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. With this model, the propagation up to overturning of solitary waves over plane slopes, and solitary and quasiregular waves over a submerged bar, both initially specified as numerically exact FNPF waves, is simulated.

In all cases, waves break as spilling or plunging breakers, initiated by the formation of a breaker jet near the wave crest. Results show that the location of the maximum fluid velocity u m on the free surface closely coincides with the location where the overturning jet is initiated. Based on this, a new breaking onset criterion is proposed as u m /c 1, which is shown to be more universal for accurately detecting wave breaking initiation than existing criteria based on the crest velocity.

Introduction

Wave breaking is a critical nearshore process for a wide range of engineering activities and environmental issues. Breaking waves cause the largest hydrodynamic loads on marine and coastal structures. In addition, energy dissipation resulting from wave breaking is also the primary control of the wave height cross-shore evolution, the wave setup magnitude, and the generation of infragravity waves and wave-induced currents 5 that drive sediment erosion and transport [START_REF] Svendsen | Wave heights and set-up in a surf zone[END_REF][START_REF] Longuet-Higgins | Radiation stress in water waves, a physical discussion with applications[END_REF][START_REF] Longuet-Higgins | Longshore currents generated by obliquely incident sea waves, 1[END_REF][START_REF] Macmahan | Rip current review[END_REF][START_REF] Battjes | Shoaling of subharmonic gravity waves[END_REF][START_REF] Symonds | Two-dimensional surf beat: Long wave generation by a time-varying breakpoint[END_REF]. Accordingly, a significant amount of work has been devoted to the accurate simulation or parameterization of wave breaking in nearshore numerical wave propagation models. Wave models not based directly on the primitive Navier-Stokes equations [e.g. [START_REF] Derakhti | Breaking-onset, energy and momentum flux in unsteady focused wave packets[END_REF][START_REF] Derakhti | Predicting the breaking strength of gravity water waves in deep and intermediate depth[END_REF][START_REF] Roeber | Boussinesq-type model for nearshore wave processes in fringing reef environment[END_REF], require wave breaking to be parameterized. Breaking must first be detected using an appropriate breaking onset criterion, and then an appropriate amount of energy dissipation must be specified over the grid area deemed to be breaking. The latter has been achieved based on different methods such as empirical eddy viscosity, sponge layer or shock capturing algorithm [e.g. [START_REF] Kennedy | Boussinesq modeling of wave transformation, breaking, and runup. i: 1d[END_REF][START_REF] Shi | A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation[END_REF]. Over the past half century, many breaking onset criteria have been proposed for a variety of practical applications based on theoretical studies, numerical simulations, laboratory experiments, or field observations [e.g. [START_REF] Tian | Energy dissipation in two-dimensional unsteady plunging breakers and an eddy viscosity model[END_REF][START_REF] Kazolea | Numerical treatment of wave breaking on unstructured finite volume approximations for extended boussinesq-type equations[END_REF]. Such criteria are typically classified into three categories: geometric, kinematic, and dynamic.

Geometric breaking criteria

By studying regular waves propagating over a flat bottom, [START_REF] Miche | Mouvements ondulatoires de la mer en profondeur croissante ou décroissante. forme limite de la houle lors de son déferlement. application aux digues maritimes. Troisième partie. Forme et propriétés des houles limites lors du déferlement[END_REF] showed that wave breaking is initiated when kH/ tanh (kh) = 0.88, with k = 2π/λ the wavenumber, H the wave height, λ the wavelength, and h the water depth. In shallow water, Miche's criterion transforms into the breaker index criterion, γ = H/h = γ m , where γ m is a function of the beach slope and the incident wave steepness. Widely used in the literature [e.g. [START_REF] Battjes | Energy loss and set-up due to breaking of random waves[END_REF][START_REF] Thornton | Transformation of wave height distribution[END_REF], this approach has proven to be adequate for initiating wave breaking dissipation in phase-averaged spectral models [e.g. 17]. In phase-resolving wave models, a maximum slope criterion for the wave front face has also been used to detect the onset of breaking [e.g. [START_REF] Guignard | Modeling of wave shoaling in a 2D-NWT using a spilling breaker model[END_REF][START_REF] Roeber | Boussinesq-type model for nearshore wave processes in fringing reef environment[END_REF][START_REF] Tissier | A new approach to handle wave breaking in fully non-linear boussinesq models[END_REF][START_REF] Grilli | Fully nonlinear potential flow simulations of wave shoaling over slopes: Spilling breaker model and integral wave properties[END_REF], but the maximum slope value used varies widely between different studies [e.g. [START_REF] Schäffer | A boussinesq model for waves breaking in shallow water[END_REF][START_REF] Madsen | Surf zone dynamics simulated by a boussinesq type model. part i. model description and cross-shore motion of regular waves[END_REF][START_REF] Sørensen | Nearshore wave dynamics simulated by boussinesq type models[END_REF][START_REF] Cienfuegos | Wave-breaking model for boussinesq-type equations including roller effects in the mass conservation equation[END_REF][START_REF] Tissier | A new approach to handle wave breaking in fully non-linear boussinesq models[END_REF], which poses the question of the generality and applicability of such breaking onset criteria.

Kinematic breaking criteria

Kinematic breaking criteria are typically based on a threshold value of the ratio between the horizontal fluid velocity at the wave crest (defined as the maximum free surface elevation) u c , and the local wave phase speed c, both taken in the direction of wave propagation [e.g. [START_REF] Stansell | Experimental investigation of wave breaking criteria based on wave phase speeds[END_REF][START_REF] Kurnia | High order hamiltonian water wave models with wave-breaking mechanism[END_REF]. Wave breaking is assumed to occur when u c exceeds c, i.e. u/c ≥ 1, corresponding to crest overturning and the local formation of a breaker jet (see e.g. [START_REF] Wei | A fully nonlinear boussinesq model for surface waves. part 1. highly nonlinear unsteady waves[END_REF] for an illustration of this for solitary waves overturning on plane slopes). It is important to note that, in numerical models, difficulties arise to compute accurately u c and c for rapidly evolving breaking waves, and sometimes c is approximated by the shallow water linear wave phase velocity √ gh. Experimental studies performed in deep water [START_REF] Stansell | Experimental investigation of wave breaking criteria based on wave phase speeds[END_REF][START_REF] Wu | Breaking criteria and energy losses for three-dimensional wave breaking[END_REF][START_REF] Banner | Wave breaking onset and strength for two-dimensional deep-water wave groups[END_REF][START_REF] Tian | Energy dissipation in two-dimensional unsteady plunging breakers and an eddy viscosity model[END_REF] and shallow water [START_REF] Itay | Lagrangian kinematic criterion for the breaking of shoaling waves[END_REF] have found different thresholds for u c /c, depending on the experimental configurations, ranging from 0.7 to 1.05.

