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Abstract. We investigate the lateral resolution power of the seismic Rayleigh wave focal spot imaging
technique. We use two-dimensional acoustics simulations in a closed cavity for the passive Green’s
function and focal spot reconstruction. Four different velocity distribution configurations target dif-
ferent resolution aspects. The finite data range that is necessary to constrain the Bessel function model
controls the lateral spreading of material contrasts, the distinction of two objects on sub-wavelength
scales, and the image quality of complex random media. Good data quality from dense networks sup-
ports short range estimates and super-resolution.

Keywords. Numerical modeling, wave propagation, seismic noise, cavity, focal spot, resolution, seis-
mic imaging.
This article is a draft (not yet accepted!)

1. Introduction

Disadvantages of earthquake tomography associated with limited illumination can now be compensated
by ambient noise tomography with its flexible virtual source and receiver configurations. Both approaches
invert far-field observations of travel time differences, obtained from earthquake seismograms or from passive
Green’s function reconstructions, for an optimal model of the velocity structure [Tromp et al., 2005, Liu and Gu,
2012, Shapiro and Campillo, 2004, Sabra et al., 2005].

Modern dense seismic arrays support alternative local surface wave speed estimations from noise correla-
tion functions [Lin et al., 2009, Lin and Ritzwoller, 2011], which includes the large scale application of the fre-
quency domain spatial autocorrelation (SPAC) method [Aki, 1957, Ekstrém et al., 2009, Ekstrom, 2014] that is
otherwise typically applied to local sparse array data [Asten, 2006]. Such dense arrays can now contain on the
order of 1000 sensors, which facilitates the proper sampling of the noise correlation amplitude distribution in
the near-field. At zero lag time, the time domain representation of the spatial autocorrelation field is referred to
as focal spot, which contains the same information as SPAC and can be analyzed using the same mathematical
tools [Cox, 1973, Yokoi and Margaryan, 2008, Tsai and Moschetti, 2010, Haney et al., 2012, Haney and Nakahara,
2014].
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Near-field or focal spot analysis is used in applications that work with a high sensor density. Focal spots have
first been studied in time-reversal experiments in underwater acoustics and medical imaging [Fink, 1997]. Ini-
tially, noise correlation medical imaging transferred the noise seismology approaches to passive elastography,
first using far-field surface waves along muscle fibers [Sabra et al., 2007], later using refocusing shear waves. Dif-
ferent properties of the shear wave focal spot have been analyzed including its one-dimensional width [Cathe-
line et al., 2008, Gallot et al., 2011], two-dimensional shape [Benech et al., 2013, Brum et al., 2015], and its cur-
vature [Catheline et al., 2013], which can all be reconstructed using MRI [Zorgani et al., 2015] and ultrasound
[Barrere et al., 2020] speckle tracking methods. Importantly, Zemzemi et al. [2020] demonstrated that the ability
to discriminate two objects is not controlled and hence limited by the shear wavelength, but instead by the the
ultrasonic frequency and the pixel density. In seismology, this corresponds to the array station density.

Hillers et al. [2016] first applied Rayleigh wave focal spot imaging in seismology to image lateral velocity
variations in a fault zone environment. As for SPAC, the phase velocity is estimated from the focal spot shape
using Bessel function models. Using numerical time-reversal experiments based on a Green’s function cal-
culator [Cotton and Coutant, 1997] for one-dimensional layered media, Giammarinaro et al. [2023] demon-
strated the feasibility to accurately estimate phase velocity and dispersion using noisy reconstructions, for non-
isotropic surface wave illumination, and in the presence of P-waves using a fitting range around one wave-
length. Whereas the results from Giammarinaro et al. [2023] suggest the overall robustness and utility of the
focal spot method for seismic imaging applications, most notably because of the increase in depth resolution,
the study could not address lateral resolution. Considering that super-resolution can be obtained with tip-
curvature measurements [Zemzemi et al., 2020], it is important to assess the effect of the fitting range on speed
estimates from densely sampled seismic focal spots.

