce that

Vol(OM, g) = c/ Oni1p(MH + (¢ — 1)oni1_p) |vaw|*du,.
oM

Now, the second equality in (20) gives that

Vol(M, g) = c/ Ons1p|vow|*dp,.
oM
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n+2—p

iy e deduce that

Hence, after replacing ¢ by

Vol(OM,g) Jons Onir—p(nH + %”VJWPdﬂg
Vol(M, g) faM On+1—p|VJw|2d”y
Jyns Fnir (0 + H) oo

faM Un+17p"/—‘w|2dﬂg
= (n+1)H.

<

The last equality uses the assumption that the mean curvature H is constant.
Therefore, we are in the equality case of Ros inequality [15, Theorem 1]. This
allows to deduce the proof. O

Note that, when p = 1, the assumptions of Theorem [4.1] reduce to Ric > 0
on M as well as H > 0 along 0M, in which case (24)) reads

1

dpg > (n+1)Vol(M, g),
om H

which is exactly the Ros inequality from [I5, Theorem 1].

Remark 4.2 Let us consider the particular case where M"*! is a domain
in the Euclidean space R"*!. For any p, we take iy, ...,4,-1 € {1,...,n+ 1}
such that 7; < iy < ... <, ; and denote by wg := dx;; A ... Adz;,_, the
parallel (p —1)-form in AP~1(R"*1)* which is of norm 1. By Theorem [T, we
have

|dxl AL d:pg;71|2
(n+2—p)Vol(M,g) < (n+1-p) dpig-

OM On+l1—p

Summing over i; < iy < ... < 7, 1, we get that

(" * 1) (n+2—p)Vol(M, g) < (n+1— p) / L") dii,.

p—1 oM Ontl—p

Here, we use that, by Equation (I3) for A = Id,

1
T T 2 T T 2
> Jdal AL Ada] P = TR >zl AL Ada] |

11 <i2<...<ip—1 11,12,...0p—1



Hence, we deduce that

(n+1)Vol(M,g) < (n+1 —p)/

oM On+1—p

which actually can be deduced from Ros inequality using Z2t=2 < H,

n+l—-p —
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