Dynamic breaking criterion

Dynamic breaking criteria have been proposed in the last two decades, but mostly for deep water waves.

Empirical findings based on observations of modulated deep water wave groups suggest that wave breaking occurs when the local wave energy flux within a group exceeds a given threshold [START_REF] Song | On determining the onset and strength of breaking for deep water waves. Part I: Unforced irrotational wave groups[END_REF]. These findings are supported by the experimental results of [START_REF] Tian | Evaluation of a deep-water wave breaking criterion[END_REF][START_REF] Tian | Energy dissipation in two-dimensional unsteady plunging breakers and an eddy viscosity model[END_REF] and [START_REF] Banner | Wave breaking onset and strength for two-dimensional deep-water wave groups[END_REF]. [START_REF] Barthelemy | On a unified breaking onset threshold for gravity waves in deep and intermediate depth water[END_REF] recently proposed, based on a numerical analysis of three-dimensional directionally focused wave packets in deep and intermediate water, a wave breaking onset criterion B x based on the ratio of the local energy flux to the energy density, normalized by the local crest speed magnitude. At the free surface, this criterion reduces to B x = u c /c. [START_REF] Barthelemy | On a unified breaking onset threshold for gravity waves in deep and intermediate depth water[END_REF] showed that if B x exceeded the threshold 0.85 -0.86, wave breaking inevitably occurs within a fraction of a wave period. Thus, the threshold that they propose is not strictly speaking a breaking onset criterion, but is a precursor to a breaking onset criterion. Although their work is still ongoing, [START_REF] Grilli | A unified formulation for predicting the breaking onset of gravity water waves from deep to shallow water: validation cases using a fully nonlinear potential flow model[END_REF] recently reported that the same B x = 0.85 ± 0.02 criterion was able to predict similarly the eventual onset of wave breaking in shallow water conditions. The recent work of [START_REF] Derakhti | A unified breaking onset criterion for surface gravity water waves in arbitrary depth[END_REF] confirms the validity of [START_REF] Barthelemy | On a unified breaking onset threshold for gravity waves in deep and intermediate depth water[END_REF]'s breaking onset criterion for shallow water waves.

In the present work, based on numerical simulations with the 2D Fully Nonlinear Potential Flow (FNPF)

model of [START_REF] Grilli | Numerical modeling of wave breaking induced by fixed or moving boundaries[END_REF], the validity of kinematic breaking onset criteria in shallow water is explored, and a new criterion is proposed that, for the waves studied here, improves breaking onset detection in comparison to the conventional kinematic criterion u c /c.

The paper is organized as follows: in Section 2, the new breaking criterion is defined, and in Section 3 the model used in the study is introduced briefly. Comparisons between u c /c and the new breaking criterion for different breaking wave conditions in shallow water are presented in Sections 4 to 6. Finally, conclusions are presented in Section 7.

Definition of a new kinematic breaking criterion

[25] studied the conventional u c /c kinematic criterion using a variety of methods to compute the wave phase speed. However, they concluded that all of the methods they used allowed confirming the validity of this criterion. Here, the objective is instead to focus on the other parameter in the criterion, the surface fluid velocity. Numerical results presented hereafter will show, for a large range of incident wave conditions and sloping bottom geometries, that when breaking is initiated by wave overturning (i.e. for spilling and plunging breakers), the maximum fluid velocity at the surface u m , does not necessarily occur at the wave crest, but rather ahead of the crest on the front face of the wave. Breaking onset thus refers to the instant in time when part of the wave front face becomes vertical. It is thus possible to track more accurately the location where the instability leading to the overturning of the wave crest develops (see Figure 3). This is consistent with the findings of [START_REF] Perlin | An experimental study of deep water plunging breakers[END_REF] and [START_REF] Qiao | Gentle spilling breakers: crest flow-field evolution[END_REF] who found, based on PIV measurements of deep water spilling and plunging breakers, that the largest flow velocity occurs along the uppermost part of the wave front, but not necessarily at the crest itself. This observation led to investigate the skill of a new kinematic criterion at capturing wave breaking onset in shallow water, defined as:

u m c 1. (1) 
In the following, the performance of the new criterion, defined in Equation [START_REF] Svendsen | Wave heights and set-up in a surf zone[END_REF], is compared to that of u c /c 1 for capturing accurately wave breaking onset.

3. The FNPF model and some definitions

The FNPF model

Detailed characteristics of shoaling waves near and at the breaking point will be simulated with the FNPF model of [START_REF] Grilli | An efficient boundary element method for nonlinear water waves[END_REF] and [START_REF] Grilli | Numerical modeling of wave breaking induced by fixed or moving boundaries[END_REF] (hereafter referred to as 2D-NWT, i.e. 2D numerical wave tank), such as phase speed and particle velocities, and the performance of breaking onset criteria will be evaluated.

In the 2D-NWT, mass conservation is solved with a BEM using higher-order elements (at least cubic)

ensuring local continuity of the first-derivatives of the geometry and field variables along the free surface. The nonlinear kinematic and dynamic free surface boundary conditions are integrated in time using an explicit second-order Eulerian-Lagrangian scheme (this formalism was first proposed by [START_REF] Longuet-Higgins | The deformation of steep surface waves on water. Part I. a numerical method of computation[END_REF]). An adaptive time step, based on a mesh Courant number, allows achieving accurate results when the distance between free surface nodes, here identical to Lagrangian particles, decreases. This typically occurs near and at the wave crests and subsequently within the tip of breaker jets. A summary of the model equations is presented in Appendix A, and more details about the mathematical model and numerical methods can be found in [START_REF] Grilli | An efficient boundary element method for nonlinear water waves[END_REF] and [START_REF] Grilli | Numerical modeling of wave breaking induced by fixed or moving boundaries[END_REF].

