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Abstract: Hydrogen is considered as a clean energy carrier able to achieve the decarbonization of
the economy, but its compact, safe, and efficient storage represents an important challenge. Among
many materials forming hydrides, this work reports the study of hydrogen sorption properties of
a novel bcc high-entropy alloy, Ti0.30V0.25Mn0.10Zr0.10Nb0.25, synthesized by arc melting. In less
than 60 s, the alloy fully absorbs hydrogen at room temperature, reaching a capacity of 2.0 H/M
(2.98 wt.%). A two-step reaction with hydrogen is confirmed by pressure-composition isotherms,
synchrotron X-ray and neutron diffraction: bcc solid solution↔ bcc monohydride↔ fcc dihydride.
For the second step transformation, the calculated thermodynamic values indicate the formation
of a very stable dihydride, with ∆Habs = −97 kJ/molH2. Moreover, the pair distribution function
analysis of high-energy synchrotron X-ray scattering data validates a completely random distribution
of metal atoms in the fcc dihydride phase, without noticeable lattice strain nor elemental segregation.
In situ synchrotron X-ray and neutron diffraction, performed during hydrogen desorption by heating
under vacuum, demonstrated full reversibility of the reaction with hydrogen. On the basis of these
results, tuning the chemical composition of high-entropy alloys may have great implications in terms
of hydrogen sorption properties.

Keywords: high-entropy alloys; hydrogen storage; in situ synchrotron X-ray diffraction; in situ
neutron diffraction; pair distribution function analysis

1. Introduction

The use of hydrogen as a clean energy carrier has become a viable idea to meet the
stringently required decarbonization of the energy sector [1,2]. However, the effective
implementation of a full-scale economy of hydrogen requires more efforts to overcome the
main technical issue related to hydrogen, i.e., the extreme low density of the dihydrogen
gas that limits both the efficient storage and transportation. Pressurized H2 gas, cryogenic
liquid, and physically/chemically bonded hydrogen to solid-state materials are the current
existing ways for hydrogen storage [3,4]. Nevertheless, storing hydrogen in the form
of either gaseous or liquid states presents many disadvantages, such as, high cost, large
volume tanks, and safety issues. Hydrogen storage in metals and metallic alloys is a
clean, safe, and efficient alternative only if the following characteristics are fulfilled: high
absorption capacities, reaction close to ambient pressure and temperature, fast kinetics, and
good cycling stability.

Many metals and metallic alloys have been studied for their hydrogen sorption prop-
erties and depending on the nature of elements and their concentrations in the material,
the properties may change remarkably [5]. The search for the right combination of el-
ements and their optimal stoichiometry to fulfill all the above-mentioned features is a
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great challenge. Many metallic materials are currently being studied for hydrogen storage.
For example, LaNi5 and TiFe intermetallic compounds present good hydrogen storage
reversibility, but they are disadvantaged either by the low storage capacities, activation
difficulties, or the high price of raw materials [6–8]. Along with intermetallics, alloys are
promising candidates to find the most efficient material for hydrogen storage applications.
Traditionally, the alloying strategy consists of the addition of several elements in small
amounts within one or two main elements to obtain compositions with enhanced properties.
Along with conventional alloys, another metallurgic paradigm was proposed in 2004 based
on the mixing of at least five elements near equimolar composition (concentration of each
element is between 5 to 35 at.%) [9,10]. These materials are defined as high-entropy alloys
(HEA) and have been initially proposed for their interesting mechanical properties [11,12].
Interestingly, HEAs are known to adopt simple crystalline structures, such as body-centered
cubic (bcc), face-centered cubic (fcc), and hexagonal close compact (hcp). In such simple
crystalline structures, the mixing of elements with different atomic radii might result in
an important lattice distortion with possibly large interstitial sites that might facilitate the
hydrogen insertion and increase the amount of stored hydrogen. The lattice distortion
is described by the empirical parameter δ, defined elsewhere [13]. Additionally, another
empirical parameter is the valence electron concentration, VEC, which is described by the
number of valence electrons per formula unit [14]. Presently, bcc HEAs containing refractory
elements are studied for solid-state hydrogen storage applications due to their interesting
properties and large chemical versatility (the nature, the number, and the concentration of
elements can be tuned) [15–18].

