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Abstract
The current study analyses laughter distribution, pragmatic use,
and acoustic features in a multimodal conversation corpus,
where one of the interlocutor had brain activity recorded with
functional MRI. Particular focus is on the analysis of mimick-
ing and non-mimicking laughter, as we hypothesized that the
former might involve different neural pathways in comparison
to latter, and a spectrotemporal modulation analysis was se-
lected to evaluate the acoustic differences between them. The
goals of our investigation are (1) to validate the corpus as eco-
logical in terms of laughter production prior to evaluating neu-
rophysiological correlates of laughter production and percep-
tion in conversational interactions, (2) to compare mimicking
and non-mimicking laughter in terms of acoustic features, and
(3) to evaluate which features need to be taken in account for
our forthcoming analysis of fMRI data. Despite the uncon-
ventional recording conditions, laughter production and use re-
sults are comparable to those observed in face-to-face interac-
tions. Mimicking laughter has significantly increased temporal
modulations in comparison to non-mimicking laughter, how-
ever, no differences are observed in the spectral modulation do-
main. Our findings suggest that mimicking laughter might be
related to different underpinning neuro-psychological processes
on which we plan on gaining insight through future neural-
correlate analysis.
Index Terms: laughter in conversation, fMRI conversational
corpus, laughter mimicry, spectrotemporal modulation, gener-
alized additive mixed models

1. Introduction
Laughter is a non-verbal vocalisation crucial in our conversa-
tions. It affects the unfolding of our dialogues and has im-
portant effects on the establishment and maintenance of re-
lationships [1, 2, 3]. It conveys meaning, performs differ-
ent pragmatic functions, and can be used to smooth face-
threatening dialogue acts, such as criticism [4, 5, 6, 7]. Un-
til now studies investigating the neural correlates of laughter
have been mainly restrained to the study of laughs produced
or perceived in isolation, produced in response to isolated hu-
morous stimuli, or in response to electrical brain stimulation
(e.g. [8, 9, 10, 11, 12, 13, 14]). Yet, very little is known as to
the production and processing of laughter in interaction.

To fill this gap we annotated laughter in the human-human
portion of the Convers corpus [15], where participants engaged
in spontaneous loosely task-directed conversations with a con-
federate while their neural activity was recorded in an fMRI

scanner. The current paper presents a corpus study constituting
an essential basis for future analysis of the neurophysiological
data. We analysed laughter occurrences, laughter positioning in
relation to speech and others’ laughter, its pragmatic functions,
and the acoustics of mimicking and non-mimicking laughter.

Numerous acoustic features have been used to describe the
perceptual characteristics associated with laughter (see [16, 17,
18, 19]). These descriptors span both temporal and spectral di-
mensions. Research in speech production and perception has
focused on the changes across these dimensions by transferring
the time-frequency representations of acoustic signals into the
spectrotemporal modulation domain (hereafter STM) [20]. Nu-
merous studies have focused on unpacking modulation repre-
sentations of speech signals in the context of assessing intel-
ligibility [21, 22] and voice pathology [23, 24], and more re-
cently laughter. [25, 26] showed that modulations of the am-
plitude envelope and F0 could be used to distinguish speech,
laughter, and speech-laughter. [27] relied on such measures to
examine whether mimicking and non-mimicking laughter are
characterised by specific modulation rates. Since previous work
suggests mimicking laughter might involve different pathways
in comparison to non-mimicking laughter [28], a spectrotem-
poral modulation analysis was selected to analyse the acoustic
differences between the two.

The current work has three main goals: (1) to evaluate
whether annotated interactions are ecologically valid in terms
of laughter occurrences, laughter mimicry and laughter prag-
matics; (2) to explore whether mimicking and non-mimicking
laughter are significantly different in terms of acoustic features,
which might be informative about deeper neuropsychological
processes; and (3) to evaluate which distributional and acoustic
trends should be taken into account when applying neurophys-
iological analysis to the corpus in a future analysis of laughter
neural correlates during spontaneous conversation.

