N
N

N

HAL

open science

Re-aligning across-page requests for flash-based
solid-state drives

Zhigang Cai, Chengyong Tang, Minjun Li, Francois Trahay, Jun Li, Zhibing

Sha, Jiaojiao Wu, Fan Yang, Jianwei Liao

» To cite this version:

Zhigang Cai, Chengyong Tang, Minjun Li, Frangois Trahay, Jun Li, et al.. Re-aligning across-page
requests for flash-based solid-state drives. The 52nd International Conference on Parallel Processing
(ICPP), Aug 2023, Salt Lake City, United States. pp.736-745, 10.1145/3605573.3605652 . hal-
04155595

HAL Id: hal-04155595
https://hal.science/hal-04155595v1
Submitted on 7 Jul 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04155595v1
https://hal.archives-ouvertes.fr

Re-aligning Across-page Requests for Flash-based
Solid-state Drives

Zhigang Cai Chengyong Tang Minjun Li
Southwest University of China Southwest University of China Southwest University of China
China China China
Frangois Trahay Jun Li Zhibing Sha
Telecom SudParis Southwest University of China Southwest University of China
France China China
Jiaojiao Wu Fan Yang Jianwei Liao”
Southwest University of China Southwest University of China Southwest University of China
China China China
Abstract

In flash-based solid-state drives (SSDs), certain small un-
aligned I/O requests span two logical pages though their
size is not larger than the basic write/read unit of SSDs (i.e.
an SSD page), and we term them as across-page requests.
Servicing such across-page requests triggers two separated
I/O operations on different SSD pages, and thus impacts the
I/O performance and the endurance of SSDs. For mitigating
negative effects caused by across-page requests, this paper
proposes a novel flash translation layer (FTL) scheme for
SSDs to separately re-align such requests via remapping
them onto a single SSD page. Consequently, both read and
write requests on the across-page data can be completed
with one page-level I/O operation. Through a series of ex-
periments based on the selected disk traces of real-world
applications, we demonstrate that the proposed realigning
method at FTL of SSD devices, can noticeably reduce the I/O
latency by between 4.6% and 11.6%, and the erase number
(i.e. the indicator of SSD endurance) by between 6.4% and
19.11%, compared to state-of-the-art methods.

CCS Concepts: - Computer systems organization — Em-
bedded software.

Keywords: Solid-state Drives (SSDs), Unaligned I/Os, Across-
page Remapping, I/O Performance

1 Introduction

NAND flash-based solid-state drives (SSDs) are widely lever-
aged as external storage because of the advantages of attrac-
tive I/O performance and lower energy consumption [1, 2].
The internal structure of an SSD exhibits a hierarchical ar-
chitecture, and follows the organization of channel-chip-die-
plane-block-page from the top downwards [3].

Since the SSD device does not allow in-place update [4],
its special firmware, called flash translation layer (FTL) main-
tains a mapping table to keep track of the current location of
a data page, that is referred to as a logical page number (LPN)

*Corresponding author, e-mail: liaotoad@gmail.com.

1024K 1032K 1040K 1048K
I I I

| write(1024K, 24KB)
Aligned E i 1
. : JKB : write(1028K, 20KB)
Unaligned o T T
: 4KB write(1028K, 8KB)
|

|
|
Across-page e |
|

)
Logic page (8KB)

Figure 1. Aligned, unaligned and across-page I/O requests
in SSDs (page size: 8KB).

corresponding with a specific physical page number (PPN)
of underlying flash cell [5, 6]. Specially, FTL is responsible
for parsing a macro request that may span several pages
into several page-sized transactions, and mapping them with
multiple PPNs associating with SSD pages.

On the other side, the SSD storage device services not
only aligned I/Os, but also unaligned I/Os from small I/O
access of application [1, 7], as shown in Figure 1. The issue
is that the unaligned I/Os may cause extra read and write
operation and thus lead to a degradation in I/O performance
and endurance in SSDs [8, 9]. This is because an unaligned
I/0O request must be transformed into aligned I/O requests
involving with multiple SSD pages, even though its size is
not larger than an SSD page [10].

Since the basic unit of read/write operation of SSDs is the
SSD page (typically 4 to 16KB) [11], and the aligned I/Os
issued from OS are generally in the 4KB granularity (e.g. VFS
in Linux), this mismatch problem between OS and SSDs may
result in some aligned I/Os being translated as unaligned
I/Os on SSDs (e.g. write(1028K, 8K) in Figure 1). Moreover,
in some scenarios like Virtual Desktop Infrastructure (VDI),
Virtual Machines (VMs) are built on the top of file system
of host machine. Though the file data on VMs are organized
as aligned blocks, the block boundaries might lose when
translating to the disk image file on the host machine. Briefly,
the aligned I/Os of application running on VMs are likely

Zhigang Cali, et al.

% 0.4
wzz S S e N = S -
. ol R AT

1/0 Traces

Figure 2. The ratio of across-page access after replaying the traces from the LUN block collection [12]. The number in the
X-axis is the sequential number of the trace in the collection folder of systor17-additional-01.

to be translated into unaligned ones to the SSDs of host
machine, thus worsen the unaligned problem.

More importantly, we define a special case of unaligned
request, called across-page request, while the request size
is smaller or equal to an SSD page (see the last case in Figure
1) [7]. In other words, an across-page request spans two
logical pages and will be fulfilled with two separated 1/O
operations on the underlying flash array of SSD, even though
the request size is not larger than an SSD page.

To verify across-page accesses are common in VDI-like
applications, We replayed block I/O traces that are recently
collected from a part of an enterprise VDI [12], and Figure
2 shows their results! of across-page requests ratio to total
requests with the page configuration of 8KB. As shown, a
significant portion of requests are across-page accesses, and
thus we assert that the across-page access feature is not
uncommon in real-world applications, such as those run in
VDI environments.

