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reasoning models, other proposing programming languages; some maintaining that knowledge is better represented by symbols, others claiming that numbers are unavoidable; among the latter some declaring that uncertainty is best and uniquely captured by probability theory, and other swearing that this is not so, and that some facets of uncertainty cannot be accounted for by usual probabilistic models. Pearl's book belongs to the number-crunching camp of Bayesian probabilists. However, this is only a first approximation, Digging into the book, one discovers that qualitative (symbolic) structures that lie behind probabilistic concepts and laws emerge clearly in several chapters, and are considered as more important than the values of the involved numbers; besides the author displays an impressive knowledge of other, symbol-oriented, schools of thought in non-monotonic reasoning and truth maintenance systems. Finally, this book turns out to be a major contribution to the debate between numerical and symbolic approaches to automated reasoning, including mathematical results that bridge the gap between them, as much as a powerful defense of Bayesian probability.

ANALYSIS

This thick book is composed of 10 chapters and is a faithful and extensive report of the author's research and his team's, for (only...) six years or so. The number and depth of the achievements in such a short period are somewhat amazing. The three first chapters present the motivations and basic mathematical tools for Bayesian networks. Chapters 4 and 5 deal with algorithmic issues to which the author has much contributed in the recent past. Chapter 6 relates Bayesian networks to decision theory. Chapters 7 and 8 gather together miscellaneous issues such as taxonomic hierarchies, higher order probabilities, and data analysis. Chapters 9 and 10 deal with alternative approaches to problems addressed in the previous chapters by means of Bayesian networks.

Chapter 1 is a discussion of fundamental issues pertaining to the treatment of uncertainty in Artificial Intelligence. It also scans all the major ideas that will be further developed throughout the book. The author's position is that representing uncertainty is principally useful to summarize exceptions in bodies of knowledge so as to prioritize the flow of information to be dealt with on a computer. This task is a ditlicult problem because classical logic (in its computerized forms, such as logic programming or production-rule systems) cannot handle exceptions in a straightforward way. In particular, adding uncertainty to logic tends to destroy the nice properties that expert systems tenants are proud of: an uncertain knowledge base can no longer be viewed as a set of independent granules of knowledge; reasoning under uncertainty is no longer a matter of triggering production rules one by one; moreover, when a new piece of evidence comes in, conclusions that were so far held for nearly sure can be suddenly denied. The author gives a very nice analysis of the first expert systems such as MYCIN (Buchanan and Shortliffe, 1984) and PROSPECTOR (Duda, Gaschnig, and Hart, 1981) which were concerned with uncertainty management; he explains to what extent these systems, although computationally efficient, failed to account for the specific features of uncertain reasoning. Then he argues in favor of graphs as a better tool of formalize a knowledge base, because graph representations (or networks) are likely to overcome the problems encountered by uncertain rule-based systems: networks explicitly encode dependencies that are neglected in compositional certainty factor approaches, and can especially handle causal relationships.

This chapter also contains a defense of probability theory as the best tool for the modeling of uncertainty. Pearl makes several points: there is a "fortunate match between human intuition and the laws of proportions"; logic does not possess a device such as conditioning which enables one to represent phrases such as "given that what I know is such"; probability theory nicely embeds notions of non-transitive and induced dependencies; although people are bad probability estimators, rules combining exact numbers can be used to handle rough estimates. Finally, the author presents one of the major theses of this book: "probability theory, even stripped of all its numbers, can be useful as a paradigm facilitating purely qualitative reasoning." This point of view is not so usual in the area of numericallyoriented reasoning methods, and explains why this book emphasizes aspects of probability theory that are not often found in text books, for instance qualitative axioms of conditional independence, structural analysis of statistical data, and Adams' (1975) logic of conditionals.