Here we study systematically the lateral focal spot resolution using numerical experiments. We perform
two-dimensional acoustics simulations to reconstruct the Green’s function from reverberating wave fields
(Section 2). The ambient field generated in a chaotic closed cavity [Draeger and Fink, 1999] yields results
that are equivalent to results from open media noise correlation [Derode et al., 2003]. The obtained Green’s
function is identical and is here therefore taken as a proxy for seismic vertical-vertical component Rayleigh
wave correlations [Sanchez-Sesma, 2006, Haney et al., 2012]. We work with a constant number of grid points
and a fixed reference frequency. We implement four test cases and vary the data range or fitting distance rg; to
investigate the effect on the resolution of the velocity structure. These cases include a homogeneous control
experiment (Section 3.1), an interface between two half-spaces (Section 3.2), circular inclusions (Section
3.3), and heterogeneous or random velocity distributions (Section 3.4). In Section 4 we discuss the different
resolution aspects that are investigated with the variable configurations for a comprehensive evaluation of the
seismic Rayleigh wave focal spot imaging performance.

2. Method
2.1. Synthetic experiments

This study is based on synthetic diffuse wave fields generated in a closed cavity. The resulting correlation func-
tions are equivalent to noise correlations in open media [Derode et al., 2003]. Simulations are performed using
the function kspaceFirstOrder2D from the MATLAB toolbox kWave [Treeby et al., 2018]. This function solves
a system of first-order acoustic equations for the conservation of mass and momentum using a wavenum-
ber k-space pseudospectral method. The two-dimensional medium is composed of 500x500 grid points that
are spaced in the x and y direction by dx = dy = 0.1 km (Fig. 1a). The background wave speed in the cavity
is Vy = 2 km/s. The closed cavity is implemented using different densities outside (pou = 59 kg/m?) and in-
side (pin = 2950 kg/m3) the cavity. Choosing poy to be 2% of pi, creates strongly reflecting boundaries from
impedance contrast without mitigating potentially problematic stability conditions associated with a large
change in wave speed. We cannot exclude the occurrence of weak numerical dispersion in some of the het-
erogeneous case studies, but the overall consistency of the synthesized Green’s functions and focal spots in the
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different experiments suggests that this effect does not govern our results. Inside the cavity we select a square
target domain consisting of 151x151 grid points where we record the solution. In this region we define the dif-
ferent velocity distributions introduced in section 2.2. Results for each of the four cases discussed in section 3
are obtained by averaging 11 independent wave field simulations. Each simulation starts with a point source at
a different position inside the cavity (Fig. 1a). The source emits a 1 s long pulse centered at 1 Hz (Fig. 1b-c). The
wave field is recorded for 300 s inside the square sub-domain with a 100 Hz sampling frequency.
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Figure 1. Configuration of the numerical experiments. (a) Representation of the closed cavity, with a
background velocity Vj = 2 km/s. The gray area represents the outer part of the medium with the same
velocity but with an impedance contrast to trap the waves in the cavity. The red line is boundary of
the closed cavity. The black line is boundary of the target area where the results are recorded. Inside
the cavity the color corresponds to the input wave speed. Red dots indicate the source positions for the
11 realizations. Times series (b) and normalized power spectrum (c) of the emitted pulse used for each
realization of the simulation. (d) Example of a full time-series recorded in the cavity.

2.2. The acoustic medium in the target domain

The acoustic wave speed distribution V (x) is defined as a spatial function in the square target domain
V) =Vo(1+E{x), €y

where Vj = 2 km/s is the background wave speed in the cavity, x is the position, and ¢ is the relative change
in wave speed, i.e., the parameter that controls the medium heterogeneity. In the following sections, the
2 km background wavelength at 1 Hz is denoted Ay. In section 3 we begin with a control experiment of a
homogeneous medium with ¢ = 0 to study the overall system response.
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2.3. Lateral spreading across two welded half-spaces

We modify the homogeneous control experiment and replace the 2 km/s velocity in left half of the target do-
main by an increased 2.2 km/s value. In our 2D configuration, this creates two half-spaces which allows us to
investigate the lateral resolution as the imaging method induced spreading or widening of the sharp interface.
Such sharp lateral velocity contrasts can occur across bimaterial interfaces in fault zone environments [Weert-
man, 1980, Ben-Zion, 1989], or in the contact region of intrusions with the host rock [Chamarczuk et al., 2019].

