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Pointwise Maximal Leakage

Sara Saeidian, Member, IEEE, Giulia Cervia, Member, IEEE,
Tobias J. Oechtering, Senior Member, IEEE Mikael Skoglund, Fellow, IEEE

Abstract

We introduce a privacy measure called pointwise maximal leakage, defined based on the pre-existing notion of
maximal leakage, which quantifies the amount of information leaking about a secret X by disclosing a single outcome
of a (randomized) function calculated on X. Pointwise maximal leakage is a robust and operationally meaningful
privacy measure that captures the largest amount of information leaking about X to adversaries seeking to guess
arbitrary (possibly randomized) functions of X, or equivalently, aiming to maximize arbitrary gain functions. We
study several properties of pointwise maximal leakage, e.g., how it composes over multiple outcomes, how it is
affected by pre- and post-processing, etc. Furthermore, we propose to view privacy leakage as a random variable
which, in turn, allows us to regard privacy guarantees as requirements imposed on different statistical properties
of the privacy leakage random variable. We define several privacy guarantees and study how they behave under
pre-processing, post-processing and composition. Finally, we examine the relationship between pointwise maximal
leakage and other privacy notions such as local differential privacy, local information privacy, f-information, and so

on.

Index Terms

Privacy, information leakage, maximal leakage, g-leakage, pointwise leakage, privacy random variable, information

density.

I. INTRODUCTION

Suppose X is a random variable representing some data containing sensitive information. As we aim to remain
general, we intentionally keep X abstract. For example, X may be a single data entry collected from an individual
(the local setting), X may represent an entire database containing sensitive information (the centralized setting), or
X may be a secret such as a password that must be kept confidential (the side-channel setting).

Further, suppose Y is the output of a (randomized) function with input X. For example, in the local setting, Y
denotes the perturbed version of a single user’s data which is collected by a data curator. In the centralized setting,
Y may be some aggregate statistic calculated on a database, and in the side-channel setting, Y is the output of
a side-channel with input X, for instance, the inter-keystroke delays when typing in a password. In all of these
scenarios, we are interested in answering the following question: How much information is Y leaking about X?

The above question has been studied and answered in different contexts using a myriad of different privacy

measures. For instance, differential privacy (DP) [1} 2] was introduced in a centralized setting within the context
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of database privacy in order to ensure that no single individual’s participation can be revealed from the output
of a function calculated on a database (i.e., ensuring membership privacy). Later on, borrowing ideas from survey
privacy [3], the adaptation of differential privacy to the local setting led to the concept of local differential privacy [4-
6], where, roughly speaking, the goal is to provide plausible deniability for all possible values of input X. Parallel to
these developments, in the information theory literature, a wide range of privacy measures have been proposed and
studied that aim to measure the dependence between two random variables X and Y. These include, for example,
mutual information [7H10], and its generalizations [[11} [12]], divergence-based measures (e.g., metrics based on f-
divergence [13|[14]), probability of correctly guessing [[15]], information privacy [16l [17] and indistinguishability [9]].
The two recent surveys by Wagner and Eckhoff [18]] and Bloch et al. [19] contain an extensive list of various privacy
measures.

In much of the literature, the prevalent approach to tackling privacy problems has been to start with a particular
definition of privacy, study the properties that follow from the definition, and design/optimize mechanisms that
guarantee a certain level of privacy and utility. An alternative approach is to start from a threat model in which an
adversary with explicitly-described capabilities is pursuing a specific objective, and study the system’s vulnerability
as a result of this adversarial model. This approach has several advantages. First, it encourages us to make our
assumptions about the capabilities of the adversary (e.g., in terms of computational power or prior knowledge
of the system) and her objectives explicit. Second, the privacy definition obtained by studying a threat model is
operationally meaningful and easier to interpret. Third, the discussions around the advantages and limitations of dif-
ferent privacy measures become more transparent and objective. Note that here we are making a subtle but essential
distinction: Several notable privacy measures such as differential privacy and differential indistinguishability [20] can
be interpreted using powerful adversarial models, but their definitions do not follow from any such model. In fact,
not making this distinction may lead to misconceptions/disagreements about what a privacy definition does or does
not promise. An example of this is the long ongoing debate about whether or not differential privacy (implicitly)
requires assumptions about the data generating (prior) distribution, such as the assumption that the entries in a
database are drawn independently [21, 22]. This disagreement may have been avoided had the assumptions about
the adversarial model been made explicit in the definition.

The threat-model approach to privacy has been adopted in a line of work termed quantitative information flow [23-
28], in which several notions of information leakage are motivated, defined and studied. One such notion is min-
entropy leakage (23| 124] which is defined in a setup where a passive but computationally-unbounded adversary
is trying to guess the value of the secret X in one try. Min-entropy leakage, then, quantifies the increase in
the probability of correctly guessing X having observed the output Y, compared to guessing the secret with no
observations. Naturally, min-entropy leakage depends both on the prior distribution of X, denoted by Py, and the
channel from X to Y, denoted by Py |x. Therefore, to obtain a privacy measure that depends only on the channel
Py |x, Braun et al. [24] consider the problem of maximizing min-entropy leakage over all possible priors, which

leads to a quantity (later) called maximal leakage, and defined as

P =1 Py x— . 1
L(Py|x) ngy:w:PI;lgS§>0 Vi x=z(Y) (1



Interestingly, the worst-case prior in this problem is the uniform distribution [24].

Subsequent works in this area have extended the above adversarial model [25H28]], developed maximal leakage
into a practical tool for quantifying privacy in learning applications [29], and considered maximal leakage as the
privacy constraint in privacy-utility tradeoff problems [30-32]]. We find two such works particularly interesting: the
g-leakage framework introduced by Alvim et al. [26] and the maximal leakage definition of Issa et al. [33]]. The
g-leakage [26] formulation generalizes the setup by considering an adversary aiming to construct a guess of X
that maximizes a certain gain function, and constitutes a useful tool for modeling a variety of different adversarial
goals, such as guessing the secret X in k£ > 1 attempts, or approximately guessing the secret [26]]. Moreover, it has
been shown that for all prior distributions, maximizing g-leakage over all possible gain functions yields a quantity
that is equal to maximal leakage [27]. The setup put forward by Issa et al. [33], on the other hand, develops the
framework by considering adversaries interested in guessing a possibly-randomized discrete function of X, called
U. Then, taking the supremum over all such U’s, the resulting quantity is once again equal to maximal leakage.

The above results lead us to believe that maximal leakage is a powerful privacy measure with a robust definition
that is relevant in a multitude of different scenarios. However, one apparent limitation of the definition given in (T)) is
that maximal leakage is defined for the average outcome Y. Hence, a privacy guarantee given in terms of maximal
leakage does not allow us to distinguish between individual outcomes based on how much information they leak.
To see why this can be problematic, suppose X is a uniformly distributed ternary random variable defined over the

set X = {x1,x9, 23}, and consider the following channels from X to Y

2 1 1
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where Y’ is a random variable defined over ) = {y1,%2,y3} and [Py |x]ij = Py|x—=z, (¥;), i,J € {1,2,3}. It is easy
to see that both channels have equal maximal leakage L(Py|x) = L(Qy|x) = log 2; however, they are qualitatively
different. For example, the third outcome in Py‘ X, Y3, can be considered far less private compared to the other
two as it completely reveals the value of the secret (which is x3). On the other hand, due to the symmetry in
Qy|x, we may expect that all outcomes leak the same amount of information. One justification for this issue is that
maximal leakage remains small as long as highly revealing outputs occur with small probability [33]. Nevertheless,
the average-case guarantee provided by maximal leakage may be deemed insufficient in privacy-critical applications
with strict requirements, which motivates the search for alternative privacy measures that capture the distribution
of privacy leakage over the outcomes. Using the leakage distribution not only do we get a precise description
of privacy in a given system, but we will also have the flexibility to adapt our definition of a private system to
each specific application. For example, system designers will be able to decide whether or not highly-revealing but
low-probability outcomes pose a privacy risk on a per-application basis.

We should point out that a distributional view of privacy also exists in the differential privacy literature, where the
log likelihood ratio is referred to as the privacy loss random variable [34-36|. This approach is further formalized

in [37] by introducing the notion of privacy loss distribution. The framework we develop in this paper differs from



these works mainly in that here we let X represent any type of data containing sensitive information, while the
works on differential privacy target specifically the centralized setting, where the notion of neighboring databases
(that is, databases that differ in a single entry) plays a central role in all definitions. On top of that, the privacy
measure introduced in this paper has a clear and useful operational meaning, and is obtained by analyzing specific

threat models (more on this below).

A. Overview

1) Introducing pointwise maximal leakage: In this paper, our main goal is to define a robust and operationally
meaningful privacy measure that describes the amount of information leaking about the secret X due to disclosing
a single outcome Y = y. We consider the same adversarial models that were used to obtain maximal leakage as
a privacy measure (e.g., [33} 26]), but redirect our attention from the “average outcome” characterization of the
previous works to individual outcomes, and obtain a new privacy definition which we will call pointwise maximal

leakage (PML), denoted by ¢p,.,. (X — y), and expressed as

Px|y—y()
lpyy (X —y) =1 T Px(z)
Pxy ( y) = log m;pr}r:%w Px(x)

2
In Section [lI-A] we start from the threat model of [33], in which an adversary is trying to guess the outcome of a
randomized function of X, denoted by U. More concretely, we define a quantity ¢ (X — y) as the logarithm of
the ratio of the probability of correctly guessing U having observed an outcome y, and the probability of correctly
guessing U with no observations. Then, we define pointwise maximal leakage as the supremum of {y (X — y)
over all U, that is

lpy (X = y) = sup ly(X — y),

Py x
and obtain expression (2). We will call this approach the randomized function view of leakage. Afterwards, in
Section [[I-B] we consider the threat model of the g-leakage framework [26], in which an adversary is trying to
maximize a certain gain function g. More precisely, we define a quantity ¢,(X — y) as the logarithm of the ratio
of the expected gain having observed an outcome y, and the expected gain with no observations. We will call this
approach the gain function view of leakage, and show that it is in fact equivalent to the randomized-function view of
leakage. Specifically, we show that for all joint distributions over X and Y and for each randomized function of X,
denoted by U, there exists a gain function g, such that £y (X — y) = £y (X — y). Conversely, we show that for
each gain function g, there exists a randomized function of X, denoted by U,, such that £, (X — y) = {y, (X — y).

It follows that PML can alternatively be defined as
lpey (X — y) =suply(X —y).
g

This result not only unifies two seemingly different ways of defining pointwise maximal leakage, but also signifies
the robustness of pointwise maximal leakage as a privacy measure against a large class of adversaries with different
objectives. Once we have established the definition of pointwise maximal leakage, in Section we study several
properties following from the definition, e.g., how it composes due to observing several outcomes, how the leakage

is affected by pre- and post-processing, and so on.



2) Defining privacy guarantees based on PML: Our second objective in this work is to argue in favor of viewing
privacy leakage as a random variable. The idea behind this is simple: The amount of information leaked due to
disclosing an outcome Y = y is equal to ¢p,, (X — y) which is a function of y. Since Y is a random variable
distributed according to Py (i.e., the output distribution induced by Px and Py |x), this in turn allows us to define
a random variable ¢p,,. (X — Y') whose distribution is induced by Py. Adopting this view, a privacy guarantee
is essentially a requirement we impose on some statistical property of £p,.,. (X — Y); thus, we have the flexibility
to define different types of guarantees depending on how strict we may want to be. For example, we may require
small privacy leakage with probability one. Less stringently, we can define guarantees that bound either the tail
of the privacy leakage random variable, or its expectationp_-] These privacy guarantees, which are the subject of

Section [[II} can be informally expressed as follows: Given an arbitrary but fixed prior Px, we say that

o Py |x satisfies e-PML with € > 0 if {p,, (X — Y') is bounded by ¢ with probability one,

o Py|x satisfies (¢,6)-PML with ¢ > 0 and 0 < 0 < 1 if £p,, (X — Y) is bounded by ¢ with probability at

least 1 — 9, and

o Py|x satisfies L(Py|x) < e with ¢ > 0, if the expectation of exp (EPXY(X — Y)) is bounded by exp(e),

where £(-) denotes maximal leakage.

In the rest of Section we study the data-processing and composition properties of the privacy guarantees
introduced in this paper. Specifically, in Section we study how e-PML and (e,0)-PML are affected by pre-
and post-processing. Interestingly, it turns out that (e,d)-PML is not closed under post-processing, that is, given a
privacy mechanism Py |x that satisfies (e,)-PML, we may be able to come up with a post-processing mechanism
Py|y such that the overall mechanism Pz|x does not satisfy (e, )-PML (which might come across as somewhat
counter-intuitive). In response to this observation, we introduce another privacy guarantee, called (e, §)-EML (where
EML stands for event maximal leakage) with ¢ > 0 and 0 < ¢ < 1, which resembles (¢,d)-PML but is closed
under post-processing. Informally, a mechanism Py|x satisfies (e,d)-EML if all post-processed outcomes of Py|x
with probability at least § have their PML bounded by e.

Next, in Section we study how different privacy guarantees change as a result of composing privacy
mechanisms. More concretely, we are interested to find out what types of guarantees we can get for a mechanism
Py 7| x which is obtained by adaptively composing two mechanisms Py x and Pz xy . Naturally, one can formulate
different problems by making various assumptions about the involved mechanisms Py|x and Pz xy. We present
several such problem formulations and their corresponding results.

3) Comparing PML with other privacy notions: In Section we study how pointwise maximal leakage relates
to several other privacy/statistical notions, namely, max-information [38 39]], local differential privacy [17]], local
information privacy [16], local differential identifiability [9]], mutual information, f-information [[13] and total-
variation privacy [[14]. We derive bounds between the different notions and discuss their implications.

As a final note, in Section [[I-D| we discuss a privacy framework called the dynamic consumption of secrecy [25]]

which, in the same spirit as our work, attempts to quantify the privacy leakage due to disclosing a single outcome of

By considering the expectation of privacy leakage, we retrieve the original definition of maximal leakage.



the random variable Y. Somewhat surprisingly, [25] argues that the privacy definition resulting from this dynamic
view suffers from limitations that convince the authors against pursuing this line of research. In Section we

discuss what these limitations are, and explain why they do not apply to pointwise maximal leakage.