In this framework, the series of bcc HEAs Ti0.30V0.25Zr0.10Nb0.25M0.10 (M = Mg, Al, Cr,
Mo, and Ta) [19–23] has been thoroughly studied in our group to explore the effect of the ad-
dition of 10 at.% of a fifth M element into the quaternary alloy Ti0.325V0.275Zr0.120Nb0.275 [24].
The hydrogen capacity is affected by the nature of the M element: the quaternary alloy
can absorb 2.5 wt.% hydrogen, whereas the capacities are 2.5, 2.6, 2.7, 2.8, and 3.0 wt.%
after adding 10 at.% of Ta, Al, Mg, Mo, and Cr, respectively [19–23]. Furthermore, the
hydrogen desorption properties are also optimized after the addition of the fifth element,
mainly for compositions containing Al, Ta, and Cr. Following these studies, a relationship
between the VEC and the storage capacity has been proposed in this series of HEAs [25].
For a VEC < 4.9, the capacity of absorption is in the range of 1.5–2.0 H/M, whereas for
HEAs with a VEC ≥ 4.9, the capacity of hydrogen absorption drastically decreases. In light
of these findings, the Ti0.30V0.25Mn0.10Zr0.10Nb0.25 with VEC = 4.8 shows one of the best
capacities (2.0 H/M or 2.98 wt.%). Therefore, the aim of the present work is to thoroughly
investigate the composition Ti0.30V0.25Mn0.10Zr0.10Nb0.25, with a focus on the structure, the
microstructure, the chemical homogeneity, the hydrogen sorption properties, and the phase
transition during the reversible hydrogenation reaction. Regarding the latter aspect, both
ex situ and in situ characterizations using neutrons and synchrotron radiation have been
carried out to analyze both the average and local crystalline structures of different phases.

2. Results and Discussion

The calculated empirical parameters for the composition Ti0.30V0.25Mn0.10Zr0.10Nb0.25
are δ = 5.7% and VEC = 4.8, based on the definitions proposed elsewhere [13]. Compared to the
quaternary alloy Ti0.325V0.275Zr0.120Nb0.275, the δ decreases from 6% to 5.7% after the addition
of Mn. This could be explained by the fact that the Mn radius is close to the values of the other
constituent elements (rV = 1.31 Å < rMn = 1.37 Å < rNb = 1.43 Å < rTi = 1.45 Å < rZr = 1.59 Å
as taken from [26]) and it results in the reduction of the atomic size disparity. The VEC
increases from 4.55 to 4.8 after the addition of Mn to the quaternary alloy.

The Ti0.30V0.25Mn0.10Zr0.10Nb0.25 alloy crystallizes in a single bcc (Im3m) structure
(see laboratory XRD in Figure 1A), with a lattice parameter abcc = 3.239(5) Å, which is close to
abcc= 3.261(1) Å, previously obtained for the quaternary alloy Ti0.325V0.275Zr0.120Nb0.275 [24].
Figure 1B displays the SEM-EDS chemical mapping results of the as-cast
Ti0.30V0.25Mn0.10Zr0.10Nb0.25. A dendritic morphology can be noticed, similarly to previ-
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ously reported refractory HEAs synthesized by arc melting [21,22,27]. The results of the
EDS chemical analysis are listed in Table 1, proving a good agreement between the overall
and the nominal compositions.
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Figure 1. (A) X-ray diffraction pattern (λ = 1.5406 Å) and corresponding structural refinement, and
(B) the scanning electron microscopy image and energy-dispersive X-ray spectroscopy (SEM-EDS)
chemical mapping of the as-cast Ti0.30V0.25Mn0.10Zr0.10Nb0.25 alloy.

Table 1. Chemical composition of the dendritic and interdendritic regions, as well as the overall
values for the as-cast Ti0.30V0.25Mn0.10Zr0.10Nb0.25 alloy.