Models based on FNPF theory have been shown to predict accurately the wave shape geometry of wave shoaling up to and into the early stages of wave overturning, before touchdown of the breaker jet on the free surface (before blow-up of the model). [START_REF] Grilli | Shoaling of solitary waves on plane beaches[END_REF][START_REF] Grilli | Characteristics of solitary wave breaking induced by breakwaters[END_REF][START_REF] Grilli | Breaking criterion and characteristics for solitary waves on slopes[END_REF] provide extensive validation of the wave geometry with the 2D-NWT for the simulation of shoaling and breaking of solitary waves over slopes and submerged breakwaters by comparing to laboratory data. [START_REF] Grilli | Numerical generation and absorption of fully nonlinear periodic waves[END_REF], [START_REF] Grilli | Depth inversion in shallow water based on nonlinear properties of shoaling periodic waves[END_REF], and [START_REF] Grilli | Fully nonlinear potential flow simulations of wave shoaling over slopes: Spilling breaker model and integral wave properties[END_REF] provide similar results for regular waves.

[27] has also used this 2D-NWT as a standard of accuracy to validate their fully-nonlinear Boussinesq-type wave model.

Since the wave geometry is accurately simulated by the model at and during breaking, this indirectly validates the underlying wave kinematics at and near the surface. Therefore, the 2D-NWT model can be used to gain physical insight into complex nonlinear wave phenomena such as breaking onset based on kinematic parameters. In the present computations, the accuracy of the numerical results will be assessed by verifying the global conservation of wave volume and total energy. According to potential flow theory, the fluid velocity is given by u = ∇φ (with φ the velocity potential), or in a local orthogonal coordinate system, tangential and normal to the free surface, as u = (u s , u n ), with the normal velocity defined as u n = ∂φ/∂n and the tangential velocity as u s = ∂φ/∂s. Since (φ, ∂φ/∂n) are the working variables of the 2D-NWT, they are computed at free surface nodes at each time step t of the simulation (using a cubic interpolation in between nodes). The tangential derivatives are then computed using a 5th-order sliding polynomial interpolation (see [START_REF] Grilli | Numerical modeling of wave breaking induced by fixed or moving boundaries[END_REF]). The horizontal velocity along the free surface is found by projecting the local velocity components as u = u s cos β + u n sin β, with β the angle between the horizontal axis and the tangent to the free surface. At the wave crest, the latter is zero and thus u c = u s .

Similarly, the velocity magnitude is computed as u = u 2 s + u 2 n , and its maximum u m is calculated as the upper bound of the local maximum within each boundary element close to the crest.

The phase speed c is known to be difficult to calculate accurately or to measure at arbitrary points of a non-permanent wave form [e.g. 27]. [START_REF] Stansell | Experimental investigation of wave breaking criteria based on wave phase speeds[END_REF] compared three different definitions of phase speed from: (i) linear wave theory, (ii) a Hilbert transform, and (iii) the speed of a wave crest. Here, particularly since solitary waves are primarily considered, the speed of the wave crest (i.e. a local maximum in surface elevation) is used, which can be computed with a simple wave crest tracking method. Thus, in each simulation, the location of the maximum surface elevation, x c (t) is first calculated at each time t, using cubic interpolation in the BEM. Once model simulations are completed, a 4th-order polynomial is fit to the part of this time series including a short time before and after breaking onset, x cf it , and the crest velocity (phase speed) is calculated analytically as c = dx cf it /dt from this polynomial fit.

Breaking onset definition

The time of breaking onset is denoted by t b and defined as the time when the front face of the wave becomes vertical within a boundary element (i.e. there is a vertical tangent with β = π/2). Although the cubic discretization will play a small role, for a fine spatial discretization, this will also be approximately the time a free surface node overtakes another one in the wave propagation direction. Once this occurs, the free surface slope exceeds the vertical (i.e. β > π/2), and the wave overturns, passing a point of no return and starting to break. The comparison of the two kinematic breaking criteria, u c /c and u m /c, will be done in the following applications based on this definition of breaking onset. It is interesting to note here that this particular definition of wave breaking onset may sometimes but not always correspond to other definitions, such as the wave reaching its maximum elevation.

Solitary wave propagation over a plane beach

The performance of the kinematic breaking criteria, u c /c and u m /c is first investigated with the 2D-NWT for a series of simulations of solitary wave shoaling and overturning over slopes (e.g. Figure 1).

Although solitary waves are idealized limiting form (i.e. with an infinite wavelength and no trough), long waves that do not strictly occur in nature, many observations have shown that long and nonlinear shallow water swells can be approximated by a succession of solitary waves as they approach the shore since they have increasingly steep and narrow crests separated by long shallow troughs [START_REF] Peregrine | Breaking waves on beaches[END_REF]. A practical advantage of using solitary waves in FPNF models is that the computations are interrupted when a breaker jet impacts the free surface, which only occurs once per simulation with this type of wave.
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Here, fully nonlinear solitary waves are specified as the initial condition in the constant depth (h 0 ) region of the computational domain (Figure 1) based on the numerically exact geometry and kinematics (potential φ, normal velocity ∂φ/∂n, and elevation η) computed with the method of [START_REF] Tanaka | The stability of solitary waves[END_REF]. This method provides the wave properties to an accuracy of at least 9 significant digits.

In the following, prime variables denote dimensionless variables where length is normalized by h 0 and 145 time by h 0 /g. 

Model parameters

The computational domain used to simulate solitary wave shoaling and overturning is shown in Figure 1.

The length of the domain L is function of the plane slope s = 1:100 to 1:15 and the initial equivalent length of the solitary wave λ (see Table 1). Solitary waves of model input initial height H 0 = 0.2 to 0.7 were simulated with each solitary wave generated such that its minimum surface elevation is a given fraction ε z = 0.001 of its maximum elevation H 0 , which yields the value of the equivalent length λ (note that λ is also a weak function of the free surface discretization and domain geometry, so λ varies slightly for the same incident waves propagating over different slopes). Hence, the computational domain is longer for smaller incident waves (smaller solitary waves are longer) and milder slopes. Initial wave heights and slopes are combined to create 22 test cases of different types of wave breaking. Both the physical and numerical parameters for each of these test cases are listed in Table 1. Following [START_REF] Grilli | Breaking criterion and characteristics for solitary waves on slopes[END_REF], the corresponding surf-similarity parameter, S 0 = 1.521s/ H 0 of these solitary waves ranges from 0.018 to 0.185, indicating spilling (S 0 < 0.025) or plunging (0.025 < S 0 < 0.30) wave breaking.