In order to minimize the negative effects of unaligned I/Os,
several existing works merge the small size data into a rela-
tively large unit to reduce the number of unaligned accesses.
Fareed et al. [13] proposed to merge the appropriate sectors
with similar update frequency, for alleviating the write am-
plification problem caused by frequent updates to some sec-
tors of a page. Chen et al. [14] offered a multiregional space
management (MRSM) design to support subpage-level man-
agement while adaptively adjusting mapping granularity
by considering the application behaviors. However, MRSM
introduces a complicated mapping data structure and brings
about space and time overhead of address translation.

To address the issue of efficiently processing across-page
I/O requests in SSDs, we propose a novel FTL scheme, called
Across-FTL. It can noticeably reduce the number of extra
read/write operations caused by small unaligned I/Os and
then offer better performance and longer lifetime of SSDs.
In brief, this paper makes the following three contributions.

e We propose to remap across-page write requests onto
a specific SSD page, with a two-level mapping table at

IThe LUN trace collection consists of 438 pieces of traces and organizes
them as 7 folders. We present the results of all traces in the first folder of
systor17-additional-01.

FTL. Both write and read requests on the across-page
data can be satisfied through accessing the single SSD
page, so that I/O performance and life time of SSDs
can be noticeably enhanced.

e We introduce a merging and rollback scheme to ser-
vice the update requests that overlap with the remapped
across-page data. It merges the updated data with the
across-page data while the merged data is not larger
than an SSD page, and then remaps all relevant data
to another SSD pages.

e We carry out a series of simulation evaluation by re-
playing 6 block traces of real world applications. As
our measurements indicate, our proposal of Across-
FTL effectively increases I/O performance by an av-
erage of 8.4% and reduces the number of erase oper-
ations by between 6.4% and 19.11%, in contrast to
the-state-of-art methods.

The remainder of this paper is organized as follows: Sec-
tion 2 presents the background and motivation of our pro-
posed Across-FTL scheme. The specifications on the design
and implementation of Across-FIL are described in Section 3.
Section 4 depicts the evaluation methodology and discusses
the results. At last, the paper is concluded in Section 5.

2 Background and Motivations
2.1 Overview on I/O Workflow in SSDs

The NAND flash-based SSD consists of several major compo-
nents. The flash array is used to store data, the I/O interface
is used to communicate with the applications running on the
host computer, and the SSD controller. The main software
layer of flash translation (FTL) runs on the controller, and
manages the flash array [15].

Because the basic I/O unit of SSDs is the SSD page, a
read/write request may be divided into a number of page-
level read/write operations, called as sub-requests [16, 17].
Note that it is regarded the current request has been com-
pleted, if-and-only-if all associated sub-requests are finished.
To fulfill an I/O request, FTL first maps the logical address
of read/write operation to the physical address on the flash

Re-aligning Across-page Requests for Flash-based Solid-state Drives

SSD tions:
Application request: LPN: Logical Page Number PPN: Physical Page Number P o:era.tlo(l;soo 45
, o) . . - flash_write(100,
- write(1028K, 6K) Semantics: write(addr, size) flash_write(PPN, size) - flash_write(200, 2K)
@ Locate LPN(s) of write request © Search mapping table © Fulfill write on SSD pages
Logical Address Space Mapping table Physical Address Space
Logical page (SKB) LPN PPN Physical page(8KB)
»l | | | | oo >l
| | ! 128 100 : : [:
| | I — - . b |- —
! LPN=128 | IPN=129 | 2 o I 1PPN=100 I PPN=200 :
1024K 1032K 1040K 800K 1600K 1608K

Figure 3. The process of serving an across-page write request in conventional SSDs (page size: 8KB)

0.15
Qg | mAcross-page Req. & Normal Req.
s 7
g 5 01 (-
= 8
2 005 (|- B -
M E

lunl lun2 lun3 lun4 Iun5 lun6
(a) Read Latency

Write latency
per sector-size

lunl Iun2 Iun3 lund4 lun5 Ilun6

(b) Write Latency
0.24

0.18
0.12
0.06

Flash write count
per sector-size

lunl Iun2 Iun3 lund4 lun5 Iun6
(c) Flush Write Count

Figure 4. Results of average read latency (a), average write
latency (b), and average flush write count (c), per sector-size
of across-page requests and other requests, after replaying
the selected traces.

array by resorting to the mapping table. After that, the re-
quest will be ended after obtaining/flushing the relevant data
from/to the flash array with a page granularity [14].

When the available space of SSD becomes low, a time-
consuming process, i.e. garbage collection (GC) is executed
to reclaim the space occupied by invalided data pages [18].
In the GC process, valid data pages from the GC block will
be moved to another new data block, then the outdated data
block can be erased and renewed.

2.2 1/0 Optimization on Unaligned Request

Unaligned I/Os from small I/O access of application may
cause extra I/O operations and then lead to a degradation of
I/O performance in SSDs [19]. To minimize the side effects
of unaligned access, some existing works merge small size

data into to a relatively large block, since the number of
unaligned access is greatly reduced [20]. Fareed et al. [13]
proposed a scheme that merges sectors with similar update
frequency to cut down the overhead caused by frequent
updates to some sectors of a page. More importantly, Chen
et al. [14] proposed the MRSM scheme to adaptively adjust
the mapping granularity at the subpage level, by taking user
behaviors into account, while facilitating the GC efficiency
via the address mapping information. It is true that MRSM
overcomes the problem of unaligned access, but it makes use
of a complicated mapping data structure to record the offset
and size information of different piece of data.