Region Ti (at.%) V (at.%) Mn (at.%) Zr (at.%) Nb (at.%)

Dendritic 29.4 (0.2) 24.4 (0.8) 11.5 (1.3) 6.5 (1.2) 28.2 (1.8)

Interdendritic 30.2 (0.6) 25.5 (0.9) 8.1 (1.2) 15.5 (1.8) 20.7 (1.5)

Overall 29.9 (0.5) 24.9 (0.6) 9.5 (1.0) 10.5 (1.2) 25.2 (1.1)

Nominal 30 25 10 10 25

The dendritic regions are enriched mainly by Nb and slightly by Mn, whereas the
interdendritic regions are rich in Zr, Ti, and V, and are close to the nominal compositions,
irrespective of the areas. The Nb enrichment of dendritic zones can be explained by the
difference of the melting temperatures between the constituent elements. During the
solidification process, a Nb-rich solid phase (dendrite) is formed in the beginning because
of the higher melting temperature of Nb as compared to the other elements, whereas a
liquid phase poor in Nb will later form the interdendritic areas. This microstructure is
commonly encountered in refractory HEAs synthesized by high-temperature arc melting
and usually has no influence on hydrogen sorption properties [21,22,27,28].

The structural and microstructural characterizations demonstrate that this composition
is a single-phase bcc alloy with typical dendritic microstructure. Thus, the next section is
dedicated to the study of the hydrogen sorption properties, such as kinetics of absorption,
thermodynamics of the reaction with hydrogen, structure investigation of hydride phases,
and the phase transformation pathway.

The kinetics of hydrogen absorption was acquired at 25 ◦C under 44 bars of hydrogen
pressure (Figure 2A), after an activation step described in the “Materials and Methods”
section. This curve shows extremely fast kinetics of absorption, with 95% of the maximum
absorbed capacity reached within 30 s. The maximum capacity of absorption is 2.0 H/M
(2.98 wt.%), which is higher than 1.7 H/M (2.5 wt.%) obtained for the quaternary alloy [24]
and comparable to the maximum uptakes already reported for Ti, V, Zr, and Nb elemental
hydrides [29]. Moreover, the capacity obtained for Ti0.30V0.25Mn0.10Zr0.10Nb0.25 perfectly
matches the values from similar compositions, such as Ti0.30V0.25Zr0.10Nb0.25M0.10, with
M = Cr [21], Mo [22], and Ta [25]. The dihydride and the corresponding deuterated
phases were characterized by SR-XRD (Figure 2B) and neutron diffraction (Figure 2C),
respectively. The related Rietveld analyses of the diffraction patterns confirm that the
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dihydride adopts a fcc structure (Fm3m) with a lattice parameter listed in Table 2. However,
a small amount of secondary phase, possibly the bcc monohydride phase, is present in the
neutron diffraction pattern (star symbols in Figure 2C). Rietveld refinement on neutron
diffraction data confirms that the deuterium (hydrogen) atoms occupy the tetrahedral sites
of the fcc structure (1/4, 1/4, 1/4), in good agreement with previous findings for similar
HEAs [19,21,22,30].
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Figure 2. Kinetics of hydrogen absorption at 25 °C under 44 bar H2 pressure (A); SR-XRD pattern (λ 
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diffraction diagram (λ = 1.2858 Å) of the deuteride Ti0.30V0.25Mn0.10Zr0.10Nb0.25D2 and corresponding 
Rietveld analysis (C). The star symbols indicate the presence of a minor secondary phase only visible 
by neutron diffraction. 

Table 2. The fcc lattice parameter of the Ti0.30V0.25Mn0.10Zr0.10Nb0.25H(D)2 from SR-XRD (CRISTAL 
SOLEIL), neutron diffraction (D1B ILL), and PDF analysis (ID15 ESRF). The isotropic atomic dis-
placement parameter (Uiso) obtained from PDF modeling is also given. 