The BEM computational domain boundary is discretized with N nodes, including N f nodes on the free surface. To increase the accuracy of the simulations, the latter is a large fraction of N (typically over 80%, see below). Because the domain length and wavelength vary, the number of nodes per wave length (nd. per λ) is different in each simulation. So-called cubic "Mid-Interval-Interpolation" (MII) boundary elements are used to interpolate the solution in between nodes on the free surface, and 3-node quadratic isoparametric elements on other parts of the boundary (see [START_REF] Grilli | Numerical modeling of wave breaking induced by fixed or moving boundaries[END_REF]). The bottom discretization is typically much coarser than the free surface discretization, but to increase accuracy in shallower water, the discretization is non-uniform over the slope with the distance between nodes decreasing gradually with decreasing depth. Consistent with the Eulerian-Lagrangian formalism, the BEM nodes on the free surface gradually converge near the crest region during the shoaling phase preceding breaking onset, which also increases the accuracy of the results in shallower water.

A convergence study as a function of the discretization, detailed in Appendix B, was first performed to establish the minimum discretization required to ensure both accurate and converged results, particularly for the parameters of interest (flow velocity and phase speed) at breaking onset. Shoaling of a solitary wave with H 0 = 0.6 was simulated over 1:15 and 1:100 slopes, and maximum relative errors of the solitary wave volume and total energy (as compared to initial values computed with the method of [START_REF] Tanaka | The stability of solitary waves[END_REF]) were computed, together with the values of u c /c, u m /c, and c at breaking onset. Nine different discretizations were tested for each case and it was found that using N = 1038 and N f = 838 ensured that both errors remained smaller than 0.01% while the values of the breaking onset parameters had clearly converged to within less than 0.2% at least three configurations coarser than the selected one (N = 1038 and N f = 838). These values of N and N f were thus used in the 22 test cases studied here, with the model parameters and results shown in Table 1.

[Note that in this table H b and h b denote the breaking wave height (crest elevation for a solitary wave) and water depth, respectively, and γ = H b /h b is the breaker index, at t b .]

To assess further the accuracy of the numerical results for these cases, the maximum relative errors of wave volume and energy conservation were also calculated up to breaking onset. Figure 2 shows the maximum absolute errors of wave energy ε e and volume ε v , calculated for wave propagation from t = 0 to t b .

At most, the maximum error for energy reaches 0.2% and for volume 0.015%, which is sufficient to ensure reliable estimates of the breaking onset parameters (u c , u m , c) based on the convergence study in Appendix B. [Note that this convergence study also showed that the breaking onset parameters converged for coarser discretizations (and hence for larger numerical errors) than achieved with this discretization.] Some of the solitary wave cases simulated in this study (parameters listed in Table 1) were similar to the cases modeled and analyzed by [START_REF] Grilli | Breaking criterion and characteristics for solitary waves on slopes[END_REF]. Additional simulations were performed for different slopes (e.g. 1:20 and 1:50) and incident wave heights. Figure 3 shows the free surface elevation simulated with the 2D-NWT at four different time steps (with the second being t b ) for a mild spilling breaker (top panel H 0 = 0.6 on a 1:100 slope) and for a more intense plunging breaker (bottom panel, H 0 = 0.4 on a 1:15 slope). The symbols on each free surface profile mark the location of the maximum elevation (i.e. wave crest) and that of the maximum velocity u m . They are in general different, although they are much closer for the spilling breaker than for the plunging breaker. At t b , u m occurs approximately at the location where the wave front face is vertical and a breaker jet will soon be emerging, leading to wave overturning. 1, which provides a good prediction of breaking onset even for strong plunging waves.

This figure highlights two significant findings. First, consistent with the work of [START_REF] Derakhti | A unified breaking onset criterion for surface gravity water waves in arbitrary depth[END_REF], it shows that the results of [START_REF] Barthelemy | On a unified breaking onset threshold for gravity waves in deep and intermediate depth water[END_REF] can be extended to shallow water: the parameter B x = u c /c ≈ 0.85 is thus an accurate universal precursor to breaking initiation. Second, u m /c also agrees with this finding and is even closer to u m /c ≈ 1 at breaking initiation, which likely results from u m capturing better the location where overturning starts as compared to u c .

Finally, the differences between u m and the maximum horizontal particle velocity u m on the free surface (not detailed in the paper) showed that u m and u m are almost identical until breaking, as the vertical component of the free surface velocity w is very small in the crest area. Then u m becomes larger than u m a short time before breaking, particularly for plunging breakers, and the difference between these velocities continues to increase beyond breaking onset.

Solitary wave propagation over a submerged bar 220

In this application, the variation of u c /c and u m /c is investigated for solitary waves shoaling over a submerged bar with a 1:20 front slope, a crest at 0.75h 0 , and a 1:10 back slope. The bar crest length is 5h 0 (see Figure 5). [START_REF] Beji | Numerical simulation of nonlinear wave propagation over a bar[END_REF] first proposed this bar geometry and used it to perform both laboratory experiments and numerical simulations of regular wave shoaling and energy transfers between higher-order harmonics. [START_REF] Grilli | Fully nonlinear potential flow simulations of wave shoaling over slopes: Spilling breaker model and integral wave properties[END_REF] validated the 2D-NWT with measurements from several of the test cases in these experiments. The present 

Model parameters

Table 2 provides the physical and model parameters for the simulated test cases, as well as the numerical results of the estimated breaking onset parameter values. Figure 5 shows the computational domain used in 6 wavelengths varying from λ = 20.04 to 29.78. The BEM discretization for this case was selected following the same approach as for the previous application with a plane slope. The number of nodes per wavelength varies from 292 to 434 on the free surface.

In this application, both breaking and nearly breaking solitary waves are simulated. For the latter, the waves shoal and nearly reach breaking onset over the bar crest, but do not break and continue propagating beyond the bar. With this bar geometry, numerical experiments showed that incident solitary waves with H 0 < 0.1175 did not break (e.g. Figure 6, top panel), whereas those with larger incident wave heights did break (e.g. Figure 6, bottom panel). 2, either as a function of time t -t b , or at t = t b as a function of H 0 . For non-breaking cases, the reference time used (instead of t b ) corresponds to the time the crest reaches its maximum elevation.