The across-page request is a special case of unaligned ac-
cess, which has no more than one SSD page of data. Figure
3 demonstrates the process of dealing with an across-page
write request in conventional SSDs. As seen, it first trans-
forms the logical address of request (i.e. write(1028K, 6K)
in the figure) to the target LPNs of 128 and 129. Then, FTL
maps the LPNs to the corresponding PPNs of 100 and 200
on the flash array by resorting to the mapping table. At last,
the write data is flushed onto the corresponding SSD pages.

2.3 Motivations

We suggest that the across-page request causes accesses on
two SSD pages, with two major issues impacting SSD per-
formance: (1) the page lifetime, which is the time interval
between two consecutive writes to the same page must de-
crease, since pages are updated more frequently than in the
original workload. (2) the access distribution of the work-
load is changed, because the accesses to different pages, with
different original access frequencies, are now considered as
accesses to the same larger page.

In order to quantify the degradation of I/O performance
and lifetime caused by dealing with across-page I/O requests
in SSDs, we divide the I/O requests into two categories,
across-page requests and normal requests, and then recorded
the average latency and the induced erase operations after
replaying the selected block traces. See Section 4.1 for the de-
tails on the benchmarks and the experimental platform. Fig-
ure 4 presents the results of average latency and the number

Application request:
- write(1028K, 6K)

Two-Level Mapping Table

Zhigang Cali, et al.

SSD operations:
- flash_write(200, 6K)

i Page Mapping Table (PMT) 'O
@ Locate LPN(s) of write request E i LPN PPN Aldx i g j O Fulfill data on SSD pages
i 19
. < 128 2 g
Logical Address Space 8 S Physical Address Space
Logical page (8KB) S - q = -
[N | 5] = Physical page(8KB)
! Off=8*512,! Size=12*512 ! 5 | Across-page Mapping Table (AMT) E R ’
e ————— > & | [NTVRENINTN | S || - —
| LPN=128 | LPN=129 | S i 1 i : : PPN=200 :
O i
1024K 1032K 1040K i 1 §
i 1 1600K 1608K
® o2 8 12 200 |

Figure 5. High-level overview of the proposed Across-FTL Scheme (page size: 8KB).

of flush operations per sector-size (i.e. 512B) of across-page
requests and normal aligned I/O requests.

As seen in Figures 4(a) and 4(b), the read latency and write
latency of across-page requests are 1.61 and 1. 49 times that
of normal I/O requests on average. Figure 4(c) shows the
number of flush operations per sector-size of across-page
requests and normal I/O requests. As seen, the flush count of
across-page request is 2. 69 times that of normal I/O request
on average, verifying that across-page requests cause more
I/O time, as well as more flush operations.

Such observations motivate us to deal with across-page
I/O requests that are not larger than an SSD page but span
more than one SSD pages. Thus, this paper presents a novel
FTL scheme, which remaps the target logical page of across-
page requests onto a single SSD page though it involves two
logical pages. As a result, it can decrease the number of extra
read/write operations, as well as extend the life-time of SSD.

3 Design of Across-FTL

This section presents the design and implementation of the
proposed approach of FTL scheme (called Across-FTL), to ful-
fill across-page requests. Firstly, an overview of the proposed
mechanism is described. Then, it depicts a two-level map-
ping table in Across-FTL, and which is used for mapping the
logic address of across-page request to the unique physical
page number. After that, both read and write routines with
the supports of Across-FIL are discussed.

3.1 Architectural Overview of Across-FTL

We propose Across-FTL to specially allocate an across-page
area (i.e. a single SSD page) with another level of mapping
table, for holding the data of across-page write request. Then,
the across read request can be also fulfilled by remapping it
onto the across-page area.

Figure 5 shows an example workflow of servicing an
across-page write request to demonstrate the architectural
overview of Across-FTL, one additional flash write operation
is avoided as a result. As seen, Across-FTL introduces a new
level of mapping table, called across-page mapping table

(AMT), to record the mapping relationship between PPN and
the logical address of across-page data. Then, it marks the
index field of Aldx in the original page mapping table (PMT),
to indicate the relevant data pages are remapped to a specific
across-page area, and the entry can be retrieved from AMT.

As a consequence, in the process of address translation, we
first search PMT to check whether the logical addresses are
remapped in AMT or not. If the logical address is remapped,
the translation process is ended by retrieving AMT, and the
required I/O operation will be finished by operating on the
across-page area.

3.2 Two-Level Mapping Table

The two-level mapping table is the critical data structure for
address translation in Across-FTL, which consists of a page
mapping table (i.e. PMT) for normal data mapping and an
across-page mapping table (i.e. AMT) for across-page data
mapping. As shown in Figure 5, we add a new index field
of Aldx in the original page-level mapping table, to indicate
whether across-page data has been remapped in the across-
page area or not. More exactly, we use “~1” to represent
the data is not remapped. The number not smaller than “0”
indicates that the data is remapped, and its value represents
the index location of relevant mapping entry in AMT.

The mapping table of AMT is employed to record the
mapping information on the remapped across-page data. To
be specific, the field of Aldx implies the index location of
the entry that will be referred in PMT; Off means the sector
offset of the across-page request; Size represents the size of
the across-page request; the field of across-page physical
page number (APPN) records the address of the physical
page allocated by Across-FTL that holds the data from an
across-page write request.

3.3 Routines of Across-page I/Os

Because Across-FTL focuses on the access on the across-page
data, and makes no difference while accessing on other data,
this section specifically depicts the routines for different I/O
operations on the across-page data in Across-FTL.