2.4. Resolution of circular inclusions

Next we perform a classic resolution test and study the power of the method to separate two individual entities
in an image. For this we impose three pairs of circular inclusions separated by 0.251p, 0.51¢ and 1A4¢. The
inclusions have a diameter of 11y. We test two different sets, where one set of inclusions is stiffer than the
background with ¢ = 25 %, and the other set has more compliant inclusions compared to the background with
¢ = —25 %. Such a ‘two-body problem’ is typically studied in gel phantom experiments performed in medical
ultrasound imaging or medical imaging for tumor detection [Catheline et al., 2013, Zemzemi et al., 2020]. It
is a less common configuration in seismology where so-called checkerboard tests are commonly employed to
quantify the resolution of a tomographic configuration. Circular cross section features can occur in the context
of magmatic intrusions or conduits. However, as said, with this configuration we can study the lateral resolution
defined as the minimum distance between objects that the method allows to discriminate in an image. This
study is performed with different fitting ranges rg; discussed in section 2.6.

2.5. Randomly distributed wave speeds

Last we consider random media using a functional form that is often used to parameterize the distributions
of variables such as wave speed, stress, or frictional properties in Earth materials [Frankel and Clayton, 1986,
Holliger and Levander, 1992, Mai and Beroza, 2002, Ripperger et al., 2007, Sato et al., 2012, Obermann et al.,
2016, Hillers et al., 2007]. We define ¢ (x) through a spatial 2D inverse Fourier transform as

£ =FT™ [VPI9e W], @

where k is the spatial wavenumber of the 2D distribution, P (k) is the power spectral density, and ¢(k) is a
random distribution of the phase between 0 and 27. The random distribution is calculated using the Python
randn function coupled with a seed fixed to 3. Fixing the seed allows to randomly generate the phase and to
keep the same distribution to observe the effect of the control parameters. The power spectral density P (k)
follows the von Karman probability function [Sato et al., 2012]

47T [k + 1]e2a?
[K1(1+ a?|[k||2)<+1
The correlation length of the modeled parameter is a, € governs the contrast in the medium, x defines the

sharpness of the spectral decay, and T is the Gamma function. We use equation 3 to generate nine different
media with variable a and x (Table 1), and constant € = 150 km™!.

():F (3)

2.6. Data processing and wave speed estimation

Data processing is performed in a Python3.8 environment. For each simulation, we analyze simulated data
between 100 s and 300 s (Fig. 1d) to enhance the diffusive parts of the wave field (Fig. 2a). We filter the traces
with a Gaussian filter centered at 1 Hz and with a width of 3.2%. We compute the normalized cross-correlation
between each sensor pair to extract the spatial auto-correlation fields at zero lag time. Results are stacked over
the 11 realizations for each case. This yields at short distances around a reference station the large-amplitude
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Medium 1 2 3 4 5 6 7 8 9
a [km] 1 1
K 01 03 06 01 03 06 01 03 0.6
Table 1. Parameters for the generation of different heterogeneous media using Equation 3, where a is
the correlation length and x governs the sharpness of the spectral decay. The corresponding wave speed
distributions are displayed in Figure 8.
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Figure 2. Workflow stage examples for the homogeneous medium. (a) Snapshot of a diffuse wave field.
(b) Time-reversed space-time wave field obtained by cross-correlation. (c) Spatial auto-correlation with
focal spot at the center obtained at 1 Hz after stacking over 11 realizations. (d) Simulated 1 Hz focal spot
data (gray) and nonlinear regression results for rg; = 0.51¢ (orange) and rg; = 11¢ (red). In this and all
subsequent figures the unit A equals the 1 Hz wavelength A for the reference V, =2 km/s.