Comparison of

Figure 7 (a) shows that the conventional breaking onset criterion u c /c 1 does not allow distinguishing between breaking and non-breaking waves. Further, consistent with the findings of [START_REF] Barthelemy | On a unified breaking onset threshold for gravity waves in deep and intermediate depth water[END_REF] and [START_REF] Derakhti | A unified breaking onset criterion for surface gravity water waves in arbitrary depth[END_REF], Figure 7 (b) shows that only waves for which u c /c becomes larger than 0.85 during shoaling on the bar will evolve towards breaking (see also Table 2). In Figures 7 (c) and (d), this appears to apply to u m /c as well, which remains below 0.85 for non-breaking waves. This is likely because the location of u m is very close to the crest for the considered waves, hence u m u c for waves that do not evolve towards breaking. In contrast, for breaking wave cases, the 95% confidence intervals are computed as u c /c 0.906 ± 0.044 and u m /c 1.032 ± 0.044 at t b . Therefore, while u c /c ≈ 0.85 allows distinguishing breaking from non-breaking cases, this difference appears to be more pronounced with u m /c 1.

Quasi-regular wave propagation over a submerged bar

Finally, the shoaling of quasi-regular waves over the same submerged bar as in the previous application is simulated to assess whether the same conclusions apply regarding the breaking onset criteria. Running 2, which shows the related parameters values and results. Note, for the non-breaking cases, the reference time used (instead of t b ) corresponds to the time the crest reaches its maximum elevation.

simulations with quasi-regular (or even irregular) waves in the 2D-NWT is possible, but becomes more computationally expensive.

Model parameters

The physical and model parameters for the simulated test cases are shown in Table 3. Figure 8 shows the computational domain used in the 2D-NWT. As compared to the previous computational domain used to propagate and shoal solitary waves, the length of the constant depth region offshore of the bar is reduced such that the toe of the back slope of the bar is now at x = 42.5, and an absorbing beach (AB) of length 265 l AB = 20 is specified to minimize reflections from the far-end of the 2D-NWT (see [START_REF] Grilli | Numerical generation and absorption of fully nonlinear periodic waves[END_REF] for more details).

Numerically exact FNPF regular waves are generated on the offshore boundary, as "zero-mass-flux" stream function waves (see [START_REF] Grilli | Numerical generation and absorption of fully nonlinear periodic waves[END_REF] for more details). The model input wave period is T = 4 in all cases, and the model input wave height is varied from H 0 = 0.06 to 0.2 with an incident wavelength of approximately λ = 12. The BEM discretization was selected following the same approach as in previous applications. The number of 270 nodes per wavelength is approximately 160 on the free surface. Since the 2D-NWT simulation is terminated once a breaker jet impacts the free surface, a fully stationary regular wave train can not be achieved. In the following, we will therefore only study the first breaking wave in the wave train, which is thus quasi-regular and not purely regular for the reasons explained above.

Both breaking and nearly breaking waves are investigated. For the non-breaking cases, only the first wave 275 of the quasi-regular wave train is studied for consistency with the breaking cases. Numerical experiments showed that, for this bar geometry, incident regular parameters with H 0 < 0.0708 (H 0 is the input parameter of the model) did not break (e.g. Figure 9 top panel), whereas those with a larger incident wave heights did break (e.g. Figure 9 bottom panel).

Table 3: Physical parameters and numerical results for computations of regular waves propagating over a submerged bar(Figure 5). The wave period is T = T / g/h 0 = 4 and the domain length is L = 62.4 for all cases. of [START_REF] Barthelemy | On a unified breaking onset threshold for gravity waves in deep and intermediate depth water[END_REF] and [START_REF] Derakhti | A unified breaking onset criterion for surface gravity water waves in arbitrary depth[END_REF], Figures 10 (b) and (d) show that only waves for which u c /c or u m /c becomes larger than 0.85 during shoaling over the bar will evolve towards breaking (see also Table 3). For breaking wave cases, the 95% confidence intervals are wider than for solitary waves, u c /c 0.926 ± 0.173 and u m /c 1.027 ± 0.09 at t b . u m /c is closer to a constant value than u c /c.

Simulations

Discussion and conclusions

In this study, numerical simulations were performed with a 2D-NWT to assess the ability of two kinematic breaking criteria u c /c and u m /c to predict correctly wave breaking onset for solitary and quasi-regular waves shoaling and breaking as spilling or plunging breakers over plane slopes or a mildly sloping bar.

The two breaking criteria only differ in the definition of the fluid velocity considered at the free surface:

the first criteria u c /c uses the horizontal component of the fluid velocity at the wave crest, while the second criteria u m /c uses the maximum fluid velocity on the front face of the wave. These two velocities are usually quite similar up to close to breaking onset, but may then differ significantly. Here, the results show that the maximum velocity at the free surface occurs closer to the location of the initiation of the overturning jet than the wave crest velocity (i.e. at maximum elevation). This finding, which is supported by some 3, which shows the related parameters values and results. Note, for the non-breaking cases, the reference time used (instead of t b ) corresponds to the time the crest reaches its maximum elevation.

experimental studies [START_REF] Perlin | An experimental study of deep water plunging breakers[END_REF][START_REF] Qiao | Gentle spilling breakers: crest flow-field evolution[END_REF], motivated the present investigation of the performance of the u m /c criterion in capturing the onset of wave breaking.

In the configurations considered in this paper, including the propagation of solitary waves over a plane beach, and solitary and quasi-regular waves over a submerged bar, u m /c was found to predict the breaking 305 onset with a higher accuracy than u c /c, which varied over a wider range. Considering all the results summarized in Tables 1 to 3, the Root-Mean-Square (RMS) errors have been computed and they are minimized considering the empirical thresholds 0.95 and 1.05 for u c /c and u m /c respectively. The RMS errors are then 6.3 and 3.2%, with respect to u c /c = 0.95 and u m /c = 1.05, respectively. In addition to this improvement in terms of RMS errors, the results here suggest that the initiation of overturning for spilling or plunging 310 breakers is captured more accurately when considering the location along the free surface of the maximum fluid velocity.

These findings may help explain the scatter observed in breaking thresholds reported in the literature for kinematic breaking criteria based on the horizontal fluid velocity at the crest [e.g. [START_REF] Stansell | Experimental investigation of wave breaking criteria based on wave phase speeds[END_REF][START_REF] Wu | Breaking criteria and energy losses for three-dimensional wave breaking[END_REF][START_REF] Banner | Wave breaking onset and strength for two-dimensional deep-water wave groups[END_REF][START_REF] Tian | Energy dissipation in two-dimensional unsteady plunging breakers and an eddy viscosity model[END_REF][START_REF] Saket | On the influence of wave breaking on the height limits of two-dimensional wave groups propagating in uniform intermediate depth water[END_REF]. However, the results presented here also showed that using u c in the criterion is acceptable when considering the onset of spilling and small plunging breakers. For these cases, u c /c is indeed close to 1 since the breaker jet forms close to the crest location. In contrast, for strong plunging breakers, u c /c < 1 at breaking onset, since u c underestimates the velocity representative of the breaker jet. In such cases, the plunging jet forms farther from the crest location. Therefore, the new kinematic criterion based on the maximum velocity observed along the free surface may be more universal, allowing improvements in the prediction of breaking onset for both spilling and plunging wave breaking. In all of the cases of breaking and non-breaking waves presented here, the results are consistent with the conclusions of [START_REF] Barthelemy | On a unified breaking onset threshold for gravity waves in deep and intermediate depth water[END_REF] that waves with B x = u c /c > 0.855 ± 0.005 will inevitably evolve towards breaking. This also appears to apply to u m /c.