2. Methods
2.1. Corpus

The Convers corpus [15] is constituted by spontaneous loosely
task-directed French dyadic conversations between participants
and a confederate of the experiment (in and outside of a fMRI
scanner, respectively). 24 minutes of multimodal recording are
available for each participant: 12 min while interacting with a
human confederate and 12 min while interacting with a robot
(Furhat) controlled by a confederate. The current analysis is
exclusively focused on the human-human interactions (total:
276 minutes). Our corpus contains 23 dyadic conversation: 23



Table 1: Inter-annotator agreement

Feature % Agreement Krippendorff’s α
L-SL 97.3% 0.94
Arousal 68.9% 0.66
Laughable origin 86.5% 0.75
Incongruity Branch 81.1% 0.54
Overall 84.9% 0.73
participants (16 females) unfamiliar with a human confederate
of the same sex. The conversation was loosely task-directed,
where dyads were presented graphic drawings intended to be
a part of advertising campaign and, through conversation with
the confederate, the goal was to discover the key message be-
hind the campaign. The participants could see the interlocutor
recorded live with a webcam during the the conversation.

2.2. Laughter Annotation

The corpus was annotated by author CM using the software
ELAN [29]. The laughter audio-visual identification criteria
follows the procedures outlined in [30, 31]. Following the an-
notation scheme proposed in [7], the level of arousal displayed
by the laughter’s form (low/medium/high), temporal sequence
in relation to speech (laughter/speech-laughter), and others’
laughs (non-/mimicking laughter) were annotated. We define
mimicking laughter as laughter that shortly follows a laughter
from the partner, either overlapping or beginning within one
second from the end of the initiating laughter (see [30, 27] for
calculation methods). The term non-mimicking laughter refers
to any laughter not meeting this criteria.

Based on [7], we consider laughter as an event predicate
relating to a laughable in the context (i.e., the laughter argu-
ment). Different types of laughables can be distinguished based
on whether they contain an incongruity or not, and, if so, which
kind of incongruity (see [4] for a formal definition of incon-
gruity). The annotation categories are as follows:

1. Pleasant incongruity is a clash between the laughable
and certain background information perceived as witty,
rewarding and/or somehow pleasant (e.g., jokes, puns,
goofy behaviour and conversational humour).

2. Social incongruity is a clash between social norms
and/or comfort and the laughable.. Examples include so-
cial discomfort (e.g., embarrassment or awkwardness),
violation of social norms (e.g., invasion of another’s
space, asking a favour), or an utterance that clashes
with the interlocutor’s expectations concerning one’s be-
haviour (e.g., criticism).

3. Pragmatic incongruity arises when there is a clash be-
tween what is said and what is intended (e.g., in the case
of irony, scare-quoting, hyperbole etc.). In such cases
laughter is used by the speaker in order to signal the need
to opt for a less probable meaning interpretation within
their own utterance.

4. Pleasantness refers to cases where no incongruity can
be identified. In these cases what is associated with the
laughable is a sense of closeness that is either felt or dis-
played towards the interlocutor, e.g., while thanking or
receiving a pat on the shoulder.

Interannotator agreement was conducted on 20% of the
corpus by a native French graduate student. The agreement
on laughter identification and segmentation (start/end bound-
aries) was assessed using the Staccato algorithm implemented

in ELAN [32]. We ran the analysis with 1000 Monte Carlo
Simulations, a granularity for annotation length of 10, and α =
0.05. The average degree of organisation between annotators is
0.83. The results in terms of percentage agreement and Krip-
pendorff’s α [33] are given in Table 1 for each variable anno-
tated. Overall we have a percentage agreement of 84.86% and
a Krippendorff’s α of 0.73.

2.3. Acoustic Analysis

2.3.1. Acoustic pre-processing

To remove unwanted noise generated by the fMRI machines,
the noisereduce [34] Python function was used with the sta-
tionary noise reduction setting (1.5 standard deviations above
mean signal:noise ratio). All recordings were then normalised
by adjusting the maximal amplitude to a target of 100% of the
signal dynamic (MATLAB 2021b, MathWorks Inc, USA).