feature referred to as focal spot (Fig. 2c). The shape is linked to the wave speed through the imaginary part
of the Green’s function. From each focal spot we estimate the wave speed V = w/k free parameter by fitting
the azimuthal averaged data to the Jy(kr) model using a nonlinear least squares regression algorithm [Hillers
et al., 2016, Giammarinaro et al., 2023, Giammarinaro and Hillers, 2022]. Again, the 2D acoustic configuration
yields results that are identical to the lateral propagation of Rayleigh surface waves. The Jy(kr) model equally
describes the vertical-vertical component of the Rayleigh wave focal spot [Haney et al., 2012, Haney and
Nakahara, 2014], and V is thus equivalent to the Rayleigh wave phase velocity cg.

This process is performed for the 22801 focal spots, and each obtained V' estimate is associated with the
location of the reference station. This instantaneous imaging concept thus compiles velocity distributions
across dense arrays without solving an inverse problem. Importantly, we choose two different fitting ranges rg;
of 1 km and 2 km associated with 0.51¢ and 11y at 1 Hz (Fig. 2d). Away from edges, this corresponds to 80 and
314 data-points. We vary rg; because it is a critical tuning parameter, and values around one wavelength yield
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Figure 3. The control experiment. Focal spot obtained images for (a) rg¢ = 0.5A¢ and (b) rg = 14 for
a homogeneous medium with wave speed V = 2 km/s. The reference wavelength A, is indicated by the
black line and the rg; range used for the nonlinear regression is the radius of the black circle.

overall stable results [Giammarinaro et al., 2023]. Larger values can stabilize a regression for noisy signals, but
the near-field focal spot imaging concept essentially invites the minimization of rg; for improved resolution.
This refers to improved depth resolution as cg values can be estimated at wavelengths that cannot be studied
with tomography [Tsarsitalidou et al., 2021, Giammarinaro et al., 2023], but also to the lateral resolution
investigated here.

3. Results
3.1. The homogeneous reference case

The first test is the homogeneous control experiment which we use first to illustrate basic features of the
approach. The simulations yield diffuse wave fields that can be used for focal spot imaging. Figure 2(a) shows
a snapshot of a diffuse wave field, Figure 2(b) a time-space representation of the time-reversed correlation
wave field, Figure 2(c) shows a focal spot of one realization, and Figure 2(d) shows the results of the nonlinear
regression following the data processing described in section 2.6. In Figure 2(b) we can see the refocusing and
diverging waves of the Green’s function after cross-correlating the diffuse fields. However, the reconstruction is
not perfect which is indicated by small-amplitude fluctuations. The time domain auto-correlation field shows
the focal spot at small distances around the origin (Fig. 2c). The irregularity of the white zero-crossing contours
again illustrates fluctuations and imperfect reconstruction after stacking over 11 realizations. We attribute this
to non-perfectly diffuse wave fields associated with the modes in the cavity. Figure 2(d) displays results from
the nonlinear regression using the two fitting distances rg; = 0.51¢ and rg; = 11¢. The spread in the data with
increasing distance are the fluctuations from Figure 2(c).

The 2D V distributions obtained with rg; = 0.5A¢ and rg; = 1A are displayed in Figure 3. The key feature in
these images are the speckle patterns. They illustrate that the imperfect reconstruction propagates through the
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Figure 4. Results for the two half-spaces. (a) The input model. (b) Reference (blue) and focal spot based
velocity profiles obtained with two fitting ranges (red, black) that are averaged along the N-axis. (c-d)
Focal spot based images of the medium velocity. The reference wavelength A, is indicated by the black
line and the rg; range used for the nonlinear regression is the diameter of the black circle.

measurement process to produce these fluctuations around the average reference value. Using rg¢ = 0.51¢ and
it = 1Ap leads to V' =2.014 +£0.034 km/s and V =2.008 +0.021 km/s, so the reference value is well recovered
within an uncertainty level of 1.5% and 1%. Increasing the fitting range improves the estimation which tends to
converge to Vp = 2 km/s. Another strong feature are the boundary effects. Recall that we only use values inside
the square target area. The estimation error increases towards the borders and the affected regions appears
to depend on the r5; length. Evidently, the error is not equal along all boundaries but is largest along the
southern edge. This is likely explained by the centered, low position of the target area in the cavity, together
with the excitation of specific modes in the cavity that sustain a non-isotropic energy flux in the scattered wave
field. These effects emerge in all other cases, they could potentially be mitigated by a different configuration
or geometry, or by averaging over more sources located at more diverse locations, but these side effects do not
affect our conclusions.

