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Stéphane Égée∗, Marie Postel†,Benôıt Sarels†,∗

July 7, 2023

Abstract

We are interested in the system of ion channels present at the membrane
of the human red blood cell. The cell, under specific experimental circum-
stances, presents important variations of its membrane potential coupled
to variations of the main ions’ concentration ensuring its homeostasis.

In this collaborative work between biologists and mathematicians a
simple mathematical model is designed to explain experimental measure-
ments of membrane potential and ion concentrations. Its construction is
presented, as well as illustrative simulations and a calibration of the model
on real data measurements. A sensitivity analysis of the model parameters
is performed. The impact of blood sample storage on ion permeabilities is
discussed.

1 Introduction

1.1 Biological motivation

Erythrocytes or red blood cells (RBCs) have evolved to optimize two functions:
the transport of oxygen from lungs to the tissues, and the reverse transport of
carbon dioxide. This work is carried out by three highly specialized molecules:
i/ hemoglobin pigment which binds oxygen where its partial pressure is high and
releases it where partial pressure is low, ii/ a cytoplasmic carbonic anhydrase
which catalyzes the reversible hydration of CO2 and iii/ a powerful Cl−/HCO−

3

anion exchanger, a membrane protein called band 3 or SCLC4A1.
The latter is a key element of the Jacob-Stewart cycle which by exchanging

HCO−
3 ions for Cl− allows an efficient transport of CO2 within venous blood (up

to 95%) as bicarbonate ions. Thus, resting membrane potential is dictated by
Cl− conductance. For the sake of simplification, we can say that all the other
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membrane transporters are geared to maintain the constancy of volume and
elastic properties, in others words to maintain homeostasis. However, keeping
constant the volume of a bag with a high hemoglobin concentration is not an
easy task; the colloidosmotic pressure (mainly due to the high negatively charged
hemoglobin content) would tend to swell and lyse any water-permeable cell which
is the case of RBCs that possess numerous water permeable pore aquaporins.
Thus, the general strategy that RBCs have adopted to prevent bursting, is to
maintain a very low membrane permeability to cations, particularly Na+ the
most abundant extracellular solute. The minor residual cation leaks can be
balanced by the sodium and calcium pumps with only minute metabolic demands.
Among the membrane transporters, ion channels have the greatest dissipative
power and can transport millions of ions per second. Another feature of the
ionic channels is their non-electroneutral nature, which, when activated, will
cause, at least transiently, a change in membrane potential. Red blood cells have
two types of cation channels. A potassium channel activated by intracellular
Ca2+ concentration (the Gárdos channel, KCNN4) and non-selective cation
channels. To date, two of these channels have been molecularly identified with
certainty (the PIEZO1 channel and the TRPV2 channel). These non-selective
cation channels are permeable to calcium and are therefore potentially capable
of opening the Gárdos channel indirectly (See Figure 1). However, we have
been able to show that such activity directly generates a transient activation of
the Gárdos channel [2]. Furthermore, it is certain that during ageing, whether
in vitro (storage for transfusion purposes) or in vivo (upon cell aging and
senescence prior removal from the circulation), the activity of these channels
would be potentially more important and could compromise cellular homeostasis
by dissipating the electrochemical gradients maintained by the pumps [1, 11].
However, this activity, which can be assimilated to a leak, is difficult to quantify
at the spontaneous resting potential of the cells. Indeed, at the resting potential
(-12 mV), the cations taken as a whole are at equilibrium and therefore the
currents generated are of relatively low intensity or at least would be masked by
the predominance of the chloride conductance. However, once the Gárdos channel
is activated, a hyperpolarisation follows which tends membrane potential towards
the Nernst equilibrium potential for K+ (denoted EK in the sequel) but drives
the chlorides and cations (Na+ and K+) away from their respective equilibrium
potentials. Therefore, the intensity of the currents and thus their influence on the
membrane potential can be measured by analysing the repolarisation rate and
kinetics. Such conditions can be achieved by pharmacological activation of the
Gárdos channel by increasing membrane permeability to Ca2+ using a calcium
ionophore (A23187, 10µM, Figure 2). In these series of experiments, cells, kept
at 4°C in their own plasma for one week, are subjected to a massive calcium
influx and the evolution of the membrane potential is followed for 15 minutes.
Changes in membrane potential measurements are obtained using the MBE
(Macey, Bennekou, Egée) method [7] which relies on the proton distribution (see
Appendix A for details).

The membrane potential drops sharply from -12 mV to values tending towards
the potassium equilibrium potential due to K+ efflux through the Gárdos channels.
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Figure 1: Red blood cell set of most important membrane transporters. The figure
illustrates the main transporters involved in fluxes. Arrows indicate the direction
of net fluxes for each transporter. The left-hand side of the figure describes the
system that maintains the membrane potential close to the equilibrium potential
for Cl− (-12mV), comprising the Cl−/HCO−

3 exchanger and a chloride channel.
The other transporters are cationic transporters. On the one hand, the two
essential red blood cell pumps, the 3Na+/2K+ ATPase pump and the plasma
membrane calcium pump, which consume ATP to enable transport against
concentration gradients. One the right-hand side are represented the secondary
active transports, which use the gradients built by the pumps to transport ions
through the chemical or electrochemical gradient. The two main electroneutral
transporters (KCl and NKCC cotransporter) are shown in dark green, as are the
three cation channels identified yet in the red blood cell. The Gárdos channel
or KCNN4, the PIEZO1 channel and more recently the TRPV2 channel. The
latter two are non-selective cation channels that are not only permeable to Na+

and K+ but also to calcium.

Then the membrane gradually repolarises by the joint effects of the non-selective
cationic and chloride conductances present at the red cell membrane.

The next Figure 3 displays the statistics of the membrane potential and
provides some insight on the interpretation of Figure 2. The resting membrane
potential in the upper left panel is the initial value of the potential, at rest before
the opening of the potassium channel. It is labeled Einit in the numerical section
(see Table 2). The maximum hyperpolarization denoted minE is displayed in
the upper center panel. It is the minimum membrane potential reached shortly
after the channel opening. The final E is measured at 15 minutes just before
lysis. It is interesting to note that the difference between minE and E0 is not
monotonous with age, although less so than minE alone.

In addition to measurements of changes in membrane potential, it is fairly easy
to measure intracellular Na+ and K+ concentration under the same experimental
conditions (see appendix A for details).

Figure 4 displays the evolution of Na+ (blue) and K+ (orange) concentrations.
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Figure 2: Raw membrane potential data after different storage durations (in days
in the legend). D0 denotes fresh blood. The drug A23187 is introduced once the
potential has stabilized around the chloride Nernst equilibrium, at about -12mV.
At the end of the experiment the cells are lysed and the potential instantly rises
back to 0 mV.

Left panel shows the changes in concentration upon 21 days of storage shedding
light on the cation leak occurring upon storage at 4°C. These data will provide
initial data for our model. Right panel shows the evolution of cation contents
up to 4 hours, in the same conditions used in Figure 2. Only data from day 0
are available. Note that the time sampling is uneven and much coarser -about
10 minutes- than for the membrane potential which is sampled in seconds but
only up to 15 minutes.

1.2 Review of the existing models

The first attempt at modeling the complex system of transport across the
erythrocyte membrane has emerged in the 1980s [10]. It takes into account most
of the biochemistry and the electrochemistry of the cell known at that time, and
aims at covering needs and applications in physiology and pathophysiology of
the red blood cell. Mathematically speaking, it is a differential-algebraic system
of equations in dimension 11. In it, H+, Na+, K+ and Cl− fluxes are modeled
and the kinetics of the different solutes concentrations can be computed, along
with the variations of the membrane potential and the cell pH. However, new
experimental setups have shown that a cationic conductance path participates to
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Figure 3: Statistics of data main features. The resting membrane potential is
the initial condition at equilibrium before introduction of the drug. The max
hyperpolarisation is the minimum potential reached once the K+ have exited the
cell. The end point is the potential reached just before the end of the experiment.
Unit for the three graphs is mV.

electrolytes exchanges (Na+, K+, Ca2+) as soon as the membrane equilibrium
is disrupted. This is taken into account in a more recent version of the model
[13]. In this iteration, the model is even more complex. and requires about 40
parameter values.

