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Abstract 1 

Stress is part of our daily lives and good health in the modern world is offset by unhealthy 2 

lifestyle factors, including the deleterious consequences of stress and associated pathologies. 3 

Repeated and/or prolonged stress may disrupt the body homeostasis and thus threatens our 4 

lives. Adaptive processes that allow the organism to adapt to new environmental conditions and 5 

maintain its homeostasis are therefore crucial. The adrenal glands are major 6 

endocrine/neuroendocrine organs involved in the adaptive response of the body facing stressful 7 

situations. Upon stress episodes and in response to activation of the sympathetic nervous 8 

system, the first adrenal cells to be activated are the neuroendocrine chromaffin cells located in 9 

the medullary tissue of the adrenal gland. By releasing catecholamines (mainly epinephrine and 10 

to a lesser extent norepinephrine), adrenal chromaffin cells actively contribute to the 11 

development of adaptive mechanisms, in particular targeting the cardiovascular system and 12 

leading to appropriate adjustments of blood pressure and heart rate, as well as energy 13 

metabolism. Specifically, this chapter covers the current knowledge as to how the adrenal 14 

medullary tissue remodels in response to stress episodes, with special attention paid to 15 

chromaffin cell stimulus-secretion coupling. Adrenal stimulus-secretion coupling encompasses 16 

various elements taking place at both the molecular/cellular and tissular levels. Here, I focus 17 

on stress-driven changes in catecholamine biosynthesis, chromaffin cell excitability, synaptic 18 

neurotransmission and gap junctional communication. These signaling pathways undergo a 19 

collective and finely-tuned remodeling, contributing to appropriate catecholamine secretion and 20 

maintenance of body homeostasis in response to stress. 21 

 22 

Keywords: stimulus-secretion coupling; splanchnic nerve; stress; remodeling of 23 

adrenomedullary tissue; chromaffin cells; synaptic transmission; gap junctions; secretory 24 

granules; peptides; catecholamine secretion25 
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1. Introduction 26 

Our organism is daily subjected to environmental changes that challenge body homeostasis. 27 

These changes are often perceived as stressors, with which the body copes via physiological 28 

and metabolic adaptive responses. Activation of the 'stress system' leads to behavioral and 29 

hormonal changes that improve the ability of the organism to adjust a state of 'threatened' 30 

homeostasis and increase its chances of survival. Among the endocrine/neuroendocrine tissues 31 

involved in the homeostatic response to stress, the adrenal glands are probably the most 32 

emblematic and best known to the general public. Who does not know the word 'adrenaline'? 33 

Who has never experienced an adrenaline rush during a stress episode? Behind stress-induced 34 

adrenaline release are intricate and complex regulatory mechanisms that prepare the body to 35 

fight or flight. 36 

 Let us begin this review with a brief introduction to the history of the biological concept 37 

of stress. A recognized founding father of the concept of stress is Hans Selye with his 38 

description of the 'General Adaptation Syndrome' (GAS). However, the history of the biology 39 

of stress begins earlier with the fundamental studies of James Reilly on the pathogenesis of 40 

many diseases (Hopkin & Laplane, 1978). Reilly was the first in the 1930s to demonstrate 41 

experimentally the unambiguous, non-specific response to infections of various origins, and the 42 

primary role of the sympathetic nervous system. Unlike Selye, the international dissemination 43 

of his work has been more modest. For the record, Reilly described intense reactions in response 44 

to bacterial products in certain animals, leading to death without being able to speak of an 45 

infection, and showed that the primary damage to the organism does not take place where the 46 

organic disorders appear, but targets the autonomic nervous system. From this nervous 47 

pathway, the damage is transmitted to more or less distant tissues/organs, where it is occurred 48 

secondarily. From this finding, James Reilly described the 'simple disease state syndrome', a 49 

multivalent syndrome occurring in any disease, better known as Reilly's syndrome. At the same 50 
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time, Hans Selye works on rats exposed to noxious stimuli, and in a short note published in 51 

Nature in 1936, he established the concept of GAS and gave a definition (Selye, 1936). In this 52 

note, Selye wrote ".... if the organism is severely damaged by acute non-specific nocuous agents 53 

such as ...., a typical syndrome appears, the symptoms of which are independent of the nature 54 

of the damaging agent or the pharmacological type of the drug employed, and represent rather 55 

a response to damage as such". GAS consists in three sequential steps, the alarm, resistance 56 

and exhaustion phases. In each of these, the adrenal glands, and the adrenomedullary tissue in 57 

particular, are critically involved.  58 

 The adrenal glands are composed of a double endocrine/neuroendocrine tissue, which 59 

encompasses the cortical and medullary zones. The adrenal cortex is activated by the 60 

hypothalamo-pituitary-adrenocortical axis and releases corticosteroids (mainly 61 

glucocorticoids). Increased levels of glucocorticoids induce anabolism processes that maintain 62 

or increase glycemia. Interestingly, adrenocortical secretions also impact the secretory activity 63 

of adrenomedullary chromaffin cells. The adrenomedullary tissue, which is mostly composed 64 

of chromaffin cells, contributes to maintain body homeostasis in reaction to stressful 65 

environmental changes via the release of catecholamines (mainly epinephrine) into the blood 66 

circulation in response to splanchnic nerve activation. By far, the largest reservoir of 67 

epinephrine in the body comes from adrenal chromaffin cells. Catecholamine secretion from 68 

adrenal chromaffin cells occurs via a mechanism initially described by W.W. Douglas 69 

(Douglas, 1968) and called 'stimulus-secretion coupling'. The initial stimulus comes from the 70 

sympathetic nervous system that releases acetylcholine at splanchnic nerve terminals synapsing 71 

onto chromaffin cells ((Douglas, 1968; Wakade, 1981) and reviewed in (Carbone, Borges, 72 

Eiden, Garcia, & Hernandez-Cruz, 2019; Guerineau, 2020)). This traditional view of stimulus-73 

secretion coupling, with electrical discharges invading the splanchnic nerve endings as the only 74 

physiological stimulus triggering catecholamine release in vivo, prevailed during many 75 
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decades. It was expanded in the early 2000s when a gap junction-mediated coupling between 76 

chromaffin cells entered the fray as a novel protagonist involved in catecholamine release 77 

(Martin, Mathieu, Chevillard, & Guerineau, 2001). Indeed, studies performed both in acute 78 

adrenal slices and in anaesthetized rodents revealed that the local communication mediated by 79 

gap junctions between chromaffin cells represents a functional route by which biological 80 

signals (electrical activity, second messengers...) propagate between adjacent cells and 81 

subsequently generate instructive signals to trigger hormone secretion (Desarmenien et al., 82 

2013; Martin, Mathieu, Chevillard, & Guerineau, 2001). 83 

 At rest, these two signalling pathways are in equilibrium and the adrenal secretion of 84 

catecholamines is minimal. Stress challenges this homeostasis, either briefly for an acute stress 85 

or more robustly for a chronic stress, but in all cases, stress triggers a huge secretion of 86 

catecholamines. This cannot be properly achieved without the remodeling of the 87 

adrenomedullary stimulus-secretion coupling. Here, I propose to review the adaptive 88 

mechanisms that take place in the stressed adrenal medulla, but because the elementary 89 

components of the stimulation-secretion coupling are quite a few, the choice has been made to 90 

focus on only some of them. The author apologizes for those that are not covered in this chapter. 91 

I also apologize to those authors contributing to this field, whose articles were not cited because 92 

of space limitations. 93 

 94 

2. Adrenomedullary stimulus-secretion coupling: a multi-faceted mechanism 95 

for a continuous adaptation to stress-induced homeostasis changes 96 

The concept of stimulus-secretion is born in the sixties from the works of Douglas, Rubin and 97 

Poisner (Douglas, 1968). Through a series of inaugural articles, the authors deciphered the 98 

mechanisms by which acetylcholine stimulates catecholamine secretion (Douglas, Kanno, & 99 

Sampson, 1967a, 1967b; Douglas & Poisner, 1966; Douglas & Rubin, 1961a, 1961b, 1963; 100 
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Poisner & Douglas, 1966). Since these pioneer studies, numerous publications have added to 101 

our knowledge of the adrenal stimulus-secretion coupling. 102 

 Stimulus-secretion coupling relies on various mechanisms, which take place both at 103 

cellular (i.e. chromaffin cells) and tissular (i.e. medulla) levels ((Guerineau, Campos, Le 104 

Tissier, Hodson, & Mollard, 2022) for a recent review). Within the adrenomedullary tissue, 105 

chromaffin cells are arranged in lobules surrounded by connective tissue. Chromaffin cells are 106 

the neurosecretory unit of the stimulus-secretion coupling and are responsible for the secretion 107 

of catecholamines (epinephrine (E) and norepinephrine (NE)) and others compounds such as 108 

chromogranins and peptides. The adrenal medulla secretion is chiefly activated by a neuronal 109 

pathway originated from the thoracic spinal cord and driven by the splanchnic nerve fibers that 110 

synapse onto chromaffin cells (Fig. 1). The number of synaptic boutons that innervate a single 111 

chromaffin cell depends on animal species; it is, for example, between 1 and 4 in the rat 112 

(Kajiwara, Sand, Kidokoro, Barish, & Iijima, 1997). Electrical activity of the splanchnic nerve 113 

patterns the synaptic release of acetylcholine (ACh) and consequently the cholinergic 114 

stimulation of chromaffin cells (Fig.1, black pathway). Although ACh is the primary 115 

neurotransmitter engaged at the splanchnic nerve-chromaffin cell synapse, other molecules 116 

such as neuropeptides can take over (Guerineau, 2020 for a review), in particular under stress 117 

conditions (Eiden, Emery, Zhang, & Smith, 2018) (see below). In addition to the neuronal 118 

command, a local route delineated by gap junctions between chromaffin cells contributes also 119 

to the secretory process (Colomer, Desarmenien, & Guerineau, 2009; Colomer, Martin, 120 

Desarmenien, & Guerineau, 2012; Desarmenien et al., 2013; Martin, Mathieu, Chevillard, & 121 

Guerineau, 2001) (Fig. 1, red pathway). In response to an increased demand for catecholamines 122 

(during a stress episode for example), these two pathways remodel to achieve optimal secretion. 123 

This functional adaptation, associated with the intrinsic remodeling of chromaffin cells (see 124 
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below), is not only the pivotal event of the 'fight-or-flight' response, but also contributes to the 125 

body's adaptation to stressors such as cold, hypoglycemia, exercise or hypotension. 126 

 127 

[Insert Figure 1 here] 128 

Fig. 1: Schematic representation of the adrenal medulla stimulus-secretion coupling: two 129 

regulatory levels for an accurate control of basal and stress-triggered catecholamine 130 

secretion. The neuroendocrine chromaffin cells (grey-filled cells) are under the dual control of 131 

synaptic inputs arising from the splanchnic nerve terminals (in black) and gap junctions (in 132 

red). The primary neurotransmitter released by splanchnic nerve terminals is acetylcholine 133 

(ACh), but under stress conditions, neuropeptides (such as PACAP, see below) are released 134 

concomitantly to ACh. In addition to the synaptic transmission, a gap junction-driven route 135 

promotes diffusion of biologically active molecules between coupled cells and as such actively 136 

contributes to the secretory process. 137 

 138 

 139 

2.1 The neural command 140 

 The perception of a stress activates the sympathetic nervous system and triggers an acute 141 

response in which the splanchnic nerve and the adrenal chromaffin cells are two crucial players 142 

(Fig. 2A). The splanchnic nerve encodes the stress signal by varying its electrical discharge 143 

frequency and the encoded signal is then transduced to the adrenal medulla/chromaffin cells. 144 

At rest (corresponding to homeostatic physiological conditions), the splanchnic nerve fires at a 145 

moderate rate (< 1Hz) (Fulop, Radabaugh, & Smith, 2005; Holman, Coleman, Tonta, & 146 

Parkington, 1994; Wakade, 1981; Wolf, Zarkua, Chan, Sridhar, & Smith, 2016). This basal 147 

sympathetic tone allows maintaining the basal body homeostasis in terms of heart rate, blood 148 

pressure, energy consumption/expenditure. Under these resting conditions, adrenal chromaffin 149 
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cells secrete modest amounts of catecholamines into the blood circulation. This contrasts with 150 

stress conditions in which the sympathetic tone drastically increases and the frequency of 151 

splanchnic nerve action potential discharges reaches several Hz (Fulop, Radabaugh, & Smith, 152 

2005; Holman, Coleman, Tonta, & Parkington, 1994; Wakade, 1981; Wolf, Zarkua, Chan, 153 

Sridhar, & Smith, 2016). As a result, chromaffin cells release a surge of catecholamines, NE 154 

and/or E, in the blood circulation. 155 

 156 

[Insert Figure 2 here] 157 

Fig. 2: Splanchnic nerve and chromaffin cells: two key players of the adrenal stimulus-158 

secretion coupling. (A) Within the adrenal medullary tissue, chromaffin cell is the pivotal 159 

neurosecretory unit connecting the electrical activity of the splanchnic nerve to the release of 160 

catecholamines into the blood circulation (left panel). Hidden under a single classification, 161 

chromaffin cells actually exhibit two distinct phenotypes (right panel). Depending on the 162 

presence of phenylethanolamine N-methyltransferase (PNMT), enzyme converting 163 

norepinephrine (NE) into epinephrine (E), a 'chromaffin cell' can be noradrenergic and secretes 164 