3.2. Resolution of the interface between half-spaces
Figure 4 displays the input wave speed distribution (Fig. 4a) and the focal spot-based images of two homo-

geneous half-space media for the fitting ranges rg; = 0.54¢ (Fig. 4c) and rg5; = 14 (Fig. 4d). As for the control
experiment, the distributions show small residual fluctuations around the accurately resolved input values,
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Figure 5. The dependence of the transition width on the data range. (a) Averaged wave speed profiles
along the E-axis for the input (blue) and four different fitting ranges. The vertical dashed lines indicate
the location where the amplitudes of the empirical profiles equal the 5% and 95% values of the 0.2 km/s
velocity jump. The dotted lines indicate the estimates of the transition width AL. (b) The transition width
AL as a function of fitting distance. Colors in (a) and (b) correspond to the same rg; values.

and larger edge effects along the lower boundary. The obtained average wave speed of the stiffer medium is
displayed on the panels, they can be considered equal within the error margins.

More interesting are the profiles across the domain shown in Figure 4(b). These profiles are averages along
the N-axis. It is clear that the imaged distributions across the interface does not follow the blue input step
function, but are instead spread out. To quantify the resolution we estimate the width AL of the transition. This
is measured as the distance between the points where the amplitude of the empirical profile equals the 5%
and 95% values of the 0.2 km/s velocity jump, i.e., when the values are 2.01 km/s and 2.19 km/s. Figure 5(a)
enlarges the area around the interface located at 3.75A. It shows four profiles obtained with rg; ranging from
0.51¢ to 21 in 0.51 intervals. It confirms the previous observation that the overall velocity in each half-space
is correctly estimated for every fitting ranges. As for the results in Figure 3 and Figure 4 we can perhaps discern
a weak tendency to slightly overestimate the reference values. The width AL is shown in Figure 5(a) as dotted
lines at the bottom, with the vertical dashed lines being the 5% and 95% boundaries of the transition zone. The
calculated widths are compiled in Figure 5(b). For rg; = 0.5A¢, the transition zone has a width of AL = 0.4A.
For rgt = 119 we obtain AL = 1.2, and for rg = 21y, it is AL = 2.21y. The spreading effect quantified as
the transition width between the two media can hence well be approximated to scale with the fitting range,
AL = rg¢.

3.3. Resolution and contrast of circular inclusions

We now examine the resolution of pairs of 11¢-wide circular inclusions separated by variable distances. The
velocity in the inclusions increases and decreases by 0.5 km/s with respect to the background reference
V = 2 km/s. Nonlinear regression of the focal spot data are also performed using fitting ranges rg = 0.51¢
and rg¢ = 11¢. Figure 6 collects in the left two columns the input wave speed distributions, and the focal spot
obtained images for rg; = 0.51¢ and rg; = 11¢. As a general observation, every inclusion is visible on the images
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Figure 6. Results of the circular inclusion resolution test. The left two columns panels (a-f) show absolute
values, the right two columns panels (g-1) show scaled values. (a-b) Input models of the three circular
inclusion pairs separated by 11, 0.51p, and 0.25A¢. The inclusion diameter is 11y. Focal spot images
obtained with (c-d) rg = 0.5A¢ and (e-f) rg; = 11¢. (g-h) Normalized input wave speed map. (i-j) Images
in (c-d) scaled by the corresponding input distributions in (a-b). (k-1) Images in (e-f) scaled by the
corresponding input distributions in (a-b). In the lower two rows, the reference wavelength A is indicated
by the black line and the rg; range used for the nonlinear regression is the diameter of the black circle.