Chapter 2 provides a refresher on Bayesian inference with a view to showing the reader that "probability is a faithful guardian of common sense." A running example about a burglary case illustrates the various introduced concepts. Many pages are devoted to the problem of uncertain evidence and its integration, interpreting probabilistic summaries of virtual evidence as conveying likelihood information, rather than absolute probabilities, especially likelihood ratios of the form I(A 1 B) = P(A 1 B)/P(A 1 not B), where A denotes the existence of a testimony and B the occurrence of the event described in the testimony. This is because L(A (B) is a characteristic of the testimony A itself. In contrast, a quantity such as P( B I A) is influenced by external factors acting on the source producing the testimony and thus cannot reflect the belief in B one gets from the testimony A. Pearl also points out that Bayesian inference behaves in accordance with commonsense causal reasoning. Namely, if one of two independent causes receives confirmation (via some observed facts), the other becomes less plausible, i.e., is "explained away." Conditional probabilities are a possible model of direct causal influences between variables, while mediated influences are expressed by means of paths in a graph. The chapter also contains an interesting discussion of Polya's (1954) patterns of plausible inference, and especially the inductive pattern A implies B B is observed A becomes more credible.

Pearl questions the validity of this pattern when events other than A and B interfere. Namely it is true that whenever P( B 1 A) = 1, we conclude P(A I B) > P(A). But it is wrong that P(A 1 B A C) 3 P(A) if moreover C is observed. In other words, the extrapolated pattern A implies B B and C are observed A becomes more credible is often counterintuitive (especially if the implication reflects causality, and that A and C are two independent causes of B). Pearl explains the failure of the second pattern by the difference between the probabilistic statement P(A 1 B) = p and a production rule "if B then (A with certainty p)": the latter warrants a conclusion A with certainty p as soon as B is found true, regardless of the truth of other statements, while P(A I B) warrants the degree of certainty of A if the only known fact is B. However, to get this explanation straight, it is necessary to point out that in Polya's pattern, the first premise appears to be P(BI A) = 1, which is always equivalent to the material implication form P( 1 A v B) = 1; hence the difference between Polya's pattern and the Bayesian pattern lies not so much in the representation of the conditional premise as in the interpretation of the second premise: if "B is observed" means "B is among the available observations" then Polya's pattern is wrong; if it means "only B is observed" then Polya is in accordance with Bayes. However, Polya is not interested in discovering the "cause" of B, but rather in finding out good reasons suggesting that A is true and that it is worth trying to prove it.

This very rich chapter continues with examples (the three prisoners paradox) indicating that omitting the full context in probabilistic analysis may lead to wrong conclusions that a superficial analysis often endorses. Lastly a very interesting discussion of Jeffrey's (1965) rule of updating under uncertain evidence is proposed. Pearl gives a condition under which the application of Jeffrey's rule is equivalent to a regular Bayesian treatment. This condition is one of conditional independence between the consequence of an event, and the experiment that produced uncertain evidence about the occurrence of that event.

With Chapter 3 starts the technical part of the book. This chapter introduces the reader to graphical representations of stochastic dependencies between variables, a topic which is often omitted in probabilistic text-books. Indeed it is only recently that the concept of stochastic independence has been studied in itself, without relating it to an obvious frequentist interpretation, especially in the literature of measurement (see Fine, 1973, for instance). The main questions addressed in this chapter are (i) what are the qualitative properties of conditional independence and (ii) how can these properties be imbedded in graphs. Given a set V of variables ranging on finite domains, the problem is to give a meaning to ternary relations denoted Z(X, Z, Y) that express conditional independence of X with respect to Y, given Z. Pearl recalls, after Dawid (1979) a set of axioms that Z(X, Y, Z) should satisfy in order to ensure that this relation be faithful to probabilistic conditional independence, and conjectures that these axioms are enough to completely characterize this notion. Next, Pearl compares non-directed to directed graphs as representations of a joint probability that graphically express the conditional and unconditional dependencies contained in this joint probability. Non-directed graphs are called Markov networks: they guarantee that any pair of nodes separated by another set of nodes corresponds to two variables that are conditionally independent with respect to the variables corresponding to nodes in the cutset. In directed acyclic graphs, arcs represent direct influences between variables, and are capable of representing induced and non-transitive dependencies better than non-directed graphs. For both types of representation several questions are addressed: how to find graphical representations of joint probabilities with a minimal number of arcs, and test such optimality of a given representation; how to derive from a graphical representation a joint probability that is faithful to the graph, i.e., that contains as many dependencies and independencies as appear explicitly on the graph. Directed and undirected representations are not equivalent but share a common class of models. This chapter, although difficult to read, is very exciting as gathering unusual material about probabilistic models, and the stress on qualitative structural properties of conditional independence makes it a potentially useful contribution to develop further research outside the probabilistic framework.