NE or adrenergic and secretes E. Note that the two first enzymes involved in catecholamine 165 

biosynthesis (TH and DbH) are common whatever the secretory phenotype. (B) Chromaffin 166 

cells are excitable cells, exhibiting action potentials which can fire either regularly (left chart) 167 

or in bursts (right chart). The recordings plotted here correspond to spontaneous electrical 168 

activity recorded in mouse chromaffin cells in acute adrenal slices. 169 

 170 

 In addition to the nervous command mediated by the sympathetic endings of the 171 

splanchnic nerve, the adrenal vascularization also significantly contributes to the stimulus-172 

secretion coupling, at two levels. First, the affluent blood supply carries secretatogues (such as 173 

histamine, bradykinin, or angiotensin...) to the medulla, where they can exert their 174 
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activating/inhibiting action on catecholamine secretion. Second, the medulla vasculature has a 175 

dedicated function of release of hormones in the general blood circulation. The adrenal blood 176 

supply depicts a centripetal circulation. The medulla receives blood both from the cortex 177 

through an arteriolar plexus and from a direct supply through medullary arteries (Coupland & 178 

Selby, 1976). They penetrate the medulla and end in capillaries. The effluent blood containing 179 

the adrenomedullary secretory products (hormones, peptides, chromogranins and derived-180 

factors...) is collected into a central vein, which projects into the renal vein for the left gland 181 

while the venous blood flowing from the right gland is directly drained into the inferior vena 182 

cava. It is also interesting to note that neural and vascular commands interact with each other, 183 

as illustrated by the fact that the splanchnic nerve stimulation (or stressors as hemorrhage, 184 

hypoxia, hypotension) raises the rate of blood flow throughout the adrenal gland (Breslow, 185 

1992; Breslow, Jordan, Thellman, & Traystman, 1987; Edwards, 1982; Hinson, Cameron, 186 

Purbrick, & Kapas, 1994; Kennedy, Breslow, Tobin, & Traystman, 1991). Reciprocally, 187 

adrenal denervation leads to an overall decrease in blood flow (Breslow, Jordan, Thellman, & 188 

Traystman, 1987). 189 

 190 

2.2 The nature of catecholamines secreted 191 

 Behind the common classification of 'chromaffin' cells, there are actually two cell types 192 

with distinct phenotypes. The standard and simplistic view is that depending on the presence of 193 

the enzyme phenylethanolamine N-methyltransferase (PNMT), which mediates the 194 

methylation of NE to form E, a 'chromaffin' cell can be noradrenergic and releases NE or 195 

adrenergic and releases E (Fig. 2A, right panel). A recent article published by Borges' lab 196 

(Gonzalez-Santana et al., 2020) argues for a more complex picture. In the absence of E (in 197 

PNMT-deficient animals for example), a chromaffin cell can retain its phenotype of an 198 

'adrenergic' cell (i.e. structural characteristics such as shape and electron density of granules). 199 
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'Adrenergic' granules can store NE (instead of E), but at lower efficiency. The authors end their 200 

article with an exciting, emerging and somewhat puzzling concept, namely "an adrenergic cell 201 

is not adrenergic because it contains EPI (= E) but rather, it contains EPI because it is an 202 

adrenergic cell". The discussion is open.... 203 

 Within the adrenal medullary tissue, the proportion of NE- and E-secreting chromaffin 204 

cells differs between species. E cells are more numerous than NE cells in the rat, mouse, cat, 205 

dog, hamster, ox, rabbit, chipmunk and humans (Edwards, Anderson, Southwell, & McAllen, 206 

1996; Lundberg et al., 1979; Lundberg et al., 1986; Suzuki & Kachi, 1996), with a ratio E:NE 207 

cells of 4:1 in the rat (Tomlinson, Durbin, & Coupland, 1987; Verhofstad, Coupland, Parker, 208 

& Goldstein, 1985) and mouse (Iwasa, Oomori, & Tanaka, 1999). In the rabbit and chipmunk, 209 

NE-containing cells are scarcely observed (Suzuki & Kachi, 1996). Conversely, NE cells are 210 

the more abundant chromaffin cell type expressed in the adrenal medulla of the pig (Suzuki & 211 

Kachi, 1996) and japanese quails (El-Desoky & Mustafa, 2021). 212 

 Whether a 'stressed' adrenal gland releases NE, E or NE+E in response to stress depends 213 

on the nature of the stress (Pacak et al., 1995). The variability in the E:NE release ratio also 214 

implies that E- and NE-secreting chromaffin cells can be differentially stimulated. Cold stress 215 

leads to a selective secretion of NE (Vollmer, 1996). E is the main catecholamine secreted in 216 

response to haemorrhage (Glaviano, Bass, & Nykiel, 1960) and insulin-induced hypoglycemic 217 

stress (Vollmer, Balcita, Sved, & Edwards, 1997; Vollmer et al., 1992), acute immobilization 218 

or restrain stress (Jeong et al., 2000). Repeated immobilization stress and hypoxia mobilize 219 

both E and NE secretions (Jeong et al., 2000; Kumar et al., 2006). 220 

 221 

2.3 Intrinsic electrical activity of chromaffin cells 222 

In addition to stressor-specific NE and E release, NE and E secretion display a specific 223 

frequency dependence (Damase-Michel et al., 1993). Chromaffin cells (NE-secreting and E-224 
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secreting cells) are excitable cells and exhibit action potentials that fire spontaneously or in 225 

response to a depolarizing stimulus (Guerineau, 2023). Interestingly, the spiking activity pattern 226 

can be either regular with action potentials discharging with a constant time interval between 227 

spikes, or in burst alternating between firing and silent periods (Fig. 2B). Bursts were clearly 228 

identified in mouse and rat chromaffin cells, both in vitro in cultured isolated cells (Marcantoni 229 

et al., 2023; Marcantoni et al., 2010; Vandael et al., 2015), ex vivo in acute adrenal slices 230 

(Milman et al., 2021) and in vivo in anaesthetized animals (Desarmenien et al., 2013). In human, 231 

chromaffin cells spike irregularly alternating between firing and silence periods, but burst 232 

discharges were not clearly identified (Hernandez-Vivanco et al., 2017). Although not 233 

investigated in detail in all species, distinct firing patterns impact the secretory function of 234 

chromaffin cells and as such, is of great physiological interest. Indeed, the bursting mode has 235 

been reported to efficiently stimulate catecholamine secretion (Duan, Yu, Zhang, & Zhou, 236 

2003; Vandael et al., 2015). It is noteworthy that bursts, if not triggered spontaneously as 237 

observed in mouse chromaffin cells, can be elicited by various physiological or 238 

pharmacological stimuli. Neurotransmitters ((Carbone, Borges, Eiden, Garcia, & Hernandez-239 

Cruz, 2019) for a review) or changes in the expression and availability of ion channels involved 240 

in action potential generation (Lingle, Martinez-Espinosa, Guarina, & Carbone, 2018; 241 

Marcantoni et al., 2010; Martinez-Espinosa, Yang, Gonzalez-Perez, Xia, & Lingle, 2014; 242 

Nassar-Gentina, Pollard, & Rojas, 1988; Vandael, Marcantoni, & Carbone, 2015; Vandael et 243 

al., 2015) or extracellular pH (Guarina, Vandael, Carabelli, & Carbone, 2017) can generate a 244 

bursting electrical activity. Ion channels operated near the resting membrane potential 245 

(classified as 'leak' or 'background' channels), through their ability to set the membrane potential 246 

close to the threshold value for triggering action potentials, can also contribute to generate 247 

bursts of electrical activity in chromaffin cells (Guerineau, Monteil, & Lory, 2021; Milman et 248 

al., 2021). Interestingly, the two electrical activity patterns spontaneously co-exist in a single 249 
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chromaffin cell (Milman et al., 2021), highlighting complex regulatory mechanisms of the 250 

electrical activity and therefore of the secretory response at the level of a single cell. Keeping 251 

in mind that the adrenal medulla is composed of thousands to millions chromaffin cells, this 252 

renders the stimulus-secretion coupling at the level of the whole medulla much more intricate. 253 

 As such, from this introduction chapter, it clearly appears that the adrenal medulla 254 

stimulus-secretion coupling is a multi-determinant process involving both extra- (splanchnic 255 

nerve electrical activity) and intra-adrenal components (chromaffin cell excitability, 256 

cholinergic/peptidergic neurotransmission, gap junctional communication, intra-adrenal 257 

vasculature). It is the integration of the response to each determinant that will, in fine, pattern 258 

the adrenomedullary secretory behavior. Taking the stress response as an example, the chapters 259 

below illustrate the remarkable aptitude of the adrenal medullary tissue to remodel and generate 260 

a secretory response that allows the body to cope with adverse situations and return to resting 261 

homeostasis. This review is not intended to be exhaustive on every item but rather to present 262 

an overview of the cellular/tissular mechanisms by which the adrenal medulla remodels under 263 

stress conditions. 264 

 265 

3. The 'stressed' adrenal medulla 266 

3.1 Stress-induced macroscopic changes in the adrenal gland 267 

An increase in the adrenal gland weight is a hallmark of the adrenal response to stress and has 268 

long been used to assess stress levels in an animal. This parameter is reliable and does not 269 

depend either on the species (rat, mouse), the strain, nor the stress paradigm (chronic cold 270 

exposure, auditory stress, unpredictable chronic mild stress, restrain stress, chronic social 271 

isolation, chronic social defeat stress) ((Almeida-Reis et al., 2010; Colomer, Olivos Ore, et al., 272 

2008; Jurtshuk, Weltman, & Sackler, 1959; Kaiser & Sachser, 1998; Welch & Welch, 1969) 273 

for selected examples in rat, mouse and guinea-pig). As reported by Lemaire and colleagues, 274 
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the adrenal weight mostly depends on the activity of the hypothalamus-pituitary-adrenal axis 275 

(Lemaire, Le Moal, & Mormede, 1993). The increased weight of the adrenal glands in stressed 276 

animals likely reflects a weight gain in both the cortical and medullary tissues. Indeed, via their 277 

respective hormone secretions (mainly glucocorticoids for the cortex and epinephrine for the 278 

medulla), these two tissues are key players of the organism's response to stress. An increased 279 

volume of the adrenal medulla has been reported, in particular in the mouse, in response to 280 

unpredictable chronic stress (Santana et al., 2015), water-maze Morris’ test (Tuma, Kolinko, 281 

Jelinkova, Hilber, & Cendelin, 2017) or social stress (Rodriguez-Sureda, Lopez-Tejero, 282 

Llobera, & Peinado-Onsurbe, 2007). 283 

 284 

3.2 Stress-induced remodeling of catecholamine-synthesizing enzymes 285 

Catecholamine biosynthesis requires several enzymes acting sequentially along the production 286 

pathway. The first enzyme is tyrosine hydroxylase (TH), followed by dopamine beta 287 

hydroxylase (DbH) and then the terminal enzyme phenylethanolamine-N-methyltransferase 288 

(PNMT), which mediates the methylation of NE by S-adenosylmethionine to form E. For each 289 

enzyme, the expression level of the transcript, the protein level and the enzyme activity can be 290 

modified in response to stress ((Kvetnansky & Sabban, 1998) for a review, Table 1 for acute 291 

stress and Table 2 for chronic stress). Note also that protein levels and enzyme activity are not 292 

always commensurate with mRNA changes. This is particularly true for PNMT, as post-293 

transcriptional and post-translational steps are subject to additional regulatory controls. 294 

 295 

[Insert Table 1 here] 296 

Table 1: Effect of various acute stress on gene expression, protein level and enzymatic 297 

activity on catecholamine biosynthetic enzymes 298 

 299 
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 300 

Although an individual analysis, enzyme by enzyme, stress by stress, species by species, shows 301 

a certain degree of variability, the data collectively converge towards an increase in enzyme 302 

expression and activity in both acutely and chronically stressed animals. An exception to this 303 

conclusion is prenatal hypoxia. A few days exposure to low oxygen supply (10% O2) during 304 

gestation results in a decreased expression in catecholamine-synthesizing enzymes. This 305 

indicates that hypoxic conditions trigger specific regulatory mechanisms. The timing of adrenal 306 

gland sampling after an acute stress exposure (immediately or several hours after stress 307 

cessation) is also a factor of variability. For example, the increase in DbH mRNA expression is 308 

not detectable immediately in response to a single immobilization stress (Kvetnansky et al., 309 

2004; McMahon et al., 1992) but becomes significant several hours later (Kvetnansky et al., 310 

2008; Kvetnansky et al., 2004). Similarly, the increased expression in TH protein requires 311 

several hours before being detected (Nankova et al., 1994). The same applies to TH activity 312 

which remains unchanged immediately after stress (McMahon et al., 1992) but increases 3 313 

hours later (Kvetnansky, Rusnak, Dronjak, Krizanova, & Sabban, 2003), or PNMT activity 314 

which becomes elevated 6 hours after stress (Kvetnansky, Weise, & Kopin, 1970). 315 