Sample 
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Diffraction PDF PDF 
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enthalpy and entropy of dihydride formation, several pressure-composition isotherms 

Figure 2. Kinetics of hydrogen absorption at 25 ◦C under 44 bar H2 pressure (A); SR-XRD pattern
(λ = 0.7289 Å) of the dihydride Ti0.30V0.25Mn0.10Zr0.10Nb0.25H2 and related Rietveld analysis (B);
neutron diffraction diagram (λ = 1.2858 Å) of the deuteride Ti0.30V0.25Mn0.10Zr0.10Nb0.25D2 and
corresponding Rietveld analysis (C). The star symbols indicate the presence of a minor secondary
phase only visible by neutron diffraction.

Table 2. The fcc lattice parameter of the Ti0.30V0.25Mn0.10Zr0.10Nb0.25H(D)2 from SR-XRD (CRISTAL
SOLEIL), neutron diffraction (D1B ILL), and PDF analysis (ID15 ESRF). The isotropic atomic displace-
ment parameter (Uiso) obtained from PDF modeling is also given.

Sample
fcc Lattice Parameter, afcc (Å) Uiso (Å2)

SR-XRD Neutron
Diffraction PDF PDF

Ti0.30V0.25Mn0.10Zr0.10Nb0.25H2 4.482 (1) - 4.485 (1) 0.009 (1)

Ti0.30V0.25Mn0.10Zr0.10Nb0.25D2 - 4.460 (2) - -

To determine the thermodynamic properties of a reaction with hydrogen, i.e., the
enthalpy and entropy of dihydride formation, several pressure-composition isotherms
were measured at 25, 227, 255, and 280 ◦C, and the Van’t Hoff method was applied on the
three data obtained at high temperature only (Figure 3). A two-step reaction with hydrogen
is observed in the PCI curves recorded at high temperature, whereas at 25 ◦C, this behavior
is not noticeable due to the low equilibrium pressure values (within the error bar of the
pressure transducer). A first transition occurs at a very low pressure (below the minimum
measurable value of the pressure transducer), resulting in the formation of a monohydride



Inorganics 2023, 11, 186 5 of 13

phase with a capacity of around 1 H/M. A second reaction arises at a higher pressure,
forming a dihydride phase (2 H/M) with a very sloped plateau. This two-step behavior is
similar to the hydrogen absorption reaction observed for Ti0.30V0.25Cr0.10Zr0.10Nb0.25 [21],
and contrasts the one-step transition noticed for Ti0.30V0.25Zr0.10Nb0.25Mo0.10 [22]. This
highlights the importance of the nature of the fifth element added in the pristine quaternary
alloy Ti0.325V0.275Zr0.120Nb0.275 [24].
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Figure 3. Pressure-composition isotherms of the Ti0.30V0.25Mn0.10Zr0.10Nb0.25 alloy at 25, 227, 255,
and 280 ◦C. Inset: Van’t Hoff plot applied on data obtained at a high temperature.

With the increase in temperature from 227 to 280 ◦C, the equilibrium pressure of the
second transition increases, which allows for the calculation of the variation of the enthalpy
(∆Habs) and the entropy (∆Sabs) (Table 3). The modulus value of the enthalpy is quite large,
suggesting the formation of a very stable dihydride. However, the entropy value is larger
than the expected value of H2 gas entropy,−130 J/K·molH2. Two reasons might be invoked
to explain this behavior: the slopping nature of the PCI measurements and the short range
of the PCI temperatures (from 227 to 280 ◦C). The first reason makes the determination of
mid-plateau values difficult, whereas the second one may introduce errors in the linear
regression of the Van’t Hoff plot.

Table 3. Thermodynamic properties for dihydride formation in Ti0.30V0.25Mn0.10Zr0.10Nb0.25, as
determined by Van’t Hoff analysis. ∆Habs and ∆Sabs of other similar alloys are also listed.

