
HAL Id: hal-04155507
https://hal.science/hal-04155507v3

Preprint submitted on 16 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Density based topology optimization with the Null
Space Optimizer: a tutorial and a comparison

F Feppon

To cite this version:
F Feppon. Density based topology optimization with the Null Space Optimizer: a tutorial and a
comparison. 2023. �hal-04155507v3�

https://hal.science/hal-04155507v3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Density based Topology Optimization with the Null Space

Optimizer: a tutorial and a comparison

Florian Feppon1*

1*NUMA Unit, Department of Computer Science, KU Leuven, Belgium.

Corresponding author(s). E-mail(s): florian.feppon@kuleuven.be;

Abstract

The Null Space Optimizer is a constrained optimization solver that has been developed in the con-
text of level-set based Topology Optimization. One of its appealing aspects comes from its relative
independence to the need for tuning unintuitive algorithm parameters. The first contribution of this
paper is to introduce an upgrade of the Null Space Optimizer that enables to solve optimization prob-
lems featuring a large number of constraints with sparse Jacobian matrix. This allows to include in
particular bound constraints, making it possible to use the Null Space Optimizer for solving density
based Topology Optimization problems.
The second contribution of the paper is to present three tutorials giving an educational view
on how to use the open source Python implementation of the Null Space Optimizer for solving
Topology Optimization problems in structural mechanics and conductive heat transfer, on struc-
tured and unstructured meshes. Elegant Python programming features are used for automating the
implementation of density filters and the assembly of sparse Jacobian matrices.
Numerical results are presented on three design problems and compared to those obtained with the
Method of Moving Asymptotes (MMA), the Interior Point Optimizer IPOPT and the Optimality
Criteria (OC) method. We found that on the situations considered, (i) the Null Space optimizer is
able to compute optimized designs with performances comparable to its competitors with very little
parameter tuning, (ii) the OC method or IPOPT with default parameters sometimes converge to non-
optimal designs, (iii) MMA sometimes converge to slightly better design with a faster decay than the
Null Space Optimizer during the first iterations, but may also require case dependent fixes to converge
to satisfactory solutions.

Keywords: Nonlinear constrained optimization, density based Topology Optimization, null space gradient
flows, Python.

1 Introduction

The Null Space optimization algorithm (Feppon
et al (2020a)) was introduced in the context
of level-set based Topology Optimization (TO)
(Allaire et al (2021)) as a convenient alterna-
tive to the Augmented Lagrangian (AL) (Nocedal
and Wright (2006); Wang and Wang (2006); Xia
and Wang (2008); Allaire et al (2013); Deng and

Suresh (2016); Emmendoerfer Jr et al (2020)),
and to the Sequential Linear Programming (SLP)
methods (Dunning and Kim (2015); Dunning et al
(2015); Liu et al (2021, 2016)). One of the moti-
vations for developing the Null Space algorithm
stemmed from the need for efficient constrained
optimization solvers that work with little to no
tuning of case dependent algorithm parameters.
Such tuning is indeed associated with a number

1

of inconveniences: (i) multiple runs of the opti-
mization are needed in order to find the right
parameters leading to a satisfactory optimized
design, which is unaffordable for large-scale appli-
cations; (ii) the tuning may be quite complex to
achieve in situations involving a large number of
design constraints; (iii) it limits TO to a set of
predefined applications for its use by non-experts
in industrial contexts.

The Null Space algorithm is a first-order con-
strained optimization method that evolves the
design variable by solving an Ordinary Differen-
tial Equation (ODE). The trajectories of this ODE
minimize the objective function while smoothly
correcting the violation of the constraints. As a
consequence, the sole true algorithm parameter is
the time step, which only needs to be taken suffi-
ciently small for ensuring the minimization prop-
erty along the integrated trajectories. The Null
Space algorithm has proved to be quite effective
for solving a number of large-scale multiphysics
design problems involving multiple physical con-
straints with level-set based methods (see e.g. Fep-
pon (2019); Feppon et al (2020b, 2021); Salazar
De Troya et al (2021)). It allows to deal with
both inequality and equality constraints and cor-
rects unfeasible initializations. Its implementation
has been released as a freely available open-source
Python package called “Null Space Optimizer”1.

When it was introduced in Feppon et al
(2020a), the Null Space Optimizer did not allow
to solve optimization problems featuring a very
large number of constraints: indeed the original
implementation required to explicitly compute the
inverse of a matrix of size the number of active
constraints. In the Appendix C, we detail a revised
implementation that takes advantage of sparsity
to avoid this explicit inversion. This allows to
extend the Null Space algorithm to constrained
optimization problems with a large number of con-
straints provided these have a sparse Jacobian
matrix.

As a straightforward by-product of this
upgrade, the Null Space Optimizer now han-
dles bound-constraints, which makes it applicable
for solving density based Topology Optimization
problems. In the density-based TO framework
(Bendsoe and Sigmund (2003)), the design is

1https://gitlab.com/florian.feppon/null-space-optimizer/

parameterized with density variables (ρi)1≤i≤n

which need to satisfy 0 ≤ ρi ≤ 1 for every 1 ≤ i ≤
n, where n is the number of elements discretizing
the computational domain. In contrast with the
level-set framework where these bound constraints
do not exist, this entails the need to deal with
twice as many additional inequality constraints as
the number n of design variables.

With this extension at hand, this paper pro-
vides a tutorial view on how to use the Python
implementation of the Null Space Optimizer
for conveniently solving Topology Optimization
problems in the density framework. The Null
Space Optimizer offers an elegant paradigm for
implementing Topology Optimization problems. It
automates the use of filters for the design variable,
the memoization of the physical solver and the
assembly of the Jacobian matrices of the bound
constraints. Moreover, it is interfaced with Python
implementations of the popular Method of Moving
Asymptotes (MMA) (Svanberg (1987); Deetman
(2020)), of the Optimality Criteria (OC) method
(Bendsoe and Sigmund (2003)), as well as with
the primal-dual interior point method optimizer
IPOPT (Curtis et al (2012)), which allows us
to conveniently provide comparisons with these
algorithms.

So far, MMA has been considered as the “gold
standard” algorithm for solving density based
TO problems with arbitrary inequality constraints
(Gersborg-Hansen et al (2005); Wang et al (2011);
Sigmund and Maute (2013); Jensen and Sigmund
(2011); Liang et al (2019); Zheng et al (2023);
Liang et al (2023)). Alternatively, IPOPT has also
been used in a number of applications (Swartz
et al (2021); Alonso et al (2018); Alonso and
Silva (2021); Sá et al (2021)). Although these
methods have proved effective in many situa-
tions, both MMA and IPOPT remain sensitive
to algorithm parameter tuning, requiring some-
times case-dependent fixes to obtain satisfactory
optimized designs. For instance, MMA requires
the objective and the constraint functions to
be rescaled in order to map their values to a
bounded interval (Svanberg (2014)), which can
be challenging when these functions encounter
large variations. In some situations, it may addi-
tionally require structural changes of the moving
asymptote rules to lead to satisfactory conver-
gence. IPOPT, on the other hand, may require

2

https://gitlab.com/florian.feppon/null-space-optimizer/

expert tuning of algorithm parameters (such as
the strategy for updating the barrier parameter)
to obtain good performances (Rojas-Labanda and
Stolpe (2015)). The OC method, is often favored
in situations featuring a single equality constraint
(Andreassen et al (2011); Aage et al (2017)),
although some generalizations to multiple con-
straints have been proposed (Yin and Yang (2001);
Kim et al (2021)).

In the present paper, we consider four bench-
mark cases in which, the Null Space Optimizer
appears to be competitive with standard methods
with little to no parameter tuning. Depending on
the situations, we found that OC and IPOPT con-
verge to a less performant design, while MMAmay
require some case dependent tuning to achieve
performances similar or slightly better to that of
the Null Space algorithm. Our numerical results
suggest that (i) the Null Space Optimizer can be
a suitable alternative to MMA and IPOPT for
density based Topology Optimization, and (ii) it
allows to compute designs that have comparable
performance to its competitors without the need
for any particular structural change to the algo-
rithm, rescaling of the constraints or the tuning of
nonphysical parameters.

Please note that this paper does not aim to
compare more extensively various optimization
solvers: we do not claim the superiority of the
Null Space Optimizer in every scenario since we
have considered only a limited range test cases and
optimization solvers, and we have not invested sig-
nificant effort in fine-tuning the parameters. Due
to these limitations, we have chosen not to provide
runtime comparisons, since they can be heavily
influenced by parameter tuning and other factors,
such as the use of precompiled routines. Actually,
our numerical results of Sections 4 and 5 suggest
a superiority of MMA to find more efficient initial
design updates, but this advantage seems to be
lost after 70 to 80 iterations. The reader interested
in further comparisons between various optimiz-
ers on benchmark test cases in density based TO
may refer to Fanni et al (2013); Rojas-Labanda
and Stolpe (2015).

An overview on the principles of the Null
Space optimization algorithm is given in Section 2.
The necessary technical updates to account for
optimization constraints with sparse Jacobian,
including bound constraints are included in the

Appendix C. This appendix also presents a first
benchmark numerical example challenging the
enforcement of bound constraints by the Null
Space Optimizer and compares the results with
MMA and IPOPT.

The next three sections provide tutorials for
implementing three 2D Topology Optimization
test cases with the Null Space Optimizer as well
as comparisons with MMA, IPOPT and the OC
method.

Section 3 details how to implement the classi-
cal MBB beam compliance minimization problem
with a single volume constraint from the popu-
lar 88 lines Matlab code (Andreassen et al (2011);
Aage and Johansen (2016)). The complete code
for solving this example with the Null Space Opti-
mizer is provided in Appendix A. Then, we test
the different optimizers on a more challenging ver-
sion of this problem obtained by imposing a very
small volume fraction. This example is interest-
ing in that the MMA algorithm needs a major
structural fix to obtain a satisfactory convergence,
while the IPOPT optimizer struggles to find a per-
formant optimum. We find that the Null Space
Optimizer only requires a sufficiently small time
step to find a satisfactory solution.

Section 4 considers the design optimization of
a bridge featuring multiple loads as more complex
test case that precludes the use the OC method.
This test case is implemented by adding very
minor modifications to the code of Appendix A.
On this example, we find that without exten-
sive tuning, MMA converges to a solution that
is slightly better than the one computed by the
Null Space Optimizer, while the one computed by
IPOPT is slightly worse.

Section 5 provides an additional tutorial
describing the implementation of the Topology
Optimization of a heat sink on unstructured
meshes, involving thus a different physical model
and a different finite element discretization. The
complete source code for this example is repro-
duced in Appendix B; it is constituted of a main
Python file interfaced with two scripts written in
the FreeFEM language (Hecht (2012)), which is
especially convenient for dealing with the finite
element method on unstructured meshes. For this
particular example that involves a single volume
constraint, we find that the Null Space algorithm,

3

MMA and IPOPT converge to designs with sim-
ilar performances, while the popular Optimality
Criteria method converges to a local minimum
with worse performance.

Throughout the paper, we relied on the follow-
ing implementations of MMA, IPOPT and OC for
the purpose of our numerical comparisons:
(i) we use the Python implementation of

the Method of Moving Asymptotes (MMA)
(Svanberg (1993)) provided by Arjen Deet-
man2 that closely matches the original Mat-
lab implementation distributed by K. Svan-
berg (Svanberg (2009, 2014)). In order to
improve MMA’s performance, we systemati-
cally rescale the objective function so that the
initial value is equal to 10. Since MMA does
not handle by default equality constraints, a
volume equality constraint is treated as an
inequality constraint when using this opti-
mizer in Sections 3 and 4.

(ii) We rely on the Python interface cyipopt3 in
order to use the primal-dual Interior Point
Optimizer IPOPT (Wächter and Biegler
(2006); Curtis et al (2012)). Since the opti-
mizer involves many parameters that are not
straightforward to tune, we systematically
run the optimizer with the default options.

(iii) The Optimality Criteria (OC) method
(Bendsoe and Sigmund (2003)) is imple-
mented following the source code of Aage and
Johansen (2016).

2 Presentation of the Null
Space Optimizer

The Null Space algorithm is a numerical method
for solving generic nonlinear constrained optimiza-
tion problems of the form

min
x∈X

J(x)

s.t.

{
gi(x) = 0 for 1 ≤ i ≤ p,

hj(x) ≤ 0 for 1 ≤ j ≤ q.

(1)

Here, X denotes the design set, x is the design
variable and the functions J , g := (gi)1≤i≤p and

2https://github.com/arjendeetman/GCMMA-MMA-
Python

3https://github.com/mechmotum/cyipopt

h := (hj)1≤j≤q are respectively the objective
function, p equality constraints and q inequality
constraints. For density based Topology Optimiza-
tion, the design set is the finite-dimensional space
X = Rn, where n is the number of cells or mesh
elements discretizing the design domain.

2.1 Null Space gradient flows

The basis of the Null Space algorithm for solv-
ing the optimization problem (1) is to numeri-
cally integrate the following Ordinary Differential
Equation (ODE), or so-called “null space gradient
flow”:

ẋ(t) = −αJξJ(x(t))− αCξC(x(t)). (2)

The trajectories x(t) are determined by two
orthogonal vector fields ξJ and ξC referred to as
the “null space” and “range space” directions, fol-
lowing denominations of null space optimization
methods for equality constrained problems, see
e.g. Nocedal and Wright (2006); Nie (2004); Liu
and Yuan (2010). The null space step −ξJ is the
best locally feasible ascent direction. The range
space step −ξC is a Gauss-Newton direction that
gradually corrects the violation of the constraints.
The precise definitions of ξJ and ξC are reviewed
in Sections 2.2 and 2.3 below. All in all, (2) is a
generalization of the standard gradient flow ẋ =
−∇J(x) minimizing J without constraints. Sim-
ilarly to the unconstrained case, the trajectories
x(t) of (2) tend to converge to feasible designs x∗

that are locally optimal in the sense that they sat-
isfy the first order Karush-Kuhn-Tucker (KKT)
conditions, namely x∗ is feasible and

∃λ ∈ Rp, ∃µ ∈ Rq
+,{

∇J(x∗) + Dg(x∗)Tλ+Dh(x∗)Tµ = 0,

µj > 0⇒ hj(x
∗) = 0 for all 1 ≤ j ≤ q,

(3)

where Rq
+ denotes the q-dimensional nonnega-

tive orthant and ∇J(x∗), Dg(x∗) and Dh(x∗) are
respectively the gradient of J and the Jacobian
matrices of g and h at x∗.

The ODE (2) is parameterized by two positive
constants αJ > 0 and αC > 0. The parameter αJ

tunes the rate at which the objective function val-
ues decrease while not worsening the constraints.