 316 

[Insert Table 2 here] 317 

Table 2: Effect of various chronic stress on gene expression, protein level and enzymatic 318 

activity on catecholamine biosynthetic enzymes 319 

 320 

 321 

 By which mechanisms are the adrenomedullary catecholamine-synthesizing enzymes 322 

regulated in control and stressed animals? Consistent with the adrenal gland anatomy, both 323 

neuronal (linked to splanchnic nerve activity) and humoral (linked to endocrine activity of the 324 
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adrenal cortex) mechanisms can be involved. Note that they are not mutually exclusive. I 325 

summarize the principal knowledge here, detailed information can be found in many review 326 

articles including (Kvetnansky, Lu, & Ziegler, 2013; Kvetnansky, Sabban, & Palkovits, 2009; 327 

Nankova & Sabban, 1999; Sabban & Kvetnansky, 2001). 328 

 Splanchnic nerve electrical activity, which increases during stress episodes, leads to an 329 

increased activity of several of the catecholamine biosynthetic enzymes. This regulatory 330 

mechanism has been initially described by Axelrod and colleagues and named 'trans-synaptic 331 

induction' (Thoenen, Mueller, & Axelrod, 1969b). TH activity is induced by the activity of the 332 

splanchnic nerve in rat, resulting in an increased rate of catecholamine biosynthesis. 333 

Strengthening a neuronal induction of TH, treating animals with agents that interfere with the 334 

post-ganglionic sympathetic transmission increases both Th mRNA levels (Dagerlind, 335 

Schalling, Eneroth, Goldstein, & Hokfelt, 1990) and TH activity (Mueller, Thoenen, & 336 

Axelrod, 1969a, 1969b; Patrick & Kirshner, 1971; Thoenen, Mueller, & Axelrod, 1969a; 337 

Thoenen, Mueller, & Axelrod, 1969b). It is noteworthy that the trans-synaptic induction of TH 338 

is a robust process as it occurs not only in rats, but also in mice, rabbits and guinea pigs 339 

(Mueller, Thoenen, & Axelrod, 1969b). Regarding the other enzymes involved in 340 

catecholamine biogenesis, an increased DbH activity is observed in response to splanchnic 341 

nerve stimulation in goats (Yamada, Nakazato, Ito, Teraoka, & Ohga, 1988) and reserpine 342 

treatment in rats (Molinoff, Brimijoin, Weinshilboum, & Axelrod, 1970; Patrick & Kirshner, 343 

1971). While steady state levels of DbH are under hormonal control by the cortex 344 

(Weinshilboum & Axelrod, 1970), an increase in DbH synthesis requires trans-synaptic 345 

mechanisms (Ciaranello, Wooten, & Axelrod, 1975). For PNMT, the role of the splanchnic 346 

nerve activity in its induction is less obvious and the pioneering studies of Axelrod and 347 

colleagues identified the corticoid-mediated humoral pathway as the main mechanism for 348 

induction of PNMT activity (Wurtman & Axelrod, 1965, 1966). A reserpine treatment induces 349 
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a decrease in Pnmt mRNA in the rat adrenal gland (Dagerlind, Schalling, Eneroth, Goldstein, 350 

& Hokfelt 1990; Schalling et al., 1988), which is prevented by dexamethasone or ACTH 351 

(Dagerlind, Schalling, Eneroth, Goldstein, & Hokfelt, 1990), indicating also the involvement 352 

of a humoral component. A moderate but significant increase in PNMT activity have been also 353 

reported in 6-hydroxydopamine-treated rats (Mueller, Thoenen, & Axelrod, 1969a; Thoenen, 354 

Mueller, & Axelrod, 1970). The increase is abolished in denervated glands, indicating the 355 

presence of a neuronal component in the induction of PNMT. Later on, Lee and colleagues 356 

(Lee, Raia, Tonshoff, & Evinger, 1999) identified in Pnmt gene promoter sequences capable of 357 

conveying responsiveness to neuronal stimuli. The current consensus is that PNMT is regulated 358 

by both hormonal and neural stimuli. At steady state, the catalytic activity of PNMT is 359 

predominantly glucocorticoid-regulated, orchestrated by the pituitary gland and the adrenal 360 

cortex. Circulating glucocorticoids inducing Pnmt mRNA at maximal level, a further elevation 361 

of PNMT level above the steroid-maintained plateau, requires other mechanisms. In this 362 

context, splanchnic nerve impulses induce the synthesis of de novo PNMT molecules 363 

(Ciaranello & Black, 1971; Wong, Bildstein, Siddall, Lesage, & Yoo, 1993). 364 

 In stressed animals, the mechanisms regulating the activity of catecholamine-365 

synthesizing enzymes are similar to those occurring in control animals. The rise in TH activity 366 

observed in stressed rats (cold exposure or repeated immobilization paradigm) is abolished 367 

when the splanchnic nerve is sectioned (Kvetnansky, Weise, & Kopin, 1970; Thoenen, 1970). 368 

As previously reported in control animals, the regulation of PNMT activity by neuronal activity 369 

is less obvious and could depend on the nature of the stress. In rats subjected to chronic social 370 

stress, the increase in PNMT activity is fully abolished by splanchnicotomy (Lemaire, Le Moal, 371 

& Mormede, 1993). By contrast, in repeatedly immobilized rats, despite PNMT activity is 372 

somewhat decreased in the denervated gland when compared to the intact gland, the rise in the 373 

enzyme activity persists in the denervated adrenal (Kvetnansky, Weise, & Kopin, 1970), 374 
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indicating that the neuronal pathway is not the main mechanism involved in the regulation of 375 

PNMT activity. Thus, the two most important enzymes involved in catecholamine biosynthesis 376 

(TH as the rate-limiting enzyme and PNMT as the enzyme converting NE into E) are 377 

differentially regulated, the first being chiefly under a neuronal control and the second being 378 

controlled by both humoral and neuronal factors, with a more important contribution of the 379 

humoral (anterior pituitary-adrenocortical) system. 380 

 After identifying that catecholamine-synthesizing enzymes can be regulated through 381 

two distinct pathways, let us then examine which factors are involved. At the adrenomedullary 382 

synapses, under resting conditions, the splanchnic nerve releases ACh, while in stress 383 

conditions, a composite cholinergic and peptidergic release takes place (see Guerineau, 2020). 384 

As such, ACh and neuropeptides can potentially impact catecholamine biosynthetic enzymes. 385 

 386 

3.2.1. Neuronal cholinergic control: role of ACh and nAChR/mAChR activation 387 

Several lines of evidence collected from various animal species and various adrenal 388 

preparations (chromaffin cell cultures, adrenal gland sections) argue for a crucial role played 389 

by ACh through activation of nicotinic (nAChRs) and muscarinic (mAChRs) receptors. 390 

Collectively, ACh and nAChR agonists positively regulate TH, as illustrated by these few 391 

examples. i) Carbachol (which activates both nAChRs and mAChRs), but not muscarine 392 

increases Th mRNA synthesis, TH protein level and activity in cultured bovine chromaffin cells 393 

(Craviso, Hemelt, & Waymire, 1992). ii) The nAChR agonist 1,1-dimethyl-4-394 

phenylpiperazinium increases both Th gene transcription, Th mRNA level, TH protein level 395 

and activity (Craviso, Hemelt, & Waymire, 1992). iii) nicotine elicits the induction of Th 396 

mRNA, and increases the transcription rate of Th gene (Fossom, Carlson, & Tank, 1991) and 397 

TH enzyme activity in the rat adrenal medulla (Fossom, Carlson, & Tank, 1991; Fossom, 398 

Sterling, & Tank, 1991; Yoshimura, Xu, Sun, & Tank, 2004). Although less obvious and 399 
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consensus than the nicotinic regulation, a mAChR-mediated regulation of TH also occurs. In 400 

the rat, the pharmacological inhibition of mAChRs by atropine increases TH activity (Mueller, 401 

Thoenen, & Axelrod, 1970b). Chronic injections of bethanechol, a mAChR agonist, induce Th 402 

mRNA, but do not change TH protein level or activity (Yoshimura, Xu, Sun, & Tank, 2004). 403 

Mechanistically, the effect of ACh on TH activity is associated with protein phosphorylation, 404 

one of the major mechanisms for controlling the activity of TH in sympathetic tissues, including 405 

the adrenal medulla (Dunkley & Dickson, 2019). Upon cholinergic (nicotinic or muscarinic) 406 

stimulation, TH protein is phosphorylated, mostly on Ser19 and Ser31 residues (Haycock & 407 

Wakade, 1992). 408 

 Regarding DbH, the effects of cholinergic agonists and nAChR/mAChR activation have 409 

been less investigated. At transcriptional level, nicotine stimulates Dbh gene expression in 410 

PC12 cells (Gueorguiev, Zeman, Meyer, & Sabban, 2000), while in floating rat adrenal gland 411 

sections, the expression of Dbh is not significantly induced by nicotine (Jahng, Houpt, Joh, & 412 

Wessel, 1997). At functional level, an ACh-mediated increase in DbH activity has been 413 

reported in goat adrenal glands (Yamada, Nakazato, Ito, Teraoka, & Ohga, 1988). The mAChR 414 

agonist oxotremorine increase DbH activity in rat adrenal glands (Lima & Sourkes, 1986). 415 

 Like TH and DbH, PNMT is also regulated by cholinergic agonists (Wong, Anderson, 416 

& Tai, 2002). In cultured bovine chromaffin cells, ACh, nicotine, carbachol and muscarine 417 

increase the expression of Pnmt mRNA (Evinger, Ernsberger, Regunathan, Joh, & Reis, 1994; 418 

Stachowiak, Hong, & Viveros, 1990). The effect is reduced when cells are bathed in presence 419 

of hexamethonium or atropine, supporting thus a dual nicotinic and muscarinic component. 420 

Nicotine, carbachol and muscarine activate Pnmt promoter (Morita & Wong, 1996; Wong, 421 

Anderson, & Tai, 2002), through a cAMP/protein kinase A-dependent transduction pathway 422 

(Wong, Anderson, & Tai, 2002). The effect of these cholinergic agonists on Pnmt promoter 423 

activation is preceded by an increase in the mRNA level of the immediate early gene 424 
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transcription factor Early growth response (Egr)-1 (Morita, Bell, Siddall, & Wong, 1996; 425 

Morita & Wong, 1996). Although this finding provides a strong support for the involvement of 426 

Egr-1 in the neural regulation of Pnmt gene expression in the rat adrenal gland, other factors 427 

such as the neural crest-associated developmental transcription factor Activating enhancer 428 

binding Protein (AP)-2, the ubiquitous transcription factor Specificity protein (Sp)1, the 429 

tumorigenic factor Myc-associated zinc-finger protein, (MAZ) and the glucorcorticoid receptor 430 

(GR) fuel the list of transcriptional activators of the Pnmt gene (Wong, 2003; Wong, Siddall, 431 

Ebert, Bell, & Her, 1998). Interestingly, these factors can act cooperatively, leading to 432 

synergistic activation of Pnmt promoter well beyond their independent contributions (Wong, 433 

Siddall, Ebert, Bell, & Her, 1998). 434 

 435 

3.2.2. Neuronal peptidergic control: a major role for PACAP 436 

Under resting conditions, ACh is the primary neurotransmitter released at the splanchnic nerve-437 

chromaffin cell synapse. However, under stress conditions a peptidergic neurotransmission 438 

mediated by the pituitary adenylate cyclase-activating polypeptide (PACAP) takes over (Eiden, 439 

Emery, Zhang, & Smith, 2018; Smith & Eiden, 2012; Stroth, Holighaus, Ait-Ali, & Eiden, 440 

2011), thus making PACAP as dormant regulator of catecholamine-synthesizing enzymes. The 441 

effect of PACAP on PNMT, in particular on Pnmt promoter, is well described (Wong, 442 

Anderson, & Tai, 2002). PACAP rapidly activates Pnmt promoter and contrasting with the 443 

transient activation mediated by cholinergic agonists, the effect is long-lasting and no 444 

desensitization is observed through 48 hours. This is consistent with the takeover of PACAP 445 

over ACh and appears particularly relevant in the context of stress, in which the secretion of 446 

catecholamines needs to be sustained, even prolonged. In bovine chromaffin cells, PACAP 447 

elevates levels of Th, DbH and Pnmt mRNAs (Tonshoff, Hemmick, & Evinger, 1997) and 448 

stimulates TH protein level and activity (Bobrovskaya, Gelain, Gilligan, Dickson, & Dunkley, 449 
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2007; Marley, Cheung, Thomson, & Murphy, 1996). In PC12 cells, PACAP stimulates a 450 

transient increase in Th gene transcription and elevates Th mRNA expression (Corbitt, Hagerty, 451 

Fernandez, Morgan, & Strong, 2002). Mechanistically, the effect of PACAP depends on 452 

continuous activation of PAC1 receptors and subsequent formation of cAMP and activation of 453 

PKA (Houchi et al., 1994; Marley, Cheung, Thomson, & Murphy, 1996; Wong, Anderson, & 454 

Tai, 2002). This is followed by a sustained phosphorylation of TH protein, at Ser40 residue in 455 

bovine chromaffin cells (Bobrovskaya, Gelain, Gilligan, Dickson, & Dunkley, 2007) and Ser31 456 

and Ser40 in PC12 cells (Haycock, 1996). 457 

 PACAP and VIP (vasoactive intestinal peptide) are closely related neuropeptides. Not 458 

only, they share common receptors (PAC1, VPAC1 and VPAC2 receptors), but VIP was early 459 

considered as a sympathoadrenal neurotransmitter (Wakade, Blank, Malhotra, Pourcho, & 460 