Re-aligning Across-page Requests for Flash-based Solid-state Drives

: [Logical page [] Write request
! Normal data Across-page area

Application request:
l write(1028K, 6K)

Logical address PMT
1024K 1032K 1040K 1048K LPN PPN Aldx
i i i i 128 0
: i : 129 100 -1
[I N\ R
1028K 1034K Aldx Off Size APPN
Across-page Direct Write 0 8 12 200
=
S
: . PMT
X Logical address
Q LPN PPN Aldx
= 1024K 1032K 1040K
S ' ' ' 128 0
S I 1028K 11034K i
= : : ! 129 | 100 | 1
Ld
1030K 1036K Aldx Off Size APPN
Across-page Merged Write 0 8 16 300
~
s
g PMT
§ Logical address
LPN PPN Ald
3 124K 1032K 1040K =
£ ! ! ! 128 | 600 -1
1 1028K 11034K i
> : : ! 129 | 700 | 1
1030K 1038K Aldx Off Size APPN
Across-page Rollback Write

Figure 6. Across-page (merged and rollback) write.

! [Logical page [] Read request
E Normal data Across-page area

Application request:
l read(1030K, 4K)

Logical address PMT
104K 1032K 1040K 1048K WA | LARNT | ANGs
1 1 1 1 128 0
I 1028K 11034K : :
: i : 129 100 -1
8774\ e
1030K 1034K Aldx off Size APPN
Across-page Direct Read 0 8 12 200
Application request: (a) Across-page read
l read(1030K, 8K)
Logical address PMT
124K 1032K 1040K 1048K WA | DAY | ANGk
i i i i 128 0
I 1028K 11034K
| | ' 129 100 -1
777N | o
1030K 1038K Aldx Off Size APPN
Across-page Merged Read 0 8 16 200

(b) Across-page Merged read
Figure 7. Across-page direct read (a), and merged read (b).

3.3.1 Write Routine. There are two kinds of write re-
quests with respect to the across-page data: the first one is to
write the data for the first time (i.e. write data) and another
one is to update the existing data (i.e. update data).

Case of write data: Across-FIL checks whether the across-
page area of current request has been created or not, by
checking the Aldx index of related entry in PMT. If the index
is “-1”, it implies this piece of across-page data is the first
time to be flushed. Then, Across-FTL allocates a free SSD
page to store the data of across-page write request as shown
in Figure 6, and fills the corresponding entry in the AMT
table. Next, it sets the field of Aldx of the entry in PMT, as
the index value of newly appended entry in AMT. At last,
the data will be flushed onto the allocated SSD page.

As seen, an across-page request of write(1028K, 6K) has
been remapped onto the SSD page whose PPN is 200. Spe-
cially, it first creates a relevant entry in AMT to log the
logical address of request to the across-page area. Then, the
index of the entry will be filled in the Aldx field of corre-
sponding record in PMT, to indicate the original request has
been reallocated.

Case of update data: Since the across-page data and orig-
inal adjacent data are separately saved in different SSD pages,
it is necessary to consider the across-page data when satisfy-
ing the update requests overlapping with them. To this end,
Across-FTL supports update policies of across-page merging
(i.e. AMerge) and across-page rollback (i.e. ARollback).

Figure 6 shows servicing an update request spanning from
1030K to 1036K while there is an existing across-page area
of (1028K, 1034K). In other words, the total size of the across-
page area and the newly appended area is not larger than
a page size. In this scenario, the AMerge policy can be em-
ployed to merge the data in the existing across-page area
with the data of current update request, so that the size of
merged across-page data is changed from 12 to 16 sectors.
Then flush the merged data in a new SSD page according to
across-page write manner.

Once the total size of the across-page area and the newly
appended area is larger than a page size, it adopts the ARoll-
back policy to fulfill the update request. As the example of
satisfying write(1030K, 8K) shown in Figure 6, it merges the
normal data, the existing across-page data and the updated
data, then writes merged data in the normal manner. After
that, the relevant information about the across-page data in
the two-level mapping table will be correspondingly cleared.

3.3.2 Read Routine. Similar to the write routines, there
are two scenarios for satisfying a read request related to the
across-page data in Across-FTL.

Case of direct read: The read request can be serviced by
directly accessing the across-page area, while its target data
does not exceed the range of the across-page area. Figure
7(a) shows servicing a read request spanning from 1030K to
1034K while there is an across-page area of (1028K, 1034K).
In this scenario, Across-FTL does bring about an improvement
on the read performance, since conventional FTL schemes
need to access two SSD pages to obtain the required data,

Table 1. Experimental Settings of SSDsim (TLC cell)

Parameters Values | Parameters Values
Block number 262144 Read time 0.075ms
Page per block 64 Write time 2ms

Page size 8KB Cache access 0.001ms
GC threshold 10% Cache size 1% capacity

6%

e

2% |- N m e L W —————
0%

lunl lun2 lun3 lun4 lun5 lun6
(a) Ratio

Across-page
Rollback ratio

1.0
0.8
0.6
0.4
0.2
0.0

¥, ¥,

v v

Across-page access
component distribution

lunl lun2 lun3 lun4 lun5 lun6
| m Unprofitable-AMerge HProfitable-AMerge #® Direct-write |

(b) Component Distribution

Figure 8. The statistics of across-page access after replaying
the selected block traces. (a) Across-page access ratio (b)
Across-page access case distribution.

but our proposal does expect reading the data by operating
on a single SSD page.

Case of merged read: Once the required data of read
request exceeds the range of the across-page area, Across-
FTL must read the across-page data and the normal data from
the underlying flash array, then it merges both kinds of data
to respond the read request with the latest version of data. In
this scenario, Across-FTL cannot yield an improvement on the
read performance. As the example presented in Figure 7(b),
conventional FTL schemes and Across-FIL need accessing
two SSD pages for ending the read request.