B. Notation

In this work, we restrict our attention to finite random variables, therefore, all sets are assumed to be finite. We
use uppercase letters to refer to random variables, e.g., X. Sets are represented by uppercase calligraphic letters,
for example, the alphabet of X will be denoted by X. Let £ C X. We will use both Px (&) and Px.p,[E] to
describe the probability of an event £ according to distribution Py . Similarly, we will use Ex . p, [-] to represent
expectation with respect to Px. The notation supp(Px) = {z € X : Px(x) > 0} will be used to refer to the
support set of distribution Px. Given probability distributions Px and Qx over a set X, we write Py < Qx to
imply that Px is absolutely continuous with respect to Q x.

Let n be a positive integer. We use [n] := {1,...,n} to denote the set of all positive integers smaller than or
equal to n. Suppose X is a random variable defined over an alphabet with cardinality |X'| = n, and Y is a random
variable induced by a channel Py| x, such that | Y| = m is the cardinality of the alphabet of Y. Then, the channel
Py|x € [0,1]™*™ is a row-stochastic matrix with elements (Py|x)ij = Py|x—s,(y;) for i € [n] and j € [m]. We
say that a channel Py |x is deterministic if it consists of only zeros and ones. Similarly, we say that an outcome
y; with j € [m] is deterministic if its corresponding column in the matrix Py |x consists of only zeros and ones.
Suppose the Markov chain X —Y — Z holds. We write Pz x = Pz)y o Py|x to denote marginalization over Y,
that is, Pzix—:(2) = > ,cy Pzjy=y(2)Py|x=z(y) for z € X and 2 € Z. Finally, we use log(-) to denote the

natural logarithm and 1[-] to denote the indicator function.

II. DEFINITION, INTERPRETATIONS AND PROPERTIES
A. Randomized Function View of Leakage

We begin by describing our threat model, which is a pointwise adaptation of the model described in [33]]. Suppose
X is a random variable defined over a finite alphabet X'. We will use X to represent some data containing sensitive
information. Further, suppose Y is a random variable taking values in a finite alphabet ) which is the output of a
channel (i.e., kernel) Py |x with input X. We will also refer to the channel Py|x as a privacy mechanism. Consider
an adversary who is interested in guessing the (realized) value of a possibly randomized function of X, called U,
characterized by Py x. The adversary, who is computationally unbounded, observes an outcome y € supp(Py)
(where Py is the output distribution induced by Px and Py |x) and constructs a guess of U called U according
to a kernel P0|Y: " The adversary is passive in the sense that she cannot affect the outcomes of the system, but
can verify if her guess is correct. Furthermore, the adversary knows the joint distribution Py xy, and therefore, can
optimize her choice of guessing kernel PU\Y:y to maximize her chances of correctly guessing U.

To measure the privacy leakage of a disclosed outcome y, the system designer considers the ratio of the probability

of correctly guessing U having observed y, and the probability of correctly guessing U with no observations (in
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Fig. 1. System model for the randomized function view of leakage: An adversary observes an outcome y of the channel Py |y, and tries to

guess the value of a randomized function of X, denoted by U.

this case, the best guess is the most probable outcome according to Py ). Accordingly, we define the pointwise
U-leakage of X as follows:
o PlU=T1Y =y

maxyey Po(u)

supp._
Ly (X = y) = log

; 3)

where U denotes the alphabet of the random variable U. As the system designer may not know what U the adversary
is interested in, or different adversaries may be interested in guessing different U’s, we investigate the worst-case
scenario by taking the supremum of (3) over all possible U’s. Considering this setup, we define pointwise maximal
leakage (PML) denoted by ¢p,., (X — y) as follows.

Definition 1 (Pointwise maximal leakage): Let Pxy denote the joint distribution of X and Y, and suppose the
Markov chain U — X — Y — U holds. The pointwise maximal leakage from X to y € supp(Py), £py, (X — y),

is defined as

lpyy (X = y) = sup Ly (X — y)

Py x
PlUu—i1y— 4)
1 SupPU\Y:y |:U =U | Y
= log sup
Pux max, ey Pr(u)

In the following result, we show that {p,, (X — y) can be written as a simple expression.
Theorem 1: Given a joint distribution Pxy over finite alphabets A and )/, the pointwise maximal leakage from
X to y € supp(Py) is given by

Px|y—y(x)
1 X =y =lo max ————. 5
PXY( y) ga:ESupp(Px) Px(.’lf) ©®)

Proof: Fix an arbitrary random variable U. The numerator of (3) can be written as

Psup P [U =U|Y = y} = sup Z]l[u =] Py, (u, 1)

Uly=y

= sup Y Pyjy—y(w) Py, (w)
PU\Y:y u

= max Pyjy—y (u),



where the last equality follows from the fact that the optimal estimator Pg in the above problem is the MAP

Y=y
estimator defined as
1, for some u € argmax, <y Pujy—y(u),
5\Y:y(u) =
0, otherwise.

Thus, we can write

SumeY:y

P[U:U|Y:y}

exp (lo(X = y)) = max, ey Py (u')

maxyey Pujy—y(u)
maXy/ ey PU (u’)
maXqyey Za}Esupp(Px) PUX\Y:y(uv x)
maXy ey PU (u’)
maXyey chgsupp(PX) PX\Y:y ('T) PU‘X:QC (u)

max, ey Py (u')

— Imax Z 7PX|Y:y (x) PX|U:u (.1‘) PU (U)

et zesupp(Px) PX (I) Haw eu PU (U/)
Px|y—y()
< _ _
< max Z Py () Pxy—u(2) (6a)
z€supp(Px)
Pxyv—
< max Ly(x) (6b)

z€supp(Px) PX (CL’)
Taking the supremum over all U’s satisfying U — X — Y we obtain

Px|y—y()
g X — < lo max —_— . 7
PXY( y) - ga:e:supp(Px) Px($) ( )

To prove the reverse inequality, we construct a U achieving the bound in (7). Note that inequality (6b) holds with

equality if there exists a u* € U such that

PX\Y:y(a:)

1, for some z € arg max,cq,pp(pPy) Pr(n)

Px|y—y~(x) = 3
0, otherwise.
Furthermore, u* will also satisfy (6a) with equality if it holds that
Py (u*) = max Py (u). )

ueld
An example of U satisfying both of the above conditions can be obtained through the “shattering” channel Pyx
defined in the proof of [33] Thm. 1]. Roughly speaking, the shattering channel breaks down each = € supp(Px)
with probability Px (z) into k(x) corresponding elements with probability min,csupp(py) P(), thus creating a
random variable U with an (almost) uniform distribution. We recall the definition of the shattering channel Py x

for completeness.



Definition 2 (Shattering channel [33]]): Let p* := ming,cqupp(py) Px (). For each x € supp(Px), let k(z) ==
Px(z)/p*, and let U = U, cqupp(p){(2:1), -, (. [k(z)])}, where [k(z)] denotes the smallest integer greater
than or equal to k(). For each u = (iy,j.) € U and x € supp(Px), the shattering channel Py x is defined as

%, ifiy,=xz ju=1,...,k(z)],
Pyix=o((tu ju) = 1 - % if iy =2, ju = [k(z)],
0, otherwise,

where | k(z)| denotes the largest integer smaller than or equal to k(x).

The above channel induces the following joint distribution Py x:

p*, ifi, =z, ju=1,..., k(x)],
Pyx ((iu, ju)s ) = § Px(x) — |k(z)]p* if iy =z, ju = [k(z)],
0, otherwise,

and Py is obtained as

o p*, ifi, =z, ju=1,...,k(z)],
PU(Zua]u) -

Px(x) = [k(z)]p* if iu = 2, ju = [k(2)],
for (iy, ju) € U. Clearly, each u is mapped to exactly one x, so condition (8] holds. Furthermore, each x corresponds
to at least one u with probability Py (u) = max, Py(u’) = p*, so condition (@) also holds. Consequently, the
random variable U obtained through the shattering channel satisfies both (§) and (9), and attains the bound in (7).
|

Remark 1: Given y € supp(Py ), pointwise maximal leakage can alternatively be written as

PX|Y y(2)
Y4 X = I
Pxy (X =) peaax, o8 —p
. 1 Y\X ()
= max log———FF-
zesupp(Px) Py (y)

= Dec (Pxiy—y IP)

= :cEsflIrl)ap)((Px) IPxy (1‘; y)?
where D, (Px|y:y||Px) denotes the Rényi divergence of order infinity (40, 41]] between the posterior Px|y—,
and the prior Py, while ip,, (z;y) = log ;;%% denotes (the value of) the information density of the joint
distribution Pxy at x and y. The above result is also related to a recent result by Kurri et al. [42]], where a

variational formula for Rényi divergence of order infinity is derived as the ratio of the expected gains in guessing

a randomized function of X.

B. Gain Function View of Leakage

The threat model assumed in Theorem [I] considers a scenario in which an adversary is interested in guessing a

possibly randomized function U of X. In this section, we argue that pointwise maximal leakage can be obtained
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Fig. 2. System model for the gain function view of leakage: An adversary observes an outcome y of the channel Py-|y, and tries to construct

a guess X of X in order to maximize a gain function g.

using an alternative threat model based on (a pointwise adaptation of) the g-leakage framework introduced in [26].
First, we describe this alternative threat model.

Suppose a passive and computationally unbounded adversary observes y € supp(Py ), an outcome of the channel
Py x, and constructs a guess X of X using a kernel PX|Y: Y in order to maximize her expected gain. The adversary
selects her guess from a non-empty finite set X (not necessarily equal to X), and her gain is captured by a function
g of the form g : X' X X — R*. In order to measure the amount of information leaking from y, the system designer
considers the ratio of the expected adversarial gain having observed ¥, and the expected adversarial gain with no

observations. Hence, we define the pointwise g-leakage of X as follows:

su
pr(‘Y:y

supp, E [g(X, X)]

In Theorem [2] we will show that the randomized function view and the gain function view of leakage are

E[g(x,X) Y =y

ly(X — y) =log (10)

equivalent in the sense that for every gain function g, there exists a corresponding randomized function of X,
Uy, such that £o(X — y) = ly, (X — y), and conversely, for every randomized function of X, U, there exists
a corresponding gain function g,, such that £y (X — y) = ¢y (X — y). Before presenting this result, let us
demonstrate through a few examples how gain functions can be used to model different problems.

Example 1 (The identity gain function [26) Def. 3.5]): The simplest type of gain function is the identity gain
which models an adversary interested in guessing the secret X itself, who is only rewarded for correct guesses.
Here, the guessing space of the adversary is X = X, and her gain function is given by g™t (z 3) = 1[z = #].
The g-leakage for the identity gain is

maXgex Px‘y:y(l‘)
maXgex PX (.T)

fgidcntity (X — y) = 5 (11)

which is equal to the dynamic min-entropy leakage defined in [25, Def. 3]. We will further discuss the identity
gain and its associated g-leakage in Section [[I-D

Example 2 (Membership/group privacy): Consider a centralized setting in which each z € X represents a database
whose rows constitute data collected from individuals, and the random variable X describes the random selection
of a database according to some distribution Px. Suppose an adversary is interested in guessing whether or not

Alice’s data is included in (the realization of) X, and is rewarded with a binary gain depending on whether or not



her guess is correct. We can model this problem as follows: Let X} = {x € X': x contains Alice’s data} denote the
set of databases that contain Alice’s data, and let Xy = X \ X be the set of databases that do not contain Alice’s
data. An adversary who is interested in finding out Alice’s membership makes a binary guess from X = {0,1},
and is rewarded according to g(z,z') = 1[Z = 4] with i € {0,1} and z € X}.

More generally, suppose the adversary has a list of k individuals and is interested in guessing if any of their
data is included in (the realization of) X. Further, suppose the adversary is rewarded based on how many correct
guesses she makes. To model this problem, we (bi-)partition the set of all databases in k different ways, one for
each individual on the list. Let X;; = {z € X’: x contains the j-th individual’s data} and X, = X \ &}, for

j=1,...,k Then, X = {0,1}* is the guessing space of the adversary, and g(z,#) = Z§:1

1[z; = j;] with
x € &, and ¢ € {0,1} is her gain function. This example can be easily extended to model cases where different
individuals signify different gains for the adversary.

As a side note, we should point out that in the membership privacy example above (or more generally, in our
consideration of the centralized setting) we are not assuming that the adversary is informed [43] (an informed
adversary knows all the entries in the database except for a single entry which may be Alice’s). In our setup,
we assume that the adversary knows the joint distribution Pxy (and the spaces X and )), while any other side
information should be explicitly modeled as such. The concept of an informed adversary was originally proposed as
a model for a very powerful adversary. However, it has been argued that more side information does not necessarily
make an adversary more effective [21]]. For example, [21] provides three definitions of privacy against adversaries
that either (i) know all the entries in a database except for a single entry, (ii) know all the attributes in a database
except for a single attribute of a single entry, (iii) know all the bits in a database except for a single bit of a single
entry. Then, it is shown that the privacy definition that seeks to limit the inference of the more knowledgeable
adversary (i.e., option may actually leak more sensitive information to the less knowledgeable adversaries.

In Section we will define a conditional form of pointwise maximal leakage that can be used to model an
adversary who possesses some side information about the secret. There, we will see that side information can both
increase and decrease the privacy leakage due to observing an outcome (more on this in Remark [3)).

Example 3 (Multiple guesses (the k-tries gain function in [26|])): Consider a side-channel setting in which X is
a random variable representing a password and Y is a random variable denoting some information leaking about
the password, for example, through the inter-keystroke delays. Suppose an adversary is allowed k > 1 attempts at
guessing the password correctly before getting cut off from the system. Let A’ be the set of all possible passwords
and let X = {# C X': |&] < k} denote the collection of subsets of X’ containing % or less passwords. Then, we can
model the adversary’s gain through the function g(x,z) = 1|z € &], where & denotes the set of k or less attempts
the adversary makes at guessing the true password z.

Example 4 (Metric spaces [26]): Suppose (X, p) is a metric space, where X is a finite set, and p is a metric
on X. Suppose the goal of the adversary is to construct a guess & of z that minimizes p(x,Z). This scenario can
be modeled by taking X = X and some non-negative gain function that is decreasing in p(x, %), for example,
g(z, &) = exp(—p(z, £)). Many problems can be modeled as metric spaces. A simple example is in geo-location

applications where the goal of an adversary may be to locate a user as accurately as possible based on partial or



noisy measurements.