Composition ∆Habs (KJ/molH2) ∆Sabs (J/KmolH2) Reference

Ti0.30V0.25Mn0.10Zr0.10Nb0.25 −97 (±5) −193 (±9) Present work

Ti0.30V0.25Cr0.10Zr0.10Nb0.25 −75 (±4) −161 (±8) [21]

(TiVNb)0.85Cr0.15 −67 (±2) −172 (±4) [28]

(TiVNb)0.953Co0.047 −67 (±2) −174 (±5) [28]

TiVNb −67 (±5) −157 (±11) [31]

For the sake of comparison, the enthalpy and entropy of hydrogen absorption in other
refractory HEAs are also listed in Table 3. It is obvious that the Mn addition in this series
of alloys is responsible for the formation of a very stable dihydride phase, which is more
stable than the related Cr-containing composition (Ti0.30V0.25Cr0.10Zr0.10Nb0.25) or other
HEAs [21].

An investigation of the local structure of Ti0.30V0.25Mn0.10Zr0.10Nb0.25H2 at short-
and medium-range order was carried out using X-ray total scattering and related pair
distribution function (PDF) analysis, using the G(R) formalism. The local structure of the
hydride in terms of the real-space distribution of interatomic distances is shown from the
PDF profile in Figure 4 together with the corresponding refinement, using an average fcc
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lattice with a random distribution of metallic atoms. The refinement results for the fcc lattice
parameter and the isotropic atomic displacement parameter (Uiso) are given in Table 2.
A good agreement is observed between the values of the lattice parameters obtained by
SR-XRD and PDF.
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refinement based on a fcc random structure in the whole R range (A) and in the low R region (B).

The difference curve between the experimental and the calculated profiles suggests
that the medium structure (high R region) and the local structure (low R range) can be
well described by an undistorted random fcc lattice. All observed features in the PDF data
are well explained by an average random fcc structure without any sign of strong lattice
distortion at a short range order or elemental segregation. Recently, it has been demon-
strated by combined X-ray and neutron PDF analysis that the lattice distortion initially
present in as-cast refractory bcc alloys can be relieved by the formation of dihydrides with
an fcc lattice [32]. Previously, we have reported the PDF profiles for two related dihydrides:
Ti0.325V0.275Zr0.125Nb0.275H1.7 and Ti0.30V0.25Zr0.10Nb0.25Mo0.10H2 [22]. These PDF pro-
files are very similar to the present one, hinting to the same local order. This might be
understood by the comparable crystalline structure (fcc) and close chemical compositions
(90% of atoms are identical).

Based on PCIs, SR-XRD, neutron diffraction and PDF results, the hydrogen absorption
follows a two-step reaction: from the as-cast alloy to an intermediate monohydride at a low
pressure and subsequently, to a dihydride phase at higher pressures. The same sequence has
been already reported for other refractory HEAs, such as Ti0.30V0.25Cr0.10Zr0.10Nb0.25 [21],
TiVNb, and Al0.10Ti0.30V0.30Nb0.30 [31]. Therefore, it is important to investigate the crys-
talline structure as a function of hydrogen content. Several samples with different hydrogen
absorption capacities, such as 2.0 H/M, 0.8 H/M, 0.5 H/M, and a fully desorbed sample
(0 H/M), were studied by X-ray diffraction (laboratory XRD and SR-XRD), as displayed in
Figure 5. The refined lattice parameters and phase fractions are listed in Table 4.

The dihydride phase crystallizes in an fcc lattice, as previously demonstrated by several
experimental methods, whereas the intermediate monohydride with 0.8 H/M is a bcc single
phase with abcc = 3.340 (6) Å, which is larger than abcc = 3.239 (5) Å of the as-cast alloy. The
material with 0.5 H/M consists of a mixture of two bcc phases: one is the monohydride
phase with a slightly smaller lattice parameter (abcc = 3.261 (1) Å and phase abundance:
54%) and the second one is a bcc solid solution with hydrogen (abcc = 3.243 (1) Å and phase
abundance: 46%).

The completely desorbed sample has the same bcc lattice as the as-cast sample, without
any sign of phase segregation, but with a slightly larger lattice parameter abcc = 3.251 (2) Å
than the pristine as-cast alloy abcc = 3.239 (5) Å. This discrepancy might be accounted for by
an uncomplete hydrogen desorption under the present experimental conditions.
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Table 4. Lattice parameters and phase fractions of Ti0.30V0.25Mn0.10Zr0.10Nb0.25 with different
hydrogen absorption capacities.