4 Experimental Evaluation
4.1 Environment Setup

We have performed trace-driven simulation with SSDsim
(ver2.1), which has a wide range of configurations and sup-
ports of TLC flash simulation [17, 21]. We have integrated
our proposal with SSDsim, for supporting across-page data
remapping inside of SSDs. Table 1 demonstrates our settings
of SSDsim in experiments, which have been also used in prior
studies [17, 22]. To reflect the impact of garbage collection,
the simulated SSD is aged so that 90% of its capacity has
been used [2]. More specifically, valid data occupy 39.8%
SSD capacity after warming up through running the trace of
additional-02-2016021710-LUNG [12].

Zhigang Cali, et al.

1.5 — B Across-FTL =

512 i i8 Ff —————————— s

= I H H H

= 0.9 H VA H - 7

g H H H H

= 0.6 é é ————— é ————— E -

03 : i/ i - -

=] I] u .

2 H H H H
lunl lun2 lun3 lun4 lun5 lun6
(1.77) (141) (098) (0.94) (1.00) (0.97)

(a) Read Response Time (unit: ms)

g ! T i

gos8 it :

= I

< 0.6 s -

o3 |

=04 & .

g i

02 f

Z 0 || ux {88
lunl lun2 lun3 lun4 lun$ lun6
(9.94) (9.80) (5.70) (14.78) (16.97) (17.90)

(b) Write Response Time (unit: ms)

mun)

mEmEEEE

SN NN SN EEEE NS

I EEEEEEEEENEEEEEEEEEEE

SN EEEEENEENEEN NN RN}

2

lunl lun2 lun3 lun4 lun5 lun6
4.77) (2.23) (4.15) (6.79) (4.26)

(c) I/O Time (unit: ks)

imEmE

Figure 9. Results of I/O performance metrics of, read latency
(a), write latency (b), and overall I/O latency (c). Note that
the numbers underlying X-axis are the absolute values of
the baseline FTL.

Table 2. Specifications on Selected Traces (8KB page size)

Trace | # of Req. Write R Write SZ Across R
lun1 749,806 61.5% 8.9KB 24.7%
lun2 867,967 52.8% 11.3KB 16.4%
lun3 672,580 50.6% 8.6KB 23.4%
lun4 824,068 45.4% 11.2KB 18.7%
lun5 639,558 41.1% 9.2KB 23.5%

luné 633,234 34.7% 7.6KB 27.5%

Considering the aligned I/Os are commonly translated as
unaligned I/Os in virtual machine-relevant applications [23-
25]. we employed 6 benchmarks of block traces, that are re-
cently collected from a part of an enterprise VDI [12], to mea-
sure the effectiveness of our proposed mechanism. Specifi-
cally, we utilized additional-01-2016021616-LUN1, 2016021614-
LUNO, 2016021617-LUN2, 2016021618-LUNG6, 2016021616-LUN4,
and 2016021718-LUN4, (labeled as lun1-luné) in our tests. The
detailed specifications on the selected traces are presented
in Table 2. Specially, the metric of Across R indicates the
ratio of across-page requests to total requests in the traces.

The following three FTL schemes have been implemented
in the SSDsim simulator, for comparison evaluation:

Re-aligning Across-page Requests for Flash-based Solid-state Drives

- FTL, which is the baseline FTL scheme, indicating
the default dynamic page-level mapping scheme is
enabled, and across-page remapping is not supported.

- MRSM [14], which proposes a multiregional space
management design to enable subpage-level manage-
ment while adaptively adjusting mapping granularity
by considering the user behaviors. Thus, the issue of
across-page access can be removed from the cause, by
using a complicated mapping table. Note that, due to
the limited capacity of the DRAM buffer, our imple-
mentation leaves a major part contents of mapping
table in the flash memory, and loads them into the
cache if needed.

- Across-FTL, which is the proposed method. It supports
not only across-page remapping for small I/O requests,
but also the update strategies of across-page merge
(i.e. AMerge) and across-page rollback (i.e. ARollback).

4.2 Experimental Results and Discussions

To measure validity of the proposed FTL mechanism that
aims to support across-page mapping for small requests, we
use the following two major metrics in our tests: (a) I/O
response time and (b) erase number.

4.2.1 Statistics on across-page 1/Os in Across-FTL. We
first collect the statistical data on across-page access while
using Across-FTL, and Figure 8 shows the results. As seen in
Figure 8(a), the ratio of across-page areas performed ARoll-
back to the total across-page areas is 3.9% on average. In
other words, it is verified that most of benefits brought by
across-page access are preserved which are the cause of the
reduction of I/O latency in Across-FTL.

Moreover, we classify the across-page writes into three
categories, based on whether such write operations can
cause I/O benefits or not, including Direct-write, Profitable-
AMerge, and Unprofitable-AMerge. More specifically, Direct-
write means across-page write presented in Figure 6, which
is no existing across-page area involved. We term the AMerge
operations as Profitable-AMerge ones while they are triggered
by the across-page requests, as the example presented in Fig-
ure 6, and other AMerge operations as Unprofitable-AMerge.
In three kinds of the across-page writes, only Profitable-
AMerge and Direct-write operations bring about I/O bene-
fits, since one additional flash write caused by across-page
write request is avoided compared with the conventional FTL
scheme. Figure 8(b) presents the distribution of three kinds
of across-page writes after replaying the selected traces. On
average, we see that only 8.9% of across-page writes are
Unprofitable-AMerge, implying a major part of across-page
writes can result in I/O improvements with Across-FTL.