Wakade, 1991). Indeed, VIP-containing fibers innervate the medulla (Hokfelt, Lundberg, 461 

Schultzberg, & Fahrenkrug, 1981) and like PACAP, VIP is released at the adrenomedullary 462 

synapse (Gaspo, Yamaguchi, & de Champlain, 1995; Wakade, Blank, Malhotra, Pourcho, & 463 

Wakade, 1991) and stimulates catecholamine secretion in various species (Anderova, Duchene, 464 

Barbara, & Takeda, 1998; Cheung & Holzwarth, 1986; Malhotra & Wakade, 1987; 465 

Misbahuddin, Houchi, Nakanishi, Morita, & Oka, 1986; Wilson, 1988). This logically raises 466 

the issue of whether VIP regulates the catecholamine biosynthetic enzymes, as its 'cousin' 467 

PACAP does? VIP increases TH activity in rat adrenal medulla, PC12 cells and cultured bovine 468 

chromaffin cells (Tischler, Perlman, Costopoulos, & Horwitz, 1985; Waymire et al., 1991). At 469 

transcriptional level, VIP transiently increases the Th gene promoter activity and produces an 470 

increase in Th mRNA level (Corbitt, Hagerty, Fernandez, Morgan, & Strong, 2002; Wessels-471 

Reiker, Haycock, Howlett, & Strong, 1991). This effect is mediated via the cAMP second 472 

messenger pathway (Waymire et al., 1991; Wessels-Reiker, Haycock, Howlett, & Strong, 473 

1991), leading to a subsequent phosphorylation of TH (Waymire et al., 1991). Collectively, the 474 
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effects of PACAP and VIP on TH appear roughly similar (Haycock, 1996), although not 475 

necessarily of the same extent. Interestingly, but rendering more intricate the role of VIP and 476 

PACAP in the adrenomedullary function, PACAP upregulates the expression of VIP mRNA 477 

and VIP protein (Lee, Hahm, Hsu, & Eiden, 1999). In addition, these neuropeptides both appear 478 

to synergize with nicotine to enhance Th gene expression or TH activity (Olasmaa, Guidotti, & 479 

Costa, 1992; Rius, Guidotti, & Costa, 1994). 480 

 As such, the catecholamine-synthesizing enzymes are under a dual neuronal control 481 

exerted by both cholinergic and peptidergic neurotransmitters. Because ACh- and neuropeptide 482 

(PACAP, VIP...)-containing vesicles require distinct afferent nerve activity to be released (Ip 483 

& Zigmond, 1984), the frequency of splanchnic nerve discharges is of a great importance. 484 

Consistent with the effects of ACh, PACAP or VIP on TH, stimulation of the splanchnic nerve 485 

induces TH phosphorylation (Haycock & Wakade, 1992). More interestingly, depending on the 486 

stimulation frequency, distinct serine residues (Ser19, Ser31, Ser40...) are phosphorylated, 487 

sounding like the phosphorylation profile elicited by cholinergic agonists or neuropeptides. 488 

 489 

3.2.3. Humoral control 490 

The anatomical juxtaposition between the adrenal medulla and cortex acts as a hub for signal 491 

exchanges between the two tissues and therefore offers propitius conditions for humoral 492 

control. In this context, the cortex, which is the last link in the hypothalamus-pituitary-adrenal 493 

(HPA) axis, provides high circulating levels of corticoids to the medulla. The two major HPA-494 

derived factors that can impact catecholamine biosynthesis are the adrenocorticotropic hormone 495 

(ACTH, released from the pituitary corticotrophs) and glucocorticoids (released from the zona 496 

fasciculata of the cortex in response to ACTH stimulation). Note that the hypothalamic 497 

corticotropin-releasing hormone (CRH), which is the main secretagogue for ACTH secretion, 498 

also contributes to the regulation of catecholamine biosynthetic enzymes, by increasing DbH 499 
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and PNMT activity (Lima & Sourkes, 1987). In CRH receptor type 1-deficient mice, Pnmt 500 

mRNA levels are drastically reduced, but can be partially restored after ACTH treatment 501 

(Yoshida-Hiroi et al., 2002). The presence of CRH and its receptors in the adrenal medulla of 502 

various species (Tsatsanis et al., 2007) makes regulatory mechanisms even more complex. 503 

 The humoral control of catecholamine-producing enzymes by ACTH and 504 

glucocorticoids has long been known ((Axelrod, 1977; Hodel, 2001; Nankova & Sabban, 1999; 505 

Wurtman, Pohorecky, & Baliga, 1972) for selected reviews). It differentially targets TH, DbH 506 

and PNMT, the latter probably being the most responsive to HPA axis. From a functional point 507 

of view, it is generally accepted that ACTH and glucocorticoids are required for maintaining 508 

steady state levels and activity of TH, DbH and PNMT. Indeed, enzyme activity and/or adrenal 509 

enzyme content are decreased in hypophysectomized animals, both for TH (Kvetnansky, 510 

Gewirtz, Weise, & Kopin, 1970; Mueller, Thoenen, & Axelrod, 1970a; Wurtman & Axelrod, 511 

1966), DbH (Ciaranello & Black, 1971; Ciaranello, Wooten, & Axelrod, 1975; Weinshilboum 512 

& Axelrod, 1970) and PMNT (Wurtman & Axelrod, 1965, 1966). Treatment of 513 

hypophysectomized animals with ACTH or the synthetic glucocorticoid dexamethasome or 514 

corticosterone can restore, at least in part, enzyme activity (Ciaranello, Wooten, & Axelrod, 515 

1976; Jiang, Uht, & Bohn, 1989; Wurtman & Axelrod, 1965, 1966), although there are notable 516 

differences between enzymes. In this context, the most remarkable difference is the lack of 517 

effect of glucocorticoids on TH activity (Mueller, Thoenen, & Axelrod, 1970a; Wurtman & 518 

Axelrod, 1966). Mechanistically, glucocorticoids activate consensus sequence for a 519 

glucocorticoid-response element (GRE) in the promotor region of Th and Pnmt genes (Hagerty, 520 

Morgan, Elango, & Strong, 2001; Ross et al., 1990). Note that ACTH and glucocorticoids have 521 

no significant effect in control animals, regardless of the enzyme (Ciaranello, Wooten, & 522 

Axelrod, 1976; Mueller, Thoenen, & Axelrod, 1970a). The effects of ACTH on catecholamine-523 

synthesizing enzymes mainly involve a paracrine regulation from the cortex (zona fasciculata 524 
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in which most ACTH receptors (melanocortin 2 receptors (MC2R) are localized) to the 525 

medulla. However, a direct effect of ACTH on chromaffin cells cannot be excluded (Michener, 526 

Peach, & Creutz, 1985). 527 

 ACTH and glucocorticoids also act at transcriptional level. Hypophysectomy markedly 528 

reduces Pnmt mRNA levels (Jiang, Uht, & Bohn, 1989; Stachowiak, Rigual, Lee, Viveros, & 529 

Hong, 1988), which can be restored by ACTH or dexamethasone treatment (Evinger, Towle, 530 

Park, Lee, & Joh, 1992). Conversely, hypophysectomy does not change Th mRNA levels 531 

(Stachowiak, Rigual, Lee, Viveros, & Hong, 1988). 532 

 In response to stressful situations, both the sympathoadrenal and HPA systems are 533 

markedly activated. In this context, ACTH and glucocorticoids, which are stress-associated 534 

factors, strongly contribute to remodel the catecholamines synthesizing enzymes in the 535 

'stressed' medullary tissue and further E synthesis and release (Kvetnansky et al., 1995; 536 

Kvetnansky & Sabban, 1998; Wong, 2006; Wurtman, 2002). Because E is the main stress 537 

hormone secreted by the adrenal medulla, we propose to focus here on PNMT, the enzyme that 538 

converts NE into E. As summarized in tables 1 and 2, PNMT expression is increased in acutely 539 

or chronically stressed animals (with the exception of the hypoxic stress). The increase is 540 

observed at the transcriptional and protein levels, and also on the enzyme activity (Wong & 541 

Tank, 2007). The rise in Pnmt mRNA levels in stressed animals depends on intact HPA axis 542 

(Viskupic et al., 1994). Stress evokes an ACTH surge followed by an increase in endogenous 543 

glucocorticoids production by the adrenal cortex. Glucocorticoids then bind to GRE sequences 544 

in the Pnmt gene to promote its induction. Other transcription factors, such as Egr-1, Sp1, or 545 

AP-2, can regulate the Pnmt gene through their binding to consensus sequences in the Pnmt 546 

promoter. These factors are stress-induced (Tai et al., 2007) and are therefore part of the 547 

mechanisms underlying increased PNMT expression and E secretion in stressed animals. 548 

Interestingly discussed in (Ciaranello & Black, 1971), the slow turnover of PNMT suggests that 549 
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the mechanisms described here represent rather a long-term regulation of PNMT, and are 550 

probably not involved in short-term adrenal medullary responses to acute stress. The increase 551 

in PNMT would probably find its biologic role in chronic stress situations. As such, PNMT 552 

regulation is undoubtedly complex and relies on mechanisms that can act distinctly on the 553 

transcription activation of Pnmt gene and expression of active PNMT enzyme. 554 

 555 

3.3 Stress-induced remodeling of chromaffin cell excitability 556 

Chromaffin cell excitability is a key parameter of the adrenal stimulus-secretion coupling 557 

(Carbone, Borges, Eiden, Garcia, & Hernandez-Cruz, 2019). It results from the interplay 558 

between cellular/intercellular mechanisms, including the afferent cholinergic and peptidergic 559 

innervation (Guerineau, 2020), the gap junctional communication between chromaffin cells 560 

(Colomer, Martin, Desarmenien, & Guerineau, 2012; Guerineau, 2018; Hodson, Legros, 561 

Desarmenien, & Guerineau, 2015) and the repertoire of ion channels expressed at the 562 

chromaffin cell plasma membrane. In this regard, both voltage-gated and leak/background 563 

channels contribute to pattern the spiking activity by regulating the resting membrane potential, 564 

shaping the action potential (AP) waveform, and setting the frequency of AP trains (Lingle, 565 

Martinez-Espinosa, Guarina, & Carbone, 2018). Depending on the species, chromaffin cells 566 

exhibit spontaneous and/or depolarization-evoked APs. While a large fraction of rat and mouse 567 

chromaffin cells fires spontaneously (Brandt, Hagiwara, Kidokoro, & Miyazaki, 1976; Busik, 568 

Nakamura, Abe, Shibuya, & Kanno, 1996; Cena, Brocklehurst, Pollard, & Rojas, 1991; 569 

Colomer, Lafont, & Guerineau, 2008; Desarmenien et al., 2013; Guarina, Vandael, Carabelli, 570 

& Carbone, 2017; Martin, Mathieu, Chevillard, & Guerineau, 2001; Nassar-Gentina, Pollard, 571 

& Rojas, 1988; Perez-Alvarez, Hernandez-Vivanco, Caba-Gonzalez, & Albillos, 2011; Sanz-572 

Lazaro et al., 2019; Vandael, Zuccotti, Striessnig, & Carbone, 2012), only 10% of chromaffin 573 

cells in humans display spontaneous APs (Hernandez-Vivanco et al., 2017). However, it should 574 
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be noted that many 'experimental' parameters (cultured cell/organotypic culture/acute slice/in 575 

vivo in anaesthetized animals, electrophysiological techniques used to monitor electrical 576 

activity (extracellular/intracellular/patch-clamp (conventional/perforated/loose) recordings), 577 

animal species, age and sex, physiological/pathological conditions ...) can impact the detection 578 

of spontaneous spiking. 579 

 Intriguingly, chromaffin cells can fire in a bursting mode and/or a regular/tonic mode 580 

(Fig. 2B). While bursts are well described in the mouse, both in ex vivo and in vivo preparations 581 

(Desarmenien et al., 2013; Marcantoni et al., 2010; Milman et al., 2021; Vandael, Marcantoni, 582 

& Carbone, 2015; Vandael et al., 2015), rat chromaffin cells appear to spike preferentially with 583 

a regular pattern (Colomer, Lafont, & Guerineau, 2008). Interestingly, chromaffin cell AP 584 

frequency increases in stressed animals (Colomer, Lafont, & Guerineau, 2008). This is 585 

associated with changes in ion channels, both in their expression at the membrane and their 586 

biophysical properties. Although all channels can be stress-related targets, let me focus on two 587 

ion channel families, namely the voltage-gated Ca2+ and K+ channels, which play a crucial role 588 

in chromaffin cell excitability (Fig. 3). 589 

 590 

[Insert Figure 3 here] 591 

Fig. 3: Increased chromaffin cell excitability and ion channel remodeling in the stressed 592 

adrenal medulla. In general, the voltage-gated ion channels that are involved in the generation 593 

and propagation of action potentials are up-regulated in response to stress. This is the case for 594 

Nav channels, Cav channels and K+ channels. Regarding Cav channels, stress induces the 595 

expression of low voltage-dependent channels (Cav3 family), Cav3.2 channels in particular. The 596 

coupling between Cav1.3 and SK/BK channels is also enhanced in response to stress. 597 