4

The parameter αC tunes the pace at which the vio-
lation of the constraints decreases (the violation
decreases precisely at the exponential rate e−αCt).
In principle, the success of the method to find a
local minimizer does not depend on the choice of
αJ and αC : it depends only on the selection of a
sufficiently small time step. However, setting the
ratio αJ/αC to a custom value sometimes helps to
find a better optimization path because it tunes
the trade-off between guiding quickly the design to
a region with small objective function values and
driving it quickly to the feasible set. In any case,
we emphasize that these parameters have a clear
intuitive meaning and in many situations (includ-
ing those considered in this paper), it is possible
to set αJ/αC = 1. For a more flexible usage, the
Python implementation of the Null Space Opti-
mizer implements automatic rescaling rules on the
parameters αJ and αC , see Section 2.5.

Remark 1. The Null Space algorithm is not
restricted to optimization on finite-dimensional
spaces but also allows to consider much more
general sets equipped with a kind of manifold
structure, see Feppon (2019), chapter 6. This
feature is essential for level-set based Topology
Optimization, where the design set is the set of
shapes X = {Ω ⊂ D} for a given computational
domain D.

Remark 2. In (3) and throughout the paper, we
denote by DJ(x) and Dg(x) the Fréchet deriva-
tives of a function J and a vector g, where
DJ(x) :=

[
∂x1

J(x) . . . ∂xn
J(x)

]
is understood as

a row vector, and where Dg(x) := (∂jgi(x)) is the
Jacobian matrix of g. We use the gradient nota-
tion to refer to the transpose ∇J(x) := DJ(x)T .
This distinction between Fréchet derivative and
gradient is needed in the Hilbertian framework of
level-set based Topology Optimization; see Fep-
pon et al (2020a), Definition 2.1.

2.2 Definition of the null space
direction ξJ

In what follows, || · || denotes the standard
Euclidean norm. For a given design x ∈ X , we
consider the set Ĩ(x) of inequality constraints that
are active or violated, and we denote respectively
by q̃(x) and hĨ(x) their number and the associated

vectors of constraints:

Ĩ(x) = {i |hi(x) ≥ 0}, (4)

q̃(x) := Card(Ĩ(x)), (5)

hĨ(x) := (hi(x))i∈Ĩ(x). (6)

The null space direction ξJ(x(t)) is defined by the
formula

ξJ(x) := ∇J(x)+Dg(x)Tλ∗(x)+DhĨ(x)(x)
Tµ∗(x),

(7)

where (λ∗(x),µ∗(x)) ∈ Rp × Rq̃(x)
+ are opti-

mal Lagrange multipliers obtained by solving the
“dual” problem

min
(λ,µ)∈Rp×Rq̃(x)

+

||∇J(x)+Dg(x)Tλ+DhĨ(x)(x)
Tµ||,

(8)
In practice, (8) is a nonnegative least-squares
problem which can be solved by using any stan-
dard quadratic programming solver; the current
Python implementation of the Null Space Opti-
mizer allows to choose between the CVXOPT
(Vandenberghe (2010)) and the OSQP (Stellato
et al (2020)) solvers.

Remark 3. The problem (8) has a clear and
intuitive interpretation. Either its minimum value
is zero and the KKT optimality conditions (3)
are satisfied; or it is not zero and the vector
ξJ(x) obtained from (7) with the dual vari-
ables (λ∗(x),µ∗(x)) is the “best” locally feasi-
ble descent direction. More precisely, ξ∗(x) :=
−ξJ(x)/||ξJ(x)|| minimizes the linearized objec-
tive function while not worsening the first order
variation of the constraints among all possible unit
directions:

− ξJ(x)

||ξJ(x)||
= arg min

ξ∈Rn
DJ(x) · ξ

s.t.


Dg(x) · ξ = 0,

DhĨ(x)(x) · ξ ≤ 0,

||ξJ(x)|| ≤ 1.

(9)

This alternative is the generalization to the
well-known fact that in the unconstrained case,
∇J(x) is either zero at a local minimum or
−∇J(x)/||∇J(x)|| is the best unit descent direc-
tion. The problem (8) is called “dual” because it
is the dual of (9) (Nocedal and Wright (2006)).

5

2.3 Definition of the range space
direction ξC

The range space direction ξC(x(t)) is a Gauss-
Newton direction for reducing the violation of the
constraints, thus gradually correcting unfeasible
initializations. It is mathematically defined as

ξC(x) := DCT
Ĩ(x)

(DCĨ(x)DCT
Ĩ(x)

)−1CĨ(x) (10)

where CĨ(x) :=

[
g(x)
hĨ(x)

]
is the column vec-

tor gathering the equality and active inequal-
ity constraints. The definition (10) ensures that
DCĨ(x)ξC(x) = CĨ(x). By using the properties

Dg(x)·ξJ(x) = 0 and DhĨ(x) ·ξJ(x) ≤ 0, it is found

that the violation of the constraints decreases
exponentially as

g(x(t)) = e−αCtg(x(0)),

max(h(x(t)), 0) ≤ max(h(x(0)), 0)e−αCt,

see Feppon et al (2020a).

Remark 4. Formula (10) assumes DCĨ(x) to be

full rank for the matrix DCĨ(x)DCT
Ĩ(x)

to be invert-

ible. In order to address the issue of rank degener-
acy, the Python implementation of the Null Space
Optimizer uses the SciPy routine lsqr to com-
pute the right pseudo inverse of DCĨ(x) in place of

DCT
Ĩ(x)

(DCĨ(x)DCT
Ĩ(x)

)−1.

2.4 Treatment of constraints with
sparse Jacobian and bound
constraints

A naive implementation of the quadratic norm
in (8) requires to compute the large matrix
DCĨ(x)DCT

Ĩ(x)
. This matrix needs also to be

inverted in the formula (10). When the total
number p + q̃(x) of active or violated inequality
constraints is large, performing these operations
explicitly may be computationally intractable.
However, it is possible to reformulate (8) and (10)
in terms of matrix-vector products that lend them-
selves to iterative methods when the constraints
have a sparse Jacobian matrix. The necessary
adaptations are detailed in Appendix C.

Bound constraints are a special instance of
constraints with sparse Jacobian matrix. With the

upgrade of Appendix C, the Null Space Optimizer
treats them as any other constraints, by simply
including their Jacobian matrix in the assembly
of DCĨ(x). For instance, bound constraints of the

form li ≤ xi ≤ ui with 1 ≤ i ≤ n can be reformu-
lated into 2n inequality constraints li−xi ≤ 0 and
xi − ui ≤ 0. The associated Jacobian is the block
matrix

DC =

[
I
−I

]
,

where I is the n × n identity matrix. For
the ease of the user, the Nullspace Opti-
mizer Python package provides a decorator
@bound constraints optimizable for automat-
ing this assembly which is described in more
details in Section 3.2.4. Additionally, the decora-
tor ensures that the design variable is projected to
the admissible set at every iteration by using the
min/max operator

x 7→ min(ui,max(li, x)). (11)

This operation ensures a more conservative
enforcement of the bound constraints.

2.5 Implementation aspects and
variations of the algorithm

The gradient flow (2) is discretized by using a For-
ward Euler scheme with time step ∆t. The Python
implementation of the Null Space Optimizer intro-
duces further adaptations for improved numerical
stability and usage flexibility.

Automatic rescaling of αJ and αC

The parameters αJ ≡ αn
J and αC ≡ αn

C are auto-
matically scaled at every iteration n in order to
ensure

||αn
JξJ(x

n)||∞∆t ≤ AJ∆t, (12)

||αn
CξC(x

n)||∞∆t ≤ AC∆t, (13)

where xn is the iterate after n time steps, AJ and
AC are two fixed constants set by the user and
|| · ||∞ is the supremum or L∞-norm (thus not the
Euclidean norm || · || of Section 2.2). Furthermore,
the parameter αn

J is chosen such that (12) holds
as an equality during for the first Nit iterations:

||αn
JξJ(x

n)||∞∆t = AJ∆t, for all 0 ≤ n ≤ Nit.
(14)

6

The number Nit is fixed by the user (see the corre-
spondence table at the end of this subsection). The
equality is not enforced afterwards in order to let
ξJ(xn)→ 0 as xn gets closer to a local minimum.

These rescalings are quite convenient since AJ

and AC can be understood as fractions of the time
step. They have therefore a clear intuitive meaning
for the user who does not need to worry about the
magnitudes of ξJ(xn) and ξC(xn).

Stabilization near active inequality
constraints

Eq. (2) is an ODE with discontinuous right-hand
side, which may introduce numerical instabili-
ties near the boundaries of inequality constraints.
When a novel constraint becomes active in the
set Ĩ(x), the gradient of the objective function is
suddenly projected on a smaller set when crossing
the constraint barrier, resulting in a discontinuous
change in the orientation vector of the trajectory.
These instabilities can be addressed by enlarg-
ing the set Ĩ(x) to include inequality constraints
{0 ≤ j ≤ q |hj(x) ≤ ϵj} that are not yet but likely
to become active when computing the null space
direction ξC(x) with (7) and (8). The parameter ϵj
are small threshold values that are automatically
computed to detect constraints located at a dis-
tance less than K∆t, where K is a parameter set
by default to 0.1 (which is working well in prac-
tice independently of the optimization problem).

Then, the set Ĩ(x) considered in (10) for com-
puting the range step ξC(x) is also enlarged with
constraints that are likely to remain active based
on the information given by the optimal multiplier
µ∗. We refer the reader to Feppon et al (2020a)
for the detailed implementation of these rules.

Weights for the violated constraints

The direction ξC(x) in (10) is designed to ensure
that the violation of the constraints decays as
e−αCt. In practice, the user may desire different
decay rates for each of the constraints for a more
flexible control of the optimization path. This is
possible by defining ξC(x) as

ξC(x) := DCT
Ĩ(x)

(DCĨ(x)DCT
Ĩ(x)

)−1

× diag(α1, . . . , αp, αp+1, . . . , αp+q)CĨ(x) (15)

where (αi)1≤i≤p+q are p + q weights ensuring
that the violation of the corresponding equality

or inequality constraint i decreases faster than
e−αiαCt.

Correspondence table for the algorithm
parameters

The Null Space Optimizer accepts various algo-
rithm parameters in the form of a Python dic-
tionary provided by the optimization routine (see
e.g. Section 3.3 below). The following table pro-
vides the correspondence between the mathemat-
ical notation of the parameters mentioned in this
section and their name (as dictionary keys) in the
Python implementation.

Parameter Implementation Default

∆t dt 0.1
AJ alphaJ 1
AC alphaC 1
Nit itnormalisation 1
K K 0.1

(αi)1≤i≤p+q alphas (1)1≤i≤p+q

Note that these algorithm parameters are not
tuning parameters, they are rather used to provide
an increase level of flexibility allowing for faster
convergence towards an optimum. They have a
clear physical meaning and many practical sit-
uations do not require a custom value. In the
numerical examples considered in this paper, we
leave the parameters to the default values unless
otherwise specified.

3 Topology Optimization of
the 88 lines Matlab MBB
beam example with the
Null Space Optimizer

This section and the next to follows provide three
tutorials giving an in-depth view on the use of
the Null Space Optimizer for density based Topol-
ogy Optimization. In this section, we revisit the
classical MBB beam example from the popular
99 lines Matlab Topology Optimization code orig-
inally introduced in Sigmund (2001), which was
refactored in a more efficient 88 lines version in
Andreassen et al (2011).

We provide a step-by-step tutorial for writ-
ing an elegant implementation of this classical
example with the Null Space optimizer, without
bringing substantial modifications to the state

7

solver and the sensitivities. The proposed imple-
mentation is claimed “elegant” because it uses
elegant paradigms of the Python language such
as object-oriented programming and decorators to
isolate the various building blocks of the Topol-
ogy Optimization code. As the following examples
demonstrate, we obtain as such succinct and flex-
ible implementations that closely matches the
mathematical formulation (1) of the optimiza-
tion problem, sets a clear separation between the
implementation of the state solver, the filtering of
the design variable and the optimization solver.
This programming paradigm is easily reproducible
to more general situations.

This section is organized as follows. The phys-
ical setting of the MBB beam test case and the
formulation of the associated design optimization
problem is given in Section 3.1. Section 3.2 details
how to implement this test case in Python and to
solve it with the Null Space Optimizer. Numerical
results and comparisons with the Optimality Cri-
teria, MMA and IPOPT solvers are presented in
Section 3.4 for two different benchmark situations:
one with a rather large target volume fraction
corresponding to the setting of the 88 line Mat-
lab code paper of Andreassen et al (2011), and
a second example imposing a tiny target volume
fraction that is more challenging.

3.1 The classical MBB beam
problem of the 88 lines Matlab
Topology Optimization code.

The classical MBB beam problem setting as intro-
duced in Sigmund (2001); Andreassen et al (2011)
is depicted on Fig. 1. The design domain is a rect-

g

Fig. 1: Setting of the MBB beam Topology Opti-
mization problem of Section 3.

angle discretized with n := nelx × nely square
elements. Each element 1 ≤ e ≤ nelx × nely is

characterized by a Young modulus Ee(xe) that
depends on the local fraction of material xe

according to the SIMP interpolation law:

Ee(xe) := Emin+ xp
e(Emax− Emin).

Throughout the paper, the SIMP exponent is set
to p := 3, Emax := 1 is the Young modulus of
the solid material and Emin := 10−9 is the Young
modulus of an ersatz material representing void.
The left-side boundary is subject to no horizontal
displacement and the bottom right corner to no
vertical displacement. A unit downward force g is
applied at the top left corner.

The structural design optimization problem
for minimizing the compliance of the structure
subject to a single volume equality constraint
reads:

min
x=(xe)1≤e≤n

J(x) = UTK(x)U

=

n∑
e=1

Ee(xe)u
T
e KEue

s.t.


V (x)/V0 :=

1

n

n∑
e=1

xe = volfrac,

K(x)U = F ,

0 ≤ xe ≤ 1, for all 1 ≤ e ≤ n,

(16)

where K(x) is the global stiffness matrix, U and
F are the global displacement and force vectors,
ue is the displacement vector in the element e
and KE is the element stiffness matrix for an ele-
ment with unit Young’s modulus. V (x) refers to
the volume of the optimized design, V0 is the total
volume of the design domain and volfrac is the
target volume fraction.

A classical issue in density based TO when
solving the minimization problem (16) is the aris-
ing of checkerboard patterns in the design variable
(Sigmund and Petersson (1998)). In order to elim-
inate these nonphysical solutions from the design
space, the original 88 lines Matlab Topology Opti-
mization code implements a density filter on the
optimization variable. More precisely, the final

8

optimization problem considered reads

min
x=(xe)1≤e≤n

J(x̃)

s.t.


V (x̃)/V0 = volfrac,

K(x̃)U = F ,

0 ≤ xe ≤ 1 for all 1 ≤ e ≤ n,

(17)

where the filtered density x̃ is a local averaging of
elements that are neighbors by a distance smaller
than a prescribed filter radius rmin:

x̃e :=
1∑n

i=1 Hei

n∑
i=1

Heixi for all 1 ≤ e ≤ n,

(18)
with Hei = max(0, rmin − ∆(e, i)), where ∆(e, i)
is the distance between the centers of elements e
and i.

