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Abstract

Since the ’30s the interatomic potential of the beryllium dimer Be2 has been both an ex-
perimental and a theoretical challenge. Calculating the ground-state correlation energy
of Be2 along its dissociation path is a difficult problem for theory. We present ab initio
many-body perturbation theory calculations of the Be2 interatomic potential using the
GW approximation and the Bethe-Salpeter equation (BSE). The ground-state correlation
energy is calculated by the trace formula with checks against the adiabatic-connection
fluctuation-dissipation theorem formula. We show that inclusion of GW corrections al-
ready improves the energy even at the level of the random-phase approximation. At
the level of the BSE on top of the GW approximation, our calculation is in surprising
agreement with the most accurate theories and with experiment. It even reproduces an
experimentally observed flattening of the interatomic potential due to a delicate corre-
lations balance from a competition between covalent and van der Waals bonding.
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1 Introduction

The beryllium dimer Be2 has a long scientific history, with hundreds of experimental and the-
oretical investigations [1, 2]. The first synthesis of Be2 was attempted in the ’30s with no
success [3,4], while Hartree-Fock (HF) or other theoretical modelling [5,6] found a repulsive
ground-state, leading to the conclusion that Be2 does not exist. Later studies [2,7] pointed to
a possible van der Waals binding with a shallow energy minimum at large (∼ 5 Å) distance,
while other studies yielded a double minimum, at short and long distance separation [2, 8].
Be2 remained elusive till the ’70s [9], and only in the ’80s first rotovibrational spectra were
measured [10] and reliable calculations [11] were made, both pointing to a single short-bond
minimum at ∼ 2.5 Å. Today we have very accurate experiments [1] and calculations [12]
for the Be2 interatomic potential. Nevertheless, Be2 remains a severe workbench to check
many-body theories, and this is the purpose of this work.

The description of the correlation energy of molecular dimers along their dissociation path
is a theoretical challenge [13,14]. Full configuration interaction (CI) [14] is the only accurate
method [2, 12] providing results in very good agreement with experiment, but it is limited
to very small molecules. Quantum Monte Carlo (QMC) [13, 15–19], both variational (VMC)
and diffusion (DMC) are also valid alternatives, and DMC is even exact in systems where
the ground-state wavefunction does not present nodes, but they can be also very cumber-
some. Density-functional theory (DFT) [13] is in principle exact for calculating ground-state
energies, but standard approximations, like the local-density (LDA) and generalized-gradient
(GGA) approximations, have shown their limits on dimers binding energies and lengths [20],
in particular in the dissociation limit. In recent years time-dependent density-functional the-
ory (TDDFT) [21, 22] in the adiabatic-connection fluctuation-dissipation theorem (ACFDT)
formalism [23, 24] has been considered as one promising approach to improve over approxi-
mated DFT [20, 25–27]. In any case it relies on TDDFT approximations for the polarizability
χ, such as the random-phase approximation (RPA), the adiabatic LDA (ALDA or TDLDA), or
beyond. Nevertheless, the interatomic potential of Be2 continues to be a problem also for
TDDFT ACFDT, both in the RPA [28] and also more advanced approximations [27,29].

In this work, we calculate the Be2 interatomic potential in the framework of ab initio many-
body perturbation theory using the GW approximation [30] and the Bethe-Salpeter equation
(BSE) [13, 31, 32]. The ground-state correlation energy is calculated by the trace formula
(TF) [33,34]

Ec
0 =

1
2

�∑

i>0
Ωi − Tr(A)

�

, (1)

whereΩi are the positive eigenvalues of the full, i.e. beyond the Tamm-Dancoff approximation,
BSE equation, and A is the only-resonant part of the BSE excitonic Hamiltonian. This formula
was introduced by Sawada to calculate the correlation energy of the electron gas by summing
over the contributions from zero-point plasma oscillations (plasmons) [35] as an alternative
to the Gell-Mann & Brueckner formula which integrates along the adiabatic connection path
over the interaction switch-on λ parameter [36]. Later these two formulae were shown to be
equivalent within RPA, both on the electron gas [37, 38] and for inhomogeneous systems in
using the DFT Kohn-Sham (KS) as reference [39]. This allows us to validate our results from
Eq. (1), at least at the RPA level, by also evaluating the correlation energy via the RPA ACFDT
formula starting from KS eigenstates [20,23,24]