We have now seen how a variety of adversarial objectives can be modeled using gain functions. In the following
result, which is one of the main contributions of this paper, we show that the definition of g-leakage given in (I0) is
equivalent to the definition of U-leakage in (3). Thus, we unify two seemingly different ways of defining (pointwise)
maximal leakage. The proof of the theorem is deferred to Appendix

Theorem 2: For all joint distributions Pxy over finite sets X and )/, the randomized function view and the gain
function view of leakage are equivalent. That is, for every randomized function of X, described by the random
variable U, there exists a space Xy and a gain function gy, X X 2\?U — R such that (X — y) = by, (X = vy).
Conversely, for every gain function g : X X X — R there exists a randomized function of X, called Uy, such
that £y(X — y) = Ly, (X = y).

Note that while the above result establishes the equivalence of the gain-function view and the randomized-function
view for pointwise leakages, it generalizes readily to the average-case leakages of [27] and [33]. Furthermore, we
have the following corollary which provides an alternative definition of pointwise maximal leakage.

Corollary 1: Pointwise maximal leakage can be obtained as

Cpyy (X — y) =suply(X —y)
g

supp, . E [g(X,X) Y = y}
= log sup . ~
s swp E[g(X, X)]

where the supremum is taken over all gain functions with non-negative and finite range.

Y

Remark 2: Unlike privacy measures such as maximal leakage and (local) differential privacy that depend only
on the mechanism Py|x, pointwise maximal leakage depends both on the mechanism Py |x and the prior P, i.e.,
it is a property of the joint distribution Pxy. Thus, in the rest of this paper, we commonly assume that the prior

Px is arbitrary but fixed, and study pointwise maximal leakage as a function of the mechanism Py x.

C. Properties

In this section, we recount several useful properties of ¢p,, (X — y). For instance, we discuss how pointwise
maximal leakage composes over multiple outcomes, how it is affected by pre- and post-processing, and so on.
Before we discuss these properties, let us first define a conditional form of pointwise maximal leakage which
allows us to model adversaries who possess some side information about the secret X.

Definition 3 (Conditional pointwise maximal leakage): Let Pxy z denote the joint distribution of random variables
X, Y, and Z. Given z € supp(Py), where Pz denotes the marginal distribution of Z, the conditional pointwise

maximal leakage from X to y € supp(Py|z—.) is defined as

Supp. }P’U=(A]|Y=y,Z:z}

Uly=y,Z=z

Cpyy (X — y | 2) = log sup

Py x sumeZ7

P{U:U\Z:z}
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To obtain a simpler expression for {p, . . (X — y | z), we condition all the distributions in the proof of Theorem
on Z = z and get

Px|y—y,z=-(7)
Y] X — z) =lo max —
PXY\Z( yl2) gasesupp(PX|z:z) PXlZ:z($>

Clog  max | IVX=ez=:()
r€supp(Px|z==z) PY\Z:z (y)

= D (Pleiy,Z:zHPXlZ:z)

= max iPyy (@Y | 2),
z€supp(Px|z=z) |

where
Pxy|z—=z(z,y)
12==(2) Py z=(y)’

denotes the (value of the) conditional information density. In the remainder of this paper, when the joint distribution

Pz (713 | 2) = log 3

used to calculate pointwise maximal leakage or information density is clear from the context, we do not specify it
as a subscript.
The following lemma provides several useful properties of pointwise maximal leakage. The proof of the lemma
is provided in Appendix
Lemma 1: Pointwise maximal leakage satisfies the following properties:
1) (Upper/lower bounds). Given an arbitrary but fixed prior Px, for all mechanisms Py |x and all y € supp(Py)
it holds that

0< X —y) < —log( . H;;I(lp )PX(x)),
TESu X

where the left-hand side inequality holds with equality if and only if Py|x—,(y) = Py|x=a(y) for all
x,2’ € supp(Px), and the right-hand side inequality holds with equality if and only if Pxy_,(2*) =1 for
some ¥ € arg Min, cqupp(py) £x ().

2) (Independence/deterministic mappings). If X and Y are independent random variables, then (X — y) = 0 for
all y € supp(Py). If Y is the output of a deterministic mapping with input X, then /(X — y) = —log Py (y).

3) (Pre-processing). Suppose the Markov chain X — Y — Z holds, where Y represents some pre-processing of
the secret X, and Z denotes the observable outcome of a channel Py with input Y. For all z € supp(Pyz)
we have

UX — 2) <Y — 2),

with equality if i(y;2) = i(y';2) = maxyeqpp(py) i(y;2) for all y,y" € supp(Py|x—g+), Where z* €
arg maXzEsupp(Px) Z(I, Z)
4) (Post-processing). Suppose the Markov chain X — Y — Z holds, where Y represents the observable outcome

of a channel with input X, and Z denotes some post-processing of Y. For all z € supp(Pz) we have

(X —-2)< max X —y),
y€supp(Py)
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where the inequality holds with equality if either of the following conditions are satisfied:
a) X and Y are independent, or
b) there exists y. € supp(Py) such that Py|z—.(y.) = 1 and /(X — y.) = maxyesupp(py) L(X — ¥).
5) (Conditionally-independent side information). Suppose the Markov chain Z — X —Y holds, where Z represents

some side information about X. For all z € supp(Pz) and y € supp(Py|z—.) we have

(X —ylz)= xes{lr;gicpx)i(x; ylz)=0X —y)—i(y;2).

6) (Composition). Given a prior Px and a mechanism Py | x, for all (y,z) € supp(Pyz) it holds that

U(X —y,2z)= max i(x;y,2)
z€supp(Px)

<UX = 2)+HUX =y 2),

with equality if and only if the two sets argmax,cq,pp(py) (T3 Y | 2) and argmax, co,nn(py) i(2; 2) have
non-empty intersection.

Remark 3: The second property in the above lemma describes the privacy leakage of deterministic mechanisms.
Surprisingly, not all deterministic outcomes leak the same amount of information, and outcomes with lower
probabilities have higher leakage. This is because pointwise maximal leakage is a relative privacy measure in which,
roughly speaking, the information leaked to an adversary scales depending on how consistent the observed outcome
is with the adversary’s prior beliefs (captured by the joint distribution Pxy). As such, deterministic outcomes with
smaller probabilities leak more information since an adversary would be “more surprised” by observing them.

Remark 4: Concerning the post-processing property stated above, one may hope for the stronger statement
UX — z) < X — y) for all y € supp(Py). To see why this statement is not valid, consider the situation
where Z = Y (or Z is a deterministic mapping of Y). In this case, the best bound we can have is indeed
U(X — y) <maxy (X — y).

Remark 5: In general, side information can both increase and decrease privacy leakage. As an example, suppose
we have three binary random variables X, Y, Z where X =) = Z = {0, 1}. Assume X is uniformly distributed,

and the joint distribution Pxy » is described by the following channels:

1 1
2 2
2 3 12
5 5 3 3
Pzx = ; Py\xz = ;
3 2 1
5 5 3 3
1

1
2
0,1), (1,0), and (1, 1) from top to bottom.

~~ N

where the rows in the Py|xz matrix correspond to (x, z) equals (0,0),
Then, it can be verified through simple calculations that /(X —y=0|2z=0) =log, (X - y=0]z=1) =
log 2 and {(X — y = 0) = log &. Therefore,

(X —=y=0]2z=0)<l(X 2y=0)<l(X —>y=0]2z=1).



D. Dynamic Consumption of Secrecy

In the last part of this section, we discuss a notion of privacy introduced in [25, Section 2.2 ] that, similar to our
work, aims to measure the privacy leakage associated with individual observations. In [25]], the dynamic min-entropy
leakage of an outcome y € supp(Py ) is defined as:

maXgex PX\Y:y(m)
max,ex Px (z)

€M (X — y) == log

which is equal to the g-leakage associated with the identity gain given in (TI). That is, the dynamic leakage is
derived under the assumption that the adversary is trying to guess the secret X itself, but does not consider other
gains that an adversary may be interested in.

The authors of [25] withdraw from further developing the idea of measuring the pointwise privacy leakage based
on ¢ dmamic( X" s 4/) as they believe the above privacy measure suffers from two drawbacks. First, they argue that
the above definition cannot be axiomatically justified as it is shown that ¢ ¥"Mi¢( X — /) may be negative (see [25]
Example 4]), that is, the adversary’s certainty about the secret may actually decrease by observing an outcome
y. Second, they believe that dynamic policy enforcement based on individual outcomes (for example, discarding
high-leakage outcomes) may reveal information about the secret X.

Note that the first issue mentioned above does not apply to /(X — y). It is easy to see that ¢ ¥ymamic(x
y) < (X — y), and we have shown in Lemma [1] that /(X — y) > 0, which implies that in our current setup,
observations can never decrease certainty about a secret X. This is because (X — y) is defined by considering all
possible gain functions an adversary may be interested in, while £ ¥™™i¢( X" — 4/} is defined only for the identity
gain of Example [I}

Furthermore, while it is true that some policies defined based on individual outcomes, such as discarding high-
leakage outcomes, may reveal information about the secret, we believe that this is not sufficient reason for abandoning
the subject area altogether. In fact, contrary to [25]], we believe that effective policy enforcement depends crucially
on the ability to quantify the information leaking from individual outcomes as this allows us to treat privacy leakage
as a random variable. Viewing privacy leakage as a random variable, we have the flexibility to define different
types of privacy guarantees by specifying requirements on the statistical properties of privacy leakage. The resulting
framework is then versatile enough to be applied to a wide range of problems. We develop this idea in the next

section.

III. PRIVACY GUARANTEES

In Theorem (I} we showed that /(X — y) can be written as a function of y. Since Y is a random variable
distributed according to Py, this in turn allows us to define a random variable /(X — Y) with a distribution
induced by Py. From this point of view, a privacy guarantee is essentially a requirement we impose on some
statistical property of ¢(X — Y'); thus, we have the flexibility to define different types of privacy guarantees
depending on how strict privacy requirements we need to meet. This section contains several examples of such

guarantees: The almost-sure guarantee, which bounds privacy leakage with probability one, the tail-bound guarantee,



which bounds leakage with high probability, and the average-case guarantee, which bounds maximal leakage. We
start by defining the almost-sure guarantee.
Definition 4 (Almost-sure guarantee): Given an arbitrary but fixed prior Py, we say that a privacy mechanism
Py x satisfies e-PML with € > 0 if
Py.p (X = Y)<e=1 (12)

As we are assuming that the random variables X and Y are finite, the above condition can also be expressed as

max max 1 z;y) <. 13
zesupp(Px) yesupp(Py) Py (T3Y) < (13

The expression max , ipy, (2;y) coincides with the definition of maximal realizable leakage [33, Def. 8] and also
max-information [38]]. Moreover, expression is also related to the notion of information privacy leakage [17,[16].
We will discuss the relationship between our privacy definitions and pre-existing notions from the literature in the
next section.

The following lemma establishes some basic facts about e-PML guarantees.

Lemma 2: Given an arbitrary but fixed prior Px, we have:

1) All privacy mechanisms Py |x satisfy epna-PML, where €nax = —log mingequpp(py) Px () and €pax >

log 2. Furthermore, we have
inf{le > 0: Py .p, [0(X = Y) < €] =1} = €max,

if and only if there exists y € supp(Py) such that Py|y—,(z*) = 1, or equivalently, Py|x—_,(y) = 0 for all
x # «*, where z* € arg min, Px (z).
2) A privacy mechanism Py |x satisfies e-PML with € = 0 if and only if X and Y are independent random

variables.
Proof:
1) For all Py |x and all y € supp(Py) we have

log max M <log max L
z€supp(Px) Px(l') zesupp(Px) Px(l‘)
1

minxésupp(Px) PX (“B) .

= log

Note that mingequpp(py) Px (z) < % which implies that €, > log2. The second half of the statement is
clear from the above inequality.

2) If X and Y are independent, then Px|y_,(x) = Px(z) for all z,y, thus the mechanism Py|x satisfies e-PML
with € = 0. Conversely, if Py |x satisfies e-PML with e = 0 this implies that Px|y—_,(z) = Px () for all z,y
which means that X and Y are independent.

|
In order for an e-PML guarantee to hold, all y € supp(Py) must satisfy (X — y) < e. As this condition

may prove to be too restrictive in practice, in what follows we define two possible relaxations of the almost-sure
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guarantee: We either bound the privacy leakage by e with high probability, or we bound the expected leakage (i.e.,

maximal leakage) by e.

Definition 5 (Tail-bound guarantee): Given an arbitrary but fixed prior Px, we say that a mechanism Py |x

satisfies (¢,d)-PML with ¢ > 0 and 0 < 9 <1 if
IPYNPY [E(X — Y) < 6] >1-0. (14)

Clearly, e-PML and (€, 0)-PML are equivalent. Also, note that given an arbitrary but fixed prior Py, if a channel
Py |x satisfies (€,d)-PML, then it also satisfies (¢’,6")-PML for all € < ¢’ and all 6 < ¢’ < 1.
Definition 6 (Average-case guarantee): Given an arbitrary but fixed prior Px, we say that the expected privacy

leakage of a mechanism Py x is bounded by € > 0 if
Ey.p, {exp (Z(X — Y))} < e,

or equivalently,
L(Pyx) <e,

where L(Py|x) denotes maximal leakage as defined in [33, Thm. 1].
Note that here we denote maximal leakage by L(Py|x) instead of £(X — Y') used in [33] to emphasize that

maximal leakage is a property of the channel Py-|x and does not depend on the prior PXEI

The following lemma shows how almost-sure and tail-bound guarantees translate into maximal leakage guarantees.
Lemma 3: Given an arbitrary but fixed prior P, it holds that
1) e-PML implies L(Py|x) < .
2) (¢, 6)-PML implies
L(Py|x) <log (exp(e) + §exp(emax)),
where €pax = —log Mingegupp(py) Px (7).
Proof:

1) By definition,

L(Pyx) = 10%ZPY(ZU) exp (U(X — y))

< log (exp(E) > Py(y)) =e

2Technically, maximal leakage depends on the support set of the prior Py, but we can without loss of generality assume that Py has full

support.