The models that we referred to above have - for us - two main issues. The
first is that none of them is amenable to mathematical analysis, even as basic
as the study of equilibria. Likewise, understanding the role and influence of
the parameters is beyond our reach. This is a problem since we would want,
for instance, to make a sensibility analysis and/or confront the outputs of the
model with our experimental measurements. Therefore, our work is a return to
the roots of electrophysiology, which puts the importance of the membrane po-
tential back in the spotlight, and concentrates on the major time varying features.

In the next Section 2, we derive our model, a system of ordinary differential
equations in dimension 4. In Section 3, we illustrate its main features with
numerical simulations, showcasing two cases of interest: the one with constant
permeabilities, and the one with variable permeabilities.
In Section 4, we calibrate our model with the available biological data, validate
the method with a sensitivity analysis and propose a biological interpretation of
our results. A number of technical details have been deferred in the appendix to
preserve readability, like the experimental acquisition setup, the derivation of the
objective function gradient as well as the extensive numerical tests performed to
test identifiability and sensitivity.
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Figure 4: Concentrations [K] and [Na]. Left: Evolution of intracellular K+

and Na+ concentration of RBCs stored up to 21 days in their own plasma.
Results show a symmetrical leak of K+ and Na+ indicating that permeability
not anymore compensated by Na-pump at 4°C exist in RBC membrane. Right:
Changes in K+ and Na+ intracellular concentrations after challenging RBCs
with massive Ca2+ entry by A23187 (10µM) injection. After a massive loss of
K+ through Gárdos channel, immediate Na+ entry occurs that prolongs at least
up for 4h.

2 Construction of the mathematical model

Our aim is to write a simple model, that will involve as few entities as possible,
but still retain the important features observed in the experimental datasets.
In doing so, we deliberately depart from the models mentioned in the previous
section, which share the propriety of being built of different blocks for each
transport pathway. Furthermore, the central role of the membrane potential is
not recognized in these models. Indeed, the membrane potential is only given by
the maintenance of electroneutrality at all time.

We abstract ourselves from the chemico-physical properties of the membrane,
and we only consider as key parameters the membrane permeabilities for each
ion.

Let us review the fundamentals of electrophysiology with the theoretical case
of a single ion, following [8]. The membrane of the cell separates the inside from
the outside. A ion is an entity with a (positive or negative) charge. If there
is an unbalance of charge between the two compartments, this gives rise to a
potential difference E. By convention, E = Ein − Eout. Let us denote I the
intensity of the current. When current flows, the charge difference changes, and
so the potential difference as well, under the law:

C
dE(t)

dt
+ I(t) = 0, (1)

where C is the membrane capacity (C ≈ 10−2F m−2).
The current is known through Ohm’s law:

I(t) = gi(E(t)− Ei),

with gi the membrane conductance for ion i and Ei the Nernst potential for ion
i.
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A typical value for the membrane is graw = 10−13S m−2: the membrane is a
good electrical insulator. The presence of ionic channels at the cell membrane
allows for gi several orders of magnitude above. Anion conductance in RBCs, for
instance, is 10−9S.m−2. The Nernst potential is derived through a now standard
thermodynamics argument. Starting from the Nernst-Planck equation we write
the equilibrium between the gradients of concentration and electric field, and
integrate across the membrane to obtain

Ei =
RT

ziF
ln

(
[i]out
[i]in

)
,

where zi is the ion valence (zi = 1 for K and Na, −1 for Cl), and [i]in and [i]out
denote intra- and extra-cellular concentrations for ion i.

In the end, E is driven by the differential equation:

dE(t)

dt
=

gi
C
(Ei − E(t)) = Pi(Ei − E(t)), (2)

with Pi the membrane permeability for ion i. Remark that 1
Pi

has units of time:
it is indeed a characteristic time for equilibrium return. As discussed in the first
section, we focus here on the three ions that are most present in the cell: sodium,
potassium and chloride. Each ion is allowed to cross the membrane by specific
ion channels. Thus, a current exists for each. Physically, the different currents
add up, modifying (1) as such:

C
dE(t)

dt
+ INa(t) + IK(t) + ICl(t) = 0. (3)

Each (ion specific) current has its Ohm’s law:

INa(t) = gNa(E(t)−ENa), IK(t) = gK(E(t)−EK), ICl(t) = gCl(E(t)−ECl).

We can factor out 1
C and we therefore get the differential equation for E as

follows:

dE(t)

dt
= PNa(ENa − E(t)) + PK(EK − E(t)) + PCl(ECl − E(t)). (4)

Following the seminal paper [3], we make the common assumption that the
membrane is a homogeneous substance and that the electrical field is constant
so that the transmembrane potential varies linearly across the membrane. Then
we can express the current of the ion i as per the Goldman–Hodgkin–Katz flux
equation:

d[i]in
dt

= − Pi

Vw

ziFE

RT

[i]in − [i]out exp

(
−ziFE

RT

)
1− exp

(
−ziFE

RT

) . (5)
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We finally obtain the following system:

dE(t)

dt
= PNa(ENa − E(t)) + PK(EK − E(t)) + PCl(ECl − E(t)),

d[Cl]in
dt

=
PClαE

Vw

[Cl]in − [Cl]out exp (αE)

1− exp (αE)
,

d[Na]in
dt

= −PNaαE

Vw

[Na]in − [Na]out exp (−αE)

1− exp (−αE)
,

d[K]in
dt

= −PKαE

Vw

[K]in − [K]out exp (−αE)

1− exp (−αE)
,

(6)

where α =
F

RT
.

We are interested in this system of equations for t > 0, endowed with an
initial condition (E0, [Cl]0, [Na]0, [K]0) ∈ R4

+ for t = 0. In the next section, we
will illustrate numerically the response of our model in two cases of interest: first
in the case where the permeabilities are constant in subsection 3.1, and second
in the case where the permeabilities are time-dependent in subsection 3.2.

3 Model numerical simulation

3.1 Evolution of the system solution with constant perme-
abilities

In the simplest case where the Nernst potential, external concentrations and
permeabilities are assumed to remain constant throughout the experiment, the
4-ode system (6) presents a unique equilibrium

E∗ =
PNaENa + PKEK + PClECl

PNa + PK + PCl

[Na]∗ = [Na]oute
−αE∗

[K]∗ = [K]oute
−αE∗

[Cl]∗ = [Cl]oute
αE∗

(7)

where α =
F

RT
.