Hydrogen
Capacity

Lattice Parameter (Å) Phase Fraction (%)

fcc
Dihydride

bcc
Monohydride

bcc
Solid Solution

fcc
Dihydride

bcc
Monohydride

bcc
Solid Solution

2.0 H/M 4.482(1) - - 100 - -

0.8 H/M - 3.340 (6) - - 100 -

0.5 H/M - 3.261 (5) 3.243 (5) - 54 46

0.0 H/M - - 3.251 (2) - - 100

Further investigation of the reversibility of hydrogen/deuterium desorption in
Ti0.30V0.25Mn0.10Zr0.10Nb0.25 was carried out using in situ neutron diffraction. The diffrac-
tion patterns have been recorded for the deuteride Ti0.30V0.25Mn0.10Zr0.10Nb0.25D2 phase
during heating from 40 to 450 ◦C, with a temperature rate of 1 ◦C/min under dynamic
vacuum (Figure 6).

Starting from the bottom to the top of Figure 6 (left), the initial fcc deuteride phase
(marked with #) is stable until a sharp transition occurs in the temperature range 240–320 ◦C,
with a maximum desorption rate at 280 ◦C. The deuteride fcc phase abruptly disappears
at 280 ◦C due to deuterium desorption and only weak diffraction peaks (marked with *)
from the bcc-desorbed phase are barely visible. This is due to the low thermal neutron cross
section of the desorbed alloy, as also reported for the quaternary Ti0.325V0.275Zr0.125Nb0.275
alloy. The latter composition undergoes a similar sharp transition due to deuterium
desorption in a single event, at around 270 ◦C [23]. The very close desorption temperatures
noticed by in situ neutron thermo-diffraction hints to a negligible effect of Mn addition
on the deuterium desorption properties. This finding is in contrast with the results of
the additions of 10 at.% of Al, Cr, and Ta in the quaternary alloy that have proven to
significantly lower the desorption temperature [21,23].

A structural analysis of the bcc desorbed phase cannot be exploited from in situ neutron
diffraction due to very weak diffraction peaks in the absence of deuterium. Thus, for an in-
depth investigation of the phase transition during the desorption, in situ SR-XRD patterns
were analyzed starting from the dihydride Ti0.30V0.25Mn0.10Zr0.10Nb0.25H2 (Figure 7).
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Figure 6. In situ neutron diffraction during deuterium desorption from Ti0.30V0.25Mn0.10Zr0.10Nb0.25D2
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corresponding gas desorption profile (right).
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Figure 7. (A) In situ SR-XRD (λ = 0.67156 Å) of Ti0.30V0.25Mn0.10Zr0.10Nb0.25H2 dihydride during
heating from 25 to 450 ◦C (5 ◦C/min) under dynamic vacuum. (B) The variation of the lattice
parameter of the fcc and bcc phases versus temperature. (C) The thermal evolution of the fcc and bcc
phase fractions.

Figure 7A shows in situ SR-XRD thermo-diffractograms during the hydrogen desorp-
tion from the dihydride Ti0.30V0.25Mn0.10Zr0.10Nb0.25H2, while heating from 25 to 450 ◦C
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under dynamic vacuum (5 ◦C/min). The fcc dihydride phase (marked with white circles)
is stable up to around 275 ◦C. Above this temperature, the dihydride undergoes a sharp
transition to a bcc-desorbed phase (marked with diamond symbols), in very good agree-
ment with in situ neutron diffraction data. Rietveld analysis was applied to gain in-depth
information on the phase transition: the thermal variation of lattice parameters and phase
fractions are illustrated in Figure 7B,C, respectively. A thermal expansion of the fcc lattice
parameter from 4.478 (1) Å to 4.482 (1) Å is noticed upon a temperature increase from 25 to
around 211 ◦C (Figure 7B). Above this temperature, the lattice parameter slightly decreases
due to the beginning of the hydrogen desorption. In the 282–312 ◦C range, a progressively
vanishing fcc dihydride coexists with a newly formed bcc phase. The lattice parameter of
the dihydride fcc phase strongly decreases from 4.482 (1) Å to 4.443 (1) Å, and the phase
fraction diminishes from 100 to 6% (Figure 7C). Above 312 ◦C, only the desorbed bcc phase
is visible with the lattice parameter continuously decreasing from 3.318 (1) Å to 3.250 (1) Å
at the maximum temperature of 450 ◦C. This value is slightly larger than 3.239 (5) Å for the
as-cast alloy that might be described by thermal expansion.