2.3.2. Spectrotemporal modulation processing

The energy distribution across the spectrotemporal modula-
tion domain can be expressed as the Modulation Power Spec-
trum (MPS). Studies by [21, 35, 36] define MPS as a two-
dimensional Fourier transform of the time-frequency represen-
tation of an audio signal. In general Equation 1 defines the
MPS, where s and r are spectral and temporal modulations,
respectively, and Y (t, f) is the amplitude extracted from the
Fourier transform:

MPS(s, r) =
∫ ∫

|Y (t, f)|e−2πisfe−2πirtdfdt (1)

Scripts developed in MATLAB by [22] were adapted to ob-
tain the MPS of laughs. Laughter recordings were first down-
sampled to 16 kHz. Time-frequency representations were ob-
tained by using a gammatone filter bank summation method
(128 full-width half-maximum gaussians with center frequen-
cies logarithmically spanning the frequency domain). Hilbert
transforms were used to extract the analytical amplitudes from
filter outputs. The fft2 MATLAB function transformed the time-
frequency representations into the modulation domain. It has
been shown that speech is embedded with temporal and spectral
modulations ranging from 0 to 32 Hz and 0 to 4 cyc/oct, respec-
tively. Thus, these ranges were used to compare STM profiles
associated with mimicking and non-mimicking laughter.

2.3.3. Statistics for acoustic analysis

Generalized additive mixed models (GAMMs) [37] were used
to evaluate the efficiency of temporal modulation (TM) and
spectral modulation (SM) metrics to model mimicking (M) and
non-mimicking (NM) laughter. GAMMs were selected for sta-
tistical analysis as they can handle time-varying data with non-
linear relationships and have been shown to be effective at eval-
uating amplitude and F0 modulations [25]. Following the pro-
cedures suggested by [38, 25] the R-package mgcv was used.
Thin plate regression splines were used as smoothing functions
to model the non-linear variation present in the data. The R-
package itsadug [39] was used to estimate an AR-1 correlation
parameter ρ and pairwise differences between the non-linear
smooths of the factor levels.

Formula 2 describes the GAMM used in the current study.
Amplitudes A (in dB) corresponding to modulations v (the unit
for v is Hz for TM and cyc/oct for SM) were used as dependent
variables. The term L represents the laughter type (mimicking



Table 2: Incongruity type contained in the laughables

Incongruity type N Overall % Participant Confederate
Pleasant 219 62.93% 56.97% 68.31%
Social 124 35.63% 41.21% 30.60%
Pragmatic 3 0.86% 1.21% 0.55%
Pleasantness 2 0.57% 0.61% 0.55%

vs. non-mimicking). Participant p was set to a non-linear ran-
dom factor. The ρ-value described in Formula 2 was estimated
from the data and included to control for auto-correlation in the
time series (ρTM = 0.85; ρSM = 0.88). As proposed in [25],
each model was first tested against a base model not containing
the fixed factor via the compareML function.

bam(A ∼ L+s(v, by = L)+s(v, p, by = L, bs = “fs”), rho = ρ)
(2)

3. Results
3.1. Laughter distribution, mimicry and laughable features

Overall 348 laughs were identified: 165 from Participants in
the fMRI scanner (P) and 183 from Confederates (C). The over-
all frequency was 1.16 laughs per minute. The mean duration
of the laughs was 1.35 ± 0.79 s, ranging from 0.24 to 4.79 s.
23.28% of laughter events in the dataset (N=81) was consti-
tuted by speech-laughter. We observed a high inter-individual
variability in terms of laughter production regardless of the con-
versational role (P: 7.86 ± 6.76 laughs; C: 8.32 ± 6.54 laughs).
Similarly we observed high inter-individual variability in the
percentages of speech-laughter over the total laughs produced
by each individual (P: 21 ± 23%; C: 18% ± 22). Overall we ob-
served more speech-laughter in P (30.91%) than in C (16.39%).

28% of laughter events in the dataset (N=97) was consti-
tuted by mimicking laughter (P: 25%; C: 31%). Regarding
arousal, we observed 73.85% of the laughs to be low, 22%
medium, and very few (4%) high arousal. 58.05% of laughs
was related to laughables produced by the laugher her/himself,
37.36% was related to laughables produced by the partner,
while much lower percentages was related to laughables jointly
constructed (2.3%) or external (2.3%). Table 2 reports occur-
rences and percentages of the different types of laughables.

Figure 1: Differences between fitted class models for tempo-
ral (top) and spectral (bottom) modulations between mimick-
ing and non-mimicking laughter. The red interval represents
the range of modulations for which two models differed signifi-
cantly.