This enables us to interpret the response of the model to a sudden increase
in K permeability in the presence of permeant anions of different permeability.
We start from the equilibrium state corresponding to nominal ion permeabilities
PK = PNa = 0.002h−1, and PCl ∈ {0.2, 2, 20, 200} (in h−1). All these 4 values are
much larger than PK = PNa therefore the equilibrium potential E∗ = −13.6mV
is basically equal to the Nernst potential for Cl, ECl = −13.58mV. Then we
mimic the opening of Gárdos channel by multiplying the potassium permeability
by 104, bringing it to PK = 2h−1. This triggers the evolution of the system
towards a new equilibrium. For the small value of PCl = 0.2h−1 the potassium
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becomes dominant and the equilibrium potential is equal to the Nernst potential
for K EK = −113mV. For the intermediate PCl values 2h−1 and 20h−1, the
equilibrium potential is intermediate between the Nernst equilibrium of Cl and
K. For PCl = 200h−1, it is almost back to the original value of the Nernst
potential for Cl. Interestingly, the return to equilibrium happens basically on
the same time scale in the 4 cases of PCl value.
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Figure 5: Response of the model to a sudden increase in K permeability in the
presence of permeant anions of different permeability. Upper left : membrane
potential (the magenta dashed line show the Nernst potential for potassium,
the yellow line the Nernst potential for chloride), upper right : intracellular
sodium concentration, lower left : intracellular potassium concentration, lower
right : intracellular chloride concentration. Color code according to the anion
permeability (0.2 (red), 2 (blue), 20 (black), 200 (green). The dashed horizontal
lines indicate the corresponding equilibrium values after multiplying PK by 104.
Other parameter values are in Table 1

On the other hand the concentrations display a very different behaviour.
Opening the Gárdos channel triggers the exit of potassium, as well as entrance
of sodium. Consequently anion chloride exits the cell to ensure ion balance. The
speed at which the three ions reach their equilibrium state is directly related
to their permeability, which appears as a multiplying factor in the ODE right
hand side. It also depends indirectly on the anion permeability through the
dependance on E. As expected it is faster for the chloride when PCl = 20h−1

or 200h−1. If we let the simulation go on we observe that after 2 hours the
potassium has reached its equilibrium - earlier for large PCl. The sodium -
whose permeability has not been increased in this simulation - would reach its
equilibrium thousands of hours later. The initial values for ion concentrations
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are displayed in Table 1.

Parameters Values Unit Description
Vw 0.75 (l/loc) intra cellular water volume
F 96 485 C mol−1 Faraday constant
R 8.314 J K−1 mol−1 perfect gas constant
T 310 K Temperature

α 0.037 mV−1 α =
F

RT
PNa 0.002

h−1 membrane ion permeabilitiesPK 0.002
PCl 20

[Na]out 156
mM extra cellular concentrations[K]out 2

[Cl]out 158
[Na]in 10

mM intra cellular concentrations[K]in 140
[Cl]in 95
ENa 73.35

mV Nernst equilibrium potentialsEK -113.43
ECl -13.58

Table 1: Parameters values. [Na]in, [K]in and [Cl]in are used as initial conditions
for the concentrations in model (6).

3.2 Time variable permeability to mimic the transient
nature of the channels

Opening an ion channel is a transient phenomenon. It triggers a massive entrance
or exit of ions in the cell whose immediate effect is to change the membrane
potential. The new value is closer to the Nernst equilibrium value of the ion which
has been favoured by the channel opening. The previous numerical simulation
shows that some allowance should be made to other pre existing dominant ions.
The experimental data displayed in Figure 2 shows that the membrane potential
drops toward the potassium Nernst equilibrium. However it does not remain at
this low level, as the mathematical model would predict it, but increases again
slowly. In order to enable our mathematical model to mimic this behavior, we
introduce a time dependance in the ion permeabilities

Pi(t) = Pi

(
(Mi − 1).e−Ri.(t−tinj) + 1

)
, i ∈ {Na,K,Cl}, t ≥ tinj (8)

where Mi and Ri are respectively the multiplier and the relaxation coefficient for
ion i, with respect to its nominal permeability Pi. At the time of the injection
(or channel opening) the permeability is the nominal value multiplied by Mi

: P (tinj) = MiPi. If the multiplier Mi = 1 the permeability remains equal
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to Pi at all times. If the relaxation coefficient Ri = 0, P (t) remains equal to
P (tinj) = MiPi for all t ≥ tinj, otherwise it comes back to its nominal value
asymptotically as t → tinj. Figure 6 displays some numerical exemples for
MK = 104 and four values for the potassium permeability relaxation coefficient.
All other parameters are kept constant. The membrane potential is displayed on
the right panel with the same color code as the potassium. As the potassium
permeability goes back to its nominal value, the membrane potential goes back
to its equilibrium value before the channel opening, E∗ = −13.6mV, with a
speed proportional to the relaxation coefficient.
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Figure 6: Time varying potassium permeability (left panel) and influence on the
membrane potential (right panel) for P̄K = 0.002h−1. The multiplying coefficient
MK = 104 and the relaxation coefficient RK ∈ {0, 1, 10, 100}. Injection happens
at time t = 0. Na and Cl permeabilities are kept constant PNa = P̄K = 0.002h−1,
PCl = 20h−1.

Having thus explored the influence of some parameters on the numerical
outputs of the model, we address in the next section its adequacy to explain the
available experimental data.

4 Model calibration

4.1 Calibration method

As explained in the introduction several types of measurements have been
performed on experimental data. Indeed, for day 0, we are in a favorable
situation where several outputs of the model, namely the membrane potential
and the inner concentrations of sodium and potassium ions, can be directly
confronted to experimental values. However the statistical quality of these
measurements is very good for membrane potential thanks to the small time
acquisition step and the redundancy made possible by several measurements
on similar blood samples. In comparison the ions concentrations measurements
have more a qualitative value. Furthermore, for stored samples (labeled day
1, 2 , 3 and 6) only potential measurements are available to calibrate the time
dependent permeabilities.
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Indeed if the permeabilities are kept constant, we have a simple explicit
formula for the potential

E(t) =

(
E(0)− C

S

)
e−St +

C

S
,

where S =
∑

i∈{Na,Cl,K} Pi and C =
∑

i∈{Na,Cl,K} PiEi. This implies that
fitting only on potential data allows to recover only the global parameters S and
C. The three ion permeabilities are not identifiable from these two values. In
the case of time varying permeabilities the situation improves. We still have a
formula for the potential

E(t) = E(0) exp

(∫ t

0

−S(u)du

)
+

∫ t

0

C(s) exp

(∫ t

s

−S(u)du

)
ds, (9)

since S and C now depend on time. One could hope that the non linear behavior
of the permeabilities with respect to time (8) would improve the identifiability.
We have not addressed this theoretical issue in this work. Indeed, discretization
of (9) expresses (E(ti))i in terms of (S(ti), C(ti))i. If the range of values is large
enough - theoretically more than 6 values, but in practice in the least square
sense - can we recover the six parameters (Mk, Rk) for k ∈ {Na,K,Cl} defining
the Pk(t) ?

To explore numerically this possibility we design two fit functions. The first
one measure only the fit with the membrane potential

J(a) =

∑N
k=0(Ea(tj)− Edata

j )2∑N
j=0

(
Edata

j

)2 (10)

where a ∈ R6 contains the parameter values, with aj = Mij and aj+3 = Rij , for
j = 1, . . . , 3 and the ion ordering i1 =Na, i2 =K, i3 =Cl. In (10) the times of
data acquisition are denoted by

t0 = tinj < t1 < . . . < tN = tend. (11)

The second fit function includes two terms taking into account the fit with Nc

values of sodium and potassium concentrations. We recall that unfortunately no
data is available for chloride concentration.

Jc(a) =

N∑
k=0

αE

(
Ea(tj)− Edata

j

)2
+ αNa

Nc∑
k=0

(
[Na](tck)− [Na]datak

)2
+

αK

Nc∑
k=0

(
[K](tck)− [K]datak

)2
,

(12)

with

αE =
1∑N

j=0

(
Edata

j

)2 , αNa =
1∑Nc

j=1

(
[Na]dataj

)2 , αK =
1∑Nc

j=1

(
[K]dataj

)2 .
(13)
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The coefficients αE , αNa and αK take into account the scale of each dataset and
its sparsity. Indeed our choice ensures that the optimized parameters produce a
good fit with the membrane potential while selecting among the various local
minima the best one with respect to both the sodium and the potassium datasets.

To study the sensibility of the fit functions with respect to parameters we first
generate a numerical solution of the ODE model (6), on the time interval [0, 0.5],
using parameters in Table 1, and coefficients of Table 3 (line ’opt’) denoted in
the sequel as “true values”. These values will be justified in details in paragraph
4.2. We use this numerical solution as “synthetic” data and study the influence
of the parameters a on J(a) and Jc(a) (see appendix B for details). It turns
out that minimizing J(a) alone is not enough to recover the parameters. On
the other hand, minimizing Jc(a) with Nc = 2, that is, including the first two
concentrations at t1c = 0.083h and t2c = 0.42h provides a satisfactory solution,
moreover robust with respect to the initial condition of the minimization strategy.