Chapters 4 and 5 deals with algorithmic aspects of updating and analysis of Bayesian networks, i.e., acyclic directed networks that represent joint probability distributions.

These chapters are obviously more interesting for application-oriented knowledge engineers, rather than scholars in mathematical psychology. The main lessons of these chapters can be summarized as follows: the distributed computation of posterior probabilities is very simple only on polytree structures, i.e., directed graphs where each pair of nodes is related by only one path. When more than one path is allowed, distributed computation fails, and special methods must be used to restore the polytree structure (clustering nodes, conditioning on the values of wellchosen variables); another possibility is to run a stochastic simulation of the network. Chapter 5 is completely parallel to Chapter 4, and aims at computing the most likely state of the network in a distributed fashion, and recomputing this state upon instantiation of some variable. This is called distributed revision by Pearl. Once again, the algorithms work efficiently on polytree structures. The main advantage of distributed computation, apart from its efficiency, is to be compatible with the requirement of explanation generation, a typical claim of the expert system tradition. Pearl moreover advocates the psychological relevance of the selection of the most probable state of a network as modeling "accepted belief."

Chapter 6 deals with the interface between Bayesian networks and utility theory. Its main originality is the emphasis on influence diagrams, which are a more compact way of representing decision trees, and which are very similar to Bayesian networks to which decision and evaluation nodes are added. However, from a decision-theoretic point of view, this chapter remains in the orthodoxy of additive expected utility models.

Chapter 7 gathers heterogeneous material. The first section compares taxonomic hierarchies and Bayesian networks, and shows that, to some extent, it is possible to apply Bayesian networks to classification problems. However, the proposed approach heavily relies on the assumptions that classes in the taxonomy are welldefined, and that the degree to which evidence e confirms or disconlirms a subset S of .hypotheses in a diagnostic tree can be modeled by a likelihood ratio P(el S)/p(e 1 1 S). Moreover, there is no way to distinguish between lack of knowledge about S and equal probability for all hypotheses in S. The second section focuses on continuous variables. Indeed, everywhere else in the book variables only range on finite (and often binary) sets. The interest of that section is to point out the close relationship between filtering (such as Kalman filtering) and updating in belief networks.

Here, interactions between variables are modeled by means of noisy linear constraints very similar to the ones used in systems theory, instead of numerical values of conditional probabilities.

Last, Section 3 deals with higherorder probabilities. The author insists that uncertain statements such as P(A) = p be treated as regular events, in order to give operational meaning to higherorder probabilities such as P[P(A) = p]. He also interprets the uncertainty about a probability P(A) as the fact that this probability is submitted to various contingencies Ci. This comes down to assimilating higher-order probabilities to conditional probabilities P(A 1 C,). Once again, the Bayesian credo leads Pearl not to consider upper and lower probability models of ill-known point probabilities. Chapter 8 is about deriving Bayesian networks from data appearing under the form of a joint probability distribution.

This chapter basically compiles previous work by Chow and Liu (1968) about best polytree representations, and by Lazarfeld (1966) about augmenting the set of variables so that the data can be viewed as the projection of a more complex distribution that has a polytree representation. The relevance of these old techniques to Bayesian networks is clear, and Pearl reports on improvements of these techniques carried out in his team.