Collectively, these changes in ion channel expression underlie the sustained electrical 598 

discharges observed in chromaffin cells of stressed animals. 599 
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 600 

 601 

 Although either absent or weakly expressed in adult chromaffin cells, T-type Ca2+ 602 

channels are a primary target of stress response (Guerineau, Desarmenien, Carabelli, & 603 

Carbone, 2012). Indeed, elevated neuronal stimulation of the adrenomedullary tissue or adrenal 604 

stimulation with exogenous PACAP leads to the recruitment of a T-type Ca2+ channel-mediated 605 

Ca2+ influx, which in turn promotes catecholamine exocytosis (Hill, Chan, Kuri, & Smith, 606 

2011). Similarly, in neonatal rat chromaffin cells, intermittent hypoxia upregulates Cacna1g 607 

and Cacna1h mRNA levels and increases T-type Ca2+ currents (Souvannakitti et al., 2010). T-608 

type Ca2+ channels can also be recruited following chronic hypoxia (Carabelli et al., 2007) or 609 

long-term beta-adrenergic stimulation (Novara et al., 2004). 610 

 L-type Ca2+ channels and large conductance K+ (BK) channels both contribute to the 611 

spontaneous rhythmicity of chromaffin cells (Marcantoni et al., 2007; Marcantoni, Carabelli, 612 

Comunanza, Hoddah, & Carbone, 2008; Marcantoni et al., 2010; Vandael et al., 2010) and are 613 

therefore expected candidates in the listing of stress-modulated ion channels. Upon prolonged 614 

or sustained splanchnic nerve discharges (as observed during stress episodes), L-type Ca2+ 615 

channels functionally couple to small conductance K+ (SK) channels. This slows down firing 616 

and prevents chromaffin cell overexcitation and excessive accumulation of circulating 617 

catecholamines (Vandael, Zuccotti, Striessnig, & Carbone, 2012). Regarding BK channels, the 618 

stress hormone ACTH controls the alternative splicing of Slo, the gene encoding them. Indeed, 619 

hypophysectomy drastically decreases the levels of Slo transcripts containing the optional 620 

STRess axis-regulated EXon (STREX). This is prevented by ACTH injections (Xie & McCobb, 621 

1998). When incorporated in Xenopus oocytes, STREX is associated with enhanced firing. As 622 

such, by acting on BK channel protein composition, STREX contributes to shape the intrinsic 623 

excitability of chromaffin cells. This is relevant during stress response in particular, as STREX-624 
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containing Slo transcripts have been found less abundant in adrenal glands of stressed rats 625 

compared with unstressed animals (McCobb, Hara, Lai, Mahmoud, & Flugge, 2003) and in 626 

loser versus winner mice subjected to a social-instability stress (Chatterjee et al., 2009). More 627 

generally, the findings that i) hypophysectomy changes the biophysical properties of BK 628 

channels in chromaffin cells (Lovell & McCobb, 2001) and ii) glucocorticoids modulate the 629 

gating of BK channels (Lovell, King, & McCobb, 2004) set the HPA axis as a major player in 630 

regulating BK channels and intrinsic electrical properties of adrenal chromaffin cells. 631 

 From a functional point of view, the spiking pattern of chromaffin cells crucially 632 

governs the adrenal stimulus-secretion coupling, in the sense that the bursting mode is more 633 

efficient to trigger catecholamine secretion in rodent chromaffin cells Duan, Yu, Zhang, & 634 

Zhou, 2003; Vandael et al., 2015). As mentioned above, depending on species, the burst firing 635 

mode is more or less present among the chromaffin cell population at rest and any manipulation 636 

(physiological, pharmacological, genetic...) that allows to switch to a burst-firing pattern is 637 

associated with an increased release of catecholamines (Lingle, Martinez-Espinosa, Guarina, & 638 

Carbone, 2018; Vandael, Marcantoni, & Carbone, 2015; Vandael et al., 2015). Although stress 639 

response is associated with enhanced catecholamine secretion, one critical aspect to be clarified 640 

is whether a 'stressed' chromaffin cell is more prone to fire bursting rather than tonic APs. It is 641 

however likely that the answer will be not unique but will depend on animal species, age and 642 

sex and stress paradigm... 643 

 644 

3.4 Stress-induced remodeling of secretory granule composition 645 

Chromaffin cell secretory granules are dense core structures. They are fascinating organelles in 646 

the sense that they contain a complex mixture of various components including structural 647 

proteins, monoamines (mainly catecholamines (dopamine, NE and E) and to a lesser extent 648 

serotonin), granins (chromogranins, secretogranins) and derived peptides, peptides 649 
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(neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), galanin, bombesin, neurotensin, 650 

natriuretic peptides, opioid peptides...), the relative processing enzymes (such as DbH for 651 

catecholamine biosynthesis), as well as protease inhibitors ((Crivellato, Nico, & Ribatti, 2008) 652 

for review). In addition, granules store high level of ATP and calcium, and ascorbic acid. This 653 

terrific abundance and diversity of molecules contained in a single granule support distinct 654 

quantitative and qualitative composition of granules, either within a same chromaffin cell and 655 

between chromaffin cells in a same individual. This provides basis for multiple regulatory 656 

mechanisms and predicts almost unlimited combinations of differential release and co-release, 657 

at least in theory. The more striking feature of chromaffin secretory granules is that they content 658 

all compounds required for an individual to cope with stress (Crivellato, Nico, & Ribatti, 2008). 659 

They contain molecules acting on the cardiovascular system, mainly catecholamines (E and 660 

NE), the first hormones to be released in the blood circulation in response to stress and 661 

increasing heart rhythm and arterial pressure, as well as other vasoactive molecules. Opioid 662 

peptides and morphine-derived molecules promote analgesia and antimicrobial peptides (some 663 

of them being chromogranin-derived fragments) shield against infections (Goumon et al., 2006; 664 

Metz-Boutigue, Goumon, Lugardon, Strub, & Aunis, 1998; Scavello et al., 2022). The immune 665 

system is also sustained by secretion of molecules with anti-inflammatory properties. To make 666 

the situation even more intricate, the chromaffin cell function itself can be modulated by 667 

peptides acting through an autocrine/paracrine activity. 668 

 Chromaffin granule content is released by exocytosis, in response to a variety of stimuli, 669 

the splanchnic nerve stimulation being the main one occurring in vivo. Contributing to the 670 

striking plasticity of the adrenal medullary tissue, the transmitter release (or co-release) from 671 

chromaffin granules is a finely regulated, activity-dependent process (Fulop, Radabaugh, & 672 

Smith, 2005). The first level of regulation comes from the sympathetic nerve activation. As 673 

already mentioned, the splanchnic nerve responds to stress episodes by increasing its spiking 674 
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discharge. Depending on the firing frequency, acetylcholine first and then neuropeptides such 675 

as PACAP or VIP are sequentially released in the synaptic cleft. Depending on the nature of 676 

the secretagogues released by the nerve terminals, the evoked electrical response in chromaffin 677 

cells can display various patterns. This brings an additional level of regulation as the release of 678 

molecules contained in the secretory granules is coded by specific firing patterns. In this 679 

context, the most striking example is illustrated by the sequential release of catecholamines, 680 

followed, upon prolonged stimulation (as found during stress), by the release of peptides. This 681 

differential release is achieved through an activity-dependent dilation of the granule fusion pore 682 

(Fulop, Radabaugh, & Smith, 2005). Intriguingly, the profiles of secreted catecholamines (E, 683 

NE and dopamine) in cultured bovine chromaffin cells appear to be similar irrespective of the 684 

secretagogues (nicotine, PACAP, histamine, bradykinin...), with E secreted at the highest level, 685 

a finding consistent with its key role in the stress response (Podvin, Bundey, Toneff, Ziegler, 686 

& Hook, 2015). Regarding neuropeptides, their release quantitatively differs between 687 

secretagogues, but the highest amount of peptide released is found for the same secretagogue. 688 

In this context, carbachol appears the most potent secretagogue for releasing both enkephalin, 689 

NPY, VIP and galanin. Individual peptide analysis shows that, enkephalin is secreted at a higher 690 

level than NPY, VIP and galanin (Podvin, Bundey, Toneff, Ziegler, & Hook, 2015). 691 

 Another family of molecules that is found in abundance in chromaffin granules is the 692 

granins. The purpose of this chapter is not to provide an extensive review of the literature, but 693 

let us focus on chromogranin A (CgA). First, CgA critically regulates secretory granule 694 

biogenesis (Courel et al., 2006; Kim, Zhang, Sun, Wu, & Loh, 2005; Koshimizu, Kim, Cawley, 695 

& Loh, 2010; Montero-Hadjadje et al., 2009; Pasqua et al., 2016). It also contributes to 696 

catecholamine storage and release (Montesinos et al., 2008; Pasqua et al., 2016). Second, CgA 697 

and its derived fragment catestatin are of particular interest in the context of the regulation of 698 

catecholamines secretion in response to stress. In the 1980s, a CgA-derived peptide (later 699 
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identified as catestatin) has been reported to exert a negative feedback control on chromaffin 700 

cell secretory activity (Simon, Bader, & Aunis, 1988). Catestatin acts as a non-competitive 701 

nAChR antagonist and reduces catecholamine release. This 'brake' effect is particularly relevant 702 

during the stress response, to avoid excessive and deleterious levels of circulating 703 

catecholamines. 704 

 The remodeling of chromaffin cell granules may involve both granule composition 705 

and/or granule number. As already mentioned, the chromaffin granule is highly versatile in its 706 

composition, which can vary, both qualitatively and quantitatively, in response to so many 707 

physiological/pathological stimuli (including stress), so that it is illusory to draw up a summary 708 

scheme at the present time. Not only the amine (catecholamine) transmitter content is modified 709 

in stressed animals (as expected for E), but also the peptide content. Here are some examples 710 

of the phenotypic remodeling occurring in secretory granules of 'stressed' chromaffin cells, and 711 

as mentioned above, this may concern each constituent of the granules. In animal models of 712 

arterial hypertension, chromaffin cell granules contain more catecholamines than normotensive 713 

animals (Takiyyuddin et al., 1993). On the peptide front, insulin-induced hypoglycemia 714 

elevates levels of mRNAs encoding NPY and enkephalin peptides (Fischer-Colbrie, Iacangelo, 715 

& Eiden, 1988). This increase is prevented in adrenal glands denervated by bilateral transection 716 

of the splanchnic nerve, indicating that neuropeptide biosynthesis (at least NPY and enkephalin) 717 

is regulated by a neurogenic mechanism. Along the same line, prolonged stimulation of 718 

nAChRs upregulates the mRNA levels encoding proenkephalin A (Wan, Marley, & Livett, 719 

1991). Npy mRNA and/or NPY peptide expression, synthesis and secretion are increased in 720 

stressed rodents (Han et al., 2005; Hiremagalur et al., 1994; Wang & Whim, 2013). Intermittent 721 

hypoxia also increases NPY peptide expression level in the rat adrenal medulla (Raghuraman, 722 

Kalari, Dhingra, Prabhakar, & Kumar, 2011). By promoting a prolonged and intense 723 

vasoconstriction (Westfall et al., 1990), NPY could therefore contribute to stress-induced 724 
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elevation of arterial blood pressure (Han et al., 2005). In this context, NPY may be considered 725 

as a 'stress molecule' (Zukowska-Grojec, 1995). Contrasting with the neural regulation of 726 

peptides, CgA biosynthesis is regulated by a hormonal pathway involving the HPA axis, as 727 

CgA levels in chromaffin granules are reduced in hypophysectomized rats (Fischer-Colbrie, 728 

Iacangelo, & Eiden, 1988). Intriguingly, CgB, another member of the chromogranin family, is 729 

not regulated by the HPA axis, pointing thus a marked difference in regulation of CgA and CgB 730 

biosynthesis.  731 

 Thus, by continuously adjust the composition and nature of the released compounds to 732 

homeostasis changes, chromaffin cell secretory granules are major elements in the stimulus-733 

secretion coupling plasticity. 734 

 735 

3.5 Stress-induced remodeling of synaptic neurotransmission 736 

Adrenal chromaffin cells are innervated by the splanchnic nerve terminals. In response to stress 737 

episodes, changes in synaptic transmission occur both at presynaptic and postsynaptic sites. 738 

While at the pre-synapse, the main changes involve the nature of the transmitters released in 739 

the synaptic cleft, at the post-synapse, the main stress-modified targets are the nicotinic 740 

acetylcholine receptors (nAChRs) (Fig. 4). 741 

 742 

[Insert Figure 4 here] 743 

Fig. 4: Remodeling of synaptic transmission in the stressed adrenal medulla. (A) Changes 744 

observed between control and stressed animals occur both at pre- and postsynaptic sites. 745 

Presynaptically, the main stress-induced change relies on the nature of the neurotransmitter 746 

released onto chromaffin cells. While ACh is the principal adrenomedullary neurotransmitter 747 

in control animals, PACAP takes over in stressed animals. Postsynaptically, stress promotes a 748 

change in nAChR subtypes expressed in chromaffin cells, with a switch from a3- to a9-749 
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containing nAChRs. (Ba) Increased frequency and amplitude of spontaneous EPSCs in a 750 

stressed rat (5 day-cold exposure). Adapted from Colomer, C., Lafont, C., & Guérineau, N.C. 751 

(2008). Stress-induced intercellular communication remodeling in the rat adrenal medulla. 752 