2) We define the events Ey(e) = {y € supp(Py) : {(X — y) < €} and Fs(e) = {y € supp(Py) : {(X — y) >
€}. Then, E;(€) and FEs(e) are disjoint and supp(Py) = E1(e) U Ea(e), for all € > 0. Clearly, (e, §)-PML
implies that P[F(e)] < d. Therefore, we have

L(Py|x) = logZPy exp U(X — y))

:10g< Z Py eXp K(X—>y Z PY exp f(X—)y)))

yEE1 (¢) yELa(e)
< log (exp(e)IP’[El(e)] n exp(emax)]P’[Eg(e)D

< log (exp(e) + 5exp(emax)).

A. Data-processing Properties

Data-processing inequalities are often used while analyzing the end-to-end information leakage in larger systems.
While the properties presented in Lemma (1] allow us to assess pointwise maximal leakage for the outcomes of a
pre- or post-processed random variable, it is also of practical benefit to understand how different privacy guarantees
are affected by pre- and post-processing. This type of characterization is useful when we do not have access to
the distribution of the leakage over the outcomes, but know that a privacy mechanism satisfies a certain privacy
guarantee.

What we are specifically interested in is to understand whether or not different privacy guarantees are close
under pre- and post-processing (in [44], a privacy guarantee that is closed under pre-processing is said to satisfy
the linkage inequality). Suppose the channel Py |x satisfies some privacy guarantee, say, e-PML. If the e-PML
guarantee is closed under post-processing, then we can rest assured that for all post-processing channels Py y,
the overall channel Pz x also satisfies e-PML, that is, there exists no channel Py that an adversary could use
to undermine the original guarantee. Similarly, if the e-PML guarantee is closed under pre-processing, then all
(randomized) functions of X would be at least as well-protected as X.

The following lemma collects the data-processing properties satisfied by the privacy guarantees defined above.
Part [Z_f] of the result concerning maximal leakage was shown in [33 Lemma 1], and we re-state it here for
completeness.

Proposition 1: Suppose the three random variables X, Y, and Z form the Markov chain X — Y — Z and that
the prior Py is arbitrary but fixed. Given ¢ > 0 and 0 < ¢ < 1, we have

1) If Pz)y satisfies e-PML, then Py x also satisfies e-PML.

2) If Py x satisfies e-PML, then Py x also satisfies e-PML.

3) If Pz)y satisfies (¢, d)-PML, then Pz x also satisfies (e, d)-PML.

3Suppose the channel Py x satisfies Property A. Given a Markov chain X —Y — Z, we say that Property A is closed under post-processing

if the fact that Py |x satisfies Property A implies that Py x also satisfies Property A. Closedness under pre-processing is defined similarly.
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4) L(Pzx) <min{L(Pyx), L(Pzy)}.
Proof:

1) By the pre-processing property of Lemma [I} if Py satisfies e-PML then for all z € supp(Pz) we have
(Y — z) < e. Hence,

max (X —2)< max LY — z2) <e,

z€supp(Pz) z€supp(Pz)
and Py x satisfies e-PML.
2) By the post-processing property of Lemma [T}

max (X —2) < max (X —y) <e
z€supp(Pz) yEsupp(Py)

so Py x satisfies e-PML.

3) Similarly to the above, the pre-processing property of Lemma [1] yields
PZNPZ [g(X — Z) > 6} < PZNPZ V(Y — Z) > 6] < (5,

hence, Pz x satisfies (¢, d)-PML.
|
Conspicuous by its absence in the above result is the post-processing property for the (e,d)-PML privacy
guarantee. It turns out that, in general, (¢,0)-PML is not closed under post-processing. To understand why, let
us consider the following example.
Example 5: Suppose X is a uniformly distributed random variable defined over an alphabet with four elements,

and that the Markov chain X —Y — Z holds. Suppose the channels Py|x and P}y are defined as

oo i 1 10

00 & 1 0 1
Py\x = ; Pzy =

0 %+ 3 3 10

1 1 1

3 0 3 3] 0 1]

It can be easily verified that (X — y1) = (X — y2) = log4, and (X — y3) = £(X — y4) = log &. Since
Py (y1) = Py (y2) = %, Py | x satisfies (e1,0,)-PML with ¢; = logg and §; = %. On the other hand, one may
also verify that Pz(z1) = Pz(22) = % and (X — z1) = ((X — 2) = log 3. Hence, Pz yx does not satisfy
(€1, 61)-PML; instead, it satisfies e-PML with e5 = log % > €1 (and do = 0). Note that the outcome z; is equivalent
to the event {y1,ys}, 22 is equivalent to the event {ys,y4}, and both outcomes have probability greater than ;.
Informally speaking, when we say that a mechanism Py |x satisfies (¢, §)-PML this implies that supp(Py) can be
partitioned into two sets: a set of “good” y’s with probability at least 1 — 6 whose members satisfy {(X — y) <,
and a set of “bad” y’s with probability at most § with /(X — y) > € (see Definition . However, through a
post-processing channel Pz|y, we may define new outcomes as a combination of the members of the good and

bad sets of y (as in Example . As a result, the probability of the set whose members satisfy ¢(X — z) > € (that

is, the set of “bad” z’s) may no longer be bounded by §. Also, note that while in Example [5] we have €3 > ¢;
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and Jo < d1, this need not always be the case; one may come up with examples where both € and ¢ increase by
post-processing.

Remark 6: Interestingly, a similar behavior has been observed in differential privacy. Specifically, it has been
shown that probabilistic DP, that is, a type of privacy guarantee where we require pure DP to hold with probability
at least 1 — § [45] [46]], is not closed under post-processing [47, 46]. Differential privacy resolves this problem by
introducing approximate DP (i.e., (¢,d)-DP defined based on an additive parameter § [48]) which is closed under
post-processing. Note that approximate DP is a strictly weaker guarantee compared to probabilistic DP in the sense
that probabilistic DP implies approximate DP but the reverse direction does not necessarily hold [46]]. In our current
work with PML, we take a different approach to solving this issue and come up with a new privacy guarantee that
maintains its probabilistic flavor.

Now, we define a new probabilistic privacy guarantee that is similar to (e, d)-PML, but is closed under post-
processing. Drawing on Example [5] our new definition ensures that all post-processed outcomes with probability
at least 6 have their PML bounded by e. We provide two alternative formulations of our new privacy guarantee:
The first one in Definition [7| describes a somewhat technical condition, so we re-state it in a more intuitive form in
Definition [T1]

Definition 7: Given an arbitrary but fixed prior Px, we say that a privacy mechanism Py |x satisfies (e, d)-
closedness with ¢ > 0 and 0 < 0 < 1, if for all post-processing channels Py, Pz(z) > 0 implies {p, , (X —
z) < € where z € supp(Pz).

Based on Definition [/} to check whether or not a certain mechanism Py | x satisfies the desired closedness property,
one needs to examine all possible post-processing channels Pz|y. This raises the question of whether it is possible
to come up with a definition equivalent to Definition [/, which can be stated as a property of the channel Py |x
itself. In what follows, we show that this is indeed possible, but we need a few other ingredients before we are
ready to state this alternative definition. First, we recall two concepts from [49].

Definition 8 (Similar outcomes [49)]): Given a channel Py |y, we say that the outcomes Y,y € supp(Py) are
similar if their corresponding columns in the matrix of Py |x are scalar multiples of each other, or equivalently, if
Px|y—y(x) = Px|y—y () for all 2 € supp(Px).

Remark 7: Note that if the outcomes y,y’ € supp(Py ) are similar, then i(x;y) = i(x;y’) for all € supp(Px)
and (X — y) =4(X — 3.

Definition 9 (Reduced channel [49, Def. 3]): Given a channel Py |x, its reduced channel denoted by Py, x is

formed by removing all-zero columns from Py |y, and merging (i.e., adding) the columns corresponding to similar
outcomes.
Let Py, |x denote the reduced channel of the mechanism Py |x. We can define an equivalence relation Py‘ x ~ Pyix
if Py x has Py, |x as its reduced channel. Then, the equivalence class of Py x, denoted by C (Py‘ x ), is the collection
of all mechanisms whose reduced channel is Py, | x. Suppose Py x € C (Py|x). We will use Y to denote the (output)
random variable induced by the channel Py x whose alphabet is represented by ), and whose marginal distribution
is denoted by Py.

Similar outcomes lead to the same posterior distribution, information density, and PML. Thus, the channels in a
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class C(Py|x) behave identically with respect to information measures that are defined based on the information
density, such as mutual information and maximal leakage. In the following, we show that if Py |x satisfies (e,0)-
closedness, then all Py|y € C(Py|x) also satisfy (e, d)-closedness.

Proposition 2: Given an arbitrary but fixed prior Px and an (¢, 0) pair with ¢ > 0 and 0 < § < 1, if a mechanism
Py | x satisfies (¢, d)-closedness then all Py|y € C(Py|x) also satisfy (e, d)-closedness.

Proof: Let the function f : C(Py|x) x [0,1] = R be defined as

f(Py|X75) =sup max LIp, (X — 2),
Py 5 #€supp(Pz):

that is, f represents the largest PML over all outcomes z of all post-processing channels with probability at least
6. We argue that f(-,0) is constant on C(Py x) for all 0 < § < 1. To see this, fix an arbitrary Py |x € C(Py|x)
and note that the Markov chain X — Y — Y, holds, where Y, denotes the random variable induced by the reduced
channel Py, |x. By definition, I(X; Y) = I(X;Y,), therefore Y, is a sufficient statistic of Y for X, and the Markov
chain X — Y, —Y also holdsE] Now, we write

f(Py|X75) =sup max fp. (X = 2)

P, z€supp(Pz):
Y P, (2)>6
= sup max {p,, (X = 2)
Pyv.:  z€supp(Pz):

Pyzly, =Pz yoPgy, tz(2)28

< sup max lp,, (X —2)
Py\y, #€supp(Pz):

= f(Py,|x,9).

Reversing the role of Y and Y;, it can also be established that f(Py, x,d) < f (Py|x,0); hence, we obtain
f(Py,x,6) = f(Pyx,0) forall Py x € C(Py|x) and 0 < ¢ < 1. Finally, if Py |x satisfies (¢, §)-closedness then
f(Py|x,6) < ¢, which implies that SUDpy  eC(Py x) f(Pyx,0) <e [ |

One last concept that we need to introduce is the notion of the maximal leakage associated with arbitrary events
(that is, subsets) of supp(Py ). We will call this new form of leakage event maximal leakage (EML), which is
defined fairly similarly to PML. That said, the real benefit of EML is in that it allows us to come up with an
alternative formulation of Definition [7]

Definition 10 (Event maximal leakage (EML)): Suppose the random variables X and Y are described by the joint
distribution Pyy defined over the finite sets X’ and ). Given an event £ C supp(Py ), the maximal leakage from

X to & is defined as

Pyx—z() Y oyee Prix=x(v)
Y4 X =& =1l max —————— =lo max Y
PxY( ) gmesupp(PX) PY (5) g zesupp(Px) Zy,eg PY (y/)
Py (y) )
=lo max =—"—— exp (7 x; .
gwEsupp(Px)yeZS Zy,eg PY(y/) p( PXY( y))

4We thank the anonymous reviewer of our paper for suggesting to use the concept of sufficient statistic to shorten the proof.
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Having defined the maximal leakage associated with arbitrary subsets of supp(Py ), we are now ready to provide
an alternative form of Definition [

Definition 11: Given an arbitrary but fixed prior Py, we say that a privacy mechanism Py |x satisfies (e, d)-
EML with ¢ > 0 and 0 < § < 1 if for all PY\X € C(Py|x) and all events & C supp(Py), Py(€) > & implies
lp (X =€) <e
Clearly, (¢,0)-EML and e¢-PML are equivalent. Furthermore, given an arbitrary but fixed prior Px, if a channel
Py |x satisfies (e,d)-EML, then it also satisfies (¢/,0’)-EML for all € < ¢/, and all § < ¢’ < 1.

Next, we show that a privacy mechanism Py |x satisfies (e, d)-closedness if and only if it satisfies (e, d)-EML.
That is, Definitions [7] and [T1] are equivalent.

Theorem 3: Given an arbitrary but fixed prior Py, and a pair (¢,0) with ¢ > 0 and 0 < § < 1, a privacy
mechanism Py x satisfies (¢, §)-closedness if and only if it satisfies (¢, §)-EML.

Proof: Suppose without loss of generality that Px has full support. We first show that if a privacy mechanism
Py |x satisfies (e, d)-closedness, then it satisfies (¢, §)-EML. Informally, this result follows from the fact that for all
Py x € C(Py|x), optimizing over the events in supp(F) with probability at least J is equivalent to optimizing
over the outcomes of all deterministic mappings Py with probability at least 0. More concretely, suppose Py
is a deterministic channel, that is, the matrix form of Py 5 consists only of zeros and ones. Then, each outcome
z € supp(Pyz) corresponds to some event £, C ) such that Pyiy—y(z) =1forall y € &, and Py (€.) = Pz(2).

Let Dy, denote the set of all deterministic mappings with domain Y. We can write

€> sup sup max {Ip,, (X — 2)
> sup sup max {lp, (X = 2)
Py x€C(Py|x) Pz v €Dy ZEES’;l()S)(ggz):

PZ\X:I(«Z)
= sup sup max log maxpi
Py x€C(Py|x) Pz v €Dy zegzlgf)(gg): T 7 (2)

PY\X:w(gz)
= sup sup max log max ——— "~
Py x €C(Py|x) Pz)v €Dy ze;;[()f)(gg): T PY(gZ)

- sup max  log max M
el S e @)

= sup max  lp, (X = &),
P?\XGC(PY\x)E%;l?g)(gg):

where the first inequality follows from Proposition [2| Thus, Py |x satisfies (e, d)-EML.
Now, we show that if a mechanism Py |x satisfies (¢, 5)-EML, then it satisfies (e, §)-closedness. Let the function
h:C(Pyx) x [0,1] = [1,00) be defined as
h(Py|x,6) = sup _max _exp (ZPXZ(X — z)) (15)

z€supp(Pz):

P —
2 P (2)>5



23

We can write h as

h(PY|X7 5) = m;LX h’.L(PYIX76)?
where

Pyix—2(2)
ha(Pyx,0) = T2)X=s1%)
Frix.0) = s max  ~P(2)

Y P ()26

) N Pry—,(2) Py x—q
_ sup max ZyEsupp(PY) ZIY y( ) Y‘X (y)

Pyzy z€supp(Pz): Zy’esupp(P{/) PZD—/:y’ (z)PY(y/)

~ap max > Pyy—y(2) Py (y) (me_x(y)) 16)
Paiv ZE;;?S)(g): pesumipy) 2oy'esupp(Py) P17 =y (2)Pr(y) \ Py (y)

Using Proposition 2} it suffices to show that for each =, there exists Py|x € C(Py|x) satisfying h,(Py|x,d) <
exp(e€). Hence, we solve the above optimization problem for the reduced channel associated with the class C(Py|x),
denoted by Py, |x.