Chapter 9 considers other approaches to uncertain reasoning such as Shafer's ( 1976) belief functions, truth maintenance systems (De Kleer, 1986), and so-called "probabilistic logic," after Nilsson (1986). Pearl interprets Shafer's degree of belief in a proposition A as the probability of provability of A, since Bel(A) sums up the evidence that implies A. The difference between Bayesian probability and belief functions is illustrated on the three-prisoner paradox. Pearl's conclusions about belief functions are rather negative, because the integration of new evidence in a belief function model is not compatible with the Bayesian approach where likelihoods are unknown. He also points out that because conditioning is a still illunderstood issue in belief function theory, people often tend to use material implication for modeling production rules, and that leads (due to the monotonicity of material implication) to counterintuitive behavior of the belief function model: Bel(A A B --r C) 3 Bel( A -+ C) for any B while P(C 1 A A B) can be small even if P( C 1 A ) is high. Despite his negative view, Pearl makes a significant contribution to the literature of truth maintenance systems pointing out that the degree of belief in a proposition is the probability of its label (in the sense of De Kleer's ATMS), i.e., the collection of environments where the proposition is true. Lastly Nilsson's probabilistic logic (by the way, originally proposed by de Finetti in 1937) is reviewed. Strangely, Nilsson escapes the criticism addressed to Shafer theory regarding the lack of a proper conditioning device; indeed, in probabilistic logic, if-then rules are translated by bounds on the probability of material implications instead of conditional probabilities.

Chapter 10 is a must for anybody interested in non-monotonic reasoning. After a clear presentation of Reiter's (1980) default logic, problems encountered by this approach are identified, namely the possibility of deducing several sets of opposite conclusions (also called the multiple extension problem), the inability to reason by cases, and the impossibility of deriving general statements with exceptions (also called defaults) from other premises of the same kind. Pearl then resorts to Adams' (1975) logic of conditionals, by which a default statement of the form "most A's are B's" is viewed as an extreme probability P(B 1 A) 2 1 -E, where E is positive but arbitrary close to 0. This leads to an axiomatic characterization of a system for defeasible inference that is tailored to the same purpose as default logic, but avoids the above-mentioned shortcomings of the latter. This logic is rather fascinating, because it possesses all the features that a well-behaved non-monotonic logic should satisfy, although it is hard to take for granted that "most birds fly" really means that an animal has an arbitrary high probability to fly once it is a bird. The next section deals with an explicit modeling of causality, in a symbolic setting; its main contribution is a typology of rules, in causal reasoning, distinguishing expectationevoking rules (fire creates smoke) from explanation-evoking rules (smoke suggests fire). The first type of rule can be triggered by any piece of information. However, the second type of rule cannot be triggered by a fact that was produced causally. Indeed, if A causes B, but B suggests C (where C is another cause of B), then A, as an established premise, tends to "explain C away" due to the (commonsense) principle of parsimony in causal explanations: multiple causes are less likely than unique ones. Last, Pearl discusses a now famous example of a problem that challenges the classical logic approach to Artificial Intelligence, namely the Yale shooting problem (Hanks & McDermott, 1987), a murder case in which general rules about the natural tendency of things to persist (guns remain loaded, life goes on) clashes against the impact of shooting guns (loaded guns kill and become unloaded). A careful Bayesian model of the problem can solve the case, provided that independence assumptions are carefully considered, and that directed arcs in the corresponding Bayesian networks can be interpreted as causal links (and not explanation-evoking rules).