for both fitting ranges, and for the three different distances separating the inclusions. However, the contrast—
the difference in ‘velocity amplitude’'—depends on the fitting range. Using rg; = 11¢ leads to larger errors on the
velocity estimates. The quantitative aspect of the method decreases with an increase of the fitting range, which
appears as an averaging effect, consistent with the observations across the interface in the half-space case.
Panels in the right two columns in Figure 6 show the data from Figures 6(a-f) normalized by the input wave
speed maps (Figs. 6a-b). The fact that circular features are visible in Figures 6(i-1) demonstrates that amplitudes
are not accurately retrieved around the edges. The width of the halo or AL scales again with the fitting distance,
the reconstruction benefits from smaller rg; values (Figs. 6i-j).

These interpretations are supported by wave speed profiles across the inclusions (Fig. 7), which demonstrate
again that the focal spot image quality, i.e., resolution and contrast, depends on the fitting range. Inclusions
separated by 0.251¢ (Figs. 7a-b) are well retrieved for small rg = 0.51¢. The wave speed value away from an
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Figure 7. Cross sections through the circular inclusions. Profiles of input (blue) and estimated wave
speeds for rg = 0.54¢ (orange), rg; = 1o (green), and rg = 1.51¢ (red) for each pair of the circular
inclusions. Results are obtained along the E-axis passing through the center of the inclusions. (a-b)
Inclusions separated by 11y. (c-d) Inclusions separated by 0.51¢. (e-f) Inclusions separated by 0.251,.

interface is well approximated. This applies to the stiff and the compliant inclusions. For rg; = 11y the contrast
cannot be recovered, which is linked to the fitting range dependent transition zone width that is here similar to
the inclusion diameter. The same mechanism applies to the results obtained with rg; = 1.51¢. Importantly, two
inclusions can always be discriminated when the separation distance is 0.251, which is yet more obvious from
Figure 6. For a separation distance of 0.5 this quality of the imaging approach increases, and inclusions are
completely discriminated for a distance of 11. Taken together, the fitting range dependent sensitivity of the
resolution mostly affects the contrast estimate, but less so the ability to discriminate two objects. The power to
discriminate inclusions separated by only 0.251 suggests that the property of super-resolution applies, similar
to focal spot medical imaging results obtained with ultrasound wavelengths [Zemzemi et al., 2020]. Focal spot
imaging resolution thus benefits from high station density across short data ranges. The wave speed estimates
are, however, sensitive to noisy near-field data. In turn, longer fitting distances reduce fluctuations, which leads
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Figure 8. Results from the random media case. The top row shows the heterogeneous 2D velocity distri-
butions that are synthesized using Equations 2 and 3. Values of the corresponding tuning parameters are
given in Table 1. The center and bottom row show focal spot based images using rg¢ = 0.51¢ and rg; = 11¢.

to a trade-off between accuracy or contrast and resolution or discrimination [Giammarinaro et al., 2023].

3.4. Imaging random media

The last experiment explores focal spot imaging results of heterogeneous media that are characterized by a
von Karman spectral density probability function (Egs. 2, 3). Figure 8 shows input wave speed distributions and
the images obtained with fitting ranges rg; = 0.54¢ and rg¢ = 11 together with the input-normalized images.
For each case, we calculate a coefficient of correlation R between the input distribution and the image. As in
the previous experimental configurations, the overall pattern of the velocity variations is well retrieved using
focal spot imaging, i.e., there is no systematic phase bias. This is demonstrated by the fact that the R coefficient
is maximum for the zero-lag auto-correlation. The smallest coefficient of correlation is R = 0.66 for Medium 1
(a =0.51p, k =0.1) and rg¢ = 1Ap, which corresponds to small scale, high contrast wave speed variations and
the longer fitting range. The best estimation is obtained for Medium 9 (a = 21, ¥ = 0.6) imaged with rg; = 0.5,
which corresponds to analysis using shorter ranges than the correlation length a. This leads to a high coefficient
of correlation R = 0.97. Increasing rg¢ to 11 yields R = 0.95. We can again confirm previous results, the images
become smoother with increasing rg, which is synonymous with a loss in contrast and hence details. The
other way around, the smoother the input distribution for larger a and x (Medium 3, 6, 9), the better is
the estimate. The corresponding normalized results illustrate the imaging quality in a complementary style.
Predominantly gray distributions indicate good reconstructions, the red-green pattern value range correlates
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Figure 9. Histograms of the relative wave speed change ¢ for the nine media imaged in Figure 8. Blue
data correspond to the input reference values, and orange and green data correspond to images obtained
with rg¢ = 0.51¢ and rg¢ = 1.