4.2 Calibration of the model using experimental data

Relying on the previous study we now turn to the numerical calibration of
the model using the experimental data presented in section 1. We have five
datasets for membrane potential corresponding to fresh blood and four storage
durations of 1, 2, 3 and 6 days. About 900 potential values are available between
tinj = 0.0036h and tend = 0.245h which denote respectively the time of the drug
injection and the end of the experiment by cell lysis. For the fresh blood we

Parameters Values Unit

PNa 0.001518
h−1PK 0.001651

PCl 1.2

Storage (day) Einit(mV ) [Na]in(mM) [K]in(mM)
0 -11.37 27 119
1 -12.76 26 127
2 -11.65 33 119
3 -11.36 37 115
6 -9.58 46 102

Table 2: Top table: nominal permeabilities [10]. Bottom table: resting membrane
potential and initial conditions for sodium and potassium concentrations at time
0 for storage durations of 0,1,2,3, and 6 days. Einit, [Na]in and [K]in are used
as initial conditions in (6). All the other parameter values are in Table 1.

also have some values of concentrations for Na and K ions, unfortunately on a
much coarser time grid, which constitute nevertheless priceless control points.
We therefore incorporate in Jc the fit with sodium and potassium concentrations
at t1c = 0.083h and t2c = 0.42h.

We seek a minimum of Jc(a) in the admissible domain defined as DA =∏6
i=1[Li, Ui] with Li and Ui some bounds imposed to the parameters ai from
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biological considerations. Basically the permeabilities should increase at the
channel opening, therefore we set Li = 1 and Ui = 107 for i = 1, 2, 3. The
relaxation factors should be some positive coefficients. Furthermore, to avoid
overflows in the exponential in (8) we set Li = 0 and Ui = 106 for i = 4, 5, 6.
Starting from scratch, finding a set of parameters leading to a good fit requires
many trials. Indeed some combinations of parameters randomly chosen in the
admissible domain lead to very small time steps leading to unaccurate solutions of
the ODE. We found it more efficient to reduce somewhat the admissible domain
and to use a stochastic minimization method, CMAES[4]. This algorithm can be
restarted with random seed and we found that it converges to roughly the same
solution for all trials. The bounds and the optimal parameters are gathered
in Table 3. The solution and the corresponding permeabilities are displayed in
Figure 7. The most striking feature in this solution is the time scale difference
between the sodium on the one hand and the potassium and chloride on the other
hand. The abscissa have been shifted and time 0 corresponds to the injection
of the drug. This is mimicked by the model by an instantaneous increase of
the permeabilities, obtained by multiplying each nominal value Pj in Table 2
by its corresponding multiplier Mj in Table 3. The permeability to sodium is
multiplied by 341, therefore reaching 0.51, when the permeabilities to potassium
and chloride were multiplied respectively by 106 and 7781, reaching respectively
1731h−1 and 9337h−1. To fit both the membrane potential and the sodium
and potassium concentrations it turns out that the membrane permeabilities to
potassium and chloride have to relax very quickly back to their nominal values,
while the sodium behavior is much slower. Accordingly, the concentrations in
ions K and Cl drop very quickly after the injection of the drug, corresponding
to this very fast permeability relaxation, while the sodium concentration slowly
rises.

M[i] R[i] (h
−1)

MNa MK MCl RNa RK RCl

min 1 1 1 0 0 0
opt 341 1048931 7781 15 716 2296
max 10000 2000000 10000 10000 10000 10000

Table 3: Bounds and optimal values for parameter fit with the day 0 dataset.

In Appendix D we describe in details how the sensitivity analysis is performed,
by drawing level surface for the fit functions J(a) and Jc(a) and computing the
Sobol indices for each of the 6 parameters. Not surprisingly the parameters MNa,
RNa, MK and RK which define the sodium and potassium permeabilities have a
greater influence on Jc(a) than the two coefficients of the chloride permeability.
Indeed since no data is available for chloride concentration, these parameters
influence on the fit is more indirect than the Na and K permeabilities which are
directly driving the corresponding ion concentrations.

14



0.0 0.2 0.4
80

60

40

20 E(mV)

0.0 0.2 0.4

30

40

50

60

70
[Na]

PNa

[Na]

0.0 0.2 0.4
Time(h)

25

50

75

100

[K]
PK

[K]

0.0 0.2 0.4
Time(h)

20

40

60

80

[Cl]
PCl

[Cl]

0.0

0.2

0.4

PNa

0

500

1000

PK

0

2000

4000
PCl

Figure 7: Best fit with day 0 dataset (no storage), obtained by minimization
of fit function (12) with respect to permeability multipliers and relaxation
coefficients. Data : membrane potential (in red in upper left panel), and sodium
and potassium concentrations, in mmol/lcw, at t1c = 0.083h and t2c = 0.42h (blue
stars in upper right and lower left panels). Model solution in green solid lines,
scale on the left axes. The permeabilities, in h−1, are plotted in dotted lines
with scale on the right axes, in the same panels as the concentrations.

5 Influence of the storage duration

We now investigate the influence of the storage duration on the membrane
properties. We perform a parameter identification for each available dataset,
corresponding to storage of 1, 2, 3 and 6 days.

Except for time 0, which is used as initial condition for the ODE system,
there are no available experimental values for [Na] and [K]. We can therefore
only use the fit J(a), on the experimental membrane potential (10). For each
dataset we initialize the search with the optimal parameters p0 = (p0i )i=1,6 found
for the previous day, which is a good enough initial guess.
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Figure 8: Best fits obtained by minimization of fit function (10) with respect
to permeability multipliers and relaxation coefficients. Blue curves are the
membrane potential averaged over the available datasets for a given storage
duration (age). Black horizontal line over the short time range before the injection
is the initial condition for the potential. Orange curves highlight the time range
used in the fit function. Green curves are the model response computed with
the optimal parameters. The last panel displays the relative least square error
between the data and model response as a function of age.

The minimization of the fit function J(a) (10) with respect to the pa-
rameter vector a is performed using the Python function minimize of the
scipy.optimize package. We select the L-BFGS-B algorithm which is well
suited to bounds constrained problems [15]. Of note, the upper bound for MCl

has been increased to 50000. This algorithm performs better when the gradient
of the objective function is provided. From the definition (10) it is obvious that
computing ∇J(a) requires the derivatives of the model output with respect to a.
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These are obtained by solving the ODE system obtained by differentiating (6)
with respect to each parameter (see Appendix C).

M[i] R[i] (h−1) T[i] (h) Error
Age MNa MK MCl RNa RK RCl TNa TK TCl

0 309 1048922 6516 7 666 1994 1.202 0.024 0.006 1.670e-04
1 715 1048851 11251 7 709 2972 1.364 0.023 0.004 1.730e-04
2 1032 1048667 21102 5 680 3053 1.759 0.024 0.004 2.542e-04
3 1385 1048667 21074 5 717 3426 2.042 0.023 0.004 4.530e-04
6 2488 1048666 21106 5 683 2780 2.027 0.024 0.004 1.417e-03

Table 4: Optimal parameters for each age dataset, leading to the fit displayed in
Figure 8. The corresponding time variation of the permeabilities are displayed
in Figure 10.

For each storage duration, the potential computed by the model, with the
parameters corresponding to the best fit, is displayed in green in Figure 8 along
with the experimental dataset in orange and blue. The time range entering the
fit function corresponds to the orange section. The initial condition (“E init”
in black in Figure 8) is set for each dataset by fitting a constant value to the
potential values before the injection time, whose numerical value is found in
Table 2.

The value of the fit J(a) for different age datasets is displayed on the bottom
right panel of this Figure 8.