This work demonstrates that u m /c ≈ 1 can be used as a robust and accurate breaking onset criterion for identifying the initiation of breaking for both solitary and quasi-regular breaking waves in shallow water conditions.

The implementation of this new breaking onset criterion thus requires calculating u m and c throughout the numerical domain. As previously mentioned, [START_REF] Stansell | Experimental investigation of wave breaking criteria based on wave phase speeds[END_REF] confirmed the validity of a variety of different approaches for calculating the phase velocity c . However, the calculation of the maximum fluid velocity at the free surface u m deserves more attention, and the approach implemented depends on the type of wave propagation model considered. For example, this term can be calculated from the velocity potential at the free surface in FNFP models using a variety of different approaches (e.g. High Order Spectral (HOS) [START_REF] Gouin | Development and validation of a non-linear spectral model for water waves over variable depth[END_REF][START_REF] Seiffert | Simulation of breaking waves using the high-order spectral method with laboratory experiments: Wave-breaking onset[END_REF], finite difference [START_REF] Bingham | On the accuracy of finite-difference solutions for nonlinear water waves[END_REF], finite difference-spectral methods [START_REF] Raoult | Validation of a fully nonlinear and dispersive wave model with laboratory non-breaking experiments[END_REF], or coupled local modes [START_REF] Belibassakis | A coupled-mode system with application to nonlinear water waves propagating in finite water depth and in variable bathymetry regions[END_REF], among others) to solve the Zakharov equations [START_REF] Zakharov | Stability of periodic waves of finite amplitude on the surface of a deep fluid[END_REF] at the free surface.Seiffert et al. [START_REF] Seiffert | Simulation of breaking waves using the high-order spectral method with laboratory experiments: Wave-breaking onset[END_REF] already successfully implemented [START_REF] Barthelemy | On a unified breaking onset threshold for gravity waves in deep and intermediate depth water[END_REF]'s criterion in a FNPF-HOS model, which supports the practical applicability of our proposed new definition of the kinematic criterion to phase-resolving wave models, provided there is an additional step in the computations, to identify u m instead of u c . In the case of commonly used Boussinesq-type models (e.g. [START_REF] Kennedy | Boussinesq modeling of wave transformation, breaking, and runup. I: 1D[END_REF][START_REF] Roeber | Shock-capturing boussinesq-type model for nearshore wave processes[END_REF][START_REF] Shi | Funwave-tvd, fully nonlinear boussinesq wave model with tvd solver, documentation and user's manual[END_REF][START_REF] Kazolea | Numerical treatment of wave breaking on unstructured finite volume approximations for extended boussinesq-type equations[END_REF], among others), the horizontal fluid velocity is solved at an arbitrary depth (close to mid-depth in general), and thus an additional approach is required to estimate the velocity at the free surface, such as extrapolating the mid-depth velocity to the free surface using a quadratic velocity profile.

This extrapolation can be challenging, since the terms necessary to compute the velocity at a level other than that around mid-depth involved second-order derivatives. Especially over an irregular bathymetry with an irregular free surface in the 2D horizontal plane, the numerical solution can be quite spiky, which can lead to unreliable values of the recomputed velocity at the free surface. Similar to the B x breaking criteria, the applicability of our new breaking criterion is thus directly related to the accuracy of this parametric vertical reconstruction, but in our case with an additional step to identify the location of the maximum velocity at each computational time step. The application of these types of breaking onset criteria in weakly nonlinear models should be further investigated. However, using the newly proposed criterion instead than B x may thus allow achieving a higher nonlinearity before dissipation is triggered in fully nonlinear wave models.

Note also, that the validity of u m /c in deep water conditions and for irregular and 3D waves has not yet been assessed. [START_REF] Grilli | Breaking criterion and characteristics for solitary waves on slopes[END_REF] have shown that there exists self-similarity of breaking geometries and properties, indicating a "local loss of memory" of the flow for the phenomenon that has caused breaking, suggesting that whether the pre-breaking waves are solitary, quasi-regular, or even irregular should not significantly affect the wave crest flow velocities at breaking onset. Still, rigorous validation of our new definition of the kinematic criterion in other situations would require further research. For the two configurations tested here, the convergence analysis results show that the reference discretization provides both converged and accurate results at t b . This discretization is the basis for all the simulations considered in this paper.
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 2 Computation of u c /c and u m /c in the 2D-NWT Computing the breaking onset criteria, u c /c and u m /c, at each time step of the 2D-NWT simulations requires calculating the horizontal fluid velocity at the wave crest, the maximum fluid velocity on the surface, and the wave phase speed.

Figure 1 :

 1 Figure 1: Definition sketch of numerical simulations with the 2D-NWT for solitary wave propagation over a plane slope.

Figure 2 :

 2 Figure 2: Absolute maximum numerical errors with respect to initial values computed with the method of [47], as a function of S 0 for the wave volume εv and total energy εe .

Figure 3 :

 3 Figure 3: Solitary wave propagation simulated with the 2D-NWT up to overturning of the wave crest for: (top panel, spilling breaker) a wave with an initial height H 0 = 0.6 over a 1:100 slope, and (bottom panel, plunging breaker) a wave with an initial height H 0 = 0.4 over a 1:15 slope. Curves a,b,c,d are results obtained for increasing times (discussed in the text). In each case, curve b corresponds to the breaking onset time t b , at which the front face of the wave becomes vertical. The locations of the crest (maximum elevation) and maximum velocity u m are marked by circle and square symbols, respectively.