Ec
0 =

1
2π

∫ i∞

0

dω Tr
�

ln
�

1−wχ0(ω)
�

+wχ0(ω)
�

. (2)

Here w(r, r ′) = 1/|r − r ′| is the Coulomb interaction, χ0(r, r ′,ω) is the Kohn-Sham polariz-
ability, and the integral over ω is along the positive imaginary axis. Our results show that
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GW corrections introduce large improvements already at the level of the RPA. The interatomic
potential we obtain at the level of the BSE on top of the GW approximation is in surprising
agreement with the most accurate calculations and experiment. GW+BSE correlations even
seem able to describe the unusual shape of the experimental [1] interatomic potential, namely
a flattening of the Morse potential in the range between 6 and 9 bohr (3 to 4.5 Å) towards an
expanded Morse potential which better fits the experimental vibrational spectrum [1].

The solution of the historical problem represented by the paradigmatic Be2 interatomic
potential shows that the use of Eq. (1) in the BSE framework can reveal an accurate method-
ology for calculating the ground-state energy and stability of atoms and molecules, solids, and
even nuclei, with an important advance in all these fields.

2 Theory

Eq. (1) was derived previously in different ways [35,38,39]. Here we present a modification
of the Thouless derivation [33,40] which extends its validity to starting points different from
HF towards DFT or GW , and to kernels beyond RPA towards BSE or TDDFT kernels. We start
from the Bethe-Salpeter equation,

L = L0 + L0ΞL , (3)

where L is the two-particle correlation function, L0 = GG with G the one-particle Green func-
tion, and Ξ the two-particle interaction. This is an exact equation for calculating the excitation
spectrum. By knowing the exact Ξ and L0 (via G), the BSE can be solved for L whose poles
Ωλ = Eλ − E0 and their associated residuals provide the neutral (optical) excitation energies
and oscillator strengths. In practice, approximations are unavoidable. We consider a quite
general case of an approximated electronic structure, e.g. HF, GW or DFT, with real energies
εi and orthonormal wavefunctions φi(r) used to build G and L0. And we consider an approxi-
mated static kernel, e.g. the kernel TDH iΞi jkl = wil jk (with w the bare Coulomb interaction),
or the TDHF iΞi jkl = wil jk−wilk j , or the GW+BSE iΞi jkl = wil jk−Wilk j (with W the screened
Coulomb interaction), or even the TDLDA. Under these conditions the Bethe-Salpeter equation
can be reduced to the well known [13,33,41–43] RPA equation

�

A B
B∗ A∗

��

Xλ

Y λ

�

= Ωλ

�

1 0
0 −1

��

Xλ

Y λ

�

, (4)

with the Hermitian matrix At t ′ = Aphp′h′ = (εp − εh)δpp′δhh′ + iΞphp′h′ and the symmetric
matrix Bt t ′ = Bphp′h′ = −iΞpp′hh′ indexed by particle-hole transition indices t = {ph} from an
occupied state h to an empty state p, ĉ†

p ĉh, on the orthonormal basis set φi(r). Eq. (4) provides
a full spectrum of excitations |Ψλ〉, both the excitation energies Ωλ = Eλ − E0 (with respect
to the ground state energy E0) and the eigenvectors (Xλ Y λ). This spectrum constitutes an
approximation to the exact spectrum. We now introduce boson [41] transition operators Ĉt
replacing the ph operator bilinears, ĉ†

p ĉh→ Ĉ†
t , i.e. fulfilling exact boson canonical commuta-

tion relations, [Ĉt , Ĉt ′] = 0, [Ĉ†
t , Ĉ†

t ′] = 0, [Ĉt , Ĉ†
t ′] = δt t ′ . This is not the case for the fermion

bilinears, [ĉp ĉ†
h, ĉ†

p ĉh] 6= δpp′δhh′ . So the boson operators can be seen as an approximation to

the fermion bilinears. We now express the full many-body Hamiltonian Ĥ in terms of the boson
operators imposing the condition that we get, by construction, the same excitation spectrum
of Eq. (4). This is achieved if [41]

〈Ψ0|[Ĉt , [Ĥ, Ĉ†
t ′]]|Ψ0〉 = At t ′ ,

〈Ψ0|[Ĉt , [Ĥ, Ĉt ′]]|Ψ0〉 = −Bt t ′ .
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Up to quadratic terms only [44] the Hamiltonian is written