3.2 Python implementation of the
MBB beam problem with the
Null Space Optimizer

In order to closely match the original Matlab
implementation of this test case, we reshape
a Python translation of the 88 lines code of
Andreassen et al (2011) that is provided by
Aage and Johansen (2016). In the subsequent
subsections, we provide a comprehensive descrip-
tion of the implementation using the Null Space
Optimizer. The full source code is provided in
Appendix A and we refer to the associated line
numbering throughout the discussion.

The code can be comprehended in the follow-
ing parts:

• lines 1–9: Python modules imports;
• lines 11–109: initializations of the element
stiffness and density filter matrices;

• lines 111–142: declaration of the state solver;
• lines 144–152: declaration of the filtering
functions;

• lines 154–191: definition of the optimization
problem

• lines 199–203: setting of optimization param-
eters and running the optimization.

3.2.1 Declaration of the optimization
problem

The overall code is best understood by looking
first at the declaration of the class TO problem in
lines 154–191. The class TO problem inherits the
EuclideanOptimizable class from the Null Space
Optimizer Python package, which indicates to the
optimization routine that the design domain is a
finite dimensional design space Rn (represented by
NumPy arrays).

The declaration of this class closely follows
the mathematical definition of the Topology Opti-
mization problem (17) by implementing the fol-
lowing methods (required by the Null Space
Optimizer):

• x0 returns the initial design;
• J returns the objective function computed on
the design variable x;

• G returns the array of equality constraints,
here the single volume constraint V (x̃)/V0 −
volfrac;

• dJ returns the sensitivity of the objective
function (a row vector);

• dG returns the Jacobian matrix of the equal-
ity constraints (here a row vector);

Arbitrary inequality constraints could be added
similarly by implementing methods H and dH.
Additionally, the class implements a function
accept for initializing and updating plots of the
design. The function accept is called at the
beginning of every iteration by the Null Space
Optimizer, it takes as inputs a dictionary params

containing the optimization algorithm parameters
and a dictionary results storing the optimization
histories. The optimized design from the current
iteration is accessed as results[’x’][-1].

The implementation of the Topology Opti-
mization problem relies then on three key ingredi-
ents:

• solve state (lines 111-142): a function solv-
ing the linear elasticity problem and return-
ing the compliance obj and its sensitivity
dc,

• @filtered optimizable (line 156): a deco-
rator which implements the filtering of the
design variable,

• @bound constraints optimizable (line
155): a decorator which supplements the
optimization problem with the bound
constraints 0 ≤ xe ≤ 1 for all 1 ≤ e ≤ n.

9

These three ingredients are described in the
next Sections 3.2.2 to 3.2.4.

3.2.2 Computations of the state
solution and the sensitivities

The computation of the compliance and its sen-
sitivity is achieved by the function solve state

at lines 111–142. The function depends on a pre-
liminary part of the code (lines 11–109) which
precomputes the element stiffness matrix KE, the
index pointers iK, jK as well as the element stiff-
ness matrix edofMat describing the degrees of
freedom attached to every element. The array
dofs references the finite element degrees of free-
dom attached to every vertex. The total number of
degrees of freedom is stored in the variable ndof,
the degrees of freedom associated to the Dirich-
let and the free boundary are stored in the arrays
named fixed and free, and the downward unit
load is stored in the finite element vector f (which
implements the right-hand side F of the linear
elasticity system).

Then, the function solve state takes as an
input an array x representing the density vari-
ables x = (xe)1≤e≤n. It internally assembles the
finite element matrix and solves the linear sys-
tem K(x)U = F by applying a sparse Cholesky
factorization provided by the CVXOPT package.
This part follows almost textually the Python
translation of the 88-lines Matlab code of Aage
and Johansen (2016) and the reader is referred to
Andreassen et al (2011) for more details.

However, a few minor useful changes have been
implemented. First, the function solve state

allows the force vector f to be a matrix with
Nloads columns corresponding to different loads.
This parameter is useful for the multiple load case
of Section 4 below. In the present situation, f is
a single column vector. The function returns an
array obj for multiple loads Nloads > 1, and the
real number obj[0] when Nloads = 1 (the present
case).

Second, the NumPy function np.einsum is
used at line 131 for efficient and vectorized com-
putation of the terms uT

e KEue in (16).
Third, the definition of the function

solve state is preceded by the decorator
@memoize() provided by the Null Space Optimizer
package. This decorator caches the function’s
results, effectively returning a stored value if the

computationally intensive solve state function
is invoked multiple times with the same argu-
ment. This feature is particularly advantageous
in the declaration of the optimization problem
which requires to separation of the objective
function and the sensitivities into distinct func-
tions, resulting in separate calls at lines 162 and
166: this syntax ensures that the linear elasticity
system is solved only one time per iteration. The
decorator can be understood as equivalent to
appending the following lines of codes after the
definition of solve state:

old_solve_state = solve_state

solve_state = \

memoize ()(old_solve_state)

The function memoize() relies on a hashing
algorithm that determines whether the function
solve state has already been called on the argu-
ment x, and in that case, returns a stored value.

3.2.3 Filtering of the density variable

In the proposed implementation, the density filter
x 7→ x̃ of (18) is conveniently implemented at line
156 by the decorator

@filtered_optimizable(filter ,

diff_filter)

Its arguments filter and diff filter respec-
tively implement the filtering function (18) and its
sensitivity.

The decorator @filtered optimizable con-
verts the problem (16) into the filtered problem
(17). It automatically creates a copy of the class
TO problem, substituting the methods J(self,x)
and G(self,x) with J(self,filter(x)) and
G(self,filter(x)).

The filtering function filter is implemented
at lines 144–152 with the following lines of code:

@memoize ()

def filter(x):

return Hs @ (H @ x)

where H is the matrix (Hei) of (18) and Hs is the
sum of its elements; H and Hs are precomputed
at lines 80–105 reproducing the implementation
of Aage and Johansen (2016); Andreassen et al
(2011). Memoization is used once again for effi-
ciency, which allows for the proposed implemen-
tation paradigm without the need to worry about
redundant calls to the filter function.

10

To obtain fully consistent sensitivities, the
derivatives need to be updated according to the
chain rule

d

dx
[J(x̃)] · dx = dJ(x̃) · dx̃

dx
· dx.

The decorator @filtered optimizable automat-
ically applies this transformation to the meth-
ods dJ and dG by exploiting the second argu-
ment diff filter, which is required to be a
Python function implementing the left vector-
matrix product:

(x, v) 7→ v · dx̃
dx

, (19)

where v is an input row vector (or a p×n matrix if
G is a function returning p constraints) that is to
be replaced with dJ(x̃) or dG(x̃) by the optimiza-
tion routine. In the present case, the filter is linear
which makes the implementation of diff filter

straightforward (lines 143–146):

@memoize ()

def diff_filter(x,v):

return (H @ (Hs @ v.T)).T

3.2.4 Bound constraints

The 2n bound constraints 0 ≤ xe ≤ 1 for
1 ≤ e ≤ n are implemented with the decorator
@bound constraints optimizable(l=0,u=1) at
line 155. This decorator returns a copy of the
filtered class TO problem, by:
(i) appending a method H(self,x) implement-

ing the 2n bound constraints{
−xe ≤ 0,

xe ≤ 1,
for 1 ≤ e ≤ n.

This operation is equivalent to adding a
method H(self,x) in the definition of the
class TO problem4:

def H(self ,x):

Returns the vector

of constraints

4Note that H(self,x) is a method of TO problem which is not
to be confused with the filtering matrix also denoted by H (a
global variable). We use H for the filtering matrix to match the
notation of Andreassen et al (2011).

[x_0 -1,x_1 -1,...,x_n -1,

-x_0 ,-x_1 ,...,-x_n]

return np.hstack ((x-1,-x))

The use of the decorator allows to simplify
this process for the user’s convenience;

(ii) appending a method dH(self,x) returning
the constraints sensitivities, that is the block
diagonal matrix

dH(x) =

[
I
−I

]
where I is the n × n identity matrix, This
function returns this Jacobian matrix in a
sparse format. This operation is equivalent
to adding the following method in the class
TO problem:

def dH(self ,x):

I = sp.eye(n,format="csc")

return sp.vstack ((I,-I))

(iii) adding a method retract(self,x,dx)

implementing the projection rule (11) that
is applied after every update by the Null
Space Optimizer. We refer to Absil and
Malick (2012) and to the documentation
of the package regarding the definition of
retractions and their use in optimization.

Notice that unlike MMA or IPOPT, the Null
Space optimizer treats bound constraints almost
as any other inequality constraints. The only dif-
ference in this treatment with other constraints is
the use of the projection rule (11) that enables a
stricter enforcement than the range space step ξC .

3.3 Running the optimizer

The optimization problem is solved with the Null
Space Optimizer at lines 193–203. Line 200 initial-
izes finite element matrices by calling the function
init(). The class TO problem is instantiated at
line 195. Then, the optimization problem is solved
at line 201 by the routine nlspace solve by dis-
cretizing the null space gradient flow (2). The
arguments of the routine are an instance of the
optimization problem and the dictionary of algo-
rithm parameters optimization params. Here,
we specify a time step dt = 0.3. The param-
eter itnormalisation=50 ensures that the null
space step αJξJ(x) is rescaled to unity during
the first 50 iterations, before being allowed to

11

smoothly decrease (see Section 2.5). The param-
eter maxit stops the optimization after 150 iter-
ations. The parameters save only N iterations

and save only Q constraints are used for mem-
ory efficiency: by default, the Null Space Opti-
mizer stores the values of all constraints and
designs of all iterations in the output dictionary
results. In the present case, we require that only
the last iteration and the first 5 constraints (which
include the volume constraints and the first 4
bound constraints) are stored.

3.4 Numerical results and
comparisons with OC, MMA
and IPOPT

We solve the MBB Topology Optimization prob-
lem with the Null Space optimizer and we compare
the convergence to that of the Optimality Criteria
method, MMA and IPOPT. We consider two sit-
uations: first, the exact configuration of the MBB
problem considered in the 88 lines Matlab code
(Section 3.4.1), then a more challenging version
where the volume fraction target is set to a very
small value (Section 3.4.2).

3.4.1 MBB beam test case with
medium volume fraction

In this first situation corresponding to the setting
of Andreassen et al (2011), the volume fraction
target is set to volfrac:=0.4 and the filter radius
to rmin := 5.4. The number of elements in the
x and y directions are set to nelx := 180 and
nely := 60. The Null Space optimizer time step
dt, the move limit mOC of the Optimality Criteria
method and the move limitmMMA of MMA are set
to the same value dt = mOC = mMMA = 0.3. The
number of normalisation iterations for the null
space direction ξJ is set to itnormalisation=50.
We keep the default settings for IPOPT. The opti-
mization is stopped for every algorithm after 150
iterations.

The final objective and constraint values are
reported in Table 1. Convergence histories and
intermediate designs at identical iterations are dis-
played respectively on Figs. 2 and 4. A close-up on
the convergence histories for the first 30 iterations
is shown on Fig. 3.

On this basic example, all the algorithms
obtain the same final design with very similar

performances. The Null Space Optimizer (abbre-
viated NLSPACE) performs similarly well as
its competitors, the Optimality Criteria method,
MMA and IPOPT. With the chosen settings,
NLSPACE manages to enforce the volume con-
straint at machine precision. The performance of
the design found by MMA is slightly better, while
the performance of IPOPT and OC are almost
identical to that of the Null Space Optimizer.

IPOPT takes slightly more iterations to con-
verge than the other algorithms and exhibits a
rather surprising behavior around iteration 20, it
still manages to drive the design to the optimum
after a few more iterations. This analysis, how-
ever, must be tempered by the fact that we didn’t
tune IPOPT parameters to find the most efficient
convergence setting. It can also be observed that
MMA takes a rather large deviation to the volume
constraint during the first 20 iterations, while OC
maintains it close to zero throughout the itera-
tions. The Null Space Optimizer as well as IPOPT
only slightly violate the constraint during the first
iterations before correcting it after approximately
20 iterations.

Looking at the first iterations on the conver-
gence histories of Fig. 3, we observe that the Opti-
mality Criteria method, MMA and the Null Space
Optimizer have similar initial decays, with a small
advantage for OC and MMA. This effect is also
visible on the other numerical examples considered
in the next sections. This small advantage may
be surprising because we used identical move and
time step dt parameters while the definition (9) of
the null space step ξJ should ensure that it pro-
duces the best locally feasible descent direction,
hence theoretically leading to best update among
all possible directions with identical norm. This
apparent paradox is explained by the fact that the
norm || · || involved in the definition (9) of ξJ(x) is
a quadratic norm, while the implementation nor-
malizes the update steps with the supremum (L∞)
norm || · ||∞ (see Section 2.5). Here, MMA and OC
use descent directions that are more optimal than
ξJ in the L∞-norm, but we checked that these
descent directions are of strictly larger L2-norm
than ξJ . Still, this advantage remains negligible on
this test case as NLSPACE catches up MMA and
OC after about 7 iterations.

12

Algorithm J G = V (x)/V0 − volfrac

NLSPACE 288.702 0
OC 288.830 −1.30 · 10−5

MMA 286.383 −2.20 · 10−6

IPOPT 288.801 −9.30 · 10−8

Table 1: Final objective and constraint val-
ues for the MBB example for the different
optimization algorithms.

0 25 50 75 100 125 150
Iteration number

250

500

750

1000

1250

1500

1750

2000

J

NLSPACE
OC
MMA
IPOPT

(a) Objective function J .

0 25 50 75 100 125 150
Iteration number

−0.04

−0.03

−0.02

−0.01

0.00

0.01

G

NLSPACE
OC
MMA
IPOPT

(b) Volume constraint G(x) = V (x)/V0 −
volfrac.

Fig. 2: Convergence history of the different opti-
mizers on the MBB beam example of Section 3.4.1.

3.4.2 MBB beam test case with a tiny
volume fraction

We now investigate a more challenging example
where the volume fraction is set to the small value
volfrac := 0.01. For this test case, the resolu-
tion parameters of the computational mesh are
set to nelx:=150 and nely:=50, and the filter
radius to rmin := 1.9. As the numerical results

0 5 10 15 20 25 30
Iteration number

250

500

750

1000

1250

1500

1750

2000

J

NLSPACE
OC
MMA
IPOPT

(a) Objective function J .

0 5 10 15 20 25 30
Iteration number

−0.04

−0.03

−0.02

−0.01

0.00

0.01

G

NLSPACE
OC
MMA
IPOPT

(b) Volume constraint G(x) = V (x)/V0 −
volfrac.