Figure 4

 4 Figure 4 shows the breaking onset parameter values u c /c and u m /c computed for each case in Table 1, either as a function of time t -t b , or at t = t b as a function of S 0 . Both u c /c and u m /c increase continuously with time and, because the maximum fluid velocity is larger than the horizontal velocity at the crest, u m /c reaches larger values at t b than u c /c. Figures 4 (b) and (d) show that at breaking onset, u c /c ∈ [0.845-1.015] while u m /c ∈ [1.003 -1.101]. More specifically, u c /c value at breaking onset decreases with an increasingS 0 . For only spilling breakers and small plunging breakers (i.e. S 0 < 0.8), the 95% confidence interval of u c /c is u c /c = 0.992 ± 0.028 at breaking onset, but this value becomes much smaller for intense plunging breakers, u c /c = 0.902 ± 0.075. Considering all test cases, u c /c = 0.951 ± 0.104. In contrast, the corresponding 95% confidence interval of u m /c values at breaking onset is narrower, with u m /c 1.058 ± 0.057 for all the cases in Table1, which provides a good prediction of breaking onset even for strong plunging waves.

Figure 4 :

 4 Figure 4: Computations of solitary wave shoaling and overturning over a plane slope. Breaking onset criteria computed: (a,c) as a function of t -t b and (b,d) at t b as a function of the surf-similarity parameter S 0 . Each breaking wave is identified by a color and label identical to those listed in Table1, which shows the related parameters values and results. Labels indicate both slope and wave height with, for example, S020_H70 referring to a wave with H 0 = 0.70 propagating over a 1:20 slope.
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 10 uses the same bar geometry but instead evaluates the properties of breaking solitary waves propagating over the bar.

Figure 5 :

 5 Figure 5: Computational domain used in 2D-NWT simulations of solitary wave propagating over a submerged bar.

Figure 6 :

 6 Figure 6: Simulated free surface elevation of solitary waves propagating over a submerged bar: (top panel) H 0 = 0.1165 (nonbreaking case) and (bottom panel) H 0 = 0.2 (breaking case). Curves a,b,c represent different time steps. In the top panel, curve b corresponds to the time the crest reaches its maximum elevation, while in the bottom panel curve b corresponds to t = t b , i.e. breaking onset.

  230the 2D-NWT. Here, to reduce the computational effort, the domain is truncated, with a vertical wall specified at the toe of the bar back slope (x = 57.5). The computations were stopped before any reflections from the far end of the 2D-NWT could propagate back into the area of interest over the bar. The model input wave height in the different test cases varied from H 0 = 0.1106 to 0.3, with corresponding incident equivalent

Figure 7

 7 Figure 7 compares the breaking onset parameter values u c /c and u m /c computed for each case inTable 2, either as a function of time t -t b , or at t = t b as a function of H 0 . For non-breaking cases,

Figure 7 :

 7 Figure 7: Breaking onset criteria computed for the solitary waves propagating over a submerged bar: (a,c) as a function of t -t b and (b,d) at t b as a function of H 0 . Each wave is identified by a color and a label identical to those listed in Table2, which shows the related parameters values and results. Note, for the non-breaking cases, the reference time used (instead of t b ) corresponds to the time the crest reaches its maximum elevation.

Figure 8 :

 8 Figure 8: Computational domain used in 2D-NWT simulations of quasi-regular wave propagating over a submerged bar. An absorbing beach of length l AB is specified at the far-end of the domain, starting at x = 42.5.

Figure 9 :

 9 Figure 9: Simulated free surface elevations for quasi-regular waves of period T = 4 shoaling over a submerged bar: (top panel) H 0 = 0.065 (non-breaking case) and (bottom panel) H 0 = 0.12 (breaking case). Curves a,b,c represent different time steps. In the top panel, curve b corresponds to the time the crest reaches its maximum elevation, while in the bottom panel curve b corresponds to t = t b , i.e. the time of breaking onset.
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 2 Figure 10 compares the breaking onset parameter values u c /c and u m /c computed for each case in Table3, either as a function of time t -t b , or at t = t b as a function of H 0 . As in the previous section, for non-breaking cases, the reference time used (instead of t b ) corresponds to the time the crest reaches its maximum elevation. The evolution of the wave breaking onset criteria is recorded for the first wave of the wave train in each case. Similar to solitary waves, Figures10 (a) and (b) show that the conventional breaking onset criterion u c /c 1 does not allow distinguishing between breaking and non-breaking waves. Consistent with the findings

Figure 10 :

 10 Figure 10: Breaking onset criteria computed for the first wave in the wave train of regular waves (period T = 4) propagating over a submerged bar: (a,c) as a function of t -t b and (b,d) at t b as a function of H 0 . Each case is identified by a color and a label identical to those listed in Table3, which shows the related parameters values and results. Note, for the non-breaking cases, the reference time used (instead of t b ) corresponds to the time the crest reaches its maximum elevation.

Figure B. 1 :

 1 Figure B.1: Convergence analysis of the flow velocities uc (left) and u m (center) and of the wave phase velocity c (right) at t b as a function of the BEM grid discretization for the two beach slope configurations.

Figure B. 2 :

 2 Figure B.2: Convergence analysis of the breaking onset criteria uc/c (left) and u m/c (right) at t b as a function of the BEM grid discretization for the two beach slope configurations.

Figure B. 3 :

 3 Figure B.3: Convergence analysis of the the maximum errors of mass ( εv , left) and energy ( εe , right) of the solitary wave at t b as a function of the BEM grid discretization for the two beach slope configurations.

Figures B. 1

 1 Figures B.1 to B.3 and Tables B.1 and B.2 show the simulation results for both beach slope configurations and all of the grid discretizations for the flow velocities u c and u m , the wave phase velocity c, the breaking onset criteria u c /c and u m /c, and the maximum relative errors (in absolute value) of the wave volume and energy, ε v and ε e , with respect to the initial values computed with the method of [47]. For the S015_H60 configuration, the reference 100% node discretization has a very fine resolution, so the parameters in Figures B.1 and B.2 start converging for simulation with only a 60% node discretization.In contrast, the parameters for the S100_H60 configuration only start converging for the simulation with a 80% node discretization. Importantly, FigureB.3 shows that both relative numerical errors on mass and energy of the incident wave decrease significantly to acceptable levels for the converged simulations (to less than or about 0.01%).