with the amplitude mismatch, and the color-speckle size is related to rg;. The green ‘channel’ feature around
position (3,2.5) illustrates a narrow low-velocity zone that is overestimated by the averaging, longer rg; = 11,.
We estimate the relative wave speed change ¢ from the wave speed images by inverting Equation 1

(X =VIip-1, 4)

with Vj = 2 km/s. We compile histograms of the ¢ distributions to compare properties of the reference input
distributions and of the images. Figure 9 collects the ¢ histograms from the input and from the estimates for
rg¢ = 0.51¢ and rg; = 11¢. The similarity between reference and image is better for r4; = 0.5A¢ than rg¢ = 1.
The best result is obtained for Medium 9 which shows very similar histograms. The histograms obtained with
rqt = 1o are more narrow and have a higher peak value around small ¢ values compared to the rg; = 0.51¢
results. This indicates again the low-pass filter property of larger fitting ranges observed in the previous
experiments.

4. Discussion

Resolution can mean different things in different imaging contexts, including the number or density of
measuring points, the spectral sensitivity of an imaging device or method, the ability to detect or discriminate
features and to accurately estimate their properties, contrast in brightness or color, or phase fidelity [Smith,
2013]. We use numerical simulations of two-dimensional acoustic wave propagation in a cavity (Figs. 1,
2) to investigate the lateral resolution of the focal spot imaging technique for a fixed acquisition system
with a constant number of grid points. The increase in depth resolution for such a compact dense array
configuration compared to measurements made on traveling waves is established by Giammarinaro et al.
[2023]. We implement four test cases that together allow us to deduce the resolution power of seismic Rayleigh
wave focal spots reconstructed from vertical-vertical component noise correlation data. Lateral resolution is
discussed as the ability to resolve a step function in the material properties, to discriminate and characterize
two closely spaced objects, and to measure position, amplitude, and phase of so-called random distributions.
In a first homogeneous control experiment (Figs. 2, 3) the reference wave speed is estimated with an error
below 2% on average, which includes, however, areas of larger error affected by edge effects. This error is larger
compared to the focal spot results based on numerical time-reversal experiments, where noise-free synthetics
lead to errors in the 0.01% range for vertical-vertical component data and fitting distances of rg; = 0.51¢ and
rqt = 1Ap, and where anisotropic surface wave incidence results in biases in the 0.1% range [Giammarinaro
et al.,, 2023]. The different error levels are associated with the different methods used to synthesize Green’s
functions and focal spots. In time-reversal experiments, the wave field and hence the ballistic wave correlations
are fully controlled by the mirror properties. More mirror elements lead to better refocusing results. Controlled
lab experiments can stack over different space realizations. In seismic data applications an improved Green’s
function and refocusing reconstruction is achieved by time averaging to better conform with the decorrelated
noise source assumption. Here, the focal spots are retrieved from cross-correlation of the reverberating cavity
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wave field, where the quality of the Green’s function is controlled by the ability to excite and average a
sufficiently large number of modes in the cavity [Draeger and Fink, 1999]. Hence we stack over different
realizations using different source positions to increase the number of independent modes to enhance the
narrow-band refocusing, which is equivalent to using more time reversal mirror elements in a time-reversal
experiment. Our approach converges towards the theoretical focal spot, but it remains sensitive to details of the
implementation such as the source positions of the relatively few realizations. This means that the imperfect
cavity results are comparable to focal spots obtained from noisy data.