Fig. 3: Convergence history of the different opti-
mizers on the MBB beam example of Section 3.4.1
(zoom on the first 30 iterations).

demonstrate below, the test case is somehow unre-
alistic since a completely black and white design
cannot be achieved for such a low amount of mate-
rial given the resolution. Still, the test case is an
interesting challenging benchmark for testing the
performance of optimization methods.

For such a small value of the volume frac-
tion target, the classical implementation of MMA
based on the Matlab code released by Svanberg
(2014) fails both at finding an optimum value and
ensuring the correct volume fraction, see Fig. 5
and Table 2. Rescaling the objective function is
not sufficient for ensuring convergence towards a
satisfactory design. The issue comes from what
seems to us a limitation of the heuristic update
rules of the moving asymptotes. Indeed, a suit-
able convergence can be obtained by the following

13

(a) Optimality Criteria (b) Null Space

(c) MMA (d) IPOPT

Fig. 4: Comparison of the designs obtained by the
different optimizers for the MBB beam test case
of Section 3.4.1 at iterations 0, 10, 15, 20, 30, 80
and 150.

three modifications to the standard implementa-
tion described in Svanberg (2014):

• using a different initialization for the asymp-
totes. The default initialization of the asymp-
totes reads (eq. (3.11) in Svanberg (2014)):{

l(k)e = x(k)
e − 0.5(xmax

e − xmin
e),

u(k)
e = x(k)

e + 0.5(xmax
e − xmin

e),

for k = 0, 1. Here, x
(k)
e is the e-th coordi-

nate of the design variable at iteration k,
xmax
e and xmin

e are the lower and upper bound

limits and l
(k)
e and u

(k)
e denote respectively

the lower and upper asymptotes. A better
convergence is obtained by setting instead:{

l(k)e = max(x(k)
e − 0.5(xmax

e − xmin
e), 0),

u(k)
e = max(x(k)

e + 0.5(xmax
e − xmin

e), 10),

for k = 0, 1. This setting avoids that the lower
asymptotes to become lower than 0, and it
“pushes” the upper asymptotes to 10 making
the initial approximation of the objective and
constraint functions flatter;

• discarding the moving asymptote rule, which
reads (eq. (3.12) in Svanberg (2014)):{

l(k)e = x(k)
e − γ(k)

e (x(k−1)
e − l(k−1)

e),

u(k)
e = x(k)

e + γ(k)
e (u(k−1)

e − x(k−1)
e),

where γ
(k)
e is a number set to 0.7, 1.2 and

1 depending on the values of x
(k)
e , x

(k−1)
e

and x
(k−2)
e . In our “fixed” implementation of

MMA, we manually disable this rule and we
leave the remainder of the code provided by
Deetman (2020) unchanged.

• using tighter moves between iterations. Our
default implementation of MMA sets xmin

e =
0 and xmax

e = 1 for all 1 ≤ e ≤ n. The fixed
implementation forbids updates larger than
the parameter move by setting

xmin
e = max(0, x(k) − move),

xmax
e = min(1, x(k) + move).

at every iteration.

14

Fig. 5: Convergence history of the standard implementation of MMA on the MBB beam example of
Section 3.4.2 with volume fraction target volfrac=0.01 (iterations 0, 20, 30, 80, 100, 150).

We note that the use of the line-search provided by
the Globally Convergent MMA (GCMMA) algo-
rithm of Svanberg (2014) would also be an appro-
priate fix for this problem. Still, even GCMMA
would require the smart initialization of the
asymptotes to lead to satisfactory designs.

We run the different optimizers with dt=0.02
for the Null Space Optimizer, move=0.2 for MMA
and move=0.05 for the OC solver. These move
parameters yield satisfactory results for MMA and
OC. The NLSPACE time step is the sole parame-
ter to tune, it needs to be taken sufficiently small
to accommodate the small volume fraction and the
initial design (a uniform gray design x0 = (x0

e)
with x0

e = 0.01/(nelx×nely) for 1 ≤ e ≤ n) close
to 0. IPOPT is executed with default options.
The numerical values of the objective function and
volume constraint of the final designs are listed
in Table 2. Convergence histories are shown on
Fig. 6 as well as a close-up on the first 30 iter-
ations on Fig. 7. Figure 8 displays a sequence of
intermediate designs for each optimizer.

As it is visible on Fig. 8, the target volume
fraction could not be achieved with completely
black and white designs, leading “gray” solid bars
having a density that do not reach the maxi-
mum value xe = 1. The numerically computed
optimized designs suggest that this benchmark
example seems to admit several locally minimizing
designs with different topologies achieving compa-
rable performances. The values of Table 2 indicate
that the fixed version of MMA happens to find
a design with the best performance among the
tested algorithms. The Optimality Criteria solver
does not need any fix and is able to find a slightly
different design with similar performances. How-
ever, this solver is less accurate regarding the

Algorithm J G = V (x)/V0 − volfrac

NLSPACE 1.27371 · 106 0
OC 1.28758 · 106 2.10 · 10−4

MMA 3.72097 · 106 −3.10 · 10−5

MMA (fixed) 1.25473 · 106 −8.70 · 10−9

IPOPT 2.97208 · 106 −3.40 · 10−7

Table 2: Final objective and constraint values for
the MBB example of Section 3.4.2 with tiny volume
fraction target for the different optimization algo-
rithms.

enforcement of the volume constraint as illus-
trated on Fig. 6b. The Null Space algorithm
converges to a different design with a performance
very similar to the one found by the fixed version
of MMA, albeit slightly worse and slightly bet-
ter than OC. Noticeably, it enforces the volume
constraint at machine precision at convergence.
On this example, the IPOPT solver with default
parameters converges to a design that satisfies
the constraint, but that is much less performant
than the solutions provided by the other successful
algorithms.

4 Implementing Robust
Topology Optimization for
multiple load cases

In this section, we describe the implementation
of robust design optimization of a bridge subject
to multiple loads using a min/max formulation.
We demonstrate the suitability of the Null Space
Optimizer for solving this problem featuring mul-
tiple inequality constraints, and we compare the
numerical results to those of MMA and IPOPT
(for this example, it is not possible to use the stan-
dard Optimality Criteria method which is adapted
to optimization problems featuring only a single

15

0 20 40 60 80 100 120 140
Iteration number

0.0

0.2

0.4

0.6

0.8

1.0

1.2
J

1e8
NLSPACE
OC
MMA (fixed)
IPOPT

(a) Objective function J .

0 25 50 75 100 125 150
Iteration number

0.000

0.002

0.004

0.006

0.008

G

NLSPACE
OC
MMA (fixed)
IPOPT

(b) Volume constraint G(x) = V (x)/V0 −
volfrac.

Fig. 6: Convergence history of the different opti-
mizers on the MBB beam example of Section 3.4.2
with tiny volume fraction target.

equality constraint). The Null Space Optimizer
has already proven to be effective for multiple
load case Topology Optimization with the level-
set method: a similar bridge test case has been
considered in Feppon et al (2020a). We find that
the performance of the method is not altered by
adding the bound constraints that are peculiar to
density-based Topology Optimization.

The physical setting and the formulation of the
optimization problem are outlined in Section 4.1.
Section 4.2 describes the Python implementation
of the multiple load case with the Null Space
Optimizer, that is obtained after only a few mod-
ifications of the MBB beam test case of Section 3.
A decorator @minmax optimizable is provided by
the Python package to conveniently implement the

0 5 10 15 20 25 30
Iteration number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

J

1e8
NLSPACE
OC
MMA (fixed)
IPOPT

(a) Objective function J .

0 5 10 15 20 25 30
Iteration number

0.000

0.002

0.004

0.006

0.008

G

NLSPACE
OC
MMA (fixed)
IPOPT

(b) Volume constraint G(x) = V (x)/V0 −
volfrac.

Fig. 7: Convergence history of the different opti-
mizers on the MBB beam example of Section 3.4.2
with tiny volume fraction target (close-up on the
first 30 iterations).

robust min/max formulation of the optimization
problem. Finally, numerical results comparing the
Null Space Optimizer, MMA and IPOPT are given
in Section 4.3.

4.1 Setting of the bridge Topology
Optimization problem with
multiple loads

The bridge test case that we consider is identical
to that of the MBB problem illustrated on Fig. 1,
up to the following changes:

• the design domain features now nelx× nely

elements with nelx=180 and nely=90;
• the bottom right corner is now fixed both in
the horizontal vertical direction;

16

(a) Optimality Criteria (b) Null Space

(c) MMA (with fix) (d) IPOPT

Fig. 8: Intermediate designs obtained with the
different optimizers at iterations 0, 10, 15, 20, 40
and 80 for the MBB beam example of Section 3.4.2
with tiny volume fraction target.

g1 g2 g3 g4 g5 g6 g7 g8

Fig. 9: Setting of the bridge design problem of
Section 4.

• that eight different unit loads (gi)1≤i≤8 are
independently applied on the top boundary.

Here, the optimized domain actually represents
half of the final structure, assuming symmetry
with respect to the y-axis; the whole structure
is thus subject to 8 loads consisting of two ver-
tical forces distributed symmetrically. Each load
spreads continuously over one eighth of the top
boundary with a magnitude set to −1/nelx. The
setting of the multiple load case is illustrated on
Fig. 9.

The goal is to minimize the maximum of the
compliances of the structure subject to the 8 pos-
sible loads and a prescribed volume fraction of
material. This robust design formulation corre-
sponds mathematically to solving the min/max
optimization problem

min
x=(xe)1≤e≤n

max
1≤i≤8

Ji(x̃) := UT
i K(x)Ui

s.t.


V (x̃)/V0 = volfrac,

K(x̃)Ui = Fi, for all 1 ≤ i ≤ 8,

0 ≤ xe ≤ 1 for all 1 ≤ e ≤ n,

(20)

where x̃ is the filtered density (18), Fi is a col-
umn vector corresponding to the finite element
representation of the i-th load gi, and Ui is the
finite element representation of the associated
displacement vector.

In order to treat (20) without the need for dif-
ferentiating the maximum function, we solve the
classical equivalent formulation that introduces a

17

slack variable m ∈ R:

min
x=(xe)1≤e≤n,

m∈R

m

s.t.


Ji(x̃)−m ≤ 0, for all 1 ≤ i ≤ 8,

V (x̃)/V0 = volfrac,

K(x̃)Ui = Fi, for all 1 ≤ i ≤ 8,

0 ≤ xe ≤ 1 for all 1 ≤ e ≤ n.

(21)

4.2 Python implementation with
the Null Space Optimizer

Thanks to a few automations provided by the Null
Space optimizer Python package, the implemen-
tation of the problem (21) requires only minor
updates of the code of the MBB beam test case of
Appendix A.

First, the variable nely can now be assigned
by default to 90 by updating line 50:

nely = kwargs.get(’nely’, 90)

Then, the vector fixed containing the finite
element degrees of freedom corresponding to
zero Dirichlet boundary conditions needs to be
updated to match the situation of Fig. 9. This is
done by updating line 77 as follows:

fixed = np.union1d(dofs[0,:,0],

dofs[-1,-1,:])

Second, we assemble the matrix f=[
F1 . . . F8

]
whose columns contain the finite ele-

ment representation of the 8 different loads. This
can be achieved by substituting lines 108–109 with
the following code which determines the degrees
of freedom at the top boundary corresponding to
each load gi and assigns them the force −1/nelx:

nforces = 8

n = np.ceil(nelx/nforces)

positions = np.array (\

[k*n for k in range(nforces)]\

+[nelx], dtype=int)

f = np.zeros((ndof ,nforces))

for i in range(nforces):

start = positions[i]

end = positions[i+1]

f[dofs[start:end ,0,1],i] \

= -1.0/ nelx

Since the function solve state of lines 111–142
is designed to allow for such matrix argument f,

the (unfiltered) method J(self, x) at line 161
returns without any further change the vector

(J1(x), J2(x), . . . , J8(x)),

and the (unfiltered) method dJ(self, x) at line
165 returns the 8× n matrix

dJ1(x)
dJ2(x)

...
dJ8(x)

 , (22)

where dJi(x) is the sensitivity of the i-th compli-
ance.

Third, the multi-objective optimization prob-
lem needs to be converted into the min/max for-
mulation (21). This can be conveniently achieved
using the decorator @minmax optimizable pro-
vided by the package, which needs to be imported
at the beginning of the code as follows:

from nullspace_optimizer import

minmax_optimizable

Then, the conversion of the multi-objective prob-
lem to the min/max formulation is implemented
with a single line of code by inserting the decora-
tor before the definition of the class TO problem

just before line 155:

@minmax_optimizable

@bound_constraints_optimizable(l=0,

u=1)

@filtered_optimizable(filter ,

diff_filter)

class TO_problem(

EuclideanOptimizable):

...

identical to lines 152 -185

The decorator @minmax optimizable provided
by the Null Space Optimizer Python allows
thus the user to implement the robust formu-
lation (20) in a multi-objective fashion with
the multivalued objective function J(self,x).
This paradigm could be easily extended to fur-
ther multi-objective formulations, for instance it
would not be difficult to implement a decorator
@weighted optimizable converting TO problem

into a class corresponding to the minimization of
a weighted average of the objective functions.

18

In the present case, the decorator
@minmax optimizable returns a copy of the class
TO problem with the following changes:

• the method x0(self) returns
(x0,maxi(Ji(x

0))) where x0 is the output of
the original method x0 of TO problem;

• the method J(self,x) returns m ≡ x[1]

since the optimization variable is now a tuple
x ≡ (x,m);

• a method H(self,x) is added to return the
inequality constraints (Ji(x)−m)1≤i≤8;

• methods dJ(self,x) and dH(self,x) are
added for automatically returning sensitivity
Jacobian matrices updated with respect to
the variable m. dJ(self,x) simply returns
the n+1 dimensional row vector

[
0 . . . 0 1

]
.

The method dH(self,x) returns the 8×(n+
1) matrix 

dJ1(x) −1
dJ2(x) −1

...
...

dJ7(x) −1

 . (23)

• finally, a method retract(self,x,dx) is
added, which implements the projection rule

m← max
1≤i≤8

Ji(x
n+1).

This projection is executed by the Null Space
Optimizer after each update of the design
variable. Although not fully necessary, this
ensures a more conservative enforcement of
the inequality constraints Ji(x) ≤ m than the
gradual correction of the range step ξC .

4.3 Numerical results and
comparisons with MMA and
IPOPT

We run the Null Space Optimizer on the bridge
test case with the time step dt=0.1 and the setting
itnormalisation=50. We also solve the design
test case with the standard implementation of
MMA (with move=0.1) and IPOPT (with default
parameters). The final values of the compliance
for all the load cases and of the volume constraint
are reported in Table 3. Convergence histories of
the objective and volume constraint are shown on
Fig. 10. Intermediate designs obtained during the
iterations of the three algorithms are displayed on

0 20 40 60 80 100 120 140
Iteration number

1

2

3

4

5

6

7

J

NLSPACE
MMA
IPOPT

(a) Objective function J .