Fix some = € X. Let n, := |),| denote the cardinality of ), (recall that Py, has full support). We re-write (16)

for PY,.|X as

3 a; Py, (y;) :
hl’(PleX’ 6) = a max an ]1 aj/P; (y]/) eXp (ZPXYT (:‘C7 yj))?
7= r

Jj=1
n, 1
subject to ZajPYT (yj) > 6, a0
j=1
0<a; <1,  Vj€[n

where {a;} specify Pzy,—,, () for the z € supp(Pz) with the largest PML which also satisfies Pz(z) > d.
Suppose the elements in ), are labelled such that ip,, (z;y1) > ipyy, (T592) > ... > ipyy, (T;Yn, ). Given an

integer k € [n,], let 7 .= {y1,...,yx} be the set containing k elements from ), that have the largest information
density with .. Let k* € [n,] be the smallest integer such that Py, (Fj~) > d. The objective function in problem (I7)
is a linear-fractional function which is quasi-convex (in fact, quasi-linear) [S0, Section 3.4], and the feasible region
is a convex polytope. Therefore, the optimal solution is an extreme point of the feasible region given by

1, if j=1,... k" =1,
@ =3¢ it =k,

0, otherwise,

where the parameter 0 < ¢ < 1 can be calculated by
Py, (Fi+—1) + (Py, (yr+) = 0. (18)

Hence, we obtain h.(Py,|x,0) as

1
ho(Py,|x,0) = 5 (PYT|X::1:(]:k*—1) + CPYT|X::1:(yk*))- (19)
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Since k* is the smallest integer such that Py, (Fi-) > 0, we need to consider the following two possibilities: We

either have Py, (Fi«) = 0 or Py, (Fi~) > 0. First, suppose Fj« = 0. In this case, the optimal parameters become
1, if j=1,... k",
0, otherwise,

that is, ¢ = 1 in (T8). Since {a}} consist of only zeros and ones, it in fact specifies a deterministic outcome 2* €
supp(Pz-) for some channel Pz- |y, . This outcome corresponds to the event .~ in the sense that Py)y, —,(2*) = 1

for all y € Fy~, and Py, (Fi«) = Pz(z*). Thus, we get

Pyix—z(z
b Py xs8) = sup max L2x=2()
Py y 2€5upp(Pz): Py (z)
Pz(Z)Z(s

_ Pz*lxzx(z*)
Py (z%) (20)

_ Py, | x—o(Fr~)
Py, (Fi+)
< exp(e),
where the last inequality follows from the fact that Py |x satisfies (e, d)-EML.
Now, suppose Py, (Fi+) > § which implies that 0 < ¢ < 1 in (I8). In this case, we construct Py iy el (Py|x)
whose columns are identical to the columns of Py, x, except that the k*-th column of Py, x is split into two

corresponding columns in PY\  given by

Py x—o (k) = Py x=a(yk=), and Py (ukr, ) = (1= Q) Py, | x=a2(Yr+),

for all z € X'. Note that the outcomes Ykr,)» Yky, € supp(Py ) defined above are similar, and satisfy

Py (T3 Uky,)) = 1Py (T3 k7, ) = iPxy, (T3Yk)-
Now, we find hI(PY| +»0). Forming the optimization problem (I6) for PY\ - it is easy to see that the optimal
parameters are

) Loif =1,k =1k,

0, otherwise,

which, once again, specifies a deterministic outcome. Using arguments similar to Z0), we get h, (PY\ ¢, 0) <exp(e).

Finally, as = was chosen arbitrarily, we conclude that h(Py|x,d) < exp(e), that is, Py x satisfies (e,0)-
closedness. [ ]

Remark 8: The proof of Theorem [3| sheds light on the role of the class C (Py‘ x): For each 0 < § < 1, there
exists Py x € C(Py|x) and a “least private” event £* C supp(Py ) satisfying Py (£*) = 6. As such, without loss
of generality, we unify the channels in the equivalence class C(Py|x) and assume that £* C supp(Py ). Then, to
show that Py x satisfies (¢, §)-EML, it suffices to show that /p,, (X — £*) <e.

Now, recall that our motivation for introducing the notion of (¢,d)-EML was to obtain a probabilistic privacy

guarantee which is closed under both pre- and post-processing. The following result formally shows that this is

indeed the case.
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Proposition 3: Suppose the three random variables X, Y, and Z form the Markov chain X — Y — Z. Given
e>0and 0 <§ <1, it holds that:
1) (Pre-processing) If Py satisfies (e,d)-EML, then Pz x satisfies (¢, )-EML.
2) (Post-processing) If Py |x satisfies (¢, d)-EML, then Py x satisfies (¢, )-EML.
Proof: In both cases, we use Theorem [3] and verify the conditions of Definition [7] Consider the Markov chain
X-Y-Z-T.

1) Fix an arbitrary Pr|; and t € supp(Pr) satisfying Pr(t) > §. Then,
UX —t) <UY —t) <e

where the first inequality is due to Lemma [I| and the second inequality follows by the assumption that Pyzy
satisfies (¢, §)-EML. Thus, Py x satisfies (¢, d)-EML.

2) The result follows directly by noticing that 7" is a post-processing of Y through the channel Pry = PrjzoPgz)y.
Hence, Pr(t) > ¢ implies £(X — t) < e with ¢t € supp(Pr) and Py |x satisfies (¢, d)-EML.

Now, let us re-visit Example [5] and analyze it through the lens of event maximal leakage.
Example 6: Suppose Px, Py|x and, Pz)y are defined as in Example [5| and let 6 = % Our goal is to find the
smallest ¢; > 0 such that Py x satisfies (e1,d)-EML, and the smallest e; > 0 such that Pz x satisfies (€2, 0)-EML.

First, note that the outcomes y3 and y4 are similar; hence, by merging them, we obtain the reduced channel Py, |x

as

(0 0 1]

00 1

Py x =

1 2

0 3 3

1 2
5 0 3]

Now, for each z, we find h,(Py,|x,d) defined in (I9):

6
hwl (PY,.\X7 6) = h’wz (PYT.|X7 6) = 5)
12
hes(Py, x,0) = hey(Py,|x,0) = 5
which implies that Py x satisfies (e1,d)-EML with
12
€1 = logmax hy, (Py,|x,0) = log 5

Furthermore, the channel Pz x is given by

S
2 2
1 1
2 2

Pzix =
12
3 3
2 1
R
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Since Pz(z1) = Pz(z2) = 5 and (X — z1) = {(X — 2z3) = log 3, it follows that Py |y satisfies (e2,5)-EML
with €2 = log %. Note that since €5 < €7, PZ‘ x also satisfies (e, d)-EML which was expected from Proposition

Remark 9: The above example also describes the computational complexity of finding the smallest e associated
with a given ¢ in an (e, §)-EML privacy guarantee (or alternatively, finding the least private event with probability
6). For each = € &, finding h,(Py|x,d) requires sorting the vector of information density i(x;y1), ..., i(x;yy|),
which can be implemented with time complexity of O(]Y|log|)|). Hence, the overall procedure can be implemented
relatively efficiently.

As the final topic in this section, we discuss the relationship between the (e,d)-EML and (e, d)-PML privacy
guarantees. By Examples [5] and [6] it is clear that (e, §)-PML does not imply (e, §)-EML. In general, (¢, §)-EML
does not imply (€, §)-PML either. For example, consider the binary symmetric channel

0.6 04
Py x =
04 0.6
with uniform Px. It is straightforward to verify that Py |x satisfies (€1,01)-EML with €; = log % and 6, = 0.6.
However, due to the symmetry of the channel, Py |y satisfies (e2,02)-PML with e = logg and all 0 < 6, < 1.
Note that for §; = do = 0.6 we have €1 < €.

While in general (e, d)-EML does not imply (e, d)-PML, there exists a condition under which (e, §)-EML does
in fact imply (¢, d)-PML. This is shown in our next result.

Proposition 4: Given an arbitrary but fixed prior Py, suppose the privacy mechanism Py |x satisfies (¢, d)-EML.
Let A= {y € supp(Py): £(X — y) > e}. If there exists z* € supp(Px) satisfying 2* € arg max, cqupp(py) (T3 Y)
for all y € A, then Py |x satisfies (¢,§)-PML.

Proof: We need to show that Py (A) < 4. We can write
(X - A)=1log max ZyEA Py ix=r(y)
xesupp(Px) ZyeA Py (y)

ZyeA maxm&supp(PX) PY\X:J; (y)

~ log (21a)
ZyE.A PY (y)

, Py x—:(y)

>log min max ———
yeA zesupp(Px) Py (y)
=1 in /(X
og min (X =)

> e, (21b)

where (21a)) follows from the assumption that all Py|x—_,(y) are maximized at the same z, and (2Tb) follows from

the definition of the event A. Since Py |x satisfies (¢,0)-EML, /(X — A) > ¢ implies that Py (A) < 4. [ |

B. Composition Properties

A second group of properties that are helpful while assessing the privacy levels of more complicated systems

are composition properties. Let X denote the sensitive data, and let Y be the output of a channel Py |x. Suppose
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X and Y are fed into another channel Pz xy inducing a random variable Z in its output. What we are interested
in is to find out how much information the overall channel Pzy|x leaks about X.
The composition property stated in Lemma [T] describes an upper bound on the PML resulting from composing
the two channels Py x and Pz xy. In this section, our goal is to understand how different privacy guarantees,
namely, e-PML, (e, 0)-PML and (e, 0)-EML are affected by adaptively composing two channels. We note that some
related results have been derived in [S1]], where non-adaptive composition is studied asymptotically for maximal
leakage and Sibson mutual information [52| [11]]. The bounds we derive in this section differ from previous works
in that here we study adaptive composition, that is, we allow Z to depend arbitrarily on both X and Y.
Naturally, one can formulate various problems by making different assumptions about the channels Py x and
Pz xy. The following result contains several such problem formulations and results, and its proof is deferred to
Appendix [C]
Theorem 4: Consider three random variables X, Y and Z where X denotes the secret, Y is the output of a
channel Py |x, and Z is the output of a channel Pz xy .
1) Suppose Py |x satisfies €;-PML, and for all y € supp(Py ), the channel Pz x y—, satisfies eo-PML, where
€1, €2 > 0. Then, the channel PYZ‘X satisfies e-PML with € = €] + €.

2) Suppose Py |x satisfies (e1,01)-PML, and for all y € supp(Py ), Pz|x,y—, satisfies (e, d2)-PML. Then, the
channel Py ; x satisfies (¢, d)-PML with € = ¢; 4 €2 and ¢ = 01 + 62 — 0105.

3) Suppose Py |x satisfies (e1,d1)-PML, and

]P(Y,Z)NPyz E(X — 7 | Y) S €9 Z 1 —(52.

Then, the channel Py ;| x satisfies (¢, )-PML with € = €; 4 €2 and 0 = 01 + 2.
4) Suppose Py |x satisfies (e1,61)-EML, and for all y € supp(Py ), Pz x,y—, satisfies (ez,02)-EML. Given an
event £ C supp(Py z), define the sets

E = {y € supp(Py): (y,2) € £, z € supp(Pz)}
Ez(y) == {z e supp(Pyz): (y,2) € £}.

Then, for all events £ such that 0 < do < mingee, Pzy—y,(E2(y)), Pyz(E) > 01 implies £(X — &) < e1+ea.
Specifically, if Py |x satisfies (e1,61)-EML, and Py x y—, satisfies eo-PML, then Py ;| x satisfies (e1 +€2, 01 )-
EML.

5) Suppose Py |x satisfies (e1,d1)-EML, and for all y € supp(Py), Pz x,y—, satisfies (e2,d2)-EML. Then,
Py z|x satisfies (¢,6)-EML with ¢ = log (5157252 - exp(€max) + €Xp (61 + 62)) and 0 = 01 + 02, where

€max — — log minz€supp(PX) PX (37)

IV. RELATIONSHIP TO OTHER PRIVACY/STATISTICAL NOTIONS

In this section, we study how pointwise maximal leakage and the privacy guarantees defined in the previous
section relate to several pre-existing privacy/statistical notions from the literature. More specifically, we discuss

max-information [38, 39], local differential privacy [5, 6], local information privacy [17, [16], local differential
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TABLE I

SUMMARY OF THE RESULTS OF SECTION[[V]

Privacy/Statistical Notion Relation/Bound Ref.
Max-information Ioo(X;Y) = maxy £(X — y) Def. (13
Approximate max-information (6,6)-PML = IS (X;Y) <e Prop. [5
Local information privacy e-LIP — e-PML Def. |15

. . . 1 -
Local differential privacy e-LDP —> log R s p— PML Prop. [6
Local differential identifiability e-LDI = log L -PML Prop. |6
Pmin (1+e—<(|supp(Px)|-1))

Mutual information I(X;Y) <Ey~py (X = Y)] Prop. [7
f-information If(Pxy) <Ey~py [max {f (exp({(X = Y))), f(())}] Prop. [8
L . . 1 Prop. 8
Total variation privacy T(X;Y) < min {iEprY [max {exp(/(X = Y)) — 1, 1}} ,exp (L(Py|x)) — 1} Prop. 9

identifiability [20, 9], mutual information, f-information [13]], and total variation privacy [[14]. The results of this

section are summarized in Table [I

A. Max-information

Max-information is a statistical quantity that was introduced as a tool for studying generalization in adaptive
data analysis [38 [39]. Note that while max-information has not been developed as a notion of privacy, it is
defined similarly to pointwise maximal leakage, and therefore, their comparison is appropriate. Before we give
the definition of (approximate) max-information, we need the following definition of approximate max-divergence
which is a weakening of max-divergence (that is, Rényi divergence of order infinity).