The second half-spaces experiment (Figs. 4, 5) shows the feasibility to resolve the contrast between two
media that have a 10 % difference in wave speed. However, the interface is not perfectly resolved. Whereas the
wave speed is correctly estimated away from the interface, the finite fitting range creates an averaging or low-
pass filter effect that depends on rg;. Tests with different g values indicate that the transition width AL scales
with a good approximation linearly with the fitting range, AL = rg;.

The third circular inclusion configuration (Figs. 6, 7) shows that it is possible to discriminate two separate
objects distanced by 0.251, even for fitting ranges of one wavelength. However, the low-pass filter properties
lead to averaged amplitude values, which therefore depends on the fitting range. We have not observed situa-
tions where the focal spot method yields biased phase properties, so the inclusion positions are accurate. This
suggests that the super-resolution property demonstrated with passive elastography in soft tissues [Zemzemi
et al., 2020] also applies to 2D Rayleigh surface wave propagation. Again this means that for good data quality
and high station density the method has the potential to meet the formal criterion of super-resolution, i.e., the
sensitivity at small scales is sufficient to discriminate objects or features that are separated by distances that
are much shorter than the wavelength.

The fourth test case considers random media (Figs. 8, 9, Table 1) which show the highest similarity to
distributions of Earth material properties. The quality of the focal spot reconstruction as quantified by the
correlation coefficient R between reference and image depends on the roughness or smoothness of the
distribution in relation to wavelength and fitting distance. R is small when the distributions are rough,
have small-scale fluctuations compared to the probing wavelength, and the fitting distance is large. The
reconstruction is almost perfect when the distributions are smooth, have large-scale fluctuations, and the
fitting distance is small. These conclusions are further corroborated comparing histogram properties of the
velocity variation parameter ¢ (Eq. 2, Fig. 9), which again demonstrate the low-pass filtering effect of large rg¢
values. Thus, positions are well estimated but the amplitudes diverge for small-scale heterogeneities. The best
estimates are obtained for variations on scales larger than rg;. If resources permit, an imaging campaign could
be optimized by first detecting target features with low contrast before then a sensor re-configuration helps to
improve the quantitative estimate by increasing the signal-to-noise ratio through network densification.

The present study employs two-dimensional acoustic simulations. They present the advantage of being
scalar simulations yielding the same Green'’s function as for vertical-vertical component Rayleigh wave propa-
gation. Our main conclusions thus hold for seismic Rayleigh wave imaging. However, this set-up does not allow
to study the biasing effect of interfering body wave energy. Giammarinaro et al. [2023] showed that the error
on the vertical-vertical component increases in the presence of P body waves, but this can be compensated
for by increasing the fitting range. Together with our observations here this implies that an increase in rg; im-
proves the results if refocusing P wave energy distorts the surface wave focal spot, but that this remedy has
an adverse impact on the lateral resolution power. This trade-off situation would benefit from efficient spatial
noise auto-correlation or focal spot filters. Alternatively, Rayleigh wave phase speed estimates obtained from
radial-vertical component data are much less sensitive to P-waves [Giammarinaro et al., 2023], which offers
independent constraints for the improvement of vertical-vertical results.

5. Conclusion

We investigate the lateral resolution power of the surface wave focal spot imaging method using numerical
experiments of reverberating wave fields in a cavity. Most importantly the resolution depends on the fitting
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range. This means that focal spot imaging exhibits super-resolution properties provided the data quality
supports sub-wavelength fitting ranges. Longer fitting ranges still allow imaging of small-scale features at
super-resolution albeit with a loss in contrast. In conclusion, seismic surface wave focal spot imaging shows
convincing resolution properties that make it suitable for a wide range of imaging applications ranging from
feature detection to accurate wave speed estimates. There are hence no fundamental disadvantages compared
to established passive surface wave tomography methods. Here as there, the station configuration can be tuned
to support image quality and properties for different goals. Here as there, data quality or signal-to-noise ratio
ultimately has the largest impact on the resolution, i.e., on the ability to discriminate features, and to accurately
estimate their properties.
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