To better analyse the evolution of the fit as the storage duration increases
we display in Figure 9 the absolute (left panel) and relative (right panel) errors
between the potential datasets and the output of the model as a function of
time. Clearly there is a dominating error at the beginning of the experiment.
It is due in part to the difficulty in catching the exact moment of the potential
drop. This bias also comes from the fact that the potential equilibrium is not
completely reached at the beginning of the experiment. In the remaining part
of the experiment, where the potential rises back towards its equilibrium state,
the error behaves well for short storage durations. The bias increases with
the storage duration. This is an indication that our model is indeed simple
and should be refined to take into account more sophisticated interactions and
possibly additional influences. Nevertheless the relative errors lie within the five
per cent band except for day 6 dataset of storage where it still remains beyond
ten per cent.

In order to study the evolution of the model parameters with age we define a
relaxation time T[i], for each ion [i]. T[i] denotes the time beyond which the [i]
ion permeability has decreased back to ten per cent of its nominal value.

T[i] = inf{t ∈ R, t ≥ tinj , P[i](t) = s P̄[i]} (14)

with s = 1.1. Using the definition of the ion permeability (8), the explicit formula
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Only one point every five is plotted to improve the readability of the graphs.
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for T[i] as a function of Mi and Ri is

T[i] = max

0,−
ln

(
s− 1

M[i] − 1

)
R[i]

 . (15)

Figure 10 and Table 4 show that the permeabilities to potassium and chloride
are not very much affected by the storage. The permeabilities to these two ions
are multiplied by sensibly the same large number to mimic the injection of the
drug, and they relax very fast to their nominal values, in less than 2 minutes
for potassium and about 15 seconds for chloride. Note that the time scale has
been blown out in the top right (K) and bottom left (Cl) panels of Figure 10 to
observe the very fast decay of these permeabilities which return to their nominal
values in a few seconds. Furthermore the chloride permeabilities are plotted in
log scale to distinguish the differences for various days. On the contrary storage
seems to influence a lot the permeability to sodium. The multiplying coefficient
steadily increases with age, and the relaxation times increase, from 1.2 to 2 h.
This means that for all storage durations, the permeability to sodium has not
recovered its nominal value at the end of the experiment. Since the three ion
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Figure 10: Time varying sodium (top left), potassium (top right) and chloride
(bottom left) permeabilities for fresh blood and samples stored for 1,2,3 and 6
days. Formula (8) computed with the optimal parameters in Table 4 obtained
from fitting the model for each storage duration. Times have been shifted so that
t = 0 correspond to the injection of the drug. The bottom right panel displays
the total Sobol indices of the six parameters.

permeabilities vary on very different scales, roughly 110-1000 for Na, about 106

for K and 104 for Cl, we check the sensitivity of the fit to the various model
parameters in a quantitative manner, before giving biological interpretation. In
Appendix D we compute the first and second order and total Sobol indices of
the six parameters on the least-square fit J(a) of the membrane potential with
real data, for the five datasets. The bottom right panel of Figure 10 displays
the evolution of the total Sobol indices as a function of the storage duration.
We notice that the two parameters of K permeability, MK in orange and RK in
violet, and the relaxation coefficient RCl in black, remain the most influential
factors for all 5 fits. MCl and RNa Sobol indices remain negligible. The MNa

amplitude coefficient in the sodium permeability (in blue), which has a negligible
impact (that is lower to 0.05) on the fit with fresh blood data, becomes more and
more important and has an influence comparable to MK for the 6-day dataset.

This result indicates that Na+ permeability must play a major role in the
evolution of the response observed following activation of the Gárdos channel.
It is clear that the procedure used allows maximum activation of the Gárdos
channel, which remains constant throughout the 6-day of the experiment. The
chloride conductance, which is already 3 orders of magnitude higher than all the
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others, can vary only slightly. However, for sodium permeability, the reality is
rather different. Once the hyperpolarization potential has been reached, and
if we consider that the intensity of the cationic currents which will generate
repolarization depends on the driving force, this is more or less identical from
day 0 to day 6. This therefore implies that permeability per se increases over
the storage time. This echoes the work carried out on the terminal density
reversal phenomenon observed during the terminal senescence of red blood cells
in the circulation, which become highly permeable to cations to the point of
reversing the Na+/K+ gradient [11]. This phenomenon, combined with the
present results, implies that as red blood cells age, in vivo or in vitro, inhibition
of this permeability is withdrawn. It is important to note that since red blood
cells have no capacity for translation and therefore no capacity to express a
new set of proteins, any alteration in their permeability properties can only be
attributed to intrinsic mechanisms. More importantly, the results presented here
definitely point to this cationic permeability being generated by a conductive
pathway. Finally, the predominance of the effect of this conductance in the
repolarisation phenomenon, although it is 2 to 3 orders of magnitude lower
than that for anions, can be explained by the fact that during activation of the
Gárdos channel, the cell is not only totally depleted in K+ but also in Cl−. The
latter is also rate limiting for K+ efflux. So, even if the anionic conductance
remains higher than the cationic permeability, the driving force for cations entry
(Na+) becomes the predominant one in the flux. Finally, bearing in mind that
the passage of a few ions in a non-electroneutral fashion can generate a large
variation in membrane potential, a simple non-selective cationic conductance
whose current is no longer repressed can explain the phenomenon observed here.

6 Conclusion

On the modeling side, we found it interesting to write a simple model that
puts the membrane potential back at the center of the game as in the founding
papers of electrophysiology. We have proposed a time varying model for the
membrane permeabilities which is coherent with the experimental set-up and
relays on only two parameters per ion. The solution of the mathematical model
for the membrane potential and the three ions concentrations mimics correctly
the experiments. To calibrate the parameters of the model we have designed a
fit function taking into account different types of datasets, membrane potential
and concentrations, and performed a sensitivity analysis of the fit function
with respect to the six unknown parameters. The data fit results are very
good, in term of residual error - which remains below 5% except for the longest
storage where it reaches 10%. The sensitivity analysis and the evolution of the
permeabilities of our model with the storage duration provide interesting insights
to interpret from the biological point of view the variability of the datasets.

Indeed this simple model highlights the importance of conductance pathways
in membrane transport phenomena. From a more general perspective, although
the terminal density reversal phenomenon has been extensively discussed in
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the literature, little has been reported on long storage for transfusion purposes,
where storage at 4°C also blocks the pumps. Although calcium depletion in
the storage medium prevents sporadic and massive activation of the Gárdos
channel, cation leak persists and significantly alters ion concentrations in red
blood cells. In addition, preliminary data clearly show that overactivation of the
cationic conductance(s) occurs from the first 20 days of storage and increases
with time, raising the question of the fate of these cells once reinfused into
patients. Knowing that the quality of transfusion bags is a major issue for
the years to come, a simple measurement combined with a predictive model
would make it easy to qualify transfusion bags for a safer future for patients.
Finally, another neglected situation that could have major consequences is that
of diabetic patients whose cells age more rapidly as a result of glycation of
haemoglobin and membrane proteins. This is notably due to impairment of the
Ca2+ ATPase pump. While the conductive nature of the permeability pathway
is no longer in dispute, its capacity to be permeable to Ca2+ adds a further
threat to the survival of red blood cells within the circulation, where a massive
alteration in volume and therefore shape will definitely affect the rheological
properties of the red blood cell and therefore accelerate its clearance and removal
from circulation.

Several possible extensions of this model would be interesting to study. First,
one possibility would be to allow the Nernst potentials to vary. In a second step,
we could extend our model in dimension 5, taking into account an additional
cation, in this case calcium. This would require additional precautions since
calcium is present at much lower orders of magnitude, and would therefore
probably require multi-scale work. Eventually, since the membrane potential
experimental values exhibit strong dependance on the duration of storage, it
is tempting to generalize the model to a multiscale model where the solution
depends both on time and on age.
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gárdos channelopathy. Blood advances, 5(17):3303–3308, 2021.