Annals of the New York Academy of Sciences, 1148:106-111. 753 

https://nyaspubs.onlinelibrary.wiley.com/doi/abs/10.1196/annals.1410.040. (Bb) Changes in 754 

the nature of nAChRs expressed in a 'stressed' chromaffin cell versus a 'control' chromaffin cell. 755 

The pharmacological agent hexamethonium and the toxin aRgIA were used to antagonize a3- 756 

and a9-containing nAChRs, respectively. Adapted from Colomer, C., Olivos-Oré, L.A., 757 

Vincent, A., McIntosh, J.M., Artalejo, A.R., & Guérineau, N.C. (2010). Functional 758 

characterization of alpha9-containing cholinergic nicotinic receptors in the rat adrenal 759 

medulla: implication in stress-induced functional plasticity. Journal of Neuroscience, 30:6732-760 

6742. https://www.jneurosci.org/content/30/19/6732. 761 

 762 

 763 

3.5.1 Presynaptic remodeling: switch from cholinergic to peptidergic neurotransmission 764 

 3.5.1.1 Prevailing contribution of PACAP 765 

Under resting ('unstressed') conditions, the sympathetic nervous system discharges at a 766 

moderate firing rate (less than 1 Hz) (Fulop, Radabaugh, & Smith, 2005; Holman, Coleman, 767 

Tonta, & Parkington, 1994; Wakade, 1981; Wolf, Zarkua, Chan, Sridhar, & Smith, 2016) and 768 

the neurotransmission between the splanchnic nerve and chromaffin cells uses ACh as 769 

neurotransmitter. In response to a stressful situation, the sympathetic tone drastically increases 770 

and the splanchnic nerve can fire at frequencies above 10 Hz (Fulop, Radabaugh, & Smith, 771 

2005; Holman, Coleman, Tonta, & Parkington, 1994; Wakade, 1981; Wolf, Zarkua, Chan, 772 

Sridhar, & Smith, 2016), thus enhancing synaptic neurotransmission onto chromaffin cells (Fig. 773 

4Ba). In cold exposed rats for example, the percentage of chromaffin cells exhibiting 774 
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spontaneous excitatory postsynaptic currents (EPSCs) is higher than in unstressed animals and 775 

synaptic events occur more frequently (Colomer, Lafont, & Guerineau, 2008). To ensure the 776 

sustained and prolonged secretion of catecholamines needed by the organism to cope with 777 

stress, a switch in the nature of the neurotransmitter released by the splanchnic nerve endings 778 

takes place. The 'resting' primary cholinergic neurotransmission gives way to a peptidergic 779 

transmission. In this context, the neurotransmitter PACAP, proposed as the 'stress response' 780 

neurotransmitter of the sympathoadrenal axis (Hamelink et al., 2002) and subsequently 781 

identified as a master regulator of the stress response (Eiden, Emery, Zhang, & Smith, 2018; 782 

Mustafa, 2013) plays a major role (Fig. 4A, right panel). Unlike the cholinergic transmission, 783 

the high-frequency firing of splanchnic nerve in response to stress benefits to the preferential 784 

release of neuropeptides. PACAP fulfills many criteria of an adrenomedullary neurotransmitter, 785 

as i) PACAP-immunoreactive fibers innervate the medullary tissue (Moller & Sundler, 1996; 786 

Tornoe et al., 2000), ii) PACAP colocalizes with the vesicular ACh transporter in presynaptic 787 

nerve endings (Hamelink et al., 2002) and iii) PACAP receptors are present at the chromaffin 788 

cell plasma membrane (Shivers, Gorcs, Gottschall, & Arimura, 1991). Not only PACAP can 789 

act as neurotransmitter at the splanchnic nerve-chromaffin cell synapse, but its contribution 790 

prevails during stress episode. Endogenous PACAP is released by presynaptic terminals when 791 

the sympathoadrenal system is highly activated, as observed during severe hypotension 792 

(Lamouche & Yamaguchi, 2003). PACAP specifically triggers catecholamine release under 793 

elevated splanchnic nerve firing activity (Kuri, Chan, & Smith, 2009). Unlike ACh and nicotine 794 

whose responses display rapid desensitization (Boksa & Livett, 1984), PACAP-evoked 795 

secretion of catecholamines can last for several hours (Babinski, Bodart, Roy, De Lean, & Ong, 796 

1996; Taupenot, Mahata, Mahata, & O'Connor, 1999), a duration consistent with prolonged or 797 

repetitive stress. In addition, many molecules contained in chromaffin cell granule 798 

(neuropeptides, cytokines, growth factors) are up-regulated by PACAP ((Ait-Ali, Samal, 799 
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Mustafa, & Eiden, 2010) for review). PACAP also enhances gap junction-mediated electrical 800 

coupling between chromaffin cells, favouring the spread of electrical activation (Hill, Lee, 801 

Samasilp, & Smith, 2012) and therefore the propagation of instructive signals for secretion 802 

(Desarmenien et al., 2013; Martin, Mathieu, Chevillard, & Guerineau, 2001). Interestingly, 803 

PACAP mostly stimulates the secretion of E (Guo & Wakade, 1994). Because PACAP, as 804 

mentioned in the chapter 3.2.2, is a potent regulator of TH and PNMT, both at transcriptional 805 

and post transcriptional level (Bobrovskaya, Gelain, Gilligan, Dickson, & Dunkley, 2007; 806 

Corbitt, Hagerty, Fernandez, Morgan, & Strong, 2002; Haycock, 1996; Wong, Anderson, & 807 

Tai, 2002), it is obvious that stimulus-secretion coupling that take place during stress is altered 808 

in PACAP-deficient animals. As such, the sustained secretion of catecholamines triggered by 809 

hypoglycemia or by direct high-frequency stimulation of the splanchnic nerve is impaired in 810 

PACAP-/- mice (Hamelink et al., 2002; Stroth et al., 2013). At the transcriptional level, Th and 811 

Pnmt mRNA abundance in response to a restraint stress or hypoglycemia is lower in PACAP-/- 812 

compared to wild type animals (Stroth & Eiden, 2010; Stroth et al., 2013). The increase in TH 813 

activity which follows the activation of the sympathetic nervous system is also impaired in 814 

PACAP-/- animals (Hamelink et al., 2002). 815 

 816 

 3.5.1.2 Other neuropeptides 817 

Many others neuropeptides are present in the nerve fibers innervating the adrenomedullary 818 

tissue ((Guerineau, 2020) for review), and may be involved in the presynaptic remodeling of 819 

the neurotransmission. This is in particular the case for the vasoactive intestinal peptide (VIP), 820 

a peptide belonging to the same neuropeptide superfamily as PACAP, substance P and 821 

neuropeptide Y. Like PACAP, VIP satisfies essential criteria to ensure the role of 822 

neurotransmitter in the adrenomedullary tissue. VIP is present in nerve terminals (Hokfelt, 823 

Lundberg, Schultzberg, & Fahrenkrug, 1981; Holzwarth, 1984; Linnoila, Diaugustine, 824 
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Hervonen, & Miller, 1980). It is released upon splanchnic nerve stimulation and elicits 825 

catecholamine secretion (Wakade, Blank, Malhotra, Pourcho, & Wakade., 1991). In addition, 826 

VIP is a potent regulator of TH and PNMT, both at transcriptional and post transcriptional level 827 

(Haycock, 1996). In bovine chromaffin cells, VIP increases phosphorylation and activation of 828 

TH through a cyclic AMP-dependent pathway, stimulating catecholamine biosynthesis 829 

(Waymire et al., 1991). Similarly, in PC12 cells, VIP stimulates a time- and concentration-830 

dependent increase in Th mRNA levels, followed by an increased TH protein expression 831 

Wessels-Reiker, Haycock, Howlett, & Strong, 1991). Substance P (SP) is present in the nerve 832 

fibers innervating the adrenal medulla, and originating from the intermediolateral cell column 833 

of the spinal cord and the dorsal root ganglia (Holets & Elde, 1982; Linnoila, Diaugustine, 834 

Hervonen, & Miller, 1980; Zhou, Oldfield, & Livett, 1991). SP is released upon splanchnic 835 

nerve stimulation and affects catecholamine secretion, functioning thus as a neuromodulator 836 

(Livett & Zhou, 1991). In bovine chromaffin cells, SP selectively inhibits the nicotinic response 837 

of isolated cells in a non-competitive manner and protects the nicotinic response against 838 

agonist-induced desensitization. This effect is particularly relevant during stress (Khalil, Livett, 839 

& Marley, 1986). Like VIP and SP, Neuropeptide Y (NPY) is present in nerve fibers 840 

innervating the adrenomedullary tissue (Kuramoto, Kondo, & Fujita, 1986; Maubert, Tramu, 841 

Croix, Beauvillain, & Dupouy, 1990; Varndell, Polak, Allen, Terenghi, & Bloom, 1984). NPY 842 

may therefore function as a neurotransmitter/neuromodulator during stress response, although 843 

this hypothesis remains to be demonstrated. 844 

 845 

3.5.2 Postsynaptic remodeling 846 

 3.5.2.1 Nicotinic acetylcholine receptors 847 

Chromaffin cells express neuronal nicotinic acetylcholine receptors (nAChRs) (Criado, 2018). 848 

nAChRs are ligand-gated cation channels and are homo or heteropentameric assemblies. 849 
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Heteropentamers are built of a combination of α and β subunits, and the dominant nAChR in 850 

rat and bovine chromaffin cells express α3β4 subunits (Campos-Caro et al., 1997; Colomer et 851 

al., 2010; Criado, Alamo, & Navarro, 1992; Di Angelantonio, Matteoni, Fabbretti, & Nistri, 852 

2003). A recent study performed in the rat shows that the adrenal medullary tissue contains two 853 

populations of chromaffin cells that express either α3β4 nAChRs alone or α3β4 together with 854 

the α3β2β4 subtype (Hone et al., 2020). In addition to α3β4-containing nAChRs, 855 

homopentameric α7- and α9/α10-built nAChRs are also expressed in bovine (Garcia-Guzman 856 

et al., 1995) and rat chromaffin cells (Colomer et al., 2010; Martin, Mathieu, & Guerineau, 857 

2003). nAChRs located in chromaffin cell plasma membrane are possible targets for stress-858 

induced postsynaptic remodeling (Guerineau, Desarmenien, Carabelli, & Carbone, 2012). At 859 

rest in non-stressed animals (rat), ACh released by splanchnic nerve endings onto chromaffin 860 

cells elicits post-synaptic excitatory events which are mediated by activation of α3β4 nAChRs 861 

and, to a much smaller extent, α7- and/or α9-containing nAChRs (Barbara & Takeda, 1996; 862 

Colomer et al., 2010; Martin, Mathieu, & Guerineau, 2003) (Fig. 4Bb, left panel). In response 863 

to cold stress exposure, both chrna9 mRNA and α9-containing nAChR protein levels are 864 

upregulated and these receptors dominantly contribute to acetylcholine-induced current in 865 

stressed rats (Colomer et al., 2010) (Fig. 4Bb, right panel). Under the same experimental 866 

conditions, the expression of α3 and α7 nAChRs does not change. Contrasting with this, chrna7 867 

transcript levels are decreased in response to long-term hypoxia (Ducsay et al., 2007). Making 868 

the situation more complex, α7 nAChRs, at least at the transcriptional level, are positively 869 

regulated by chronic stress and glucocorticoids (Carrasco-Serrano & Criado, 2004). More 870 

generally, these few examples illustrate that the regulation of nAChR expression is stressor-871 

specific. This is of great importance because each nAChR channel (itself resulting from the 872 

combination of various subunits) display specific biophysical properties (Ca2+ permeability, 873 

gating, desensitization...) and may allow chromaffin cells to appropriately respond to a variety 874 
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of stressors. Because an increase in cytosolic Ca2+ is an initial step in exocytosis (Baker & 875 

Knight, 1978), upregulation of homomeric nAChRs (α7- and α9-built channels) in 'stressed' 876 

chromaffin cells is likely physiologically relevant since these two nAChRs exhibit a higher 877 

Ca2+ permeability than α3 nAChRs (Fucile, Sucapane, & Eusebi, 2006; Katz et al., 2000; 878 

Seguela, Wadiche, Dineley-Miller, Dani, & Patrick, 1993; Zhang, Vijayaraghavan, & Berg, 879 

1994). ACh-mediated α7/a9 nAChR activation would trigger instructive signaling cascades 880 

contributing to enhance catecholamine and/or neuropeptide release from 'stressed' chromaffin 881 

cells. Although this hypothesis is attractive, it likely reflects only part of the regulatory 882 

mechanisms that occurs in stressed animals. The truth is obviously more complex, as nAChRs 883 

could interact with other cellular components such as ion channels. For example, the well-884 

described cross-talk between a9/a10 nAChRs and SK channels in the mouse cochlea (Nie et 885 

al., 2004) might also occurs in adrenal chromaffin cells. The high Ca2+ permeability of a9/a10 886 

channels combined with the involvement of SK channels in shaping chromaffin cell firing 887 

frequency would negatively regulate cell excitability by shortening the depolarizing action of 888 

synaptically released ACh. This would thereby prevent the formation of a depolarizing plateau 889 

in case of high frequency synaptic activity at the splanchnic nerve-chromaffin cell junction. 890 