Considering merged reads may lead to additional read
operations impacting I/O performance, we also record the
number of merged read operations. It shows that the flash
reads caused by merged reads occupy an average of 0.12%

215 mFTL 7 MRSM B AcrossFTL }—
g
2
E
=l
Q
N
=
£
ZO |
lunl lun2 lun3 lun4 lun5 lun6
(92.52) (102.1) (67.44) (87.37) (54.14) (41.01)
(a) Flash Write Count (unit: 10K)
g15
I} Map
S12
[~
g = -
3 #7
s
E g7
£ 578
2 |

lunl lun2 lun3 lun4 lun5 lun6
(190.40) (171.59) (139.19) (186.49) (164.74) (160.75)

(b) Flash Read Count (unit: 10K)

Figure 10. Normalized count of flash write and read oper-
ations after replaying selected block traces. In which, the
Map part indicates the time required for reading/writing
the mapping entries, and the Data part represents the time
needed for reading/writing the user data.

of total read operations, thus they will not noticeably affect
read responsiveness.

4.2.2 1/0 Response Time. I/O response time is the most
critical indicator reflecting the performance of SSDs, and
Figure 9 reports the normalized results of I/O response time.
As illustrated in Figure 9(b), our proposal of Across-FIL can
cut down the write time by an average of 8.9% and 3.7%
compared with the baseline of FTL and MRSM respectively.
This is because across-page remapping can reduce the num-
ber of flush operations onto the SSD pages while servicing
across-page write requests. Consequently, Across-FTL can
also reduce the time required by read requests by more than
5.0%, in contrast to other two comparison counterparts.
We see that the most related work of MRSM does result in
more time for satisfying read requests in the tests, compar-
ing to FTL and Across-FTL. This is because MRSM supports a
sub-page level mapping routine to better utilize flash mem-
ory, but it needs a very big mapping data structure. Then,
a major part of mapping items in the table are held in the
flash memory, and only the recently used mapping items
are buffered in the DRAM. As a result, it sometimes needs
loading the expected part of mapping table into the DRAM
cache from the flash memory to service a read request and
writes back a part of mapping items to flash memory if the
DRAM space is not enough. Similarly, Across-FTL holds the
additional second level mapping table of AMT, it sometimes
also requires loading the expected part of the mapping table
into the DRAM cache from the flash memory, but with less
frequency, in contrast to the most related work of MRSM.

1.5

Normalized erase count

lunl lun2 lun3 lun4 lun5 lun6
(16133) (14870) (11270) (11726) (22247) (21609)

Figure 11. Comparison of erase count after running the
selected traces with different FTL schemes.

To further explore the reasons for the decrease in I/O time,
we have recorded the count of read and write operations
onto the flash memory (i.e. SSD pages) after running all
selected block I/O traces. Generally, a larger read/write count
implies more access operations on the flash memory, which
consequently lead to a longer I/O latency.

Figure 10(a) shows the result of normalized write count
after running the selected traces with three FTL comparison
methods. Noted that MRSM and Across-FTL requires to flush
not only the write data, but also the contents of mapping
table onto the flash memory, so that the write count consists
of the normal data writes and the mapping table writes. And
the ratio of mapping table writes to total flash writes of
MRSM and Across-FTL are 36.9% and 2.6% respectively. As
seen, Across-FTL can decrease the number of flash writes
by an average of 15.9% and 30.9%, comparing to FTL and
MRSM. This fact verifies that Across-FTL can reduce the count
of flush operations on SSD pages, as it requires only one flush
operation to fulfill an across-page write request though it
originally spans more than one SSD page.

Figure 10(b) shows the result of normalized read count
after replaying the block traces. Similar to the results of write
count, the read count consists of two parts, normal data reads
and mapping table reads. And the mapping table reads of
MRSM and Across-FTL account for 34.4% and 0. 74% of their
total read operations respectively. As shown, Across-FTL can
reduce the number of flash reads by an average of 9.7% and
16.1% comparing to FTL and MRSM.

Across-FTL can reduce an average of 62.2% of read opera-
tions caused by update requests after re-aligning the across-
page requests, in contrast to FTL. Specially, MRSM supports
sub-page mapping, and allows overwriting the old data di-
rectly that can greatly reduce the time required for serving
the update requests, as reading the old data is not needed in
many cases. This is the reason why MRSM performs worse
than the baseline of FTL on the measure of flash writes, but
yields a better write latency.

Another noticeable clue is that the number of reads and
writes on the mapping table of Across-FTL is less than that
of MRSM obviously. This is because Across-FTL manages the
mapping entries in the unit of SSD page, which requires
less memory space (see Section 4.2.4 for details) and less

Zhigang Cali, et al.

BMRSM

— mFTL

O Across-FTL

A

S 300 |pm

o

N

o 200 |fH e i B

s 2

]

@100 | . Ee.

2

g 0

= lunl lun2 lun3 lun4 lun5 lun6
(a) Space overhead for holding mapping table

98) (32.18) (29.

Normalized DRAM

lunl lun2 lun3 lun4 lunS lun6
(298.4) (2754) (274.1) (361.2) (273.0) (242.8)
(b) Time overhead of retrieving mapping table (unit: 10K)

Figure 12. Comparison of space (a) and time (b) overhead
after running the selected traces with different FTL schemes

m4KB 08KB 0 16KB |7

T

o
—_

e —

e

Across-page access ratio

lunl lun2 lun3 lun4 lun5 lun6

Figure 13. The ratio of across-page accesses with varied
sizes of flash page.

operations of mapping entry in/out, comparing to the most
related work of MRSM.

4.2.3 Erase Number. Once the portion of free SSD space
is less than the predefined threshold, garbage collections
(GCs) are triggered to reclaim the SSD space by erasing the
target SSD blocks. Then, we argue that the reduction of
I/0O operations on the SSD pages can directly cut down the
number of erase operations, which is an indicator reflecting
the lifetime of SSD devices since all SSD blocks generally
have an erase limit.