0 25 50 75 100 125 150
Iteration number

−0.0125

−0.0100

−0.0075

−0.0050

−0.0025

0.0000

0.0025

G

NLSPACE
MMA
IPOPT

(b) Volume constraint G(x) =
V (x)/(V0volfrac)− 1.

Fig. 10: Convergence history of the various opti-
mizers for the multiple load bridge test case of
Section 4.

Fig. 11; the whole bridge is represented by sym-
metrizing the numerically computed design for a
better visualization.

On this example, the three optimizers tested
converge to three different designs with similar
performances. Noticeably, MMA takes a signifi-
cantly distinct optimization path leading to a very
different geometry while IPOPT and NLSPACE
find designs that are similar up to some small dif-
ferences at the middle of the structure. Here, the
optimum found by MMA is slightly better than
the one found by the Null Space Optimizer, which
is itself slightly better than the one computed
by IPOPT. It seems that there is a bifurcation
between two possible local minimizers and that for
some unclear reason, MMA selects the path lead-
ing to a better optimum. We observed that MMA

19

NLSPACE MMA IPOPT
J1 9.77864 · 10−1 9.65891 · 10−1 1.00824 · 100
J2 8.30432 · 10−1 8.95300 · 10−1 8.61833 · 10−1

J3 9.72427 · 10−1 9.65886 · 10−1 1.00589 · 100
J4 9.71707 · 10−1 9.65887 · 10−1 1.00830 · 100
J5 9.70662 · 10−1 9.65884 · 10−1 1.00822 · 100
J6 9.71344 · 10−1 9.65884 · 10−1 1.00821 · 100
J7 9.71813 · 10−1 9.65887 · 10−1 1.00823 · 100
J8 9.71894 · 10−1 9.65887 · 10−1 1.00825 · 100

max
1≤i≤8

Ji 9.77864 · 10−1 9.65891 · 10−1 1.00830 · 100

G = V (x)/V0 − volfrac −3.10 · 10−6 −1.60 · 10−6 −9.80 · 10−7

Table 3: Final objective and constraint values obtained for the multiple load case of Section 4 with the
Null Space Optimizer, MMA and IPOPT.

(a) NLSPACE (b) MMA (c) IPOPT

Fig. 11: Intermediate designs obtained by the different optimizers at iterations 0, 10, 40, 80, and 150 for
the bridge test case of Section 4.

slightly violates the constraints Ji(x) −m during
the first iterations, which might help in finding
afterwards a better optimization path.

5 Heat sink Topology
Optimization on
unstructured meshes

This section presents an additional tutorial for
implementing Topology Optimization of 2D heat
sinks. This classical test case was initially consid-
ered by Bejan (1997), and then solved with density
based Topology Optimization in Gao et al (2008);

20

Zhang and Liu (2008); Marck and Privat (2014);
Yan et al (2018).

The test case substantially deviates from the
setting of the 88 lines Matlab TO paper of
Andreassen et al (2011) considered in the previ-
ous parts, because we consider a different physics,
unstructured mesh discretization and the use of
continuous sensitivities rather than discrete ones.

The physical setting of the heat sink design
problem is described in Section 5.1. A step by
step description of the implementation of this test
case within the paradigm of the Null Space Opti-
mizer Python package is outlined in Section 5.2.
We describe how to implement the physical
state solver with FreeFEM (Hecht (2012)) and a
Laplacian smoothing density filter is implemented
to avoid the checkerboard effect on triangular
meshes. The interfacing of the optimizer with the
Finite Element software FreeFEM is especially
advantageous as it could be used to deal with
more challenging physics or for implementing den-
sity based TO on computational domains with
arbitrary geometries. Finally, Section 5.3 presents
numerical results of the proposed implementation
including a comparison with the OC, MMA and
IPOPT optimizers.

The content of this section partly follows
the work of Krasniqi (2023) where the same
test case was solved using a simpler extension
of the Null Space algorithm for dealing with
bound constraints. (namely, which did not con-
sider an arbitrary inner product A as described in
Appendix C).

5.1 Setting of the heat Topology
Optimization problem

We consider a square domain D = (0, 1) × (0, 1)
constituted of a conductive material with temper-
ature field T subjected to a uniform heat source
Q. A prescribed temperature T = 0 is applied on
a part ΓD of the left boundary. The normal heat
flux ∂T/∂n vanishes on the remaining boundary
ΓN := ∂D\ΓD, which is adiabatic. The length
of ΓD is |ΓD| = 0.2. The computational domain
D and its boundary conditions are illustrated on
Fig. 12.

The optimization problem at hand is to find
a distribution of two materials with constant con-
ductivities κf ≫ κs that minimizes the average

ΓD

ΓN

D

Fig. 12: Geometry for the heat sink test case of
Section 5.

temperature on D, with a prescribed maximum
volume fraction volfrac for the most conductive
material κf . We use an “optimize-then-discretize”
density based Topology Optimization approach,
whereby the design variable is a density function
ρ : D → (0, 1) such that ρ(x) corresponds to the
local volume fraction of material of conductivity
κf in an infinitesimal cell centered around x. The
conductivity κ(ρ) inside the whole domain D is
determined by the SIMP interpolation law with
penalization exponent p = 3:

κ(ρ) = ρp(κf − κs) + κs. (24)

Of course, the purpose of the exponent p is to
penalize intermediate densities so that numeri-
cally optimized designs ideally satisfy ρ(x) = 0 or
ρ(x) = 1 in the whole domain.

The mathematical formulation of the heat sink
design problem reads

min
ρ

J(ρ) =

∫
D

T dx

s.t.

V (ρ)/V0 :=
1

|D|

∫
D

ρdx ≤ volfrac

0 ≤ ρ(x) ≤ 1, for all x ∈ D;

(25)

21

where T ≡ T (ρ) is the solution to the heat
equation 

−div(κ(ρ)∇T) = Q in D,

T = 0 on ΓD,

∂T

∂n
= 0 on ΓN .

(26)

Note that in this test case, we treat the volume
constraint as an inequality constraint.

In the following numerical applications, the
numerical values of the physical parameters are
set to

κf = 401, κs = 1, Q = 104, volfrac = 0.1.

Equation (26) is solved with the finite element
method by assembling the weak formulation

find T ∈ V such that ∀S ∈ V,∫
D

κ(ρ)∇T · ∇S dx =

∫
D

QS dx, (27)

where V = {v ∈ H1(D) | v|ΓD
= 0} is the subspace

of H1 functions vanishing on ΓD (Brezis (2011)).

Following the “optimize-then-discretize”
approach, we discretize the Fréchet derivatives of
J(ρ) and V (ρ) rather than computing the deriva-
tives of the discretized finite element functionals.
For this classical self-adjoint problem, the Fréchet
derivatives (Allaire, 2007, Definition 10.1.1) of
the objective function and volume constraint
respectively read:

DJ(ρ) · δρ =

∫
D

DT (ρ) · δρdx

=
1

Q

∫
D

κ(ρ)∇T · ∇(DT (ρ) · δρ) dx

= − 1

Q

∫
D

[κ′(ρ)∇T · ∇T]δρdx, (28)

D[V (ρ)/V0] · δρ =
1

|D|

∫
D

δρdx, (29)

where (28) is obtained by differentiating the vari-
ational equation (27) with respect to ρ.

Finally, in order to avoid checkerboard effects
on the unstructured discretization mesh, we actu-
ally solve the following filtered version of (25):

min
ρ

J(ρ̃) =

∫
D

T (ρ̃) dx

s.t.

{
V (ρ̃)/V0 ≤ volfrac,

0 ≤ ρ(x) ≤ 1, for all x ∈ D,

(30)

where ρ̃ is a regularization of the design variable
ρ obtained by solving the variational problem

Find ρ̃ ∈ H1(D) such that ∀v ∈ H1(D),∫
D

(γ2∇ρ̃ · ∇v + ρ̃v) dx =

∫
D

ρv dx, (31)

with γ a smoothing parameter set to the minimum
edge length. The variational problem (31) is the
weak formulation of the equation

−γ2∆ρ̃+ ρ̃ = ρ

with Neumann boundary conditions on ∂D. For
this reason, the mapping ρ 7→ ρ̃ is sometimes
called “Helmholtz type filter” despite (31) is not
a wave equation. The density filter (31) is often
preferred over (18) due to its ease of implementa-
tion on unstructured meshes. We refer the reader
to Lazarov and Sigmund (2011) for an extensive
comparison of filters in density based Topology
Optimization.

5.2 Python implementation with
the Null Space Optimizer and
FreeFEM

The complete implementation of the heat
Topology Optimization test case is provided
in Appendix B. The code is divided into
a main Python file (Appendix B.1) and
two FreeFEM scripts filter matrices.edp and
solve state.edp (respectively Appendix B.2 and
Appendix B.3). The first one performs finite ele-
ment operations for the filtering of the design
variable, and the second one solves the state
equations before computing the objective and con-
straint functions and their sensitivities. These
two scripts are written in the FreeFEM language
(Hecht (2012)) for the convenience of the imple-
mentation, and they are interfaced with the main

22

Python script through the library PyFreeFEM5

importing the class FreeFemRunner at line 2 of
the main script. In what follows, we systematically
refer to the line numbering of the main script of
Appendix B.1 unless otherwise specified.

5.2.1 Declaration of the optimization
problem

Similarly to the MBB beam test case, the code is
best understood by looking first at the declaration
of the class Heat TO at lines 61–95. The imple-
mentation carefully follows the mathematical def-
inition of the design optimization problem (25):
the class implements methods x0, J, H returning
respectively the initial design, the values of the
objective function and of the volume inequality
constraint.

Similarly to the implementation of the MBB
test case of Section 3, the method x0 returns a
constant array of length the number of mesh tri-
angles corresponding to the initial design density
ρ(x) = volfrac. In the present implementation,
the design variable is called rho in the Python
script of Appendix B.1; it is a P0 discretization
of the continuous variable ρ, that is constant on
every triangle of the discretization mesh.

The implementation of the optimization class
Heat TO at lines 61–95 requires several ingredients
which are described in the next subsections:

• a computational mesh Th with Th.nt trian-
gles (Section 5.2.2);

• a state solver solve state that returns
a dictionary with the objective and con-
straint values as well as their sensitivities
(Section 5.2.3);

• the declaration of an appropriate filter
function filter as well as its derivative
diff filter on the triangular mesh Th

(Section 5.2.4).

5.2.2 Construction of design domain
mesh

The design domain D is discretized with a trian-
gular finite element mesh Th that is generated at
lines 15-19. The mesh build in FreeFEM with (line
17)

5https://gitlab.com/florian.feppon/pyfreefem

Fig. 13: Finite element mesh for the heat Topol-
ogy Optimization problem of Section 5 with
boundary labels corresponding to ΓD and ΓN .

mesh Th=square($n , $n , flags =1);

where $N is a prescribed number of edges on each
side and flags=1 allows to obtain a symmetric
mesh. The FreeFEM code is executed at line (19)
which returns a Python variable Th of the Mesh

type defined the library PyMedit6 (line 20). The
Mesh type complies with the INRIA mesh format
and could be easily exported to or imported from a
.mesh or .meshb file. The variable Th is then man-
ually processed to change the boundary labels, so
that ΓD is assigned to the label 5 and ΓN to the
label 1 (lines 21–30).

The mesh obtained for N=10 is represented on
Fig. 13. It would be straightforward to run the test
case on any other triangular mesh by updating the
variable Th.

5.2.3 Implementation of the physical
state solver

The Python function solve state is imple-
mented at lines 49–59 of the main script. It
executes the FreeFEM script solve state.edp

of Appendix B.3 through the PyFreeFEM inter-
face (line 54). The instructions importArray,
exportArray in the FreeFEM script allow to
conveniently import and export FreeFEM data
structures from and to Python. The dollar pre-
fixed variables $p, $kappaf, $kappas, $volfrac

6https://gitlab.com/florian.feppon/pymedit

23

https://gitlab.com/florian.feppon/pyfreefem
https://gitlab.com/florian.feppon/pymedit

are input parameters assigned by the main Python
script at lines 54–57.

The method import variables of the library
PyFreeFEM automatically stores the Python
array x and the mesh Th in a temporary directory,
which are then made accessible in the FreeFEM
script solve state.edp of Appendix B.3
through the instructions importMesh("Th")

and importArray("rho") (lines 3 and 9 of this
script). The script solve the heat equation (lines
21–24) and compute the objective function (line
26), the volume constraint (line 29) and their sen-
sitivities (lines 32-33 and 35-36). As these lines
demonstrate, the use of FreeFEM is especially
convenient for implementing (25) and (27) to (29)
with a language very close to the continuous
mathematical formulation.

The objective function, volume constraints and
their sensitivities are then exported towards the
Python script at lines 38–42 with the instructions
exportVar and exportArray. Then, the execution
of the FreeFEM script occurs at line 54 of the main
script of Appendix B.1 with the method execute

which returns a Python dictionary exports gath-
ering the exported data structures: for instance
exports[’J’] and exports[’dJ’] are respec-
tively a floating number and a NumPy array
containing the objective function value and its
sensitivity.

5.2.4 Implementation of a smoothing
density filter

The implementation of the density filter ρ 7→ ρ̃
defined by (31) is automated by the decorator

@filtered_optimizable(filter ,

diff_filter)

at line 63 of the main Python script. Here, the
implementation of the filtering procedure requires
a little caution because ρ is implemented as a P0
function rho ≡ ρP0 while the variational problem
(31) solved with P1 finite elements returns a P1
function ρ̃P1. To address this issue, the proposed
implementation converts this P1 function ρ̃P1 to
a P0 function ρ̃P0 by solving the variational prob-
lem: find a P0 function ρ̃P0 such that for any P0
function vP0,∫

D

ρ̃P0vP0 dx =

∫
D

ρ̃P1vP0 dx. (32)

In a shorthand matrix notation, the numerical
filtering procedure mapping P0 to P0 densities
reads

ρ̃P0 := M−1
P0P0M

T
P1P0A

−1MP1P0 ρP0. (33)

where we have denoted by MP1P0 and MP0P0

the mass matrices discretizing the bilinear form
(u, v) 7→

∫
D
uv dx with v a P0 function and u

respectively a P1 or a P0 function.

The assembly of the finite element matrices A,
MP0P0 and MP1P0 is performed by the FreeFEM
script filter matrices.edp of Appendix B.2.
This script is executed between lines 32–37 of the
main Python script of Appendix B.1. The matrices
are exported to sparse Scipy matrices and a factor-
ization of A and MP0P0 is computed at lines 37-38
in order to compute efficiently the mapping (33).

Finally, the filtering map filter and its
Fréchet derivative diff filter that are required
by the decorator @filtered optimizable are
implemented at lines 41–47 of the main script by
copying the formula (33).