3.2. Acoustic analysis

Table 3 describes the results of mimicking and non-mimicking
laughter GAMMs based on temporal modulations (adjusted r2

= 0.75). Figure 1-Top illustrates the difference between the
two TM-based models. Mimicking laughter had significantly
increased temporal modulation amplitudes (≈ 1.5 dB) in the 0-
1.3 Hz range in comparison to non-mimicking laughter. Table 4
describes the results of mimicking and non-mimicking laughter
GAMMs based on spectral modulations (adjusted r2 = 0.93).
No significant differences were observed between mimicking
and non-mimicking laughter (Fig. 1-Bottom). Aware that mim-
icking laughter was more frequent when the laughable was con-
stituted by a pleasant incongruity [7] (79% of mimicking laugh-
ter in the dataset), we ran the same analysis excluding laughs re-
lated to social incongruity and found no significant differences
from results reported here.

Table 3: Temporal modulation model overview

Intercept estimates SE t p
M 0.41 0.27 1.55 n.s
NM -37.83 0.27 -141.04 ***
Fixed smooth terms edf ref.df F p
s(v):M 8.80 8.93 262.77 ***
s(v):NM 8.92 8.98 821.48 ***
Random smooth terms edf ref.df F p
s(v,p):M 48.79 125.0 2.36 ***
s(v,p):NM 65.40 207.0 2.41 ***

Table 4: Spectral modulation model overview

Intercept estimates SE t p
M 0.38 0.22 1.74 n.s
NM -42.74 0.22 -195.98 ***
Fixed smooth terms edf ref.df F p
s(v):M 8.84 8.86 952.73 ***
s(v):NM 8.90 8.92 2104.88 ***
Random smooth terms edf ref.df F p
s(v,p):M 117.65 125.0 31.45 ***
s(v,p):NM 199.51 202.0 42.53 ***

4. Discussion
4.1. Laughter occurrences, mimicry and laughable features

Laughter frequency in the Convers corpus (1.16 per minute)
was comparable to more ecological corpora, such as in-home
friendly conversations [40] (5.8 ± 2.5 per 10 min) and fully
ecological and diverse contexts (BNC: 5 per 10 min) [7]. On
the other hand, laughter was less frequent than in other contexts,
such as speed-dating (21 ± 9.28 per 5 min) [41] and friendly,
loosely-controlled conversations recorded in a laboratory set-
ting (DUEL French: 45 per 10 min; DUEL Chinese: 26 per
10 min) [7]. Laughter duration was similar to finding those re-
ported in other works (e.g., [30, 42]). Laughter arousal levels
were similar to those observed in face-to-face corpora recorded
in laboratory settings (e.g., DUEL corpus [7]). The percent-
age of mimicking laughter was similar to findings in ecological
settings (BNC: 26%[7]; [43]: 32%), and lower than in corpora
recorded in laboratory settings (DUEL Fr: 39%; Ch: 37% [7]).



Consistent with the literature, more than half of the laughs
produced (58%) related to utterances produced by the laugher
her/himself (DUEL French and Chinese 57%; BNC 46% [7];
43.5 - 55.3% [40]). Regarding which type of laughable the
laughter related to, we observed similar patterns to those ob-
served in other multilingual corpora [7]. Most of laughs related
to pleasant incongruity, about one third related to social incon-
gruity, while rarely related to pragmatic incongruity and pleas-
antness laughables. Participants exhibited significantly higher
social incongruity laughter in comparison to pleasant incon-
gruity compared to Confederates (χ2

1 = 4.05, p < 0.05). Par-
ticipants’ percentages were more similar to those observed in
face-to-face natural dyadic conversations, where the relation-
ship between interlocutors is more balanced. We can speculate
that confederates were in a more natural position, sitting in front
of a screen outside of the fMRI scanner Moreover they were
aware of the experimental design and potentially less concerned
about social incongruity laughables.