Figure 11 presents the results of erase number, and it
shows our Across-FTL scheme can yield a reduction of erase
operations by 13.3% and 24.6% respectively, in contrast to
FTL and MRSM. Thus, we conclude that Across-FTL can re-
markably reduce the number of erase operations and thus
optimize SSD life-time.

4.2.4 Overhead Analysis. The main memory overhead of
various FTL schemes is due to the storage of the mapping ta-
ble. For Across-FTL, the entries of mapping table are managed
in the size of flash page and can be allocated dynamically.
Though with an additional mapping table (AMT) applied in

Re-aligning Across-page Requests for Flash-based Solid-state Drives

4KB 8KB 16KB
g M FTL E MRSM Fl Across-FTL M FTL E MRSM Fd Across-FTL Bl FTL [E MRSM Fl Across-FTL
2= — - . [T s — ———————
[} b
o v H
2 1 ol |
E 1K
N & A 04 3
: I 70 |§
S | ’ H
0

“ lunl lun2 lun3 lund lunS lun6 lunl lun2 un3 lund lunS lun6 lunl lun2 lun3 lund lun5 lun6

(9-82) (9.91) (3.40) (15.60) (8.21) (8.80) (5.06) (4.77) (2.23) (4.15) (6.79) (4.26) (297) (232) (1.80) (3.70) (2.40) (2.35)

(a) /O Time (unit: ks)

12 g m 3] 12 [12 [y .
© H H .
2 09 SR NN ST B R -1 0.9 H- BB B oo - B B §
= H H 5
o 0.6 H -1 0.6 H H
o H H H
(5]
So03 - 03 HEE i
< H - .
o - :
) lunl lun2 lun3 lund lun5 lun6 lunl lun2 lun3 lund lun5 lun6 lunl lun2 lun3 lun4 lun5 lun6
Z (23125) (12896) (18739) (35919) (22617) (37011) (16133) (14870) (11270) (11726) (22247) (21609) (11702) (10854) (8176) (17953) (12962) (6480)

(b) Erase Count

Figure 14. I/O performance and SSD lifetime with varied configurations of page size in SSDs. The results of overall I/O

response time (a), and erase count (b).

contrast to FTL, as shown in Figure 12(a), the space overhead
of Across-FTL is 1.4 times that of FTL on average.

MRSM requires the largest memory overhead, and the
average space overhead is 2.4 times that of FTL. This is
because MRSM is a sub-page level FTL scheme, the number of
entries is much larger than that of FTL and Across-FTL. With
the specification shown in Table 1, 42.1% of total mapping
entries can be kept in the DRAM cache while using MRSM,
that worsen the I/O performance of SSDs.

We record the number of DRAM access of three selected
FTL schemes and the results are presented in Figure 12(b).
Though with a two-level mapping table applied in Across-
FTL, no more than 1.1% of extra DRAM access on average
is created in contrast to FTL. This is because Across-FTL can
lessen DRAM access by reducing the number of write/read
operations. For MRSM, the number is an average of 32.6
and 32. 3 times that of FTL and Across-FTL respectively. This
is because the tree data structure is applied in MRSM to store
mapping entries and thus more lookup time is expected.
The lookup overhead accounts for @.11% of total I/O time on
average after conducting tests on a resource-limited platform
that has an ARM Cortex A7 Dual-Core CPU with 800MHz
and 128MB of memory.

4.3 Case study

To investigate the performance of our proposal of Across-
FTL under various configurations of SSD page size, we have
carried out a case study to check its effectiveness.

As shown in Figure 13, we first collect the statistical data
about the ratio of across-page access after running the bench-
marks, under different configurations of SSD page size while
using Across-FTL. As seen, the number of across-page access
keeps decreasing as the size of SSD page becomes larger, this

is because a larger flash page can hold more data to refrain
from across-page access.

We then measure the performance metrics of the I/O re-
sponse time and the erase number after replaying the se-
lected I/O traces, with varied size configurations of SSD page
with Across-FTL. Figures 14(a) and 14(b) show the detailed
results of overall I/O time and erases counts respectively.
As seen, the proposed Across-FTL method outperforms the
baseline scheme of FTL and MRSM under various size con-
figurations of SSD page. This is because Across-FTL enables
servicing across-page requests by accessing only one SSD
page. Consequently, Across-FTL can cut down the number
of sub-requests that should be submitted to the flash mem-
ory and then yield better I/O performance and erase counts
that is a metric of SSD lifetime, in contrast to other two
comparison counterparts.

We argue that the most important clue shown in Figure 14
is that, the degree of performance improvement and lifetime
extension caused by Across-FTL does not decrease as the
page size increases. This information further verifies Across-
FTL has good scalability on the size of SSD page, since the
performance improvement is only in line with the ratio of
across-page requests in the benchmarks, which has been
demonstrated in Figure 13.

4.4 Summary

With respect to comparing the proposed scheme to con-
ventionally used FTL schemes for SSDs, we emphasize the
following three key observations. First, both across-page
write and read requests can be serviced by accessing the
single SSD page, through purposely remapping them onto
a specific SSD page. As a result, I/O performance and life
time of SSDs can be enhanced. Second, Across-FTL does not

noticeably introduce more space overhead and mapping time
overhead, and it scales well for varied configurations of page
size in SSD products. Third, the most related work of MSRC
introduces the largest number erase counts caused by load-
ing the complicated mapping table into the capacity-limited
cache, as it manages the across-page data in a sub-page unit.