 891 

 3.5.2.2 Muscarinic acetylcholine receptors 892 

The muscarinic signaling pathway in the adrenal medullary tissue occurs both at pre-and post-893 

synaptic sites. In this regard, it is noteworthy that, in contrast to the extensive literature on 894 

postsynaptic mAChRs, very few studies have focused on the contribution of presynaptic 895 

mAChRs to adrenal stimulus-secretion coupling. On the elegant preparation of acute adrenal 896 

slice, which maintains the tissular architecture of the adrenal gland, Barbara and colleagues 897 

reported the inhibitory role of presynaptic mAChRs (M3-M4 receptors) on ACh release at rat 898 

chromaffin cell synapses leading to uncouple catecholamine secretion from synaptic activity 899 
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(Barbara, Lemos, & Takeda, 1998). The attractive hypothesis, but still in search of validation, 900 

of the physiological relevance of this inhibitory function is that activation of presynaptic 901 

mAChRs may serve as a feedback mechanism when large quantities of ACh are released 902 

Barbara, Lemos, & Takeda, 1998). On the postsynaptic side, adrenal chromaffin cells express 903 

nicotinic and muscarinic receptors (mAChRs), and both contribute to the secretion of 904 

catecholamines. However, far fewer studies have focused on deciphering the role of mAChRs 905 

during neuronal transmission, compared with nAChRs (likely because nAChRs, more than 906 

mAChRs, mediate cholinergic synaptic transmission from the splanchnic nerve, at least in rat 907 

(Wakade & Wakade, 1983)). One of the main differences between nAChR-and mAChR-908 

mediated catecholamine release is the response time. While nAChR-mediated secretory 909 

response displays almost no latency, catecholamine release in response to mAChR activation 910 

is elicited within few seconds (Chowdhury, Guo, Wakade, Przywara, & Wakade, 1994). The 911 

contribution of mAChRs to the adrenal stimulus-secretion coupling varies appreciably among 912 

mammals ((Inoue, Matsuoka, Harada, & Kao, 2018; Olivos & Artalejo, 2008) for reviews). 913 

Nevertheless, convergent findings deserve to be highlighted. First, muscarinic agonists induce 914 

increase in chromaffin cell excitability in the rat (Akaike, 1992; Akaike, Mine, Sasa, & Takaori, 915 

1990a, 1990b; Barbara, Lemos, & Takeda, 1998; Neely & Lingle, 1992), cat (Ladona, Aunis, 916 

Gandia, & Garcia, 1987; Uceda et al., 1992), guinea-pig (Holman, Tonta, Coleman, & 917 

Parkington, 1998; Inoue, Harada, Matsuoka, Nakamura, & Warashina, 2012) and mouse 918 

(Nassar-Gentina, Pollard, & Rojas, 1988). This is mediated by activation of M1 (Harada, 919 

Matsuoka, Miyata, Matsui, & Inoue, 2015) and or M3/M4 receptors (Barbara, Lemos, & 920 

Takeda, 1998). In rat and guinea pig chromaffin cells, muscarinic stimulation, through 921 

activation of M1 receptors, induces membrane depolarization and triggers APs. This is due to 922 

clathrin-dependent endocytosis of TWIK-related acid-sensitive K+ (TASK)1 channels, through 923 

the PLC-PKC-Src pathway (Matsuoka & Inoue, 2017). In addition, in guinea pig, muscarinic 924 
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excitation is due not only to TASK1 channel inhibition, but also to activation of non-selective 925 

cation channels (Inoue, Harada, Matsuoka, Nakamura, & Warashina, 2012; Inoue & Kuriyama, 926 

1991). Second, in response to a muscarinic stimulation, a release of E over NE primarily occurs, 927 

in the cat (Ballesta, Borges, Garcia, & Hidalgo, 1989; Douglas & Poisner, 1965) and rat (Chen 928 

& Dixon, 1990). Third, the density of mAChRs present at chromaffin cell membrane is higher 929 

in NE-containing cells, in calf (Michelena, Moro, Castillo, & Garcia, 1991) and in rat (Zaika, 930 

Pochynyuk, Kostyuk, Yavorskaya, & Lukyanetz, 2004). This could be of particular interest 931 

especially in determining the ratio of E/NE secreted from the adrenal medulla during stress, 932 

considering that i) the selective activation of one chromaffin cell population over the other is 933 

stressor-specific and ii) E- and NE-secreting cells are distinctly innervated (more ACh-positive 934 

fibers contacting NE cells (Lewis & Shute, 1969)). 935 

 Muscarinic signaling also impacts the transcriptional regulation of catecholamine 936 

biosynthesis. In rat, the mAChR agonist bethanechol increases Th gene transcription rate, both 937 

in innervated and denervated adrenal glands indicating that the effect is independent on 938 

transsynaptic influences (Piech-Dumas, Sterling, & Tank, 1999). In bovine chromaffin cells, 939 

muscarinic agents elevate transcription of the Pnmt gene (Evinger, Ernsberger, Regunathan, 940 

Joh, & Reis, 1994). 941 

 942 

 As such, by targeting both pre- and post-synaptic processes, remodeling of the 943 

neurotransmission at the splanchnic nerve-chromaffin cell synapse covers almost all the targets 944 

of the stimulation-secretion coupling, and therefore appears as a decisive mechanism during 945 

stress response. In this chapter dedicated to the remodeling of splanchnic nerve-chromaffin cell 946 

synapse, I have deliberately used the term "remodeling" and not "plasticity". Could we talk 947 

about plasticity as observed at synapses in the central nervous system? Does the splanchnic 948 

nerve-chromaffin cell synapse undergo short- and/or long-term potentiation? To my 949 
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knowledge, the only report of a plasticity mechanism at this synapse comes from Whim's 950 

laboratory, which shows that fasting induces in chromaffin cells a decrease in the paired-pulse 951 

ratio of evoked synaptic currents, thus leading to a long-lasting increase in the strength of the 952 

preganglionic-chromaffin cell synapse (Gupta, Ma, Wang, & Whim, 2017; M. Wang, Wang, & 953 

Whim, 2016). Obviously, this research field remains open to future investigation.   954 

 955 

3.6 Stress-induced remodeling of gap junctional communication 956 

In addition to the neural command arising from the splanchnic nerve, chromaffin cells are 957 

coupled through gap junctions. This local intercellular communication pathway has long been 958 

suspected to play a role in adrenal stimulus-secretion coupling of various species (Cena, 959 

Nicolas, Sanchez-Garcia, Kirpekar, & Garcia, 1983; Ishikawa & Kanno, 1978; Moser, 1998), 960 

but it was only in the early 2000s that their functional role was actually unveiled ((Martin, 961 

Mathieu, Chevillard, & Guerineau, 2001) for the inaugural report and (Colomer, Desarmenien, 962 

& Guerineau, 2009; Colomer, Martin, Desarmenien, & Guerineau, 2012; Guerineau, 2018; 963 

Guerineau, Campos, Le Tissier, Hodson, & Mollard, 2022; Hodson, Legros, Desarmenien, & 964 

Guerineau, 2015) for reviews). By promoting propagation of electrical (and metabolic) signals 965 

between chromaffin cells, the gap junction-mediated route acts as a complement to synaptic 966 

transmission to drive catecholamine exocytosis (Desarmenien et al., 2013; Martin, Mathieu, 967 

Chevillard, & Guerineau, 2001). In addition, it displays a dynamic and continuous remodeling, 968 

making it a key element of stimulus-secretion coupling (Guerineau & Desarmenien, 2010; 969 

Guerineau, Desarmenien, Carabelli, & Carbone, 2012). In conditions associated with an 970 

impairment of synaptic transmission (i.e. denervated gland or pharmacological blockade of 971 

postsynaptic nAChRs for examples), gap junctional coupling undergoes a drastic upregulation 972 

(Martin, Mathieu, & Guerineau, 2003). By compensating for the loss in chemical 973 
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neurotransmission, gap junction signaling could sustain catecholamine release by maintaining 974 

communication within the chromaffin cell network. 975 

 Rodent chromaffin cells express connexin 43 (Cx43), a connexin found in a wide variety 976 

of cell types including endocrine cells, and the neuronal connexin 36 (Cx36) (Desarmenien et 977 

al., 2013; Hodson, Legros, Desarmenien, & Guerineau, 2015; Martin, Mathieu, Chevillard, & 978 

Guerineau, 2001; Meda et al., 1993; Moser, 1998). In the human adrenal medullary tissue, the 979 

predominant connexin expressed is Cx50, with a de novo expression of Cx26, Cx32 and Cx43 980 

in pheochromocytomas (Willenberg et al., 2006). When connexin channels are open, they 981 

provide electrical communication between coupled cells, allowing electrical signals (such as 982 

APs) to be transmitted into neighboring cells, either as small depolarizations (weak coupling) 983 

or as whole APs (robust coupling) (Fig. 5). 984 

 985 

[Insert Figure 5 here] 986 

Fig. 5: Remodeling of gap junction-mediated electrical coupling between chromaffin cells in 987 

the stressed adrenal medulla. In response to stress (5 day-cold exposure, male rat), expression 988 

of both Cx36 and Cx43, the two main connexins expressed in rat chromaffin cells, is up-989 

regulated. As functional consequences, i) the number of chromaffin cells coupled by gap 990 

junctions increases and ii) the strength of the electrical coupling is also enhanced, as evidenced 991 

by the appearance of a robust coupling in stressed animals. Adapted from Colomer, C., Olivos-992 

Oré, L.A., Coutry, N., Mathieu, M.-N., Arthaud, S., Fontanaud, P., Iankova, I., Macari, F., 993 

Thouënnon, E., Yon, L., Anouar, Y., & Guérineau, N.C. (2008). Functional remodeling of gap 994 

junction-mediated electrical communication between adrenal chromaffin cells in stressed rats. 995 

Journal of Neuroscience, 28:6616-6626. https://www.jneurosci.org/content/28/26/6616. 996 

 997 

 998 
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The occurrence of gap junctional coupling between chromaffin cells depends on various factors, 999 

including age, species, animal sex, physiological state (i.e. stressed/unstressed) and splanchnic 1000 

innervation competence (reviewed in (Colomer, Desarmenien, & Guerineau, 2009; Hodson, 1001 

Legros, Desarmenien, & Guerineau, 2015)). In adult female rats, the percentage of chromaffin 1002 

cells exhibiting a gap junctional communication is about 40%, whereas it is only 20% in age-1003 

matched males (Colomer et al., 2008; Martin, Mathieu, Chevillard, & Guerineau, 2001). One 1004 

possible explanation for this discrepancy could be that males and females differentially respond 1005 

to stress, with female expressing a greater increase in plasma catecholamine (Livezey, Miller, 1006 

& Vogel, 1985; Weinstock, Razin, Schorer-Apelbaum, Men, & McCarty, 1998). The extended 1007 

gap junctional communication in female would be in anticipation of a greater secretory 1008 

response. 1009 

 In stressed animals (cold exposed rats and mice), gap junctional communication in the 1010 

adrenal medulla is enhanced (Colomer, Lafont, & Guerineau, 2008; Desarmenien et al., 2013). 1011 

Not only the number of coupled chromaffin cells is increased but also the coupling strength, as 1012 

evidenced by the appearance of robust coupling (Colomer et al., 2008). This is particularly 1013 

relevant in terms of catecholamine secretion, whose demand is greatly increased in stressful 1014 

situations. In parallel, expression of Cx36 and Cx43 is increased, both at the transcriptional and 1015 

protein levels. Interestingly and fully consistent with the role of PACAP as stress 1016 

neurotransmitter at the adrenomedullary synapse, is the finding that the electrical coupling and 1017 

the spread of excitability between chromaffin cells is increased by PACAP (Hill, Lee, Samasilp, 1018 

& Smith, 2012).  1019 

 Along the same line, neonate (postnatal day 0-1) chromaffin cells are extensively 1020 

coupled by gap junctions (Martin, Alonso, & Guerineau, 2005; Martin, Mathieu, & Guerineau, 1021 

2003). Indeed, although pre-and post-synaptic elements are already present prenatally 1022 

(Daikoku, Kinutani, & Sako, 1977), the neurogenic control of catecholamine secretion is not 1023 
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fully competent at birth but becomes mature during the first postnatal week (Slotkin, 1986). 1024 