Definition 12 (Approximate max-divergence [38]): Let P and () be two probability distributions over a finite set

Q and suppose P < Q. Given 0 < § < 1, the §-approximate max-divergence between P and () is defined as

PE) -6
o — A

Note that for 0 = 0 the above definition reduces to the max-divergence between P and (), denoted by Do, (P||Q).
Definition 13 ((Approximate) max-information [38]): Suppose V and W are two random variables supported
over finite sets V and W, respectively, and let Pyyy denote their joint distribution. The max-information between

V and W is defined as

va(’U, ’LU)

=1 —_—.
8 Ve Py (v) Py (w)
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Similarly, the J-approximate max-information between V' and W is defined as

I,(V; W) = D3 (Pywl| Py Pw)
max 7PVW(€) _ 5
gsgwwzpvw(g)za Py Py (€)

where

PyPw(€)= Y Pv(v)Pw(w),
(v,w)eé

It follows from the definition of max-information that, given a fixed prior Px, a mechanism Py| x satisfies e-
PML if and only if I (X;Y") < e. Therefore, in the following we examine how (e, d)-PML privacy compares with
guarantees given in terms of the J-approximate max-information. To do this, first we recall a lemma from [53]. As
the proof of the lemma was omitted in [S3]], here we also provide a proof.

Lemma 4 (53] Lemma 18]): Let P and ) be two probability distributions over a finite set {2 and suppose P < Q.
Let the event O C (2 be defined as

tweq. P@
O ={ GQ'Q(w)> }.

If P(O) <6, then DJ_(P||Q) < e.
Proof: Let O C Q be any event satisfying P((’~)) > 6. Then, we have
P(O) = P(ONO)+ P(ONO°)
< P(O) + Q(ONO%ef
<3+ Q(O)e",
which gives 3
P(O)—-4¢ ~ ~
% < e, YO C Q,P(O) > 4.
Q(0)
Now, we use Lemma {] to relate Py p, [¢(X — Y) < €] and the d-approximate max-information.
Proposition 5: Given an arbitrary but fixed Py, if the channel Py |x satisfies (e,)-PML, then I(X;Y)<e

Proof: First, note that

Py (X, Y)) < ef] > Py, { (22)

ny(l', Y)
- N 77 - K €
Pocy)~pxy {PX(X)PY(Y )=

max
z€supp(Px) PX (J,‘)Py(y
since the RHS of the above equality can be written as
P Y P
Pyop, [ i XY(JJ)) < ee} - Y R { e XY(“D) < ee} 7

x€supp(Px) Px(x)Py (Y yesup(Py) zesupp(Px) Px (SL')Py(y

Pxy (z,y)
= Z Pxy(z,y) 1 [ max ~—————27 < e
(=,y)esupp(Pxy) aesupp(Px) Px () Py ()

and for all (x,y) € supp(Pxy) we have

Pxy(zy) o _Pxv(zy)
Px(x)Py(y) " zesupp(Px) Px(m)Py(y)
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Now, since the privacy mechanism Py |x satisfies (e,d)-PML, we have

ny(x,Y)
Py~ ———— < | =Pyop, [l(X 5Y) < >1-04,
Yooy Lesgéap)((zvx) Px(z)Py(Y) — € Y~ Py [£( ) <¢e >

which combined with yields

HD o - N7
()~ Py [PX (X)Py(Y) =

or equivalently, Py (X,7)
P - _AXY\A, L) €l < 4.
o [ > ¢ <

Finally, using the above inequality and Lemma [] we conclude that
I2(X;Y) = D3 (Pxy|PxPy) <

|

The previous result shows that (e, §)-PML is a stronger guarantee compared to I (X;Y) < e. Roughly speaking,
this is because under a I, (X;Y") < e guarantee, the “good” y’s are those that have small information density i(z; y)
with high probability over the x’s. However, under an (¢,d)-PML guarantee, the “good” y’s need to have small
i(z;y) for all x’s in supp(Px), that is, i(x;y) must be small with probability one over the z’s. In addition, note
that I3 (X;Y) treats random variables X and Y symmetrically and the probability of a good event is calculated
according to Pxy. On the other hand, under (e, §)-PML, the probability of a good event (i.e., low leakage) is

calculated according to Py over the y’s.

B. LDP, LIP, and LDI

Now, we discuss the relationship between PML-based guarantees and three other notions of privacy, namely,
local differential privacy (LDP) [3 16], local information privacy (LIP) [17, [16] and local differential identifiability
(LDI) [20} 9]. First, we recall their definitions.

Definition 14 (Local differential privacy [5 6l]): A privacy mechanism Py |x satisfies e-LDP with € > 0 if for
all y € supp(Py ), z,2’ € supp(Px) we have

Pyix—.
P <
Note that the above definition depends only on the channel Py |y, so an e-LDP guarantee is valid for all priors Px.
Definition 15 (Local information privacy [17] 16]]): Given an arbitrary but fixed prior Py, we say that a privacy

mechanism Py satisfies e-LIP with € > 0 if for all € supp(Py) and = € supp(Px) we have

—€ < PX|Y:y(‘r) €
Px(x)
While the definition of e-LIP privacy is similar to e-PML privacy, it differs from e-PML in that it requires an
additional lower bound on the information density, that is, we must also have
Px () < e
Px|y—y()
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The above bound has no clear operational interpretation in our current framework, and may be superfluous. To see
why, consider the following simple example. Suppose Px is a binary random variable that is uniformly distributed
over X = {x1,22}. Assume Px|y—,(x1) = p for some y € supp(Py), where p > 0 is a small positive number.
Since we must have Py|y—,(21) + Px|y—y(72) = 1, this in turn implies that Pxy_,(z2) =1 —p where 1 —p

is close to one. Thus, the pointwise maximal leakage /(X — y) becomes

Px|y—y(z)

(X —y)=log max ———2"2 —log(2(1—p)),
(X —y)=log_max —p =0 g (2(1-p))
which is close to €,,x = log 2. Hence, the outcome y has large privacy leakage.

Px|y—y(x)

maximal leakage simply because we must have ) Px|y—,(x) = 1 for all y € supp(Px). As such, it may not

The point of the above example is to show that small values of the ratio can increase the pointwise

necessary to impose a lower bound on the information density as a separate constraint; a privacy guarantee defined

based on an upper bound on information density will be automatically penalized for small values of the ratio

Pxy—y(x)

Definition 16 (Local differential identifiability [20, |9]): Given an arbitrary but fixed prior Px, we say that a

privacy mechanism Py |x satisfies e-LDI with ¢ > 0 if for all y € supp(Py), z, 2" € supp(Px) we have

Pxjy—y(z) <t
P le:y (l‘/) -
Note that the notion of identifiability has been previously considered in centralized settings [20, 9], where = and
. . . . . . Pxjy—
7' denote neighboring databases. Here, we have given a local version of the definition, where the ratio %
=y

must be bounded by e€ for all z, 2" € supp(Px).

What the above three notions of privacy have in common is that they are strictly intolerant of zero-probability
assignments in the channel Py|x, that is, the existence of a single input-output pair (,y) such that Py x=2(y) =0
(where = € supp(Px) and y € supp(Py)) immediately implies that the channel does not satisfy any of the above
notions of privacy. On the other hand, /(X — y) is always bounded by €y, SO naturally a guarantee given in
terms of pointwise maximal leakage may not satisfy any of the above notions of privacy.

To see why zero-probability assignments in the channel Py x do not necessarily imply “bad privacy”, consider
the following simple example. Suppose X and Y are random variables defined over sets with cardinality n, and
assume that X is uniformly is distributed. Consider the following channel:

0, ifi=1,

Py |x=z, (yi) =
1

——  otherwise,
n—1

and Py|x—., (i) = % with ¢ € {1,...,n} and j € {2,...,n}. Intuitively, for large n the above channel leaks

very little information which also becomes apparent by calculating the pointwise maximal leakages:

n
ox = log ——
(X = y1) =log —,

n2

, t=2,...,1n.
n+1
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However, under LDP/LIP/LDI, no matter how large n is, the above channel is considered to be equally non-private
as a deterministic mapping from X to Y. This is clearly an overly pessimistic privacy assessment.
That being said, it is straightforward to verify that e-LDP/LIP/LDI guarantees imply a guarantee based on
pointwise maximal leakage. According to Definition [I3] e-LIP implies e-PML. We also have the following relations.
Proposition 6: Let pyin = MiNgcgupp(Px) Px (x). Given an arbitrary but fixed prior Px, if a mechanism Py x
satisfies e-LDP, then Py |x satisfies ¢-PML, where

1
Pmin + 6_6(1 - pmin) '

€ =log

Moreover, if Py| x satisfies e-LDI, then it satisfies &-PML, where

1
pmin(1 + 67€(|Supp(PX)| - 1)) .
Proof: The first statement regarding LDP is an intermediate step in the proof of [16, Thm. 3]. To see the

€ = log

second statement, note that Py | x satisfies e-LDI if

Py |x—(y)Px () o
Py|x—o(y)Px(2') =

for all y € supp(Py), =, 2’ € supp(Px). Fix y € supp(Py ). We write

ax Py x—2(y) o Py x—2(y)
eesupp(Px) Py (y) zesupp(Px) Y0 Py|x=2(y)Px (z')
Py x—2(y)
max
z€supp(Px ) PY\X:x(y)PX(l') + Zy;ﬁx PY|X=9¢’ (y)Px (')
< Py x=2(y)
<  max
x€supp(Px) PY‘X:z(y)PX(x) + 21/7&:1; PY|X:m(y)PX (17)6_6
. 1
= max
z€supp(Px) Px(l') (1 —+ e*€(|supp(PX)| — 1))
B 1
Prmin (1 + e~<(|supp(Px)| — 1))

C. Mutual Information

Mutual information has been studied as a privacy measure in a number of works, e.g., [7H10], although it has been
argued that in some cases mutual information underestimates privacy leakage [33]. Previous works have shown that
maximal leakage upper bounds mutual information, and in fact, no scalar multiple of mutual information can upper
bound maximal leakage [26] [33]]. Here, we show how mutual information can be bounded in terms of /(X — Y').

Proposition 7: Given a joint distribution Pxy, it holds that I(X;Y) < Ey.p, [((X — Y)] with equality if and
only if Py|x—,(y) = Py|x—o(y) for all 2,2" € X and y € Y such that Pxy(z,y) > 0 and Pxy(2',y) > 0.
Hence, given an arbitrary but fixed prior Py,

1) if Py|x satisfies e-PML, then I(X;Y’) <, and

2) if Py |x satisfies (¢,0)-PML, then I(X;Y) <€+ - emax-
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Proof:

ILX;Y)::EYNPY[EXpry[b fxyax,Y)]}

& Py (X)Py (V)

Pxy(x,Y) }

< Ev. log —————~_
Y”Lﬁﬁm%&m&m

= ]EYNPy [E(X — Y)],

where the inequality holds with equality if and only if for all z, z’, y such that Pxy (z,y) > 0 and Pxy (2’,y) >0
we have i(x;y) = i(2';y), or equivalently, Py x—,(y) = Py|x=a () (the condition for equality has also been noted
in [33, Lemma 2]). The remaining statements then follow directly from the definitions of e-PML and (e, §)-PML,

and the above inequality. [ ]

D. f-information

f-information [[13]] refers to a class of information measures that are defined based on f-divergences [54]). First,
we recall the definition of f-divergence.

Definition 17 (f-divergence): Let f : (0,00) — R be a convex function satisfying f(1) = 0. Let P and @ be
two probability distributions defined over a finite set €2, and suppose P < (). The f-divergence between P and @)
is defined as

Ds(PIQ) =Ea |1 (5 )| - PICEY (5)-
Common f-divergences include, for example, KL-divergence, total variation distance, and 2-divergence. Now, we
can define f-information as the f-divergence between the joint distribution and the product of the marginals of two
random variables.

Definition 18 ( f-information [I3] Def. 7]): Let f : (0,00) — R be a convex function such that f(1) = 0. Given

a joint distribution Py defined over the finite alphabets V and W, the f-information of Py is defined as

Ii(Pvw) = Ds(Pyw | PvPw) = Eqwv,w)~py Py [f <m>}
Diaz et al. [13] justify the definition of f-information as an information/privacy measure on account of its operational
meaning for specific choices of the function f, such as mutual information (associated with KL-divergence) and
X 2-information [55} 56] (associated with y2-divergence). Next, we show how PML can be used to upper bound
f-information.

Proposition 8: Let f : (0,00) — R be a convex function satisfying f(1) = 0, and suppose lim;_,o+ f(t) < o0.
Then,

I1(Pxy) < Eynp, | max{f (exp(t(X = Y))), f(0)} ],

where f(0) is defined by continuity as f(0) :== f(0T).
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Proof:

It(Pxy) = Ey.p, |Ex~py [f(

i)
Px(X)Py(Y)
ey (m)]

e | o (y) W Poy)
N ]EYNPY _maX {f <w€s§;’ap}((PX) PX (X)Py(Y)) ’f <m€slrllgg(lPx) Px(X)Py (Y)> }:| (233)

<Ey~p,

[ Pxy(X,Y) H
< Byopy |max {f( e sy O (23b)

=Ey~p, {max {f (exp({(X = Y))) 7f(0)}}’

where (23a) follows from the fact that the maximum of a convex function is attained at an extreme point, and (23b)

Px|y—y(x)

H7s ™ > 0 for all y € supp(Py). .

follows from mingcgupp(Py)

E. Total variation privacy

Let P and @) be two probability distributions defined over a finite set ). The total variation distance between P

and @ is defined as
1 P 1
TV(P.Q) = 3 |5 - 1| = 5 T IPe) - Q.

weN

which is an f-divergence with f(z) = §|x — 1|. Total variation privacy [14] is a privacy measure that is defined as
the expected total variation distance between the posterior distribution Px |y and the prior Px, given by

T(X;Y) :=Ey~p, [TV(Pxy,Px)] = > Pr(y) TV(Pxjy—y, Px). (24)

yeY

Rassouli and Giindiiz [14] motivate the use of total variation distance as a privacy measure by arguing that T'(X;Y)
is closed under pre- and post-processing, and by showing that controlling 7'(X;Y") restricts the inference quality
of an adversary optimizing an additive gain function, described in [17]. Furthermore, the following bound between

T(X;Y) and maximal leakage is derived:
T(X;Y) < (|X] =1) - max Px (w) - (exp(L(Py|x)) = 1), (25)

which is a rather loose bound as it depends on the cardinality of X (considering that 0 < T'(X;Y") < 1). Note that
T(X;Y) is actually the f-information associated with the total variation distance, so by applying Proposition

with f(z) = 4|z — 1| we get
T(X;Y) < %EYNPY max {exp({(X — Y)) — 1, 1}}, (26)

which is tighter than (23)). In the following result, we derive another upper bound on 7'(X;Y) in terms of maximal
leakage L(Py|x ), and also show how (€, )-PML privacy guarantee constrains 7'(X;Y).
Proposition 9: The following relationship holds between T'(X;Y") and L(Py|x):

T(X;Y) < exp (L(Pyix)) — 1.
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Furthermore, given an arbitrary but fixed prior Py, if the channel Py x satisfies (¢,d)-PML, then T'(X;Y) is

bounded as follows:

1) if e <log 3, then
2) if log 3 < e <log2, then

3) if € > log 2, then

T(X;Y) <

1 1)
< 5 (ee — 1) —+ 5 (GEmax — 1) .