5.2.5 Running the optimizer

The test case is instantiated at line 100 with the
function init(100) which constructs a computa-
tional mesh Th with N=100 edges on each bound-
ary. The optimization parameters are set at lines
100–104, setting a time step dt=0.3, 50 normaliza-
tion iterations and stopping the optimization after
150 iterations. The design optimization problem
is solved with the Null Space Optimizer at line
105 by calling the function nlspace solve. The
execution of the code generates plots of the inter-
mediate densities thanks to the instructions given
in the method accept at lines 87–95, relying on
the plotting features of PyMedit (line 92).

5.3 Numerical results and
comparisons with OC, MMA
and IPOPT

We solve the heat Topology Optimization prob-
lem (30) with the Null Space Optimizer, MMA,
IPOPT and the Optimality Criteria method. The
move parameters of the OC method and MMA are
set to 0.1. IPOPT runs with the default settings.

The numerical values of the optimized designs
found by the different optimizers are reported in

24

Algorithm J H = V (x)/V0 − volfrac

NLSPACE 2.45701 · 102 9.60 · 10−11

OC 3.60279 · 102 −7.90 · 10−6

MMA 2.46293 · 102 −1.90 · 10−5

IPOPT 2.45544 · 102 −1.90 · 10−6

Table 4: Final objective and constraint values
for the heat Topology Optimization test case of
Section 5 obtained for the tested optimization
algorithms.

Table 4. Convergence histories of the objective
function and volume constraint are reported on
Fig. 14. Figure 15 depicts a sequence of interme-
diate designs obtained for each of the optimizers.

For this example, the OC method converges
to a design which performs more poorly (by a
factor of approximately 30%) than its competi-
tors. MMA, NLSPACE and IPOPT converge to
different designs with very similar performance.
Notably, the four optimizers drive the design vari-
able on significantly different optimization paths.

Let us conclude by noticing that none of the
optimizers converge to needle like structures that
are known to be optimal for this problem Yan et al
(2018).

0 25 50 75 100 125 150
Iteration number

1000

2000

3000

4000

5000

J

NLSPACE
OC
MMA
IPOPT

(a) Objective function J .

0 25 50 75 100 125 150
Iteration number

−0.125

−0.100

−0.075

−0.050

−0.025

0.000

0.025

H

NLSPACE
OC
MMA
IPOPT

(b) Volume constraint G(x) =
V (x)/(V0volfrac)− 1.

Fig. 14: Convergence history of the different opti-
mizers tested on the heat Topology Optimization
test case of Section 5.

25

(a) Optimality Crite-
ria

(b) Null Space (c) MMA (d) IPOPT

Fig. 15: Intermediate designs of the heat Topology Optimization test case of Section 5 obtained with
the different optimizers at iterations 0, 10, 15, 20, 40 and 80.

26

Appendix A Source code of the MBB beam example of
Section 3

1 from nullspace_optimizer import EuclideanOptimizable ,\

2 bound_constraints_optimizable , memoize , filtered_optimizable ,\

3 nlspace_solve

4 import numpy as np

5 import cvxopt

6 import cvxopt.cholmod

7 import scipy.sparse as sp

8 import matplotlib.pyplot as plt

9 from matplotlib import colors

10

11 # element stiffness matrix

12 def lk():

13 E = 1

14 nu = 0.3

15 k = np.array ([1/2-nu/6, 1/8+nu/8, -1/4-nu/12, -1/8+3*nu/8,

16 -1/4+nu/12, -1/8-nu/8, nu/6, 1/8 -3*nu/8])

17 KE = E/(1-nu**2)* np.array([

18 [k[0], k[1], k[2], k[3], k[4], k[5], k[6], k[7]],

19 [k[1], k[0], k[7], k[6], k[5], k[4], k[3], k[2]],

20 [k[2], k[7], k[0], k[5], k[6], k[3], k[4], k[1]],

21 [k[3], k[6], k[5], k[0], k[7], k[2], k[1], k[4]],

22 [k[4], k[5], k[6], k[7], k[0], k[1], k[2], k[3]],

23 [k[5], k[4], k[3], k[2], k[1], k[0], k[7], k[6]],

24 [k[6], k[3], k[4], k[1], k[2], k[7], k[0], k[5]],

25 [k[7], k[2], k[1], k[4], k[3], k[6], k[5], k[0]]])

26 return (KE)

27

28 def deleterowcol(A, delrow , delcol):

29 # Delete row and columns of a sparse csc matrix A

30 m = A.shape [0]

31 keep = np.delete(np.arange(0, m), delrow)

32 A = A[keep , :]

33 keep = np.delete(np.arange(0, m), delcol)

34 A = A[:, keep]

35 return A

36

37 # Max and min stiffness

38 Emin = 1e-9

39 Emax = 1.0

40

41 # Assemble FEM matrices and filter

42 def init (** kwargs):

43 # Initialized global variables

44 global nelx , nely , volfrac , rmin , penal

45 global H, Hs, ndof , KE , iK , jK , fixed , free

46 global edofMat , f, dofs

47

27

48 # Default input parameters

49 nelx = kwargs.get(’nelx’, 180)

50 nely = kwargs.get(’nely’, 60)

51 volfrac = kwargs.get(’volfrac ’, 0.4)

52 rmin = kwargs.get(’rmin’, 5.4)

53 penal = kwargs.get(’penal’, 3.0)

54

55 # Degrees of Freedom matrix: edofMat[i,j,:] contains the

56 # DOFs associated to the square element (i,j)

57 ndof = 2*(nelx +1)*(nely +1)

58 dofs = np.arange(ndof). reshape ((nelx+1, nely+1, 2))

59 edofMat = np.zeros((nelx , nely , 8), dtype=int)

60 edofMat[:, :, 0] = dofs[:-1, 1:, 0]

61 edofMat[:, :, 1] = dofs[:-1, 1:, 1]

62 edofMat[:, :, 2] = dofs[1:, 1:, 0]

63 edofMat[:, :, 3] = dofs[1:, 1:, 1]

64 edofMat[:, :, 4] = dofs[1:, :-1, 0]

65 edofMat[:, :, 5] = dofs[1:, :-1, 1]

66 edofMat[:, :, 6] = dofs[:-1, :-1, 0]

67 edofMat[:, :, 7] = dofs[:-1, :-1, 1]

68 edofMat = edofMat.reshape ((nelx*nely , 8))

69

70 # FE: Build the index vectors for the for coo matrix format.

71 KE = lk()

72 # Construct the index pointers for the coo format

73 iK = np.kron(edofMat , np.ones((8, 1))). flatten ()

74 jK = np.kron(edofMat , np.ones((1, 8))). flatten ()

75

76 # BC’s and support

77 fixed = np.union1d(dofs[0, :, 0], dofs[-1, -1, 1])

78 free = np.setdiff1d(dofs.reshape(ndof), fixed)

79

80 # Filter: Build (and assemble) the index+data vectors

81 # for the coo matrix format

82 nfilter = int(nelx*nely *((2*(np.ceil(rmin) -1)+1)**2))

83 iH = np.zeros(nfilter)

84 jH = np.zeros(nfilter)

85 sH = np.zeros(nfilter)

86 cc = 0

87 for i in range(nelx):

88 for j in range(nely):

89 row = i*nely+j

90 kk1 = int(np.maximum(i-(np.ceil(rmin)-1), 0))

91 kk2 = int(np.minimum(i+np.ceil(rmin), nelx))

92 ll1 = int(np.maximum(j-(np.ceil(rmin)-1), 0))

93 ll2 = int(np.minimum(j+np.ceil(rmin), nely))

94 for k in range(kk1 , kk2):

95 for l in range(ll1 , ll2):

96 col = k*nely+l

97 fac = rmin -np.sqrt (((i-k)*(i-k)+(j-l)*(j-l)))

28

98 iH[cc] = row

99 jH[cc] = col

100 sH[cc] = np.maximum (0.0, fac)

101 cc = cc+1

102 # Finalize assembly and convert to csc format

103 H = sp.coo_matrix ((sH , (iH , jH)),

104 shape=(nelx*nely , nelx*nely)). tocsc()

105 Hs = sp.diags (1/np.asarray(H.sum (1)). flatten ())

106

107 # f is the unit load vector at the bottom right corner

108 f = np.zeros((ndof , 1))

109 f[1, 0] = -1

110

111 # Compute compliance and its sensitivity

112 @memoize ()

113 def solve_state(x):

114 dc = np.ones(nely*nelx)

115 ce = np.ones(nely*nelx)

116

117 # Setup and solve FE problem

118 sK = ((KE.flatten ()[np.newaxis]).T*(Emin+x** penal*(Emax -Emin)))\

119 .flatten(order=’F’)

120 K = sp.coo_matrix ((sK , (iK , jK)), shape=(ndof , ndof)). tocsc()

121 # Remove constrained dofs from matrix and convert to coo

122 K = deleterowcol(K, fixed , fixed). tocoo()

123 # Solve system

124 K = cvxopt.spmatrix(K.data , K.row.astype(int), K.col.astype(int))

125 B = cvxopt.matrix(f[free , :])

126 cvxopt.cholmod.linsolve(K, B)

127 u = np.zeros((ndof , f.shape [1]))

128 u[free , :] = np.array(B)[:, :]

129

130 # compliance

131 ce = np.einsum(’ija ,jk ,ika ->ia’, u[edofMat , :], KE , u[edofMat , :])

132 obj = (Emin + (x** penal*(Emax -Emin))). dot(ce)

133

134 # sensitivity of compliance with respect to x

135 dc = np.multiply((-penal*x**(penal -1)*(Emax -Emin))[:, np.newaxis],

136 ce).T

137

138 # If not multi -objective

139 if len(obj)==1:

140 return (obj[0], dc[0,:])

141 # else

142 return (obj , dc)

143

144 # Density filter

145 @memoize ()

146 def filter(x):

147 return Hs @ (H @ x)

29

148

149 # Sensitivity of the filter

150 @memoize ()

151 def diff_filter(x, v):

152 return (H @ (Hs @ v.T)).T

153

154 # Definition of the optimization problem

155 @bound_constraints_optimizable(l=0, u=1)

156 @filtered_optimizable(filter , diff_filter)

157 class TO_problem(EuclideanOptimizable):

158 def x0(self):

159 return volfrac * np.ones(nely*nelx , dtype=float)

160

161 def J(self , x):

162 (obj , dc) = solve_state(x)

163 return obj

164

165 def dJ(self , x):

166 (obj , dc) = solve_state(x)

167 return dc

168

169 def G(self , x):

170 return [np.sum(x)/(nelx*nely)-volfrac]

171

172 def dG(self , x):

173 dv = np.ones(nelx*nely)/(nelx*nely)

174 return dv

175

176 def accept(self , params , results):

177 # Plot the design at every iteration

178 x = results[’x’][-1]

179 if not hasattr(self , ’im’):

180 plt.ion() # Ensure that redrawing is possible

181 self.fig , self.ax = plt.subplots ()

182 self.im = self.ax.imshow(-x.reshape ((nelx , nely)).T,\

183 cmap=’gray’,

184 interpolation=’none’,

185 norm=colors.Normalize(vmin=-1, vmax =0))

186 self.ax.axis(’off’)

187 self.fig.show()

188 else:

189 self.im.set_array(-x.reshape ((nelx , nely)).T)

190 self.fig.canvas.draw()

191 plt.pause (0.01)

192

193 # Optimization parameters

194 optimization_params = {’dt’: 0.3,

195 ’itnormalisation ’: 50,

196 ’save_only_N_iterations ’: 1,

197 ’save_only_Q_constraints ’: 5,

30

198 ’maxit’: 150}

199 # Initialize and solve the TO problem

200 init()

201 case = TO_problem ()

202 results = nlspace_solve(case , optimization_params)

203 input("Press␣any␣key")

Appendix B Source code of the Heat Topology Optimization
example of Section 5

B.1 Main Python script

1 import numpy as np

2 from pyfreefem import FreeFemRunner

3 from pymedit import P0Function

4 from nullspace_optimizer import EuclideanOptimizable , memoize , \

5 nlspace_solve , bound_constraints_optimizable , filtered_optimizable

6 import matplotlib.pyplot as plt

7 import scipy.sparse.linalg as lg

8

9 def init(n=100, vfrac =0.1):

10 global volfrac , Th

11 global filter , diff_filter , solveA , MP1P0 , solveMP0P0

12

13 volfrac = vfrac

14

15 mesh_script = """

16 IMPORT "io.edp"

17 mesh Th = square($n , $n , flags =1);

18 exportMesh(Th);"""

19 Th = FreeFemRunner(mesh_script). execute ({’n’:n})[’Th’]

20

21 # Changing boundary label on left hand side

22 pts1 = Th.vertices[Th.edges [:,0]-1]

23 pts2 = Th.vertices[Th.edges [:,1]-1]

24 eps = 1/(10*n)

25 indices = np.logical_and(abs(pts1 [: ,1] -0.5) <=0.1+eps ,

26 abs(pts2 [: ,1] -0.5) <=0.1+ eps)

27 indices = np.logical_and(indices ,Th.edges [: , -1]==4)

28 Th.edges[indices ,-1]=5

29 Th.edges[Th.edges [:,-1]!=5,-1] = 1

30 Th._AbstractMesh__updateBoundaries ()

31

32 # execute FreeFEM code and retrieves the matrices

33 # in Python

34 runner = FreeFemRunner("filter_matrices.edp")

35 runner.import_variables(Th=Th)

36 exports = runner.execute ()

37 solveA = lg.factorized(exports[’A’])

38 solveMP0P0 = lg.factorized(exports[’MP0P0’])

31

39 MP1P0 = exports[’MP1P0’]

40

41 @memoize ()

42 def filter(rho):

43 return solveMP0P0(MP1P0.T @ solveA(MP1P0 @ rho))

44

45 @memoize ()

46 def diff_filter(rho , v):

47 return (MP1P0.T @ solveA(MP1P0 @ solveMP0P0(v.T))).T

48

49 @memoize ()

50 def solve_state(rho):

51 # Execute FreeFEM script with input density rho

52 runner = FreeFemRunner("solve_state.edp")

53 runner.import_variables(rho = rho , Th=Th)

54 exports = runner.execute ({’p’:3,’Q’:1e4 ,

55 ’kappaf ’:401,

56 ’kappas ’:1,

57 ’volfrac ’:volfrac })

58 # exports: an array with entries J, H, dJ , dH

59 return exports

60

61 # Declaration of the optimization problem

62 @bound_constraints_optimizable(l=0,u=1)

63 @filtered_optimizable(filter , diff_filter)

64 class Heat_TO(EuclideanOptimizable):

65 def __init__(self , plot=None):

66 self.plot = plot

67

68 if self.plot:

69 plt.ion()

70 self.fig = plt.figure ()

71

72 def x0(self):

73 return volfrac * np.ones(Th.nt ,dtype=float)

74

75 def J(self , rho):

76 return solve_state(rho)[’J’]

77

78 def H(self , rho):

79 return [solve_state(rho)[’H’]]