Table 1 :

 1 Physical parameters and numerical results for computations of solitary wave shoaling over a plane beach.

	Simulations	s	H 0	S 0	λ	nd. per λ	L	u c /c	u m /c H b /h b
	S100_H70	1:100 0.70 0.018 19.28	202	80.0	1.008	1.079	1.022
	S100_H60* 1:100 0.60 0.020 20.24	212	80.0	0.995	1.074	1.036
	S100_H50	1:100 0.50 0.022 21.52	184	98.0	0.994	1.064	1.043
	S100_H40	1:100 0.40 0.024 23.16	198	98.0	0.996	1.071	1.048
	S100_H30	1:100 0.30 0.028 25.8	188	115.0 1.016	1.085	1.049
	S100_H20	1:100 0.20 0.034 30.47	222	115.0 1.006	1.028	1.058
	S050_H60	1:50 0.60 0.039 20.17	260	80.0	0.992	1.084	1.181
	S050_H40	1:50 0.40 0.048 30.32	348	80.0	0.988	1.087	1.259
	S050_H20	1:50 0.20 0.068 30.36	318	80.0	0.995	1.072	1.257
	S035_H60	1:35 0.60 0.056 20.16	328	51.5	0.978	1.081	1.314
	S035_H40	1:35 0.40 0.069 23.17	292	66.5	0.966	1.079	1.373
	S035_H30	1:35 0.30 0.079 25.87	326	66.5	0.968	1.085	1.407
	S035_H20	1:35 0.20 0.097 30.31	382	66.5	0.977	1.101	1.462
	S020_H70	1:20 0.70 0.091 19.23	424	38.0	0.914	1.026	1.649
	S020_H60	1:20 0.60 0.098 20.22	446	38.0	0.922	1.046	1.724
	S020_H50	1:20 0.50 0.108 51.41	390	46.0	0.931	1.061	1.792
	S020_H40	1:20 0.40 0.120 23.16	422	46.0	0.934	1.073	1.870
	S020_H20	1:20 0.20 0.170 30.23	478	53.0	0.892	1.046	2.180
	S015_H60	1:15 0.60 0.131 20.18	376	44.985 0.869	1.003	2.176
	S015_H50	1:15 0.50 0.143 21.47	400	44.985 0.868	1.012	2.296
	S015_H40*	1:15 0.40 0.160 23.19	432	44.985 0.866	1.018	2.441
	S015_H30	1:15 0.30 0.185 25.77	480	44.985 0.845	1.007	2.669

*Simulations appearing in Figure

3

Table 2 :

 2 Physical parameters and numerical results for computations of solitary waves propagating over a submerged bar. The domain length is L = 57.5 in all cases.

	Simulations	H 0	λ	nd. per λ	u c /c	u m /c Breaking H b /h b
	HBS1160	0.1106 29.78	434	0.776	0.782	No	0.52
	HBS1165*	0.1165 29.78	434	0.793	0.801	No	0.52
	HBS1170	0.1170 29.64	432	0.826	0.834	No	0.53
	HBS1175	0.1175 29.64	432	0.874	1.016	Yes	0.51
	HBS1500	0.15	26.62	388	1.080	1.006	Yes	1.17
	HBS2000*	0.2	23.60	344	0.926	1.050	Yes	1.34
	HBS2500	0.25	21.55	314	0.885	1.025	Yes	1.53
	HBS3000	0.3	20.04	292	0.923	1.067	Yes	1.74

*Simulations appearing in Figure

  Table B.1: Convergence of the position of wave breaking onset xc as a function of the computational domain discretization for the S100_H60 configuration. Simulations N f nd. per λ x c at t b Table B.2: Convergence of the position of wave breaking onset xc as a function of the computational domain discretization for the S015_H60 configuration.Simulations N f nd. per λ x c at t b

	100% of nodes 838	212	44.47
	90% of nodes	755	191	44.46
	80% of nodes	671	170	44.47
	70% of nodes	587	149	44.40
	60% of nodes	503	127	44.39
	50% of nodes	419	106	44.39
	40% of nodes	335	85	44.21
	30% of nodes	251	64	43.95
	20% of nodes	167	42	41.72
	100% of nodes 838	376	40.24
	90% of nodes	755	339	40.24
	80% of nodes	671	301	40.25
	70% of nodes	587	263	40.24
	60% of nodes	503	226	40.23
	50% of nodes	419	188	40.21
	40% of nodes	335	150	40.17
	30% of nodes	251	116	39.91
	20% of nodes	167	77	37.69
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Appendix A. Summary of the numerical model governing equations and numerical implementation The velocity potential φ(x, t) is used to represent inviscid irrotational 2D flows in the vertical plane (x,z), and the velocity is defined by u = ∇φ = (u, w). The continuity equation in the fluid domain Ω(t) with boundary Γ(t) is the Laplace equation for the potential:

The 2D-NWT model simulates 2D free-surface flows of an ideal fluid. Under such conditions, Green's second identity (with free space Green's function G(x,

transform the continuity equation for the velocity potential into a boundary-integral equation (BIE).

in which x = (x, z) and x l = (x l , z l ) are position vectors for points on the boundary, n is the unit outward normal vector, and α(x l ) is a geometric coefficient. Equation A.2 is solved by a BEM using a set of collocation nodes on the boundary and high-order elements to interpolate in between the collocation nodes. Integrals in A.2 are evaluated numerically, and the resulting algebraic system of equations is assembled and solved for the equivalent discretized problem. On the free surface Γ f (t), φ satisfies the nonlinear kinematic and dynamic boundary conditions,

respectively, with r the position vector of a free surface fluid particle, g the acceleration of gravity, z the vertical coordinate (positive upwards, with z = 0 at the undisturbed free surface), p a the atmospheric pressure, ρ the fluid density, and the material derivative being defined as,

Along the stationary bottom Γ B and the other fixed boundary Γ r2 , a no-flow condition is prescribed as,

The time updating is performed by integrating the fully nonlinear free-surface boundary conditions A.3 and A.4 using a Lagrangian Taylor series expansions of the free surface position r and potential φ.

Appendix B. Convergence of the model results as a function of the discretization

Here, a convergence analysis is presented for two solitary waves of incident height H 0 = 0.6 shoaling over different plane slopes (see Figure 1). The configuration S100_H60, with s = 1:100, leads to spilling wave breaking, while S015_H60, with s = 1:15, leads to plunging wave breaking. These two configurations have different spatial resolutions since their domain lengths L also differ (see Table 1). The sensitivity of the breaking onset parameters is evaluated for a variety of spatial resolutions in order to verify that the simulations are both accurate in terms of mass and energy conservation and have adequately converged.

The reference discretization of the BEM grid is the highest resolution case, which has N = 1038 nodes distributed along the free surface (N f = 838 nodes) and the bottom, left, and right boundaries of the computational domain. Here, different spatial resolutions are tested, defined as a percentage of nodes with respect to the reference discretization (which thus has 100% of the nodes).