Proof: Fix some y € supp(Py) and define the set A, = {x € supp(Px) : Px|y—y(z) > Px(x)}. We can

write

TV(PX|Y:vaX):% > [Pxjy=y(@) - Px()]

z€supp(Px)

= Y Pxjy—y(®) — Px(x)

€A,

<exp (U(X —y)) - 1. 27)
Taking the expectation of the above expression over y, we get
T(X;Y) <exp (L(Pyx)) — 1.
Now, define the function 7(y) = exp ({(X — y)) — 1, y € supp(Py ). By 26) and (27), we obtain

T(XY) < By, min (), max {30, 5 H]

Suppose Px is arbitrary but fixed, and the mechanism Py‘ x satisfies (¢,0)-PML. Define nyax = e®max — 1.
Using the fact that €, > log 2, we conclude that with probability smaller than § over Y, we have

1 1

TV(PX\Y:yv PX) < 5 Tlmax = 5 (eemax - 1) . (28)

We need to consider the following three cases for e:

1) e <log %: With probability at least 1 — § we have TV (Px|y—,, Px) < n(y) < e — 1, which implies that
0
TX;Y) <ef =145 (e 1),

2) log 2 < e <log2: With probability at least 1 — § we have TV (Px|y—,, Px) < %, which implies that
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3) € > log2: With probability at least 1 — & we have TV(Px|y—,, Px) < 3 n(y) < 1 (e — 1), which implies
that

T(X;YV)< = (ef—1)+ g (e —1).

1
-2

V. CONCLUSIONS

In this paper, we have introduced a new privacy measure called pointwise maximal leakage defined based on
the pre-existing notion of maximal leakage, which quantifies the amount of information leaking about a secret
X by disclosing a single outcome of a (randomized) function calculated on X. Our results demonstrate that a
framework centered around PML can be used to reason about privacy in a wide range of problems: First, we
make no assumptions about the nature of the sensitive data, e.g., X can represent an entire database or a single
data point collected from an individual. Then, PML is operationally meaningful in the sense that it is obtained
by analyzing threat models in which all assumptions about adversaries are made explicit. Next, PML is a robust
measure of privacy since it is meaningful when considering any adversary whose objective can be described by a
gain function. In addition, PML satisfies useful properties, for example, it behaves well under composition, enables
us to model side information, and satisfies data-processing (i.e., pre- and post-processing) inequalities. Last but
not least, pointwise maximal leakage allows us to view privacy leakage as a random variable; consequently, we
have the freedom to define different types of privacy guarantees based on the particular requirements of different

applications, both in terms of privacy and utility.

APPENDIX A

PROOF OF THEOREM

Suppose without loss of generality that Px has full support. Given an arbitrary gain function g, the g-leakage

of X can be written as

Supp,

supp, E [9(X, X)]
Supp.

%Y=y Dvex e r 9@ ) Pxjy=y () Py, (2)
SUPp. D sex 2uzex 9(0 ) Px (7) Py (2)

E[9(X, %) | ¥ =]

y(X —y) =log

= log

max; . ¢ > _,ex 9(T, 2)Px|y=y(2)
max; 5 > ,ex 9(2, ) Px (2)

where the last equality follows by plugging in P;ﬂy:y defined as

= log 29)

1, forsome & € argmax ) g(x,)Px|y—y(z)
2 (%) = & wex

0, otherwise,
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in the numerator, and P;A( defined as
1, forsome & € argmax Y, g(x,Z)Px(x),
PL(2) = & wex
0, otherwise,
in the denominator. Furthermore, as shown in the proof of Theorem [} given a randomized function of X denoted
by U, the U-leakage of X can be expressed as

maxyey Pujy—y(u)

Ly (X — y) =log mar, P ()

maxqyey erx PU\X::c(u) PX|y:y(9C)
maXyey Z]JEX PU\X::E(IUJ) Px (:C)

= log (30)

To show the equivalence, first, we prove the simpler direction by showing that each U-leakage can be written as
a g-leakage. Given an arbitrary randomized function of X denoted by U, define )E'U := U such that each u € U
corresponds uniquely to some &, € X,, and let g, (, ) = Py x—z(u) for all z € X and u € Y. By computing
expressions and (30), it is easy to see that {y(X — y) = £, (X — y). This construction implies that a
randomized function of X is simply a gain function that satisfies . g, (x, &) = 1, for all x € X, that is, the total
gain associated with each secret € X is a constant.

Now, we show that each g-leakage can be written as a U-leakage. Fix an arbitrary gain function g. Without loss
of generality, suppose g(z,%) < 1forall z € X and & € X (this can be achieved by normalizing the gain function
by max, ; g(z, Z)). In what follows, we construct a randomized function of X using a channel that generalizes the
shattering channel of Definition [2] We need to consider the following two cases:

Case 1: The same & maximizes the numerator and the denominator in (9).

Here, we will construct a randomized function of X, denoted by V, which is described by the kernel Py x
and satisfies £y (X — y) = £4(X — y). Let 2y € argmax; ) g(x,)Px|y—,(z) which (following from the
definition of Case 1) also satisfies &y € argmaxg y_ g(z,Z)Px(x). Informally, Zy denotes the adversary’s best
guess both after observing Y = y, and with no observations.

Define the set Xy = {z € X': g(z,Zy) > 0}. For now, let us assume that Xy = X but later we will discuss
how the proof can be adapted if &y is a proper subset of X. For each z € Xy, let ky(z) = 1/g(z, %y ), and
define ky := max,cx, kv (z). Roughly speaking, kv () is the cardinality of the support of Py|x—, while &y is
the cardinality of the support of Py .

Now, we construct a random variable V' taking values in an alphabet V such that |V| = [ky|. For all z € Xy,

the kernel Py |x—, is defined by
g(x,2v), ifl <i<lky(z)],
Pyix=z(vi) = {1 = |ky(z)] g(z,2v), ifi= [ky(z)],

0, if [ky ()] +1<i< [ky].
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Informally, for each x, the above kernel allocates chunks of probability equal to g(x,Zyv) to the first |ky ()]
letters, and the [ky (z)]-th letter is used to contain the remaining probability 1 — |ky (z)] g(x, &y ). Note that the

above kernel indeed satisfies
[kv]

Z Py|x=z(vi) =1,
i=1
for all x € Xy,.

Renaming V' to U,, we verify that the random variable constructed above satisfies (y (X — y) = £4(X — y):

gé%{)jz Py, ix=2 (W) Pxjy=y(z) = Zg($, Zu, ) Px|y=y(T)

= ) Pxy—
max 3 9(2:) Py (o)
where the last equality follows from the definition of Zy,. Similarly, we have

max > Pu,x=e(u)Px(z) = Y g(x,dv,)Px (@)

= miaxz g(z, &) Px (x).

Case 2: The maximizing 2’s in the numerator and the denominator of (29) are different.
We will construct two randomized functions of X denoted by V' and W, one for the numerator of (29) and one

for the denominator. Let

Ty € afgmang(%f)})xw:y(ﬂ?),

x
x

dw € argmax »_ g(, &) Px (),

x

and define
Xy = {2 € X: gla,dv) > 0},
Xw ={zr € X: g(x,Tw) > 0},
where Zy denotes the adversary’s best guess having observed Y = y, and 2y, denotes the adversary’s best guess
without an observation. We need to consider the following two cases:
Case 2.1: Xy = Ay

Let Xy, = Xy = Xw. Once again, let us assume that Xy, = X. Similarly to what we had in Case 1, for all

x € Xy, we define

ky(x) =1/g(z,2v), ky = Jél;%f kv (x),

kw(z) = 1/g(z, 2w ), kw = max ky ().
I’GXUQ
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Let V denote the support set of random variable V, and WV denote the support set of random variable W, where

V| = [kv] and |W| = [kw]. For all x € Xy, , the kernels Py |x—, and Py|x—, are defined as

g(l’,’i’v), ifl1<i< LkV(x)J7
Pyix—o(vi) = ¢ 1 = |ky(2)] g(x, 3v), ifi=[ky(z)],
0, if [kv(xﬂ +1<: < [k‘v—‘,

and

J
Py ix=u(wj) =1 = |kw(z)] gz, 2w), ifj= [kw(z)],
(@) +1<j<[hwl
Finally, we define the random variable U, as the Bernoulli mixture of V' and W. Let U, := V U W denote the
alphabet of U,. For all x € Ay, , we define Py |x—,(u) = %wazx(u) + %PW|X:I(u), where Py |x—,(u) =0
for u € W and Py x—z(u) = 0 for u € Vﬂ Let us verify that U, satisfies £y, (X — y) = £4(X — y):

1

max Z Py, x=2(u)Px|y=y(z) = Z 5 9(x,2v) Px|y=y(z)

1 .
=5 max ; g(x, %) Px|y—y(),

and also,

gé%{)g( Z PUg\X:z(U)PX (x) = Z % g(z, 2w )Px ()

xT

= % mgXZg(x, &) Px ().

Thus, we have

maxueu, ), Pu,|x=2 (1) Px|y=y(7)
maxyeu, ), Pu,|x=2(w)Px(z)

ly, (X —y) = log

— log %maXa& Zx g(z, j)PXW:y(UU)
imax; Y, g(z, &) Px(z)

={y(X —y).

Case 2.2: Xy # Xy
Let ny and nyy be positive integers. Here, the idea is that we increase the sizes of the sets V and W by ny and
ny, respectively, where these extra letters are used to support those z’s for which we either have g(x,Zy) = 0 or

g(x,Zw) = 0. We need to distinguish between three types of z’s:

S5This is a slight abuse of notation. Strictly speaking, Py | x—(u) is defined only for u € V and Py|x—,(u) is defined only for u € W.
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ny ky kw mw
i - N - 2 N S—
1 . 1 . 1 oy 1= |ky Jay) 1 . 1 . =
0 - 0 Sglm,dy) Sglendv) o Sg(en,dv) Sl ‘(112”'{](11 i) 59(@1,8w) gz, 8w) - 0 0 0 - 0
1 ) 1 ) 1 1
0 - 0 [ Sglendv) Sg(@,dv) 0 0 0 0 0 0 2nw 2nw
1 1 1 R 1 X
o o 0 0 0 0 Eg(ﬂvz,ww) Eg(ﬂvz,acW) 0 0 0 0
0 -+ 0 %g(wmﬁv) %g(zm)i'v) .“717@,,(%2)@(1,",&‘/) 0 %g(zm,faw) %g(zm,faw’) '“%g(zm,iw)w 0 - 0
“ L J L J =
Y Y
y w

Fig. 3. Illustration of the channel PUg| x constructed in Case 2.2. We assume X = Xy U Xy, where X' contains m elements. Each row of
the above matrix corresponds to an x from X, and the columns correspond to letters from Ufy. In this example, we have ky (z1) = ky and

kw (zm) = kw. Also, we are assuming z2 € Xy \ Xw and x; € Xy \ Xy, where 2 < I < m.

1) For x € Xy N Ay we define

9(z,2v), if 1 <i< |kv(2)],

Pyix=e(vi) = 41 = [kv (2)] (=, dv), if i = [ky ()],

0, if [ky ()] +1<i<[kv]+ny,

and

9(z, 2w), if 1 <j < [kw(z)],

Pwix=(w5) = 4 1= [kw ()] g(z,dw), if j = [kw ()],

0, if [kw(2)]+1<j<T[kw]+nw.

2) For z € Xy \ Xy we let

9(z, &v), if1<i< |kv(z)],

Pyix=e(vi) = 41 = [kv(2)] g(=, dv), if i = [ky ()],

0, if [ky ()] +1<i<[kv]+ny,

and

Py x—(wy) =
A if [kw]4+1<j < Thw] +nw.

3) For x € Xy \ Xy we let

0, ifl<i</[kv],
Pyx—z(vi) =
L if [ky ] +1<i < [ky] +nv,
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and
9(z, Tw), if1<j<|kw()],
Pwix=(w5) = 4 1= [kw ()] g(z,dw), if j = [kw ()],
0, if T ()] +1 < j < [kw] + now.

Now, we define U, as before. Suppose U; = V U W is the alphabet of U,. For x € &y U Xy (where we are
assuming X = Xy U Xw), let Py |x—.(u) = $Pyx—s(u) + 5 Pw|x—s(u), where Pyx_,(u) =0 foru € W
and Pyy|x—5(u) = 0 for u € V. Then, we can write
g(.’L’,.’i’v) 1
gé%;jz PUg|x:x(u)PX|Y:y(3U) = max{ Z g Px|y—y(), Z QnVPXY—y(x)}'

z zeXy reXW \ Xy

By taking ny to be large enough, we can ensure that
1 1 .
Z o X|y=y(2) < Z ig(xva)PX\Yzy(x)a
:ﬂEXW\XV v rEXy

which yields

max Y Py, x—o(u)Pxjy—y(z) = 1g(gg,:z:V)Pw:y(z)

u€EUy 2
rEXy
= Jmax 3 gl ) Prjy—,y (2)
= 5 max 9(x, ) Px |y —y ().
reEX
Similarly, for ny, large enough we have
maXZPU |x==(u)Px () = max Z 1g(az,ch)PX(ﬂc), Z LPX(ﬂc)
u€U, g 2 2nw
x TE€Xw IGXV\XW

Il
N
DN | =
Q
&

8
g

S
=

I

\

+E

><
=N

=
=
S
&

Hence, we conclude that {7, (X — y) = £,(X — y).