80

81 def dJ(self , rho):

82 return solve_state(rho)[’dJ’]

83

84 def dH(self , rho):

85 return solve_state(rho)[’dH’]

86

87 def accept(self , params , results):

88 # Plotting

32

89 if self.plot:

90 rho = results[’x’][-1]

91 self.fig.clear ()

92 P0Function(Th, rho).plot(fig=self.fig , ax=plt.gca(),\

93 cmap="gray_r", vmin=0, vmax=1,

94 title = ’Iteration␣’+str(results[’it’][-1]))

95 plt.pause (0.1)

96

97 init (100)

98

99 case = Heat_TO(plot=True)

100 params = dict(dt=0.1,

101 itnormalisation =50,

102 maxit =150,

103 save_only_N_iterations =1,

104 save_only_Q_constraints =5)

105 nlspace_solve(case , params)

106 input("Press␣any␣key")

B.2 File filter matrices.edp

1 IMPORT "io.edp"

2 mesh Th = importMesh("Th");

3

4 fespace Fh0(Th ,P0);

5 fespace Fh1(Th ,P1);

6

7 varf mass(u,v)= int2d(Th)(u*v);

8

9 matrix MP1P0 = mass(Fh0 ,Fh1);

10 matrix MP0P0 = mass(Fh0 ,Fh0);

11

12 macro grad(u) [dx(u),dy(u)]//

13

14 real gamma = Th.hmin;

15 varf helmholtz(u,v) = int2d(Th)(gamma ^2* grad(u)’*grad(v)+u*v);

16 matrix A = helmholtz(Fh1 ,Fh1);

17

18 exportMatrix(MP1P0);

19 exportMatrix(MP0P0);

20 exportMatrix(A);

B.3 File solve state.edp

1 IMPORT "io.edp"

2

3 mesh Th = importMesh("Th");

4

5 fespace Fh0(Th ,P0);

6 fespace Fh1(Th ,P1);

33

7

8 Fh0 rho;

9 rho[] = importArray("rho");

10

11 real p = $p;
12 real kappaf = $kappaf;
13 real kappas = $kappas;
14 Fh0 kappa = rho^p*(kappaf -kappas)+ kappas;

15 Fh0 dkappa = p*rho^(p -1)*(kappaf -kappas);

16 Fh1 T, S;

17 func Q = $Q;
18

19 macro grad(u) [dx(u),dy(u)] //

20

21 solve heat(T,S)=

22 int2d(Th)(kappa*grad(T)’*grad(S))

23 -int2d(Th)(Q*S)

24 +on(5,T=0);

25

26 real J = int2d(Th)(T);

27 real vol0 = int2d(Th)(1.);

28 real volfrac = $volfrac;
29 real H = int2d(Th)(rho/(vol0*volfrac))-1;

30

31 Fh0 drho , dummy;

32 varf DJ(dummy , drho) = -int2d(Th)(dkappa*grad(T)’*grad(T)*drho *1.0/Q);

33 real[int] dJ = DJ(0,Fh0);

34

35 varf DH(dummy , drho) = int2d(Th)(drho/(vol0*volfrac));

36 real[int] dH = DH(0,Fh0);

37

38 exportVar(J);

39 exportVar(H);

40 exportArray(T[]);

41 exportArray(dJ);

42 exportArray(dH);

34

Appendix C Treatment of
constraints with
sparse Jacobian
matrix

In this appendix, we describe the modifica-
tions of the Null Space Optimizer that enable
to solve optimization programs with constraints
with sparse Jacobian matrix, deviating from the
original description of this algorithm in Feppon
et al (2020a). The theoretical changes for the
computation of the null space and range space
directions are detailed in Appendix C.1. Then,
in Appendix C.2, we challenge the Null Space
Optimizer on a benchmark numerical example fea-
turing many bound constraints and we provide
qualitative comparisons with the standard IPOPT
and MMA optimizers.

C.1 Sparse computations of the
null space and range space
directions

In this part only, we denote by A a given n×n sym-
metric positive definite matrix and we assume that
the norm considered in (8) and (9) is the Euclidean
norm || · || ≡ || · ||A associated to the inner product
⟨x, y⟩A := xTAy, namely ||x||A := |xTAx| 12 . For
many practical situations including density based
Topology Optimization, the reader may assume
that A is the identity matrix. However, we need to
consider an arbitrary inner product A to account
for more general contexts such as the Hilbertian
setting of level-set based Topology Optimization
where such matrix is used to regularize shape
derivatives (de Gournay (2006)).

Using an arbitrary inner product has for con-
sequence that the transpose operator ·T must
be preceded by A−1 in the definitions (7),
(8) and (15) of respectively ξJ(x), Λ∗(x) :=
(λ∗(x),µ∗(x)) and ξC(x). The null space direction
ξJ(x) now reads

ξJ(x) = A−1DJ(x)T +A−1DCĨ(x)(x)
TΛ∗(x),

(C1)

where the multiplier Λ∗(x) := (λ∗(x),µ∗(x)) is
the minimizer of the problem

min
Λ=(λ,µ)∈Rp×Rq̃(x)

+

||A−1DJ(x)T+A−1DCĨ(x)(x)
TΛ||A.

(C2)
The range space direction is updated as follows:

ξC(x) = A−1DCT
Ĩ(x)

(DCĨ(x)A
−1DCT

Ĩ(x)
)−1CĨ(x).

(C3)
The reader may verify that these formulas coincide
with (7), (8) and (10) when substituting A with
the n× n identity matrix.

We now show that it is possible to rewrite
(C1) to (C3) only in terms of DCĨ(x) and

A, avoiding altogether the need for assem-
bling DCĨ(x)A

−1DCĨ(x) or computing its explicit
inverse.
Proposition 1. (i) The null space direction

ξJ(x) defined in (C1) is equivalently given by

ξJ(x) = A−1DJ(x)T +X∗(x), (C4)

where X∗(x) is obtained from the solution
(X∗(x),Λ∗(x)) to the quadratic minimization
program

min
(X,Λ)∈Rn×Rp+q̃(x)

1

2
XTAX +DJ(x)X

s.t.

{
AX −DCT

Ĩ(x)
Λ = 0,

Λ = (λ,µ) ∈ Rp × Rq̃(x) with µ ≥ 0.
(C5)

(ii) The minimizer Λ∗(x) of (C5) is also
the optimal Lagrange multiplier Λ∗(x) =
(λ∗(x),µ∗(x)) as defined by (C2).

(iii) The range space direction ξC(x) defined in
(C3) can be obtained from the solution to the
symmetric indefinite linear system[

A DCT
Ĩ(x)

DCĨ(x) 0

][
ξC(x)
Λ

]
=

[
0

CĨ(x)

]
. (C6)

35

Proof. The square of the right-hand side of (C2)
reads

||A−1DJ(x)T +A−1DCT
Ĩ(x)

Λ||2A
= DJ(x)A−1DJ(x)T + 2DJ(x)A−1DCT

Ĩ(x)
Λ

+ ΛTDCĨ(x)A
−1DCT

Ĩ(x)
Λ

= XTAX +DJ(x)TX,

where we have introduced X := A−1DCT
Ĩ(x)

Λ.

Since X is equivalently characterized by AX −
DCT

Ĩ(x)
Λ = 0, this proves the point (ii) and

the point (i) follows from (C1). The point (iii)
is obtained by observing that DCĨ(x)ξC(x) =

CĨ(x) and AξC(x) + DCT
Ĩ(x)

Λ = 0 where Λ :=

−(DCĨ(x)A
−1DCT

Ĩ(x)
)−1CĨ(x).

When both the matrices A and DCĨ(x) are

sparse, Proposition 1 provides a definition of ξJ(x)
and ξC(x) that becomes accessible to iterative
solvers. A number of strategies can be devised
for efficiently solving the symmetric indefinite sys-
tem (C6), also called KKT system, see e.g. Freund
and Nachtigal (1994); Ashcraft et al (1998); Toh
et al (2004); Bai et al (2009); Nocedal and Wright
(2006). The present implementation of the Null
Space Optimizer solves (C6) with Scipy lsqr

method with machine precision. The quadratic
minimization problem (C5) with the nonnegativ-
ity constraint µ ≥ 0 is solved with OSQP (Stellato
et al (2020)) or CVXOPT (Vandenberghe (2010)),
which both internally rely on sparse linear solvers.
Finally, let us note that the proposed imple-
mentation also addresses the issue of degenerate
constraints, which are either dealt with the inter-
nal iterative solvers of OSQP or CVXOPT, or with
Scipy least-squares lsqr solver. All the examples
of Sections 3 to 5 considered in this paper relied
on the OSQP solver as it seems to provide in gen-
eral better runtime performances than CVXOPT
(see Appendix C.2).

Remark 5. The quadratic program (C5) is
rather large if the matrix DCĨ(x) features a large

number of constraints, resulting in a potentially
higher cost per optimization iteration than solving
the MMA subproblem (Svanberg (1987)). How-
ever, for the test cases considered in this article,

we found the OSQP solver quite efficient at solv-
ing the quadratic problem (C5) in reasonable time,
which is therefore not a bottleneck of the method.

C.2 A benchmark example:
generating a checkerboard

In order to illustrate the numerical treatment
of bound constraints and the influence of the
quadratic programming solver, we consider the
benchmark minimization problem of generating a
checkerboard on a n× n grid:

min
(xij)1≤i,j≤n

J((xij)1≤i,j≤n)

s.t. 0 ≤ xij ≤ 1 for all 1 ≤ i ≤ n. (C7)

where the function J((xij)1≤i,j≤n) measures the
opposite of the discrepancies of the variables
(xij)1≤i,j≤n between adjacent cells on the n × n
grid:

J((xij)1≤i,j≤N) := −1

2

[
n−1∑
i=1

n∑
j=1

(xi+1,j − xi,j)
2

+

n∑
i=1

n−1∑
j=1

(xi,j+1 − xi,j)
2

]
(C8)

The global minimum is clearly attained for a
checkerboard, namely for a variable (xij)1≤i,j≤n

satisfying |xi+1,j − xij | = |xi,j+1 − xij | = 1 for
all 1 ≤ i, j ≤ n. However, due to the quadratic
exponents, the problem (C7) admits many local
minima. The minimization is thus very sensitive
to numerical noise and to the chosen optimization
path, which makes it an interesting benchmark for
comparing several optimizers.

We run the Null Space Optimizer with the
time step dt = 0.3, using either OSQP or CVX-
OPT as the quadratic programming solver for (3).
The number of normalization iterations for the
null space step is set to itnormalisation=10.
The tolerance parameters of both the OSQP and
CVXOPT solver are set to 10−15. The number of
scaling iterations as well as the maximum number
of iterations allowed for the OSQP solver is set to
400. The maximum number of iterations for the
CVXOPT solver is set to 30 (these are observed
to be computationally more costly).

36

The initialization is defined to be the density

x0
ij := ((i−1)/(n−1)−0.5)((j−1)/(n−1)−0.5),

1 ≤ i, j ≤ n, (C9)

which is symmetric with respect to the grid medial
axes. We also solve (C7) with the optimizers
IPOPT and MMA for comparison (we do not
use the OC method which is not relevant in this
context devoid of equality constraints). The move

parameter of MMA is set to 0.3 and IPOPT is run
with the default parameters.

The numerical values of the computed optima
are listed in Table C1 and the convergence his-
tories are shown on Fig. C1. Intermediate design
variables are shown on Fig. C2 for the various
optimization strategies. On this test case, IPOPT
finds the best optimum. The version of MMA
provided by Deetman (2020) converges to a very
poor solution, probably due to the fact that the
default moving asymptotes rules is not suited on
this particular example that only features bound
constraints.

The CVXOPT variant of the Null Space Opti-
mizer converges to a rather suboptimal local
minimum, although it provides a slightly faster
decay than its OSQP variant at the first iterations:
CVXOPT seems unable to update the design vari-
ables in the middle black region (Fig. C2b). The
OSQP variant should in theory find the same
numerical result than the with the CVXOPT one
since both solvers solve the same dual problem (3).
The difference between the two can be attributed
to the fact that the OSQP solver seems less con-
servative on the nonnegativity constraint µ ≥ 0
of (C5) than CVXOPT, accepting negligible viola-
tions. This seems to be advantageous to escape the
local minimizer and to help finding a design that
has a performance rather comparable to the one
found by IPOPT in a similar number of iterations.

The significant discrepancy between the
numerically computed designs illustrates the
strong dependency on the optimization path cho-
sen by the optimizer and on numerical round off
errors. This also suggests some limitations to the
standard implementation of the MMA algorithm,
which has difficulty to converge on a case devoid
of constraints other than the bound constraints on

the design variable. It would be tempting to con-
clude that IPOPT performs better than the Null
Space Optimizer, and that the Method of Mov-
ing Asymptotes is inappropriate, however, we have
seen in the tutorial sections that this is of course
very situation specific. Once again, we empha-
size that the performance of an algorithm to find
an optimum as close as possible to the global
optimum is situation dependent and cannot con-
stitute a single selection criterion between several
optimizers for their use on more general situations.

Appendix D Statements and
declarations

• The author has no relevant financial or non-
financial interests to disclose.

• The author has no competing interests to
declare that are relevant to the content of this
article.

• The author certify that he has no affilia-
tions with or involvement in any organization
or entity with any financial interest or non-
financial interest in the subject matter or
materials discussed in this manuscript.

• The author has no financial or proprietary
interests in any material discussed in this
article.

Appendix E Reproducibility
of numerical
results

The integral source code corresponding to the
examples presented in Sections 3 to 5 are included
in the examples/topopt examples directory of
the GitLab repository of the Null Space Opti-
mizer. Since the source code published on this
repository is subject to future updates, a copy
of the version used for the present manuscript
is available as a supplementary material to this
article.

Appendix F Acknowledgements

I sincerely thank Niels Aage for interesting discus-
sions about the MMA algorithm, for suggesting
the test case of Section 3.4.2 and sharing the
solution of using the fixed initialization for the

37

Algorithm J Iteration number at convergence
NLSPACE (OSQP) −6.27600 · 103 65

NLSPACE (CVXOPT) −3.70000 · 103 65
MMA −1.07864 · 100 30
IPOPT −6.88800 · 103 58

Table C1: Final objective values for the checkerboard example of Appendix C.2. Comparison between
the Null Space Optimizer using either CVXOPT or OSQP for solving the quadratic subproblem (3),
MMA and IPOPT.

0 10 20 30 40 50 60
Iteration umber

−7000

−6000

−5000

−4000

−3000

−2000

−1000

0

J

NLSPACE (OSQP)
NLSPACE (CVXOPT)
MMA
IPOPT

Fig. C1: Convergence history for the checkerboard example of Appendix C.2 for the three optimizers
tested.

asymptotes. This solution came from discussions
between N. Aage, Michael Stingl and FabianWein.

I also thank very much R. Krasniqi for his Mas-
ter thesis work (Krasniqi (2023)) upon which part
this work is built.