Intriguingly, both in situ SR-XRD and neutron diffraction experiments hint to a single
step desorption (fcc dihydride→ bcc phase), whereas the PCIs and ex situ XRD at differ-
ent hydrogen concentrations have demonstrated a two-step reaction with hydrogen: fcc
dihydride ↔ bcc monohydride ↔ bcc desorbed phase. The second transition from bcc
monohydride to a completely desorbed bcc phase could not be detected by in situ SR-XRD.
One possible explanation might be based on the very small displacive rearrangement of
atoms involved into the transition from the bcc monohydride to the bcc solid solution, as
already observed for the closely related alloy Ti-V-Cr-Zr-Nb [21]. However, the in situ
experiments clearly demonstrated full reversibility, suggesting a structurally stable alloy
during the absorption/desorption cycling of hydrogen.

3. Materials and Methods

The Ti0.30V0.25Mn0.10Zr0.10Nb0.25 alloy was prepared by high-temperature arc melting
under Ar atmosphere to avoid any contaminations, as described previously [25]. This is
the most widespread method to prepare refractory HEAs [27]. The samples as both coarse
and fine powders can be manipulated in air without any pyrophoric risk. However, they
are stored into an Ar glove box to minimize the air exposure and surface oxidation.

The microstructure of the as-cast alloy was analyzed with a scanning electron mi-
croscopy (SEM), using a Zeiss Merlin microscope. Furthermore, energy dispersive X-ray
spectroscopy (EDS) was used for the chemical mapping. Prior to the analysis, the sample
was exposed to air for at least 24 h, in order to be immobilized in an epoxy resin, polished
and finally coated with 1.9 nm of Pd, as already reported for the SEM-EDS analysis of
HEAs [33–35].

The crystalline structure of the materials in different forms (as-cast, hydride, des-
orbed, etc.) was studied via X-ray powder diffraction (XRD), using both a laboratory
X-ray diffractometer D8 advance Bruker (Cu Kα radiation, Bragg-Brentano geometry) and
synchrotron radiation measurements (SR-XRD) at the CRISTAL beamline in the SOLEIL
facility. The powder samples were handled and measured in air for all ex situ experiments.
Ex situ (λ = 0.7289 Å) and in situ (λ = 0.67156 Å) SR-XRD diagrams were recorded using the
Mythen2 detector system (Dectris Ltd., Switzerland installed on the powder diffractometer.
To minimize X-ray absorption during the in situ experiment, the sample was mixed with a
fumed silica powder and enclosed in 0.2 mm diameter quartz capillary tube. The powder
mixture was manipulated and loaded into the quartz capillary under air, with a limited
time exposure. For ex situ measurements, the powder samples were loaded and measured
in glass capillaries in air.

During the hydrogen desorption from the hydride phase, the SR-XRD patterns were
recorded while applying a constant temperature ramp (5 ◦C/min) from 25 to 450 ◦C
under dynamic secondary vacuum. These in situ measurements were acquired with a
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3 min/pattern acquisition time in the 0.2 to 65◦ 2θ range. The time of acquisition was
10 min, with a scanning range from 1◦ to 85◦ (2θ) for these ex situ experiments.