DISCUSSION

This book clearly has very rich contents. Moreover, each chapter is supplemented by bibliographical and historical remarks that shed useful light on the way concepts defined in the chapter have been created, and that point towards related literature. Many pages are thought-provoking, and would deserve longer comments. Espe-cially, Pearl has a knack for presenting technical matters in an informal style, by means of short stories and philosophical remarks. This tendencty has a drawback, however. It makes the reading of some chapters (especially Chaps. 2 and 9) difficult by letting important concepts melt into the particulars of illustrative examples. For instance, everything pertaining to virtual evidence and to the three-prisoners paradox is rather difficult to swallow, and its treatment by belief functions is not especially illuminating about what belief functions are. On the other hand, some other pages (the analysis of expert systems certainty factors, the distributed updating algorithm, the derivation of polytrees from data) are excellent. The coverage of the book is not complete, although it is rather extensive. Nothing is said about possibility theory (Zadeh, 1978;Dubois & Prade, 1988a), and not much about non-Bayesian probability approaches that do care about conditional probability, contrary to Nilsson's probabilistic logic (e.g., Quinlan's ( 1983) INFERNO or Paass's (1988) probabilistic logic). There is nothing about fuzzy sets (Yager et al., 1987) either, but credit must be given to the author for acknowledging fuzzy sets as "orthogonal to probability theory" (p. 464). Indeed, fuzzy sets aim to model imprecisely-bounded classes and can be used in interpolation mechanisms (rather than in reasoning under uncertainty) since they preserve a continuous transition from a class to another. Belief functions receive an extensive treatment, but are treated in a way that might discourage lay-readers from digging more into the topic. Indeed, while some difficulties of belief functions are rightly pointed out, some basic features of the theory are not emphasized. For instance, Pearl insists on the semantic clash between Dempster's rule of conditioning and Bayes' rule of conditioning; this fact points out that Dempster's rule might not capture the idea of updating properly, but not that belief function theory is a failure. Dempster's rule indeed can be more naturally interpreted as a random set intersection, a point of view which is not present in Pearl's analysis. Similarly, the treatment of taxonomic hierarchies is a good example where belief functions work well; but only the Bayesian point of view is present in the book, and the author does not present the advantages of the belief function scheme (see, e.g., Lee, 1988).

It seems useful to conclude this review by discussing some fundamental aspects of the book, such as implicit assumptions that are debatable. We shall consider two fundamental problems only: uncertainty and causality.

In the book, it is not clear what is meant by uncertainty. Right in the beginning, Pearl defines uncertainty modeling as a tool for summarizing exceptions (e.g., the number of exceptions to the statement "all birds fly"). This view of uncertainty is certainly well-founded. However, it is only one facet of the problem. Summarizing exceptions more or less comes down to counting them, and this amounts to a calculus of proportions. Probability theory, including Bayes' theorem, is clearly perfectly adapted to this purpose when these proportions are precisely estimated. Now it is not clear how a calculus of proportions can always account for the subjective notion of uncertainty, i.e., belief and partial ignorance. Given that most (75 % ) birds fly, and that Tweety is a bird, it sounds reasonable to conclude that 0.75 assesses my belief in Tweety flying. However, this step can be justified by nothing but faith, because Tweety might be a particular bird. Besides, "most birds fly" is understood as a sure piece of information (even if having exceptions). If I want to model that "I am rather certain (but not totally) that most birds fly," then it is not clear that a calculus of proportions can be of some help for estimating this certainty. It seems difficult to give an operational meaning to the number of exceptions to the rule "most birds fly" (as opposed to the number of exceptions to the universally quantified rule "all birds fly," a number verbalized by the linguistic term "most"). What is behind these comments is that there are at least two meanings for numbers which we assign to rules or propositions: numerical quantifiers and degrees of belief. The former leads to extending first order logic (where only V and 3 are permitted) so as to summarize exceptions, and the latter only aims at claiming that in a knowledge base some pieces of information are more believed than others; examples of non-probabilistic approaches dealing with this latter aspect are possibilistic logic (Dubois & Prade, 1987;Dubois et al., 1989) and the theory of epistemic entrenchment (Gardenfiirs, 1988). Clearly, Pearl does not deal with this issue. As a consequence there is an ambiguity about the probabilities that appear in the book: Pearl claims they are subjective probabilities but it seems as if they were subjectively assessed (limits of) frequencies rather than genuine degrees of belief. As a matter of fact, many results and techniques described in the book derive from the statistical literature, and not from the area of subjective probability.