[8] J.P. Keener and J. Sneyd. Mathematical Physiology. Number vol. 2 in
Interdisciplinary applied mathematics. Springer, 2009.

[9] Dieter Kraft. A software package for sequential quadratic programming.
Forschungsbericht- Deutsche Forschungs- und Versuchsanstalt fur Luft- und
Raumfahrt, 1988.

[10] Virgilio L Lew and Robert M Bookchin. Volume, pH, and ion-content regu-
lation in human red cells: analysis of transient behavior with an integrated
model. The Journal of Membrane Biology, 92(1):57–74, 1986.

[11] Virgilio L Lew and Teresa Tiffert. The terminal density reversal phenomenon
of aging human red blood cells. Frontiers in Physiology, 4:171, 2013.

[12] David Monedero Alonso, Laurent Pérès, Aline Hatem, Guillaume Bouyer,
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A Biological data acquisition

Changes in membrane potential measurements are obtained using the MBE
(Macey, Bennekou, Egée) method [7] which relies on the proton distribution.
Indeed, membrane potential can be determined indirectly by measuring the ratio
of a suitable passively distributed ion. To fasten proton distribution, the CCCP
protonophore (Carbonylcyanure m-chlorophénylhydrazone) is used. CCCP is a
weak acid that readily permeates the membrane both as a free acid (HA) and as
a free anion (A−) and thereby acts as a proton carrier over the cell membrane.
The extracellular and intracellular pH can be expressed as:

pHout = pKa + log
[A−]out
[HA]out

,

and

pHin = pKa + log
[A−]in
[HA]in

.

At equilibrium, [HA]out = [HA]in and the difference between pHout and pHin
will reflect the anion distribution across the membrane:

pHout − pHin =

(
pKa + log

[A−]out
[HA]out

)
−
(
pKa + log

[A−]in
[HA]in

)
= log

[HA]in
[HA]out

.

The Nernst potential for the anion is

E[A−] =
ZF

RT
ln

[A−]out
[A−]in

= −61.5 log
[A−]out
[A−]in

.

at 37ºC. At equilibrium the anion Nernst potential is equal to the membrane
potential

Vm = E[A−] = −61.5 log
[A−]out
[A−]in

= −61.5
(
pHout − pHin

)
.

As a result of a change in the membrane potential, the proton distribution will
adjust and the membrane potential change is given by:

∆Vm = −61.5
(
∆pHout −∆pHin

)
.

In a completely unbuffered external medium and with a highly buffered intra-
cellular medium, mainly from hemoglobin, the intracellular pH is practically
constant. Therefore, any changes in the membrane potential can be calculated
as:

∆Vm = −61.5∆pHout.
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The zero potential (pHout = pHin) is obtained by addition of the detergent
Triton X-100, which causes a total disintegration of the cells, and the extracellular
pH attains the same value as the original intracellular pH. This method describes
a way to estimate the membrane potential by measuring changes in extracellular
pH, ending with the absolute calibration.

Intracellular Na+ and K+ concentrations are measured under the same
experimental conditions, as well as cell volume, or more precisely water content
as a proxy for volume. Briefly, 0.5 mL aliquots of the cell suspension were
taken at each timepoint, distributed in Beckman polyethylene micro test tubes
(Dutscher, France) and centrifuged at 19600 rcf for 7 minutes at 10°C. After
centrifugation, the packed cell mass was separated from the supernatant by
slicing the tube with a razor blade below the top of the red cell column prior
weighting. For volume measurements, after weighting, the packed RBCs cells
were dried to constant weight for at least 48 hours at 90°C and re-weighted.
RBC volume depends on the intracellular water content, which is estimated to
be about 90 fL for a healthy discocyte. Shape change can be misleading in the
estimation of the cell’s water content due to the great plasticity of the red cell
membrane. These measurements are independent of cell shape. For Na+ and K+

content measurement, the packed cells within the sliced tubes were lysed in 1
mL MilliQ water. Proteins were denatured to ease separation by addition of 232
µM of perchloric acid. The tubes were spun at 12000 rcf for 7.5 minutes at 4C
and the supernatant was passed onto sample tubes and diluted 10 times. The
ionic content was measured using a flame photometer (PFP7 Jenway, France).
The amounts of Na+ and K+ measured are reported as mmol/litre of cell water.
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B Identifiability on synthetic data

In this appendix we address the identifiability of the model using only membrane
potential data. We design the fit function

J(a) =

∑N
k=0(Ea(tj)− Edata

j )2∑N
j=0

(
Edata

j

)2 (16)

where a ∈ R6 contains the parameter values, with aj = Mij and aj+3 = Rij , for
j = 1, . . . , 3 and the ion ordering i1 =Na, i2 =K, i3 =Cl. In (16) the times of
data acquisition are denoted by

t0 = tinj < t1 < . . . < tN = tend. (17)

To study the sensibility of the fit function with respect to parameters we first
generate a numerical solution of the ODE model (6), on the time interval [0, 0.5],
using parameters in Table 1, and coefficients of Table 3 (line ’opt’) denoted in
the sequel as “true” values. These values will be justified in details in paragraph
4.2. We use this numerical solution as “synthetic” data and compute J(a) in
two scenarii. First we keep the parameters MK , RK ,MCl, RCl constant equal to
the true values used to generate the “synthetic” dataset, and we let MNa and
RNa vary in a window of 10 per cent around their true value. The left panel
of Figure 11 displays the level of J(a) computed in this domain. The minima
of J is displayed by a white cross + which matches exactly the true position
indicated by a red ×. Then we set MK , RK to one per cent higher than their
true value and MCl, RCl one per cent lower, and compute J(a) for MNa and
RNa in a window of 10 per cent around their true value. We see on the right
panel of Figure 11 that the minimum at the white cross +, is now far away from
the true position ×. This is not surprising but the real bad news is that the dark
blue area, where J is close to its minimum, is much larger than in the ideal case.
This observation plus other numerical attempts at minimizing J(a) starting from
various initial conditions, convince us that without prior information, E data
are not sufficient to identify the model parameters.

We therefore propose to weight the objective function by two terms taking
into account the fit with Nc values of sodium and potassium concentrations.

Jc(a) =

N∑
k=0

αE

(
Ea(tj)− Edata

j

)2
+ αNa

Nc∑
k=0

(
[Na](tck)− [Na]datak

)2
+

αK

Nc∑
k=0

(
[K](tck)− [K]datak

)2 (18)

with

αE =
1∑N

j=0

(
Edata

j

)2 , αNa =
1∑Nc

j=1

(
[Na]dataj

)2 , αK =
1∑Nc

j=1

(
[K]dataj

)2 .
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Figure 11: Level of J(a) against MNa and RNa for experimental data obtained
by simulating (6) with parameter values in Table 1. In left panel MK , RK , MCl,
RCl are kept equal to the values in Table 3. In right panel MK , RK are set 1%
higher, and MCl, RCl 1% lower than the values in Table 3. The minima of J is
denoted by a white cross +, the true position by a red ×.

The coefficients αE , αNa and αK take into account the scale of each dataset and
its sparsity. Indeed they ensure that the optimized parameters produce a good
fit with the membrane potential while selecting among the various local minima
the best one with respect to both the sodium and the potassium datasets.