Ĥ = E0
0 +

∑

t t ′
At t ′ Ĉ

†
t Ĉt ′ +

1
2

∑

t t ′
[Bt t ′ Ĉ

†
t Ĉ†

t ′ + B∗t t ′ Ĉt Ĉt ′] ,

where the constant E0
0 is approximated by the expectation value of the Hamiltonian,

E0
0 = 〈Φ0|Ĥ|Φ0〉, over the zero-order ground-state Slater determinant Φ0 constructed with the

occupied wavefunctions φh(r) 1. For HF orbitals φHF(r), the constant is the HF ground-state
energy E0

0 = EHF
0 , whereas in the case of DFT the constant is the sum of the kinetic, external,

Hartree and exchange operators evaluated on the Kohn-Sham wavefunctions,
E0

0 = EDFT − Exc + EEXX. The Hamiltonian can be recast into a matrix form,

Ĥ = E0
0 −

1
2

Tr(A) +
1
2

�

Ĉ† Ĉ
�

�

A B
B∗ A∗

��

Ĉ
Ĉ†

�

,

and the solutions (Xλ Y λ) to Eq. (4), subject to the orthonormality condition
∑

t(X
λ∗
t Xλ

′

t − Y λ∗t Y λ
′

t ) = δλλ′ , allows us to define new boson operators Q̂λ by a Bogoliubov
transformation of the Ĉt ,

Q̂†
λ
=
∑

t

(Xλt Ĉ†
t − Y λt Ĉt) ,

which diagonalizes the Hamiltonian

Ĥ = E0
0 −

1
2

Tr(A) +
1
2

∑

λ

Ωλ +
∑

λ

ΩλQ̂
†
λ
Q̂λ . (5)

The operators Q̂λ act on the (approximated) ground |Ψ0〉 and excited |Ψλ〉 states, Q̂†
λ
|Ψ0〉= |Ψλ〉,

Q̂λ|Ψ0〉= 0. And the expectation value of the Hamiltonian Eq. (5) over the excited states |Ψλ〉
provides, by construction, the excitation energies Ωλ with respect to the ground state. Finally,
the expectation value of the Hamiltonian Eq. (5) over |Ψ0〉 provides the total energy of the
ground state including correlation (within the stated approximations),

E0 = E0
0 +

1
2

∑

λ

Ωλ −
1
2

Tr(A) . (6)

Thus, for a starting HF electronic structure, the two terms after the constant E0
0 = EHF

0 in
Eq. (6) provide the correlation energy Eq. (1), alternatively recast in the form

Ecorr
0 =

1
2

∑

λ

(Ωλ −ΩTDA
λ ) , (7)

or in the form
Ecorr

0 = −
∑

λ

Ωλ

∑

t

|Y λt |
2 , (8)

where ΩTDA
λ

are the eigenvalues of Eq. (4) in the Tamm-Dancoff approximation (TDA), i.e.
taking the matrix B = 0. Eqs. (7) and (8) show more clearly that the ground state correlation
energy arises only beyond the TDA approximation and from terms in B and Y . The TDA is
only able to introduce correlations in the excited states.

To summarize, Eq. (6) is an expression for the ground-state total energy E0 including cor-
relation at the same level of approximation (e.g. RPA or TDHF, GW+BSE, etc.) as taken for the

1More exactly E0
0 = 〈Ψ

0
0 |Ĥ|Φ

0
0〉 where Ψ0

0 is the ground-state killed by the boson operators, Ĉt |Ψ0
0 〉 = 0. Since

Ĉt ' ĉ†
p ĉh, the 0-order ground state Φ0, killed by the ĉ†

p ĉh|Φ0〉 = 0, is an approximation for Ψ0
0 , and Ĉt |Φ0〉 ' 0 is

approximated to zero.
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Figure 1: The interatomic potential of Be2. Red line: experiment [1]; black line:
accurate CI [12]; green line with plus symbols (a): RPA on top of PBE by ACFDT
from Ref. [29]; cyan line with cross symbols (b): RPA on top of PBE by ACFDT from
Ref. [28]; blue continuous line: RPA on top of PBE by ACFDT, our calculation; blue
dashed line with squares: RPA on top of PBE by the trace formula, Eq. (6); magenta
continuous line: RPA on top of GW and PBE by ACFDT; magenta dashed line with
circles: RPA on top of GW and PBE by TF.