4.2. Acoustic analysis

The temporal modulation models yielded significant differences
between mimicking and non-mimicking laughter. Given the
approximate 1:4 ratio of mimicking to non-mimicking laugh-
ter, temporal modulations were quite effective at discriminat-
ing laughter types, as evidenced by the temporal modulation
GAMM 75.2% of deviance explained by the models (Sec.
3.2). The models demonstrated that, in comparison to non-
mimicking laughter, mimicking laughter exhibited an increase
in temporal modulations below 2 Hz. As studies have reported
temporal modulations in the 1-2 Hz range are associated with
prosody [22, 44], one interpretation of this finding suggests that
participants might prosodically mark their responsive (mimick-
ing) laughter, crucial to showing affiliation and bonding [2],
to compensate for the experimental setting, i.e., one partner in
an fMRI machine, communication via computer-mediation, etc.
A similar trend was observed in [27], which reported children
communicating with their parent via similar audiovisual means,
i.e., interaction through a screen, produced mimicking laugh-
ter with increased temporal modulations in the 0-4 Hz range.
Although the authors reported no differences in temporal mod-
ulations between laughter types for adults, mimicking laughter
produced by parents interacting with their child were increased
in comparison with other adults. Taking together these find-
ings suggests low frequency temporal modulations are sensitive
to differences between mimicking and non-mimicking laugh-
ter. This acoustic distinction observed between mimicking and
non-mimicking laughter might prove important when consid-
ering future analysis of the neuralcorrelates linked to laughter
production. Although slightly more deviance was explained by
the spectral modulation GAMM (93%), no significant differ-
ences between laughter types were observed. These findings are
consistent with those reported in [27], where no significant dif-
ferences between mimicking and non-mimicking laughter pro-
duced by adults were observed. It is possible that mimicking
laughter is more strongly associated with modulations of am-
plitude envelopes rather than changes in spectral features, such
as formants and fundamental frequency, which have been cor-
related with arousal in humans [45, 46, 43] and in non-human
animals [47, 48]. Although the frequency of arousal levels
were similar to those observed in face-to-face interactions, it
is possible that, as the dyads were composed of strangers (see:
[45, 46]) conversing in unnatural conditions, the expression of
high arousal states might have been constrained.

5. Conclusions
The current study examined laughter production in a corpus
of semi-structured conversation while one interlocutor under-
went fMRI scanning. We conducted laughter annotations to
study laughter distribution, its pragmatic use, and to perform
acoustic comparisons between mimicking and non-mimicking
laughter. These analyses and results are foundational in or-
der to conduct successive neuro-imaging analysis exploring the
neural-correlates of different types of laughter in spontaneous
conversations. The following were major take-away messages
from the study: (1) despite the peculiar condition in which
the conversations took place, laughter behaviours are compara-
ble to that observed in face-to-face corpora, (2) in comparison
to non-mimicking laughter, mimicking laughter had increased
temporal modulations below 2 Hz, however, no significant dif-
ference were observed between the two in the spectral modula-
tion domain, and (3) significant individual variability emerges
in laughter production. These observations will inform future
analysis of neuro-physiological correlates relating of laughter
perception and production.

6. Acknowledgements
This work was supported by the ILCB (ANR-16-CONV-
0002) and the Excellence Initiative of Aix-Marseille University
(A*MIDEX AAP-ID-17-46-170301-11.1). We are grateful to
Charlie Hallart for her work on the inter-annotator agreement.

7. References
[1] S. K. Scott, N. Lavan, S. Chen, and C. McGettigan, “The social

life of laughter,” Trends in cognitive sciences, vol. 18, no. 12, pp.
618–620, 2014.

[2] M. Davila-Ross and E. Palagi, “Laughter, play faces and mimicry
in animals: evolution and social functions,” Philosophical Trans-
actions of the Royal Society B, vol. 377, no. 1863, p. 20210177,
2022.

[3] R. Dunbar, “Laughter and its role in the evolution of human social
bonding,” Philosophical Transactions of the Royal Society B, vol.
377, no. 1863, p. 20210176, 2022.

[4] J. Ginzburg, C. Mazzocconi, and Y. Tian, “Laughter as language,”
Glossa, vol. In resubmission, 2020.

[5] P. Glenn, Laughter in interaction. Cambridge University Press,
2003, vol. 18.

[6] J. Raclaw and C. E. Ford, “Laughter and the management of diver-
gent positions in peer review interactions,” Journal of pragmatics,
vol. 113, pp. 1–15, 2017.

[7] C. Mazzocconi, Y. Tian, and J. Ginzburg, “What’s your laughter
doing there? A taxonomy of the pragmatic functions of laughter,”
IEEE Transactions on Affective Computing, 2020.