This critical period	 is marked by a persistent anatomical and functional remodeling of the 1025 

adrenomedullary tissue, that is crucial to the acquisition of the neurogenic control. The switch 1026 

from non-neurogenic (gap junction-mediated) to neurogenic control of catecholamine secretion 1027 

is accompanied by a decrease in the number of gap junction-coupled chromaffin cells and an 1028 

increase in synaptogenesis (Martin, Alonso, & Guerineau, 2005). As such, a prominent and 1029 

continuous interplay between synaptic activity and gap junctional coupling is necessary for 1030 

normal function of the adrenal medulla. 1031 

 1032 

 1033 

4. Conclusion and futures directions 1034 

As illustrated throughout this chapter, the adrenal medulla is a fascinating but complex 1035 

neuroendocrine tissue, whose cellular/multicellular responses are devoted to the maintenance 1036 

of body homeostasis in response to harmful situations. Behind intricate regulatory mechanisms, 1037 

there is however a simple reality: coping with stress and adapting the body to changes in its 1038 

homeostasis.  1039 

 Further decoding of the intra/intercellular mechanisms governing the stimulus-secretion 1040 

coupling will undoubtedly improve our knowledge not only of the functioning of the adrenal 1041 

medulla itself, but also and above all of the role of its secretory products in maintaining body 1042 

homeostasis during stress and in stress-related pathologies. By releasing catecholamines (and 1043 

other biologically active products) into the systemic circulation, it is obvious that the adrenal 1044 

medulla holds a central position, at the interface between several organs, both peripheral and 1045 

central. To my opinion, this makes it even more fascinating. Its influence therefore goes far 1046 

beyond its role as a neuroendocrine tissue secreting stress hormones. After having been used 1047 

for a long time as a 'simple cellular model' for the study of the molecular mechanisms of 1048 
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exocytosis, it is high time that the adrenal medullary glands regain their credentials as key tissue 1049 

in the inter-organ communication of the body. To achieve this, the first step requires to fully 1050 

elucidate both the afferent and efferent neuronal and/or humoral circuits linking the adrenal 1051 

gland to other organs. Using trans-neuronal transport of rabies virus in the rat and monkey, two 1052 

studies have elegantly tackled this issue and successfully unveiled cortical brain regions that 1053 

have access to the adrenal medulla (Dum, Levinthal, & Strick, 2016, 2019). Intriguingly, in 1054 

monkeys, these cortical regions are involved in movement, cognition and affect. This 1055 

fascinating finding shows how the adrenal medulla must be seen not as a single functioning 1056 

tissue, but as a link in a more complex chain connecting organs. In a more provocative manner, 1057 

it could be proposed that the adrenal medulla is part of the neural substrate that links cognition 1058 

to internal organ function.  1059 

 This new view of adrenomedullary tissue as a link between peripheral and central organs 1060 

is beginning to emerge in the field of gut-brain axis research. Growing evidence highlights the 1061 

involvement of gut microbiota dysbioses in the pathophysiology of stress and stress-related 1062 

disorders (Rea, Dinan, & Cryan, 2017). It is now well known the gut microbiota influences the 1063 

HPA axis, as ascertained by an enhanced blood corticosterone level and a dysregulation of the 1064 

expression of genes encoding CRH and glucocorticoid receptors (brain) and corticosterone 1065 

(adrenal cortical tissue) in germ-free rodents exposed to acute psychological stressors 1066 

(Vagnerova et al., 2019). In addition, recent data accredit the gut microbiota as a partner able 1067 

to affect the adrenomedullary tissue function (Mir et al., 2020). The dialogue between the gut 1068 

microbiota and the adrenal medulla is still in its infancy but is certainly worthy of future 1069 

investigations. 1070 

 After having been used for a long time as a 'simple cellular model' for the study of the 1071 

molecular mechanisms of exocytosis, it is high time that the adrenal medullary glands regain 1072 

their credentials as key tissue in the inter-organ communication of the body. It is likely that new 1073 
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discoveries and innovative concepts targeting the adrenomedullary tissue will emerge in the 1074 

coming years. 1075 
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Table 1: Effect of various acute stress on gene expression, protein level and enzymatic activity on catecholamine biosynthetic enzymes 

ACUTE 
STRESS 

species 
sex  TH  DbH  PNMT 

 
References 

   mRNA protein activity  mRNA protein activity  mRNA protein activity 
 

 

single IMMO 
(2-2.5 hours) 

rat, Sprague-
Dawley 
♂, adult 

             (Kvetnansky, Weise, & 
Kopin, 1970) 

     
 

        
 

(McMahon et al., 1992) 

              
 

(Nankova et al., 1994) 

              
 

(Viskupic et al., 1994) 

              
 (Kvetnansky, Rusnak, 

Dronjak, Krizanova, & 
Sabban, 2003) 

       
 

      
 

(Kvetnansky et al., 2004) 

              
 (Xu, Chen, Sun, Sterling, 

& Tank, 2007) 

              
 

(Tai et al., 2007) 

 
mouse, 

C57B1/129SV 
♂, adult 

             
(Kvetnansky et al., 2006) 

 
mouse, 

C57B1/129SV 
♂+♀, adult 

            
 (Kubovcakova et al., 

2004) 
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mouse, 

C57B1/129SV 
♂+♀, adult 

            
 

(Kvetnansky et al., 2008) 

                

restraint stress 
(20 min) 

rat, Long-
Evans 

♂, adult 
            

 (Betito, Mitchell, 
Bhatnagar, Boksa, & 

Meaney, 1994) 

restraint stress 
(2 hours) 

mouse, 
C57B1/129S,

♀, adult 
   

   
 

   
 

 
 

(Kvetnansky et al., 2008) 

unrelieved 
restraint stress 

(6 hours) 

mouse 
C57BL/6N, 

♂, adult 
            

 
(Stroth & Eiden, 2010) 

restraint stress 
(1-6 hours) 

mouse 
C57BL/6N, 

♂, adult 
            

 
(Stroth et al., 2013) 

                
cold exposure 
(4°C, 1 day) 

rat, Wistar 
♂, adult             

 
(Thoenen, 1970) 

cold exposure 
(4-5°C, 1-12 

hours) 

rat, Sprague-
Dawley 
♂, adult 

            
 (Fluharty, Snyder, 

Zigmond, & Stricker, 
1985) 

              
 (Tank, Lewis, 

Chikaraishi, & Weiner, 
1985) 

              
 

(Weisberg et al., 1989) 

              
 

(Baruchin et al., 1990) 

              
 

(Kvetnansky et al., 2003) 

              
 

(Xu et al., 2007) 
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hypotension 
rat, Sprague-

Dawley 
♂, adult 

            
 

(Fluharty et al., 1985) 

                

glucoprivation 
rat, Sprague-

Dawley 
♂, adult 

            
 

(Fluharty et al., 1985) 

              
 

(Kvetnansky et al., 2003) 

              
 (DeCristofaro & 

LaGamma, 1994) 

              
 

(Xu et al., 2007) 

 
rat, Sprague-
Dawley, 4-d-

old pups 
            

 (DeCristofaro & 
LaGamma, 1994) 

                

hypoglycemia 
(insulin bolus) 

rat, Sprague-
Dawley 
♂, adult 

            
 

(Fluharty et al., 1985) 

              
 

(Kvetnansky et al., 2003) 

              
 (DeCristofaro & 

LaGamma, 1994) 

 
rat, Sprague-

Dawley 
♀, adult 

            
 (Adams, Legan, Ott, & 

Jackson, 2005) 

 
rat, Sprague-
Dawley, 4-d-

old pups 
            

 (DeCristofaro & 
LaGamma, 1994) 
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mouse 

C57BL/6N, 
♂, adult 

            
 

(Stroth et al., 2013) 

                

nicotine 
injection 

rat, Sprague-
Dawley 
♂, adult 

            
 (Jahng, Houpt, Joh, & 

Wessel, 1997) 

              
 (Serova, Danailov, 

Chamas, & Sabban, 
1999) 

                
hypoxia (2 

hours, 
nitrogen) 

rat, Sprague-
Dawley, 4-d-

old pups 
            

 (DeCristofaro & 
LaGamma, 1994) 

hypoxia (1-48 
hours, 10% 

O2) 

rat, Sprague-
Dawley 
♂, adult 

            
 (Millhorn, Czyzyk-

Krzeska, Bayliss, & 
Lawson, 1993) 

                
acute 

footshock (1 
mA, 1 

pulse/min for 
10 min) 

rat, Sprague-
Dawley 
♂, adult 

            

 

(Ong et al., 2014) 

acute 
footshock (1 

mA, 1 
pulse/min for 
20-40 min) 

rat, Sprague-
Dawley 
♂, adult 

  
          

 

(Ong et al., 2014) 

                
individual 

housing (24 
hours) 

rat, Wistar 
♂, adult             

 
(Armando et al., 2001) 
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Table 2: Effect of various chronic stress on gene expression, protein level and enzymatic activity on catecholamine biosynthetic enzymes 

 

CHRONIC 
STRESS 

species 
sex 

 
TH  DbH  PNMT 

 
References 

  
 

mRNA protein activity  mRNA protein activity  mRNA protein activity 
 

 

repeated 
IMMO (2.5 
hours, 7-42 

times) 

rat, Sprague-
Dawley 
♂, adult 

 

           
 

(Kvetnansky, Weise, & 
Kopin, 1970) 

repeated 
IMMO (2 

hours, daily, 
2-7 days) 

rat, Sprague-
Dawley 
♂, adult 

 
           

 

(McMahon et al., 1992) 

  
            

 
(Nankova et al., 1994) 

  
 

           
 

(Viskupic et al., 1994) 

  
            

 (Kvetnansky et al., 
2004) 

  
            

 (Xu, Chen, Sun, 
Sterling, & Tank, 2007) 

  
 

           
 

(Tai et al., 2007) 

 
mouse, 

C57B1/129S 
♂, adult 

 
           

 (Kvetnansky et al., 
2006) 

 
mouse, 

C57B1/129S 
♂+♀, adult 

 
           

 
(Kubovcakova et al., 

2004) 
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cold exposure 
(4°C, 2-4 

days) 

rat, Wistar 
♂, adult             

 
(Thoenen, 1970) 

cold exposure 
(4-5°C, 3 

days) 

rat, Sprague-
Dawley 
♂, adult 

 
           

 (Tank, Lewis, 
Chikaraishi, & Weiner, 

1985) 

  
 

           
 

(Weisberg et al., 1989) 

  
 

           
 (Stachowiak, Fluharty, 

Stricker, Zigmond, & 
Kaplan, 1986) 

  
            

 
(Baruchin et al., 1990) 

cold exposure 
(5°C, 4 days-3 

weeks) 

rat, Sprague-
Dawley 
♂, adult 

            
 (Fluharty, Snyder, 

Zigmond, & Stricker, 
1985) 

                

hypotension 
rat, Sprague-

Dawley 
♂, adult 

 
           

 
(Fluharty et al., 1985) 

                

hypoglycemia 
rat, Sprague-

Dawley 
♂, adult 

 
           

 
(Fluharty et al., 1985) 

                

glucoprivation 
rat, Sprague-

Dawley 
♂, adult 

 
           

 
(Xu et al., 2007) 

                
individual 
housing (8 
months) 

mouse (ND) 
♂, adult 

 
  

 
       

  (Axelrod, Mueller, 
Henry, & Stephens, 

1970) 
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individual 
housing (12 

weeks) 

rat, Wistar 
♂, adult 

            
 (Gavrilovic, Spasojevic, 

Tanic, & Dronjak, 2008) 

  
  

   
 

      
 (Gavrilovic, Spasojevic, 

& Dronjak, 2012) 

  
            

 (Jovanovic, Stefanovic, 
Spasojevic, Puskas, & 

Dronjak, 2016) 
increased 

social 
stimulation 

(communica-
ting box 
system, 8 
months) 

mouse (ND) 
♂, adult 

 

           

 

(Axelrod et al., 1970) 

                
unpredictable 
chronic mild 

stress (7 days) 

mouse, 
C57/BL6 
♂, adult 

 
           

 
(Santana et al., 2015) 

unpredictable 
chronic mild 

stress (21 
days) 

mouse, 
C57/BL6 
♂, adult 

 
  

    
     

 

(Santana et al., 2015) 

unpredictable 
chronic mild 

stress (28 
days) 

rat, Wistar 
♂, adult 

 
           

 
(Spasojevic, Gavrilovic, 

& Dronjak, 2010) 

  
 

  
    

     
 (Stefanovic, Spasojevic, 

Jovanovic, & Dronjak, 
2019) 

                
chronic 

footshock (2-5 
mA, 1 

rat, Sprague-
Dawley 
♂, adult 

 
           

 (Stone, Freedman, & 
Morgano, 1978) 
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pulse/20 sec 
for 1 hour, 9 

days)  
                

repeated 
attacks by 
aggressor 

mice (10 min, 
daily, 2-14 

days) 

mouse, 
C57BR/cdJ 

♂, adult 

 

           

 

(Thoa, Tizabi, Kopin, & 
Maengwyn-Davies, 

1976) 

                
long-term 
prenatal 

hypoxia (high 
altitude (3,820 
m, 60 mmHg) 

ovine fetus 
(late gestation, 
139-141 days) 

 
  

  
  

  
  

 

 

(Ducsay et al., 2007) 

prenatal 
hypoxia (10% 
O2, from day 

5th to day 
20th of 

gestation) 

rat, Sprague-
Dawley, fetus, 

E19 

 

 
 

         

 

(Mamet et al., 2002) 

prenatal 
hypoxia (11-
13% O2, 2- 3 

days) 

rat, Sprague-
Dawley, fetus, 

E21 

 
           

 (Holgert, Pequignot, 
Lagercrantz, & Hokfelt, 

1995) 

 
rat, Sprague-

Dawley, 
newborn, P0.5 

 
    

 
      

 
(Holgert et al., 1995) 

prenatal 
hypoxia (10% 
O2, from day 

5th to day 
20th of 

gestation) 

rat, Sprague-
Dawley, 

newborn, P0 

 

 
 

         

 

(Mamet et al., 2002) 
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rat, Sprague-
Dawley, pups, 

P7 
(Mamet et al., 2002) 

rat, Sprague-
Dawley, pups, 

P21 
(Mamet et al., 2002) 
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