Last, adopting probability theory and the Bayesian approach requires a precise knowledge of probability values. This fact points out one of the limitations of Bayesian networks:

it is impossible to account for imprecise knowledge. For instance, P(A 1 B) = 0.5 means that 50 % of the B's are A's, so that given B only, A and not A are equally likely to occur. But how to express that "the proportion of @'s that are A is ignored' within a Bayesian formalism? Note that in possibility theory, or in epistemic entrenchment theory, it is easy to distinguish between updating-by which a new piece of information refines a state of knowledge-and revision-pertaining to the arrival of a piece of information that contradicts what was previously held for true. Updating decreases our ignorance, while revision may turn out beliefs upside down. In Bayesian nets, updating is the effect of instantiating variables and possibly results in reversing beliefs. So there is no distinction between reducing ignorance and revising conclusions in the Bayesian formalism. Clearly this is due to the fact that it cannot capture notions of partial ignorance. On the other hand, revision, as considered by Pearl, never questions propositions with probability 1 or 0, nor considers effects of modifying the structure of the network on previously computed probabilities.

On the whole, the distinction between revision and updating in the book is a matter of terminology only.

Another ambiguity in the book lies in Pearl's use of causality. It is difficult to see if the author's purpose is to justify the acyclicity of the Bayesian networks by the causal nature of the addressed cases or to make us believe that causality is the essence of Bayesian approaches. It seems debatable to maintain that conditional probability has anything to do with causality. In fact there are two distinct problems that are completely unrelated: (b) how to derive a joint probability distribution from the knowledge of a directed acyclic graph that expresses causality links.

The directed acyclic graph obtained in the sense of (a) has nothing to do with causality. Indeed, there are several equivalent graph representations and the direction of the arcs only depends on an a priori ordering of the involved variables. On the contrary, one may start from a purely causal model, build a directed acyclic network, assign conditional probability to arcs, and using the conventions that were derived in (a), reconstruct a joint probability distribution; among these conventions are the ones that lead one to consider two variables as independent or conditionally independent from a visual inspection of the graph. While in (a) conditional independence is observed in the probability distribution itself, in (b) it is assumed from the topology of the graph. Only this assumption enables a probability distribution to be derived. Pearl finds this assumption satisfactory because the behavior of the Bayesian network is in accordance with the commonsense perception of causality. In fact, it seems that the acyclicity of graphs used in the book is mainly motivated by computational convenience, and not at all by a philosophical insight into causality despite the numerous comments of the author along that line (e.g., adding a dummy variable to a distribution so as to recover a polytree representation is called "learning hidden causes"). In a footnote (p. 195) the author acknowledges that directed cycles are not allowed in Bayesian networks. This is not only because causality forbids cycles, but also because the problem of deriving a joint probability distribution from a general directed graph, where arcs are weighted by conditional probabilities, is still unsolved. As pointed out earlier (see Dubois & Prade, 1988b), the methods described in the book cannot handle a 2-node graph containing a directed cycle, where the only available data is a pair of conditional probabilities P(A 1 B) and P(B 1 A) that model two logical sentences with numerical quantifiers (such as "most B's are A's, a few A's are B's).

Besides, Pearl himself, at the end of the book, admits that a conditional probability may correspond to either a causal rule or an evidential rule (that suggests the cause of a given observation). And he points out, in the final dialogue between a logicist and a probabilist, that Bayesian networks behave according to our intuition of causality if the directionality of the arcs does correspond to causal knowledge. This is why causality pervades this book, and the temptation to consider conditional probability as embodying the essence of causality is so strong. 
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