A and B matrices, and so at the same level of approximation of the associated excitation spec-
trum Ωλ. In contrast to the ACFDT formalism, which provides an in principle exact formula
for correlations within TDDFT, Eq. (6) is only an approximate expression since the beginning
that relies on the validity of the boson approximation between operators, Ĉt ' ĉ†

p ĉh, and the

validity of the killing condition on the zero-order Slater determinant ground-state, Ĉt |Φ0〉 ' 0.
However for both formulae most critical are the approximations on the kernel (RPA and be-
yond) and on the starting electronic structure (LDA or else). Comparing the merits of these
various approximations is still in its infancy for atoms and molecules [45,46].

In order to provide the best comparison with previous literature and with ACFDT results,
we use the same large cc-pV5Z Gaussian basis set [47] adopted in Ref. [29], together with
the auxiliary cc-pV5Z-RI basis set [48] in a Coulomb-fitting, resolution-of-identity approach.
Input Kohn-Sham or Hartree-Fock eigenstates were calculated by the NWCHEM [49] package,
whereas many-body calculations were performed with the FIESTA [50,51] code. For improved
accuracy [50, 52] we performed evGW calculations, namely partially self-consistent GW on
the eigenvalues only. GW corrections were calculated explicitly for all 4 occupied and 14
empty states, while corrections to higher states were extrapolated by a rigid scissor-operator
shift from the last calculated level. This provided a result converged up to 0.2 mHa.
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3 Results

In Fig. 1 we present the interatomic potential of Be2 as derived from recent accurate experi-
mental rotovibrational spectra [1], and from the most accurate configuration interaction (CI)
calculation [12] which is in good agreement with the experiments. On the same figure, we
present the theoretical curve that we calculated at the level of the direct RPA approximation
on top of DFT in the PBE [53] approximation (RPA@PBE) by the TF formula Eq. (6) or equiva-
lently Eq. (8) which, we checked, provide the same result within numerical precision. We show
also the same RPA@PBE curve calculated by the ACFDT formula. They are in perfect agree-
ment. We can compare our RPA@PBE curves with those calculated by other authors [28, 29]
with the ACFDT formula. Although we used exactly the same calculation parameters reported
in Ref. [29], our result differ from theirs, in particular for the binding energy, due to the
basis set superposition error that they mentioned and which they removed by counterpoise.
We prefer not to use the counterpoise method because some works [54, 55] showed it is not
justified in the case of systems where van der Waals interaction can be important. For this
reason our result is closer, surprisingly, to the one of Ref. [28] obtained by a much different
implementation, namely plane-waves and norm-conserving pseudopotentials. Nevertheless,
all RPA@PBE calculations present qualitatively the same fake feature, a “bump” (a maximum)
at 6–7 Bohr, in contrast to experiment and to the accurate CI calculation. Note that the bump
is completely absent in the original DFT PBE interatomic potential which is strongly attrac-
tive everywhere with a deep minimum and large binding energy (see Ref. [27]). Finally, we
present curves calculated at the same level of direct RPA but using a GW corrections on top of
PBE. The most important point is that there is a large improvement in RPA@GW@PBE with
respect to RPA@PBE. The "bump" is wiped out. The binding energy is also improved, though
still underestimated. The bonding length is now overestimated.