References

Aage N, Johansen VE (2016) A 200
line topology optimization code. https:
//www.topopt.mek.dtu.dk/-/media/subsites/
topopt/apps/dokumenter-og-filer-til-apps/
topopt cholmod.py, visited on May 15th 2023

Aage N, Andreassen E, Lazarov BS, et al (2017)
Giga-voxel computational morphogenesis for
structural design. Nature 550(7674):84–86

Absil PA, Malick J (2012) Projection-like Retrac-
tions on Matrix Manifolds. SIAM Journal on
Optimization 22(1):135–158

Allaire G (2007) Numerical Analysis and Opti-
mization. An Introduction to Mathematical
Modelling and Numerical Simulation. Transla-
tion from the French by Alan Craig. Numer.
Math. Sci. Comput., Oxford: Oxford University
Press

Allaire G, Jouve F, Michailidis G (2013) Cast-
ing constraints in structural optimization via a
level-set method. In: 10th World Congress on
Structural and Multidisciplinary Optimization

Allaire G, Dapogny C, Jouve F (2021) Chap-
ter 1 - Shape and topology optimization. In:
Bonito A, Nochetto RH (eds) Handbook of
Numerical Analysis, Geometric Partial Differ-
ential Equations - Part II, vol 22. Elsevier, p
1–132

Alonso DH, Silva ECN (2021) Topology opti-
mization for blood flow considering a hemolysis

38

https://www.topopt.mek.dtu.dk/-/media/subsites/topopt/apps/dokumenter-og-filer-til-apps/topopt_cholmod.py
https://www.topopt.mek.dtu.dk/-/media/subsites/topopt/apps/dokumenter-og-filer-til-apps/topopt_cholmod.py
https://www.topopt.mek.dtu.dk/-/media/subsites/topopt/apps/dokumenter-og-filer-til-apps/topopt_cholmod.py
https://www.topopt.mek.dtu.dk/-/media/subsites/topopt/apps/dokumenter-og-filer-til-apps/topopt_cholmod.py

(a) Null Space (OSQP), iterations 0, 22, 45 and 68.

(b) Null Space (CVXOPT), iterations 0, 24, 49 and 74.

(c) MMA, iterations 0, 23, 46 and 70.

(d) IPOPT, iterations 0, 20, 41 and 62.

Fig. C2: Intermediate optimized designs for the various optimizers tested in the checkerboard example
of Appendix C.2.

39

model. Structural and multidisciplinary opti-
mization 63(5):2101–2123

Alonso DH, de Sá LFN, Saenz JSR, et al (2018)
Topology optimization applied to the design of
2D swirl flow devices. Structural and Multidis-
ciplinary Optimization 58(6):2341–2364

Andreassen E, Clausen A, Schevenels M, et al
(2011) Efficient topology optimization in MAT-
LAB using 88 lines of code. Structural and
Multidisciplinary Optimization 43(1):1–16

Ashcraft C, Grimes RG, Lewis JG (1998)
Accurate symmetric indefinite linear equation
solvers. SIAM Journal on Matrix Analysis and
Applications 20(2):513–561

Bai ZZ, Ng MK, Wang ZQ (2009) Constraint
preconditioners for symmetric indefinite matri-
ces. SIAM Journal on Matrix Analysis and
Applications 31(2):410–433

Bejan A (1997) Constructal-theory network of
conducting paths for cooling a heat generating
volume. International Journal of Heat and Mass
Transfer 40(4):799–816

Bendsoe MP, Sigmund O (2003) Topology Opti-
mization: Theory, Methods, and Applications.
Springer Science & Business Media

Brezis H (2011) Functional Analysis, Sobolev
Spaces and Partial Differential Equations.
Springer, New York, NY

Curtis FE, Huber J, Schenk O, et al (2012) A note
on the implementation of an interior-point algo-
rithm for nonlinear optimization with inexact
step computations. Mathematical Programming
136(1):209–227

de Gournay F (2006) Velocity Extension for the
Level-set Method and Multiple Eigenvalues in
Shape Optimization. SIAM Journal on Con-
trol and Optimization 45(1):343–367. https://
doi.org/10.1137/050624108

Deetman A (2020) GCMMA-MMA-
Python. https://github.com/arjendeetman/
GCMMA-MMA-Python

Deng S, Suresh K (2016) Multi-constrained 3D
topology optimization via augmented topologi-
cal level-set. Computers & Structures 170:1–12

Dunning PD, Kim HA (2015) Introducing the
sequential linear programming level-set method
for topology optimization. Structural and Mul-
tidisciplinary Optimization 51(3):631–643

Dunning PD, Stanford B, Kim HA (2015)
Level-set topology optimization with aeroelastic
constraints. In: 56th AIAA/ASCE/AHS/ASC
Structures, Structural Dynamics, and Materials
Conference, p 1128

Emmendoerfer Jr H, Fancello EA, Silva ECN
(2020) Stress-constrained level set topology
optimization for compliant mechanisms. Com-
puter Methods in Applied Mechanics and Engi-
neering 362:112777

Fanni M, Shabara N, Alkalla M (2013) A Compar-
ison Between Different Topology Optimization
Methods. Engineering Journal 38

Feppon F (2019) Shape and topology optimiza-
tion of multiphysics systems. These de doctorat,
Université Paris-Saclay (ComUE)

Feppon F, Allaire G, Dapogny C (2020a) Null
space gradient flows for constrained optimiza-
tion with applications to shape optimization.
ESAIM: Control, Optimisation and Calculus of
Variations p 90

Feppon F, Allaire G, Dapogny C, et al
(2020b) Topology optimization of thermal
fluid–structure systems using body-fitted
meshes and parallel computing. Journal of
Computational Physics 417:109574

Feppon F, Allaire G, Dapogny C, et al (2021)
Body-fitted topology optimization of 2D and
3D fluid-to-fluid heat exchangers. Computer
Methods in Applied Mechanics and Engineering
376:113638

Freund RW, Nachtigal NM (1994) A new Krylov-
subspace method for symmetric indefinite linear
systems. Tech. Rep. ORNL/TM-12754, Oak
Ridge National Lab. (ORNL), Oak Ridge, TN
(United States)

40

https://doi.org/10.1137/050624108
https://doi.org/10.1137/050624108
https://github.com/arjendeetman/GCMMA-MMA-Python
https://github.com/arjendeetman/GCMMA-MMA-Python

Gao T, Zhang WH, Zhu JH, et al (2008) Topology
optimization of heat conduction problem involv-
ing design-dependent heat load effect. Finite
Elements in Analysis and Design 44(14):805–
813

Gersborg-Hansen A, Sigmund O, Haber RB
(2005) Topology optimization of channel flow
problems. Structural and multidisciplinary opti-
mization 30:181–192

Hecht F (2012) New development in FreeFem++.
Journal of numerical mathematics 20(3-4):251–
266

Jensen JS, Sigmund O (2011) Topology opti-
mization for nano-photonics. Laser & Photonics
Reviews 5(2):308–321

Kim NH, Dong T, Weinberg D, et al (2021) Gen-
eralized optimality criteria method for topology
optimization. Applied Sciences 11(7):3175

Krasniqi R (2023) Density-based topology opti-
mization with the Null Space optimiser. Mas-
ter’s thesis, KU Leuven

Lazarov BS, Sigmund O (2011) Filters in topology
optimization based on Helmholtz-type differen-
tial equations. International Journal for Numer-
ical Methods in Engineering 86(6):765–781

Liang J, Zhang X, Zhu B (2019) Nonlinear topol-
ogy optimization of parallel-grasping microgrip-
per. Precision Engineering 60:152–159

Liang K, Zhu D, Li F (2023) Macro–microscale
topological design for compliant mechanisms
with special mechanical properties. Computer
Methods in Applied Mechanics and Engineering
408:115970

Liu P, Luo Y, Kang Z (2016) Multi-material topol-
ogy optimization considering interface behavior
via XFEM and level set method. Computer
methods in applied mechanics and engineering
308:113–133

Liu P, Yan Y, Zhang X, et al (2021) Topolog-
ical design of microstructures using periodic
material-field series-expansion and gradient-free
optimization algorithm. Materials & Design

199:109437

Liu X, Yuan Y (2010) A null-space primal-dual
interior-point algorithm for nonlinear optimiza-
tion with nice convergence properties. Mathe-
matical programming 125(1):163–193

Marck G, Privat Y (2014) On some shape and
topology optimization problems in conductive
and convective heat transfers. In: OPTI 2014,
An International Conference on Engineering
and Applied Sciences Optimization, pp 1640–
1657

Nie Py (2004) A null space method for solving
system of equations. Applied Mathematics and
computation 149(1):215–226

Nocedal J, Wright SJ (2006) Numerical optimiza-
tion, 2nd edn. Springer Ser. Oper. Res. Financ.
Eng., New York, NY: Springer

Rojas-Labanda S, Stolpe M (2015) Benchmark-
ing optimization solvers for structural topology
optimization. Structural and Multidisciplinary
Optimization 52(3):527–547

Sá LF, Yamabe PV, Souza BC, et al (2021)
Topology optimization of turbulent rotating
flows using Spalart–Allmaras model. Computer
Methods in Applied Mechanics and Engineering
373:113551

Salazar De Troya MA, Tortorelli DA, Beck VA
(2021) Two Dimensional Topology Optimiza-
tion of Heat Exchangers with the Density
and Level-Set Methods. WCCM-ECCOMAS
Congress 1300(LLNL-JRNL-816310)

Sigmund O (2001) A 99 line topology optimiza-
tion code written in Matlab. Structural and
Multidisciplinary Optimization 21(2):120–127

Sigmund O, Maute K (2013) Topology opti-
mization approaches: A comparative review.
Structural and Multidisciplinary Optimization
48(6):1031–1055

Sigmund O, Petersson J (1998) Numerical insta-
bilities in topology optimization: A survey on

41

procedures dealing with checkerboards, mesh-
dependencies and local minima. Structural opti-
mization 16(1):68–75

Stellato B, Banjac G, Goulart P, et al (2020)
OSQP: an operator splitting solver for quadratic
programs. Mathematical Programming Compu-
tation 12(4):637–672

Svanberg K (1987) The method of moving asymp-
totes—a new method for structural optimiza-
tion. International Journal for Numerical Meth-
ods in Engineering 24(2):359–373

Svanberg K (1993) The Method of Moving
Asymptotes (MMA) with Some Extensions.
In: Rozvany GIN (ed) Optimization of Large
Structural Systems. NATO ASI Series, Springer
Netherlands, Dordrecht, p 555–566

Svanberg K (2009) MMA and GCMMA
Matlab code. http://www.smoptit.se/
GCMMA-MMA-code-1.5.zip, visited on May
15th 2023

Svanberg K (2014) MMA and GCMMA – two
methods for nonlinear optimization. Tech. rep.

Swartz KE, White DA, Tortorelli DA, et al (2021)
Topology optimization of 3D photonic crys-
tals with complete bandgaps. Optics Express
29(14):22170–22191

Toh KC, Phoon KK, Chan SH (2004) Block
preconditioners for symmetric indefinite linear
systems. International Journal for Numerical
Methods in Engineering 60(8):1361–1381

Vandenberghe L (2010) The CVXOPT linear
and quadratic cone program solvers. Online:
http://cvxopt org/documentation/coneprog
pdf

Wächter A, Biegler LT (2006) On the implemen-
tation of an interior-point filter line-search algo-
rithm for large-scale nonlinear programming.
Mathematical Programming 106(1):25–57

Wang F, Lazarov BS, Sigmund O (2011) On pro-
jection methods, convergence and robust formu-
lations in topology optimization. Structural and
multidisciplinary optimization 43:767–784

Wang MY, Wang P (2006) The augmented
Lagrangian method in structural shape and
topology optimization with RBF based level set
method. In: CJK-OSM 4: The Fourth China-
Japan-Korea Joint Symposium on Optimization
of Structural and Mechanical Systems, p 191

Xia Q, Wang MY (2008) Topology optimization of
thermoelastic structures using level set method.
Computational Mechanics 42:837–857

Yan S, Wang F, Sigmund O (2018) On the non-
optimality of tree structures for heat conduc-
tion. International Journal of Heat and Mass
Transfer 122:660–680. https://doi.org/10.1016/
j.ijheatmasstransfer.2018.01.114

Yin L, Yang W (2001) Optimality criteria
method for topology optimization under multi-
ple constraints. Computers & Structures 79(20-
21):1839–1850

Zhang Y, Liu S (2008) Design of conducting paths
based on topology optimization. Heat and Mass
Transfer 44(10):1217–1227

Zheng N, Zhai X, Chen F (2023) Topology Opti-
mization of Self-supporting Porous Structures
Based on Triply Periodic Minimal Surfaces.
Computer-Aided Design p 103542

42

http://www.smoptit.se/GCMMA-MMA-code-1.5.zip
http://www.smoptit.se/GCMMA-MMA-code-1.5.zip
https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.114
https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.114

	Introduction
	Presentation of the Null Space Optimizer
	Null Space gradient flows
	Definition of the null space direction xiJ
	Definition of the range space direction xiC
	Treatment of constraints with sparse Jacobian and bound constraints
	Implementation aspects and variations of the algorithm
	Automatic rescaling of alphaJ and alphaC
	Stabilization near active inequality constraints
	Weights for the violated constraints
	Correspondence table for the algorithm parameters

	Topology Optimization of the 88 lines Matlab MBB beam example with the Null Space Optimizer
	The classical MBB beam problem of the 88 lines Matlab Topology Optimization code.
	Python implementation of the MBB beam problem with the Null Space Optimizer
	Declaration of the optimization problem
	Computations of the state solution and the sensitivities
	Filtering of the density variable
	Bound constraints

	Running the optimizer
	Numerical results and comparisons with OC, MMA and IPOPT
	MBB beam test case with medium volume fraction
	MBB beam test case with a tiny volume fraction

	Implementing Robust Topology Optimization for multiple load cases
	Setting of the bridge Topology Optimization problem with multiple loads
	Python implementation with the Null Space Optimizer
	Numerical results and comparisons with MMA and IPOPT

	Heat sink Topology Optimization on unstructured meshes
	Setting of the heat Topology Optimization problem
	Python implementation with the Null Space Optimizer and FreeFEM
	Declaration of the optimization problem
	Construction of design domain mesh
	Implementation of the physical state solver
	Implementation of a smoothing density filter
	Running the optimizer

	Numerical results and comparisons with OC, MMA and IPOPT

	Source code of the MBB beam example of sec:MBB
	Source code of the Heat Topology Optimization example of sec:unstructured
	Main Python script
	File filter_matrices.edp
	File solve_state.edp

	Treatment of constraints with sparse Jacobian matrix
	Sparse computations of the null space and range space directions
	A benchmark example: generating a checkerboard

	Statements and declarations
	Reproducibility of numerical results
	Acknowledgements