In our preliminary study using our ideal dataset we first test the behavior of
Jc(a) in the case where the sodium and potassium concentrations are available
on the same time grid as the membrane potential. Figure 12 displays the level
of Jc(a) for Nc = N and all things equal otherwise to Figure 11. We see on the
right panel that the minimum of Jc (×) remains much closer to the true location
(+) than when only E is used. The vicinity of the minimum, in dark blue, is
also sharper using Na and K.
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Figure 12: Level of Jc(a) against MNa and RNa for experimental data obtained
by simulating (6) with parameter values in Table 1. The minima of J is denoted
by a white cross +, the true position by a red ×. In left panel MK , RK , MCl,
RCl are kept equal to the values in Table 3. In right panel MK , RK are set 1%
higher, and MCl, RCl 1% lower than the values in Table 3. In (18) tck = tk for
k = 1 . . . , N = Nc.
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We now study the realistic configurations corresponding to the available
experimental data. Besides the values at t = 0 which are used as initial condition
for the ODE system, only the first measured value at tc1 = 5mn (0.083h) is in
the time range of the membrane potential dataset. The second one at tc2 = 25
mn (0.42h) already lies outside the time range. We will consider both cases
Nc ∈ {1, 2}.
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Figure 13: Level of Jc(a) against MNa and RNa for experimental data obtained
by simulating (6) with parameter values in Table 1. The minima of J is denoted
by a white cross +, the true position by a red ×. In left panel MK , RK , MCl,
RCl are kept equal to the values in Table 3. In right panel MK , RK are set 1%
higher, and MCl, RCl 1% lower than the values in Table 3. In (18) N = 896,
tN = 0.294h; and only one concentration is used to match with [Na] and [K]:
Nc = 1 and tc1 = 0.083h.

In Figure 13 we see that almost all the benefits of using Na and K data
is lost if only one point is used, here the one at t = 0.083h, in the time range
[0, 0.25] of the potential dataset. The area of the minimum of Jc, in dark blue,
is enlarged compared to that of Figure 12 where full concentrations datasets
where used. The right panel also shows that in the case where the potassium
and chloride permeabilities are shifted by 1%, the minimum of Jc misses by far
the true location. This bad performance is somewhat expected, since fitting one
curve through one single point is not very forceful indeed.

On the contrary Figure 14 shows that using the first two Na and K experi-
mental data points, at t1c = 0.083h and t2c = 0.42h gives results as good if not
better than the case where [K] and [Na] were available on the same grid as the
potential in Figure 12.

This result seems to indicate that our weighting coefficients αE , αNa and αK

play their role of taking into account the sparsity of the experimental values of
concentrations. Also compared to the results in Figure 11 the results are better:
in the ideal case in the left panel, the minimum area in dark blue is sharper. In
the right panel, where the K and Cl permeabilities are off by 1%, the minimum
of Jc remains almost at the true location.
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Figure 14: Level of Jc(a) against MNa and RNa for experimental data obtained
by simulating (6) with parameter values in Table 1. The minima of J is denoted
by a white cross +, the true position by a red ×. In left panel MK , RK , MCl,
RCl are kept equal to the values in Table 3. In right panel MK , RK are set 1%
higher, and MCl, RCl 1% lower than the values in Table 3. In (18) N = 896,
tN = 0.294h, and two concentrations are used to match with [Na] and [K]:
Nc = 2 and tc1 = 0.083h, tc2 = 0.416h.
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C Gradient of the objective function

We recall the basic method to study the dependance of a generic ODE system

dX(t; a)

dt
= F (t,X(t; a); a)

X(0; a) = X0

with respect to some parameters a ∈ Rp appearing in the expression of the right
hand side F : R× Rm → Rm. We denote by X(t; a) the solution of the Cauchy
problem for a given set of parameters. In the case where the initial condition
X0 ∈ Rm does not depend on the parameters a, the gradient of each component
Xk, for k = 1, . . . ,m with respect to a, is solution of the ODE system

d∇aXk(t; a)

dt
= ∇aFk(t,X(t; a); a) +

m∑
j=1

∂Fk(t,X(t; a); a)

∂xj
∇aXj(t; a),

∇aXk(0; a) = 0Rp .

Suppose that we want to minimize a fit function

J(a) =

m∑
k=1

γk

Nk∑
n=0

(Xk(t
k
n; a)−Xdata

k,n )2, (19)

with respect to a (note that the time sampling may vary according to the
component). The gradient

∇J(a) = 2

m∑
k=1

γk

Nk∑
n=0

(Xk(t
k
n; a)−Xdata

k,n )∇aXk(t
k
n; a),

will be required by the most efficient algorithms. It can be computed along with
X(t; a) by solving the system

dY (t; a)

dt
= G(t, Y (t; a); a),

Y (0; a) = Y 0,

where

• Y : R → Rm×(p+1) with, for k = 1, . . . ,m,

– Yk+m(k−1)(t) = Xk(t; a)

– Yk+1+m(k−1),...,k(m+1)(t) = ∇aXk(t; a).

• Y 0 ∈ Rm×(p+1) with, for k = 1, . . . ,m,

– Y 0
k+m(k−1) = X0

k

– Yk+1+m(k−1),...,k(m+1)(t) = 0Rp .
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• G : R× Rm(p+1) → Rm(p+1) with, for k = 1, . . . ,m,

– Gk+m(k−1)(t, y) = Fk(t, (yi+m(i−1))i=1,...,m; a)

– Gk+1+m(k−1),...,k(m+1)(t, y) = ∇aFk(t, (yi+m(i−1))i=1,...,m; a).+∑m
j=1

∂Fk(t, (yi+m(i−1))i=1,...,m; a)

∂xj
(yi)i=j+1+m(j−1),...,j(m+1).

The expression of J and its gradient becomes

J(a) =

m∑
k=1

γk

Nk∑
n=0

yk+m(k−1)(t
k
n; a)−Xdata

k,n )2,

∇J(a) = 2

m∑
k=1

γk

Nk∑
n=0

(yk+m(k−1)(t
k
n; a)−Xdata

k,n )(yj)j=k+1+m(k−1),...,k(m+1)(t
k
n; a).

In our case we have m = 4 and

F1(t,X) =

3∑
k=1

Pik(t; a)(Eik −X1)

F1+k(t,X) = −zk
Pik(t; a)

Vw

FX1

RT

Xk+1 − [ik]
ext exp(−FX1

RT
)

1− exp(−zk
FX1

RT
)

, for k = 1, 2, 3

where
Pik(t) = P̄ik

(
(Mik − 1).e−Rik

.(t−tinj) + 1
)
. (20)

For the ion ordering i1 =Na, i2 =K, i3 =Cl we have therefore z = (1, 1,−1). We
can rewrite the permeabilities in terms of the parameters a ∈ R6, with aj = Mij

and aj+3 = Rij , for j = 1, . . . , 3

Pik(t) = P̄ik

(
(ak − 1).e−ak+3.(t−tinj) + 1

)
. (21)

The partial derivatives of the model function F with respect to the parameters
are obtained through the partial derivatives of the permeabilities

∂Pik(t)

∂aj
= δk,jP̄ik .e−Rik

.(t−tinj) − δk,j−3P̄ik (Mik − 1).(t− tinj)e
−Rik

.(t−tinj).

We have then

∂F1(t,X)

∂aj
= (δk,j + δk,j−3)

∂Pik(t)

∂aj
(Eik − x1), for k = 1, 2, 3, and j = 1, . . . , 6

∂F1(t,X)

∂xi
= −δ1,i

3∑
k=1

Pik(t; a) for i = 1, . . . , 4
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and for k = 1, 2, 3, denoting yk1 =
−zkFx1

RT
for simplicity,

∂F1+k(t,X)

∂aj
= (δk,j + δk,j−3)

yk1
Vw

∂Pik(t)

∂aj

xk+1 − [ik]
ext exp(yk1 )

1− exp(yk1 )
for j = 1, . . . , 6

∂F1+k(t,X)

∂x1
= −Pik(t; a)zkF

VwRT

(
xk+1 − [ik]

ext exp(yk1 )

1− exp(yk1 )
+ yk1

exp(yk1 )(xk+1 − [ik]
ext)

(1− exp(yk1 ))
2

)
∂F1+k(t,X)

∂xj+1
= δk,j

Pik(t; a)y
k
1

Vw(1− exp(yk1 ))
, for j = 1, 2, 3.
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D Sensitivity analysis

D.1 Level sets of LS fit on real data

Following the methodology in Appendix B, we study the sensitivity of the
objective function with respect to the 6 parameters, in the case of the fresh
blood real dataset, where we can compare the two objective functions, including
or not the concentration control points.