[8] G. Lombardi, M. Gerbella, M. Marchi, A. Sciutti, G. Rizzolatti,
and G. Di Cesare, “Investigating form and content of emotional
and non-emotional laughing,” Cerebral Cortex, vol. 33, no. 7, pp.
4164–4172, 2023.

[9] C. McGettigan, E. Walsh, R. Jessop, Z. Agnew, D. Sauter, J. War-
ren, and S. Scott, “Individual differences in laughter perception
reveal roles for mentalizing and sensorimotor systems in the eval-
uation of emotional authenticity,” Cerebral Cortex, pp. 220–227,
2013.

[10] D. P. Szameitat, B. Kreifelts, K. Alter, A. J. Szameitat, A. Sterr,
W. Grodd, and D. Wildgruber, “It is not always tickling: distinct
cerebral responses during perception of different laughter types,”
Neuroimage, vol. 53, no. 4, pp. 1264–1271, 2010.



[11] E. Wattendorf, B. Westermann, K. Fiedler, E. Kaza, M. Lotze,
and M. R. Celio, “Exploration of the neural correlates of tick-
lish laughter by functional magnetic resonance imaging,” Cere-
bral Cortex, vol. 23, no. 6, pp. 1280–1289, 2012.

[12] B. Wild, F. A. Rodden, W. Grodd, and W. Ruch, “Neural corre-
lates of laughter and humour,” Brain, vol. 126, no. 10, pp. 2121–
2138, 2003.

[13] M. N. Neely, E. Walter, J. M. Black, and A. L. Reiss, “Neural cor-
relates of humor detection and appreciation in children,” Journal
of Neuroscience, vol. 32, no. 5, pp. 1784–1790, 2012.

[14] F. Caruana, P. Avanzini, F. Gozzo, S. Francione, F. Cardinale, and
G. Rizzolatti, “Mirth and laughter elicited by electrical stimula-
tion of the human anterior cingulate cortex,” Cortex, vol. 71, pp.
323–331, 2015.

[15] B. Rauchbauer, Y. Hmamouche, B. Bigi, L. Prevot, M. Ochs, and
T. Chaminade, “Multimodal corpus of bidirectional conversation
of human-human and human-robot interaction during fmri scan-
ning,” in Proceedings of LREC, 2020, pp. 668–675.

[16] J.-A. Bachorowski and M. J. Owren, “Vocal acoustics in emo-
tional intelligence.” Emotions and social behavior. The wisdom
in feeling: Psychological processes in emotional intelligence, pp.
11–36, 2002.

[17] D. P. Szameitat, K. Alter, A. J. Szameitat, D. Wildgruber, A. Sterr,
and C. J. Darwin, “Acoustic profiles of distinct emotional expres-
sions in laughter,” The Journal of the Acoustical Society of Amer-
ica, vol. 126, no. 1, pp. 354–366, 2009.

[18] N. Lavan, S. K. Scott, and C. McGettigan, “Laugh like you mean
it: Authenticity modulates acoustic, physiological and perceptual
properties of laughter,” Journal of Nonverbal Behavior, vol. 40,
no. 2, pp. 133–149, 2016.

[19] A. Wood, J. Martin, and P. Niedenthal, “Towards a social func-
tional account of laughter: Acoustic features convey reward, affil-
iation, and dominance,” PloS one, vol. 12, no. 8, 2017.

[20] T. Chi, Y. Gao, M. C. Guyton, P. Ru, and S. Shamma, “Spectro-
temporal modulation transfer functions and speech intelligibility,”
The Journal of the Acoustical Society of America, vol. 106, no. 5,
pp. 2719–2732, 1999.

[21] T. M. Elliott and F. E. Theunissen, “The modulation transfer
function for speech intelligibility,” PLOS Computational Biology,
vol. 5, no. 3, pp. 1–14, 03 2009. [Online]. Available:
https://doi.org/10.1371/journal.pcbi.1000302

[22] A. Flinker, W. Doyle, A. Mehta, O. Devinsky, and D. Poeppel,
“Spectrotemporal modulation provides a unifying framework for
auditory cortical asymmetries,” Nature Human Behaviour, vol. 3,
04 2019.
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