The bump at 6-7 Bohr appears in TF or ACFDT RPA calculations on top of DFT PBE (as
well as LDA, see Ref. [28]) but it is conjured by the exact exchange (EXX) term evaluated on
DFT PBE eigenstates (but not HF) and wiped out by a GW calculation with self-consistency
on the eigenvalues only. This can be appreciated also in Fig. 2 where we present an RPA
calculation on top of HF (RPA@HF), both our TF result and the ACFDT result of Ref. [28].
Both results present a correct attractive behaviour without fake bumps, although the origi-
nal HF interatomic potential (see Fig. 2) is repulsive. Nevertheless the dissociation curve is
too flat (though less in our calculation than in Ref. [29]), and the binding energy is severely
underestimated. However, the introduction of GW corrections introduces an important im-
provement also when starting from HF. The RPA@GW@HF curve (Fig. 2) is much closer to
the accurate and the experimental result, though it presents a ∼10% overestimate of both the
binding energy and the bond length. Finally Fig. 2 shows the curve calculated by solving the
Bethe-Salpeter equation on top of a GW electronic structure and starting from HF. The result
is, beyond any expectation, impressively good. The equilibrium length is within 0.02 bohr
from the exact value, and the binding energy is overestimated by only 0.3 mHa (see Table 1).
These values are even more accurate than the QMC value [17], outperforming quantum chem-
istry methods like MP2 and even CCSD as well [29, 56–58]. Notice also that any change we
have introduced to the standard procedure, like solving the BSE directly on top of HF, or con-
sidering an unscreened kernel as in TDHF, immediately destroys the good agreement, even
providing results that are much worse in some cases. Our BSE result seems better than the
most advanced ACFDT TDDFT approximations of Ref. [27], like the RPA+ and RPA+SOSEX,
which are unbound, and also the RPA+rSE, which provides a good binding energy and bond
length but still presents a bump at 6–7 Bohr. The range-separated hybrid (RSH) functional of
Ref. [29,59,60] is certainly the approximation that is closer to the physics underlying the GW
approach in which correlations are addressed by the introduction of screening. RSH+MP2
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Figure 2: The interatomic potential of Be2. Red line: experiment [1]; black line:
accurate CI [12]; magenta line with triangle down symbols: HF; blue dashed line
with diamonds: RPA on top of HF by ACFDT from Ref. [29]; blue line with squares:
RPA on top of HF by TF; yellow line with triangle up symbols: RPA on top of GW and
HF; cyan line with circles: BSE on top of GW and HF by the TF formula Eq. (6).

or RSH+RPAx tries to mimic this physics by introducing two ranges of different screened ex-
change. In Be2 it obtains a clear improvement toward the good shape of the potential with no
bump, but the binding energy and the bond length are not yet sufficiently reproduced. This
can only be obtained by an approach presenting continuous variation of the screening at all
ranges, like in GW+BSE.

Finally, the BSE on top of the GW approximation result even seems able to reproduce an
unusual feature which has been pointed out in the accurate experiment of Ref. [1]. In the Inset
of Fig. 2 we show a zoom on the region 6 to 9 bohr (∼3 to 4.5 Å) where van der Waals (vdW)
interaction effects should enter into play and where, in the past, it was conjectured the exis-
tence of a vdW secondary (or even the only main) minimum. In this region the experimental
curve presents an evident flattening which makes the interatomic potential deviate from the
simple Morse potential, towards a more complex expanded Morse oscillator (EMO, see Ref. [1]
and its Fig. 3). The EMO potential shape seems essential to best fit the experimental vibra-
tional spectrum of Ref. [1] and seems a particularity of this dimer in which there is competition
between covalent and vdW interactions. The vdW interaction is unable to produce a secondary
minimum, but does have an influence on the shape of the interatomic potential, distorting it
from the simple Morse oscillator towards a flattening. Our BSE@GW@HF curve also presents
this flattening, though shifted with respect to experiment. It is nevertheless impressive that
we were able to describe such a delicate balance between covalent and vdW bonding which
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Table 1: Be2 bond length Re and energy De = E(Re).

Method Re [bohr] De [mHa]
MP2 [29,57] 5.0 -1.99
CCSD [58] 8.37 -0.26
CCSD(T) [55] 4.64 -3.00
QMC DMC [17] 4.65 -2.82
BSE@GW@HF by TF Eq. (1) 4.65 -4.66
Accurate [12] 4.63 -4.34
Experiment [1] 4.64 -4.24

only arises from correlations. This means that the Bethe-Salpeter equation provides an at least
qualitatively good description of the high order correlation effects.

4 Conclusions

We have calculated the Be2 interatomic potential along its dissociation path by an approach
within ab initio many-body perturbation theory relying on the trace formula, as an alternative
to the TDDFT ACFDT formalism. Our approach has been validated against TDDFT ACFDT
calculations already presented in the literature. The introduction of GW corrections already
largely improves the shape of the interatomic potential and also the binding energy and the
bond length. At the level of the BSE we have obtained a Be2 interatomic potential in very
good agreement with experiment and with accurate CI calculations. We were even able to
reproduce a flattening observed in the experimental potential which results from a delicate
balance of correlations due to a competition between covalent and van der Waals bonding.
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