We run three sets of numerical simulation. In each one we make vary two
parameters Mi and Ri, related to one of the three ions, while keeping the four
other parameters constant, equal to their optimal value for Jc(a) (see Table 3).

The two varying parametersMi andRi cover a square window [Mopt
i /10, 2Mopt

i ]×
[Ropt

i /10, 2Ropt
i ].

The results of the three simulations are displayed in Figure 15. We see that
the range of value for J(a) if at least one order of magnitude larger than for
Jc(a). This is normal since the fit is much better if only sought for the membrane
potential, disregarding the concentrations. The value of the best fit for JC(a)
is also highly dependent on the weights αE ,αNa and αK of its three additive
factors.

The ratio of the maximum over the minimum values of the fit J(a) within
the square range is one order of magnitude lower for Na than for K or Cl. The
influence of the Na permeability on the fit with the potential alone is much lower
than the influence of the K and Cl permeabilities.

This is no more the case for Jc(a). The influence of the Na permeability on
the fit including concentrations is comparable and even larger than the influence
of the K and Cl permeabilities.

ion min J max J max/min J min Jc max Jc max/min Jc
Na 0.00019 0.019 102 0.032 3.7 116
K 0.00032 0.60 1863 0.032 2.63 82
Cl 0.00032 0.67 2085 0.032 1.17 36

Table 5: Extremal values of J(a) and Jc(a) when only two parameters Mi and
Ri are varying in [Mopt

i /10, 2Mopt
i ]× [Ropt

i /10, 2Ropt
i ].

D.2 Sobol indices of LS fit on day 0 data

In this paragraph we quantify the influence of the parameters on the fit with
the data by computing Sobol indices, using the Python package SALib [5, 6].
As explained in [14] the idea is to consider the ANOVA representation of the
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function of interest, here the fit function J(a) (or Jc(a) for that matter)

J(a) = J0 +

6∑
s=1

∑
i1<···<i6

Ji1···is(ai1 , · · · , ais)

= J0 +

6∑
i=1

Ji(ai) +
∑
i<j

Ji,j(ai, aj) + · · ·+ J1···6(a).

After rescaling the parameter domain to [0, 1]6 the different contributing terms
can be estimated by Monte Carlo approximations of the following integrals∫ 1

0

J(a)da = J0,
∫ 1

0
J(a)

∏
k ̸=i dak = J0 + Ji(xi)∫ 1

0

J(a)
∏
k ̸=i,j

dak = J0 + Ji(xi) + Jj(xj) + Ji,j(xi, xj)

and their variances

D =

∫ 1

0

J2(a)da− J2
0 , Di1···is =

∫ 1

0

Ji1···isdai1 · · · dais ,

which satisfy the relation

D =

6∑
s=1

∑
i1<···<is

Di1···is .

The ratios

S1
i =

Di

D
, S2

i,j =
Dij

D
, ST

i =
Di +

∑
j ̸=i Dij +

∑
j ̸=k ̸=i Dijk + · · ·

D
,

are respectively the first order, second order and total Sobol indices. The
first-order index can be used to measure the fractional contribution of a single
parameter to the output variance. Second-order sensitivity indices are used
to measure the fractional contribution of two parameter interactions to the
output variance. Total-order sensitivity indices take into account both the main,
second-order and higher-order effects.

Note that we are not studying the influence of the parameters on the model in
general, which would involve also the variation of this influence with time. Here
we concentrate on the parameters leading to best fit with the fresh RBC dataset
and we therefore select a range of values centered on the best fit parameters, of half
width equal to 90% of the nominal value in each parameter direction. The Sobol
indices are computed using a Monte Carlo sample of size 16384×(2d+2) ≈ 230000.
The 95% confidence interval are superimposed on the first order and total indices,
to make sure that the sample size is large enough.

On the top panel we see the Sobol indices relative to J(a), which measures
the fit with the membrane potential. The first moments, in yellow on the
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Param S1
p S1

p +
∑

q ̸=p S
2
p,q ST

p

MNa 0.0347 0.163 0.240
MK 0.101 0.295 0.351
MCl 0.00310 0.0181 0.0402
RNa 0.120 0.282 0.362
RK 0.148 0.447 0.518
RCl 0.0255 0.107 0.165

Table 6: Sobol indices of the six parameters for the fit function Jc(a) for the
fresh blood dataset.

left panel, quantify the direct influence of each of the 6 parameters on J(a).
The second order index, on the right panel quantify the influence of correlated
parameters. Is it admitted that a parameter has a significant influence if its
Sobol index is larger than 0.05. Here only MK , RK and RCl satisfy this criterion,
as independent factors. In terms of correlations, the mutual influence of MK and
RK and of RK and RCl are significant. The bottom panels display the Sobol
indices relative to Jc(a), which measures the fit with the membrane potential
and the concentration in Na and K control points. Here all parameters seem
important -with the exception of MCl whose total Sobol index barely reaches
0.04. However if MK , RNa and RK directly influence Jc; with a 1st Sobol index
higher that 0.05. The mutual influences -measured by the second order index- of
(MNa, RNa), (MK , RK) and (RK , RCl) seem to be also important.

D.3 Influence of storage on Sobol indices of LS fit

A last set of numerical simulations is performed to check the observation made
in Paragraph 5 that Sodium ion transfers seem to be more important as the
duration of storage increases. This conclusion would be consistant with the
data measurement at time 0 showing an increase in sodium concentration and a
decrease in potassium concentration as the storage duration increases (see left
panel of Figure 4).

Indeed the permeabilities identified by fitting the model with the membrane
potential data steadily increase with age (see first panel of Figure 10), but
the sensitivity analysis on the fresh blood results indicate that the sodium
permeability influence on the fit with the membrane potential is negligible (See
top panels of Figure 16). It is therefore important to check whether this influence
remains negligible or not after the blood has been stored.

In Figures 17 and 18 we display the Sobol indices relative to J(a) for the 5
available dataset of membrane potential after a storage of 0,1,2,3 and 6 days.
The first moments, in yellow on the left panel, quantify the direct influence of
each of the 6 parameters on J(a). The total moment in red on the left panel,
quantify the total influence. The second order index, on the right panel quantify
the influence of correlated parameters.

Looking at the first red column in the left panels, we see that the total
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influence of MNa, the amplitude parameter of the Sodium permeability, increases
with the storage duration and becomes comparable to the influences of MK and
RK , which were the two predominant factors for fresh blood.

We summarize these observations in Figure 19. The influences of RNa,
remains negligible, while the influence of MNa increases along with the duration
of storage.
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Figure 15: Level of J(a) (left panel) and Jc(a) (right panel) against Mi and Ri

for the fresh RBC (day 0). i is Na in the top panels, K in the middle ones and
Cl in the bottom ones. The parameters related to the two other ions are kept
equal to their values in Table 3. The minima of J is denoted by a magenta cross
+, the true position by a red ×.
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Figure 16: Sobol indices for the membrane potential fit (top panel) and for the
full dataset fit (bottom panel) for fresh blood (no storage). The left bar charts
display the first (yellow) and total (red) moments of each parameter. The right
panel charts display the 2nd order correlations
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Figure 17: Sobol indices for the membrane potential fit for a storage duration of
0 and 1 days (from top to bottom). The left bar charts display the first (yellow)
and total (red) moments of each parameter. The right panel charts display the
2nd order correlations
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Figure 18: Sobol indices for the membrane potential fit for a storage duration
of 2,3 and 6 days (from top to bottom). The left bar charts display the first
(yellow) and total (red) moments of each parameter. The right panel charts
display the 2nd order correlations
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Figure 19: First order (left) and total (right) Sobol indices for the membrane
potential fit as a function of storage duration. The total index for RNa remains
below the threshold 0.05.

40