5 Conclusion

This paper has proposed and evaluated a novel FTL scheme
called Across-FTL for SSD devices, which addresses the is-
sue of performance degradation caused by across-page re-
quests. We have introduced a two-level mapping table to
support remapping across-page requests to aligned areas of
flash array in SSDs, instead of putting them adjacent to the
data pages according to the logical address. Furthermore,
we have designed both write and read policies that support
across-page merging and rollback, to specifically service I/O
requests that involve with the across-page data. Through a
series of emulation experiments based on several realistic
disk traces, we show that the proposed Across-FTL scheme
can reduce I/O response time by up to 8.4% on average, in
contrast to other comparison counterparts.

Acknowledgments

This work is partially supported by the Research Project of
Education Department of Hunan Province (No.20C1472), and
the Southwest University Postgraduate Scientific Research
Innovation Project (No.SWUS23091).

References

[1] Kim B S, Choi J, Min S L. Design tradeoffs for SSD reliability. USENLX
Conference on File and Storage Technologies (FAST), 2019.

[2] Gao C, Shi L, Di Y, et al. Exploiting chip idleness for minimizing
garbage collection-induced chip access conflict on SSDs. ACM Trans-
actions on Design Automation of Electronic Systems (TODAES), 2018.

[3] Wang Y, Wang W, Xie T, et al. CR5M: A mirroring-powered channel-
RAIDS architecture for an SSD. Mass Storage Systems and Technologies
(MSST), 2014.

[4] Micheloni, Rino. Solid-state drive (SSD): A nonvolatile storage system.
Proceedings of the IEEE (PIEEE), 2017.

[5] KimBS, Yang HS, Min S L. AutoSSD: an Autonomic SSD Architecture.
USENIX Annual Technical Conference (ATC), 2018.

[6] Elyasi N, Arjomand M, Sivasubramaniam A, et al. Exploiting intra-
request slack to improve SSD performance. International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2017.

[7] Shu],LiF, LiS, et al. Towards Unaligned Writes Optimization in Cloud
Storage With High-Performance SSDs. IEEE Transactions on Parallel
and Distributed Systems (TPDS), 2020, 31(12): 2923-2937.

[8] Kim], Seo S, Jung D, et al. Parameter-aware I/O management for solid
state disks (SSDs). IEEE Transactions on Computers (TC), 2011.

[9] Yang]J, Li B, Lilja D J. Exploring Performance Characteristics of the
Optane 3D Xpoint Storage Technology. ACM Transactions on Modeling
and Performance Evaluation of Computing Systems (TOMPECS), 2020.

[10] Kim B S, Choi J, Min S L. Design tradeoffs for SSD reliability. USENIX
Conference on File and Storage Technologies (FAST), 2019.

[11] Wang P, Sun G, Jiang S, et al. An efficient design and implementation
of LSM-tree based key-value store on open-channel SSD. European

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Zhigang Cali, et al.

Conference on Computer Systems (Eurosys), 2014.

Lee C, Kumano T, Matsuki T, et al. Understanding storage traffic
characteristics on enterprise virtual desktop infrastructure. ACM In-
ternational Systems and Storage Conference (SYSTOR), 2017.

Fareed I, Kang M, Lee W, et al. Leveraging intra-page update diver-
sity for mitigating write amplification in SSDs. ACM International
Conference on Supercomputing (ICS), 2020.

Chen S H, Tsao C W, Chang Y H. Beyond address mapping: A user-
oriented multiregional space management design for 3-D NAND flash
memory. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD), 2020.

Jung M, Kandemir M T. Sprinkler. Sprinkler: Maximizing resource
utilization in many-chip solid state disks. International Symposium on
High Performance Computer Architecture (HPCA), 2014.

Tavakkol A, Mehrvarzy P, Arjomand M, et al. Performance evaluation
of dynamic page allocation strategies in SSDs. ACM Transactions on
Modeling and Performance Evaluation of Computing Systems (TOM-
PECS), 2016.

Zhang W, Cao Q, Jiang H, et al. PA-SSD: A Page-Type Aware TLC
SSD for Improved Write/Read Performance and Storage Efficiency.
International Conference on Supercomputing (ICS), 2018.
ShaZ,Li],SongL, et al. Low I/O Intensity-aware Partial GC Scheduling
to Reduce Long-tail Latency in SSDs. ACM Transactions on Architecture
and Code Optimization (TACO), 2021.

Yadgar G, Gabel M, Jaffer S, and Schroeder B. SSD-based workload
characteristics and their performance implications. ACM Transactions
on Storage (TOS), 2021.

Kakaraparthy A, Patel] M, Park K, et al. Optimizing databases by
learning hidden parameters of solid state drives. Proceedings of the
VLDB Endowment, 2019.

Xu X, Cai Z, Liao J, et al. Frequent Access Pattern-based Prefetch-
ing Inside of Solid-State Drives. Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2020.

Li], Sha Z, Cai Z, et al. Patch-based data management for dual-copy
buffers in RAID-enabled SSDs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 2020.

Kim H, Lim H, Jeong J, et al. Task-aware virtual machine scheduling
for I/O performance. ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments (VEE), 2009.

Garraghan P, Ouyang X, Yang R, et al. Straggler root-cause and im-
pact analysis for massive-scale virtualized cloud datacenters. IEEE
Transactions on Services Computing (TSC), 2016.

Li J, Wang Q, Lee P P C, et al. An in-depth comparative analysis
of cloud block storage workloads: Findings and implications. ACM
Transactions on Storage (TOS), 2023.

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 Overview on I/O Workflow in SSDs
	2.2 I/O Optimization on Unaligned Request
	2.3 Motivations

	3 Design of Across-FTL
	3.1 Architectural Overview of Across-FTL
	3.2 Two-Level Mapping Table
	3.3 Routines of Across-page I/Os

	4 Experimental Evaluation
	4.1 Environment Setup
	4.2 Experimental Results and Discussions
	4.3 Case study
	4.4 Summary

	5 Conclusion
	Acknowledgments
	References