High-energy synchrotron XRD measurements on the powder hydride phase were
carried out at beamline ID15A at ESRF, Grenoble (France) [36]. The incident flux was
normalized using a diode placed in front of the sample. Diffraction patterns were collected
in transmission geometry by using a Pilatus3 X CdTe 2M hybrid photon-counting detector.
The powder sample was handled and loaded into a glass capillary under air. A number
of diffraction patterns were collected at slightly different detector positions, in order to
minimize inhomogeneity effects and cover dead zones. The detector was off-centered
with respect to the 99 keV incident beam and positioned close to the sample to access
Q values of up to ~30 Å−1. The images were corrected for detector geometry, response,
distortion, transparency, and for background contributions and X-ray polarization. Data
were azimuthally integrated using a modified version [37] of the PyFAI library [38] to give
one-dimensional scattering patterns. The G(r) were calculated from these patterns using
routines from the Diffpy-CMI library [39] with local modifications for outlier rejection and
treatment of background. The structural analysis was carried out using the PDFgui free
software [40].

Powder neutron diffraction experiments on deuterated samples were performed at the
D1B beamline at the Institute Laue-Langevin (λ = 1.2858 Å) (DOI: 10.5291/ILL.DATA.CRG-
2768), in the scanning range from 1 to 128◦ (2θ). At room temperature, the ex situ mea-
surement was carried out on a vanadium container, whereas for the in situ measurements,
the sample was placed in a silica tube. The powder samples have been manipulated and
loaded into the respective containers under air with a limited time exposure. The recording
of the diffraction patterns was carried out during the desorption of the deuterated powder
sample by applying constant heating (1 ◦C/min) under secondary vacuum. The evolution
of the pressure of evolved gas was continuously recorded by a vacuum gauge during the
desorption experiment.

The refinement of the collected neutron and SR powder diffraction data was carried
out using the Rietveld method with the Fullprof software [41], whereas the fundamental
parameters approach [42], as implemented in the TOPAS program (Bruker AXS version
7.0.0.7) [43], was used to refine the laboratory X-ray diffraction patterns.

Hydrogen sorption properties were studied using a homemade volumetric device,
water thermalized at 25 ◦C. Small pieces of the as-cast alloy (300–400 mg) were cut and
loaded under air in a stainless-steel container, with an air exposure of less than 10 min.
The stainless-steel container with a minimized dead volume was tightly connected to the
volumetric device by a single-use metallic gasket, and a leak test was performed before
any activation of the sample. Prior to each experiment, the samples were activated by
a heat treatment at 350 ◦C under a dynamic vacuum for 3 h. The hydrogen uptake was
calculated using the real equation of states for hydrogen from the program GASPAK
V3.32 (Cryodata. Inc., USA). The absorption kinetic curve was recorded during a first
absorption step, under 44 bars of H2 at room temperature (25 ◦C). Pressure-composition
isotherms (PCI) at 25, 227, 255, and 280 ◦C have been acquired during absorption and
further used to calculate the enthalpy and entropy of the reaction using the Van’t Hoff
method. During the PCI measurements, each point was in equilibrium and the minimum
time per point was around 6 h. Furthermore, these measurements were conducted following
the recommended best practices from Gross et al. [44], and with careful consideration of
the potential limiting factors that could affect the repeatability of the results previously
outlined by Broom et al. [45].

4. Conclusions

A novel high-entropy alloy Ti0.30V0.25Mn0.10Zr0.10Nb0.25 was successfully synthesized
by high-temperature arc melting to form a homogeneous bcc single phase. This alloy absorbs
hydrogen very quickly at room temperature, reaching a full dihydride phase in less than 60 s.
An improved hydrogen sorption capacity of 2.0 H/M (2.98 wt.%) is found for this quinary
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alloy as compared to the quaternary composition Ti0.325V0.275Zr0.120Nb0.275 (without Mn)
that absorbs 1.7 H/M (2.5 wt.%). Moreover, the Ti0.30V0.25Mn0.10Zr0.10Nb0.25 composition
undergoes a reversible two-step reaction with hydrogen: bcc↔ bcc monohydride↔ fcc
dihydride. The thermodynamics of the second reaction uncovered the formation of the
most stable dihydride in this series of alloys Ti0.30aV0.25Zr0.10Nb0.25M0.10. This finding
corroborates the strategy that small changes (10 at.%) in the chemical composition of
high-entropy alloys may have tremendous implications in terms of hydrogen sorption
properties. Thus, tuning the chemistry is crucial to design materials with promising
hydrogen sorption properties.
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