The only point left to discuss is regarding the case where Xy U A}y is a proper subset of X'. Let no be a positive
integer. Once again, we increase the size of the alphabet U, by no letters, where these extra letters are used to
support the x’s in X'\ (Xy U Ay ). Hence, we let Uy, = VUWUQO, where O is a finite set containing no elements.

For z € X'\ (Xy U Xy ) we define the channel Py |x—, as

L ifue0,

no’
Py, ix=z(u) = ¢ "
0, otherwise.

For x € Xy U Xw, we let Py |x—,(u) = 0 when u € O; otherwise Py |x—,(u) is defined as in Case 2.2.
It is straightforward to verify that for no large enough (% small enough), the values of the numerator and the
denominator in the expression of fy (X — y) remain as before, from which we may conclude ¢y, (X — y) =

ly(X = y). [ |
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APPENDIX B

PROOF OF LEMMA[I]

1) Upper bound:

PXIY:y(x)
X —y) =1 —_
( y) Og.’cEs{lI;l)%%(Px) Px (.CC)

1
<log max = log —; )
wesupp(Px) Px (.’E) Mg esupp(Px) Px ((E)

where the inequality holds with equality if an only if Px|y—,(z*) =1 with 2* € argmin, cg,pn(py) Px (7).
Lower bound: Here, the idea is that since both PX|Y=y and Py are probability distributions over supp(Px ),
then for any fixed y € supp(Py), there exists at least one 2 € supp(Px) such that Pxy_,(x) > Px(z).
Suppose to the contrary that for all x € X, Px|y—,(z) < Px(x). Then, 1 = Pxjy—,(z) <>, Px(z) =1
which is a contradiction. Therefore,

Px|y—y(z)
/(X — y) =lo max ———27 >]ogl =0.
( y) gweSupp(Px) Px(aj) =08

The above inequality holds with equality if and only if max, Py|x—,(y) = Py(y) = >_, Py|x==(¥)Px ()
which holds whenever Py |x—,(y) = Py|x—. (y) for all z,2" € suppPx.
2) Both statements follow directly from the definition.

3) Let 2* € argmax, Pz x—,(2). Then,

Prix=s(2)
Pyz(2)
Zyesupp(Py\x:z*) PZ\Y:?J<Z)PY‘X:1* (y)
Pz(z)

Pzly—y (2)

<lo max —_—

>~ gy’esupp(Py\X:m*) Pz(Z)

Pyly—y (2)

<1 ———— =Y — 2),
o Ogy’esrlrllp%))((PY) Pz(z) ( ?)

(X — z) =logmax

= log

ZPY\X:x* (y)

where the first inequality holds with equality if Pyy—,(2) = Pzjy—,(z) for all y,3’ € supp(Py|x—z+), and
the second inequality holds with equality if max,ceupp(py) i(y; 2) is attained at some y € supp(Py|x—z+)-
4)
Pyix—2(2)
Pz (2)
2 yesupp(Py) P21y =y (2) Py x=2(y)

Zy€supp(Py) PZIY:y(Z)PY(y)

<l Py x=2(y)
<logmax max ————— =
@ yesupp(Py) Py (y)

(X — z) = logmax

= log max
xr

= max VX —vy).
yEsupp(Py) ( 2
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Now, if X and Y are independent then /(X — z) = {(X — y) = 0 for all y, 2, and the inequality holds with
equality. Furthermore, if Pyz—. is deterministic, then z is mapped uniquely to some y. € supp(Py). This
implies that Py|y—,(z) = 0 for y # y., hence, we have
Pyix—:(2)
U(X — 2z) =logmax —————=

PY\X:x(yz)

= log max
z Py (yz)

=X —y.)

= st (X )
with equality if £(X — y.) = maxycsupp(py) L(X — ¥).
5)
Pyix—2,2-2(y)
UX =y z) =log max —PY\Z:Z(ZJ)
= log max PYIXZm(y)PY (y)
v Py(y)Py|z=2(y)

Py x—2(y)
Py (y)

Py (y)

+log — YW
Pyz-=(y)

= log max
=X —y) —i(y; 2).
6)
P =z(Y,
{(X — y,2) = log max Y2 X=clS 2] (v, 2)

z PYZ(yaZ)

= log max Py|x=s,2=:(Y)Pz)x=(2)
’ Py|z=.(y)Pz(2)
(
)

Pyix—2(2)

P =T =z
< log max Y X=a,Z=z17) y) Pa()
z\Z

+ log max
= Pyz—.(y x

=UX =y|2)+UX = 2),

with equality if and only if there exists * € supp(Pyx) maximizing both i(z;y | 2) and i(z; 2). |

APPENDIX C

PROOF OF THEOREM [4]
1) This result is an immediate consequence of the composition property given in Lemma For all y € supp(Py)
and all z € supp(Pz) we have
UX =5 y,2) <UX sy +lX = 2]|y)

< max X —oy)+ max X —=z]|y)
yEsupp(Py) y€Esupp(Py ),
z€supp(Pz)

<€ + €.



2)

3)

44

Therefore, Py 7 x satisfies €1 + e2-PML.

Since 4(X — y,2) < UX = y)+ (X — z | y) for all (y,z) € supp(Py) x supp(Pz), we can write
Py, zy~pPy V(X =Y, Z)> e + 62] <Py, 2)~Py 5 {E(X SY)HUX = Z|Y)>e + 62}
= 1-Py.zympy, [K(X YV HUX S Z|Y)<er+ eg]
We define the following “good” events:

G ={(y,2) € supp(Py) x supp(Pz): (X —y) < e and U(X — 2 |y) < €2},
Gy == {y € supp(Py): (y,2) €G for some z € supp(Fz)},

Gz(y) = {z € supp(Pz): (y,2) € G}.

Our goal is to lower bound the probability of event G. We can write

Pyz(G)= > Pr(y)Pzy—y(2) = > Pr(y) Pziy—y(Gz(y))

(y,2)€G yEGy
>(1—=0) Y Pr(y) (31a)
yeGy
> (1—=62)(1 = 61), (31b)

where

o (3Ta) follows from the fact that for all y € supp(Py ), Pz x,y =, satisfies (e2,d2)-PML which implies that
Pziy=y(Gz(y) =Pznrpy,y_, [K(X —Z|y) < 62} >1— 0o,
« and (3TB) follows from the fact that Py |x satisfies (€1, 01)-PML, that is,
Py(Gy) =Pyop, [((X 5 V) Sa] 21— 4.
It follows that
Py, z)y~Py 2 [é(X =y +UX 2]y <e+ 62] > Pyz(G) > (1—82)(1—61),

which yields
]P)(Y,Z)prz |:£(X —Y, Z) > €+ 62:| < 1 + 69 — 6109.

Define the event
Ay = {y € supp(Py): {(X —y) < er}.
As Py |x satisfies (e1,61)-PML, we have

1-6 < Pr(Ay)= Y Pr(y) = > Pyz(y,z) = Pyz(A),

yeAy (y,2)EAy xsupp(Pz)

where A := Ay X supp(Pz). Moreover, we define the event

B = {(y,z) € supp(Py) x supp(Pz): (X — z | y) < e2}.
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By assumption, Py-z(B) > 1 — §5. Therefore,
Ply.2)opy 5 [Z(X LY, Z) <e+ eg} S [e(X SV UX S Z|Y) < e+ 62}
> Pyz(ANB)
=1- Pyz(A°UB°)
>1—01 — do.

4) Let £ C supp(Pyz) be an event satisfying Py z(£) > 61 and 0 < §y < minyeg, Pzy—y(Ez(y)). Since

Py x,y—, satisfies (ez,d2)-EML for all y € £y, we have

Priy—y x=:(E2(y))
max
zesupp(Px) PZ|Y:y (Ez(y))

< exp(e2). (32)
Now, we write

Py 71x=2(€)
(X =€) = _—
exp ( ) wesg;%}((Px) Py z(€)
P —(y, 2
_ max Zye«‘)y Zzeé‘z(y) YZ|X (y )

zesupp(Px) Zyeey Zzesz(y) Pyz(y,2)

Zyegy PY|X:z(y) Zzegz(y) PZ|Y:y,X:z(Z)
= max
zesupp(Px) Yyeey Py (W) Xce, y) Priv=y(2)

max Py (y)Pzjy =y (E2(y)) (Py|X=x (y) > <Pz|yzy7 x—o(E2(¥)) >

N wesupp(Px) £ D yce, Py () Pay=y (E2(y)) \ Py (y) Pyiy—y(E2(y))
PY(y)PZ\Y:y(EZ(y)) <PY|X—I(y)>
<exp(ez) max (33a)
et 2 5o W) Py €\ Py
<exp(ez) max  hy(Py|x—g,01) (33b)
z€supp(Px)
<exp(ez +e€1), (33¢c)

where

« (333) follows from inequality (32),
o the function h, in (33Db) is defined in (I6),

o and follows from the fact that Py x satisfies (e;,d;)-EML.

5) Let & C supp(Pyz) be an event satisfying Py z(E) > 1 + d2. We define the following “bad” sets
By = {y cy: Pz(gz(y)) < 52},
B:={(y,z) €E:y € By},

and the “good” sets Gy = &y \ By and G = £ \ B. Note that

Pyz(B)= Y Py(y)Pziy—y(E2(y)) < b2,

yEBy



[1]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(11]
[12]

(13]

[14]

46

which implies that Py z(G) = Py z(€) — Py z(B) > 6;. Now, similarly to the previous part, we write

> yyee Py zix=2(y,2)

exp ({(X = €&)) = max
p ( ( )) z€supp(Px) PYZ(E)
P = (¥,2)
< max Z(y,z)eB Pyz(y,2) ( ylfs‘/};(y,z) ) 4 max Z(%z)eg Py z1x=2(y, )
~ zesupp(Px) Py (&) z€supp(Px) Py (&)
5o 2 yec Przix=:(y, 2)
< ———exp(€max) + max : 34a)
5t 5, Ol ¥ Py 2(0) (
<% (€max) + exp(e1 + €2) (34b)
~ < ©XP{€max XPl€ €2),
= 51 1 0 p a Pl€1 2

where
« (34a) follows from the fact that Py z(B) < d2, Py z(E) > 61 + b2, and for all (y, z) € supp(Pyz),

Py z1x=2(Yy, 2)

X < exp(e ,
x€supp(Px) Pyz(y,z) - p( max)

« and (34b) follows from the definition of the set G and the previous part.

REFERENCES

C. Dwork, A. Roth et al., “The algorithmic foundations of differential privacy.” Found. Trends Theor. Comput. Sci., vol. 9, no. 3-4, pp.
211-407, 2014.

C. Dwork, “Differential privacy,” in Automata, Languages and Programming, M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1-12.

S. L. Warner, “Randomized response: A survey technique for eliminating evasive answer bias,” Journal of the American Statistical
Association, vol. 60, no. 309, pp. 63-69, 1965.

A. Evfimievski, J. Gehrke, and R. Srikant, “Limiting privacy breaches in privacy preserving data mining,” in Proceedings of the twenty-
second ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, 2003, pp. 211-222.

S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova, and A. Smith, “What can we learn privately?” SIAM Journal on Computing,
vol. 40, no. 3, pp. 793-826, 2011.

J. C. Duchi, M. L. Jordan, and M. J. Wainwright, “Local privacy and statistical minimax rates,” in 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science. 1EEE, 2013, pp. 429-438.

S. Asoodeh, M. Diaz, F. Alajaji, and T. Linder, “Information extraction under privacy constraints,” Information, vol. 7, no. 1, p. 15, 2016.
S. Asoodeh, F. Alajaji, and T. Linder, “On maximal correlation, mutual information and data privacy,” in 2015 IEEE 14th Canadian
workshop on information theory (CWIT). 1EEE, 2015, pp. 27-31.

W. Wang, L. Ying, and J. Zhang, “On the relation between identifiability, differential privacy, and mutual-information privacy,” IEEE
Transactions on Information Theory, vol. 62, no. 9, pp. 5018-5029, 2016.

A. Makhdoumi, S. Salamatian, N. Fawaz, and M. Médard, “From the information bottleneck to the privacy funnel,” in 2014 IEEE
Information Theory Workshop (ITW 2014). 1EEE, 2014, pp. 501-505.

S. Verdd, “o-mutual information,” in 2015 Information Theory and Applications Workshop (ITA). 1EEE, 2015, pp. 1-6.

J. Liao, O. Kosut, L. Sankar, and F. P. Calmon, “Tunable measures for information leakage and applications to privacy-utility tradeoffs,”
IEEE Transactions on Information Theory, vol. 65, no. 12, pp. 8043-8066, 2019.

M. Diaz, H. Wang, F. P. Calmon, and L. Sankar, “On the robustness of information-theoretic privacy measures and mechanisms,” IEEE
Transactions on Information Theory, vol. 66, no. 4, pp. 1949-1978, 2019.

B. Rassouli and D. Giindiiz, “Optimal utility-privacy trade-off with total variation distance as a privacy measure,” IEEE Transactions on

Information Forensics and Security, vol. 15, pp. 594-603, 2019.



[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]

47

S. Asoodeh, M. Diaz, F. Alajaji, and T. Linder, “Estimation efficiency under privacy constraints,” IEEE Transactions on Information
Theory, vol. 65, no. 3, pp. 1512-1534, 2018.

B. Jiang, M. Seif, R. Tandon, and M. Li, “Context-aware local information privacy,” IEEE Transactions on Information Forensics and
Security, 2021.

F. P. Calmon and N. Fawaz, “Privacy against statistical inference,” in 2012 50th annual Allerton conference on communication, control,
and computing (Allerton). 1EEE, 2012, pp. 1401-1408.

I. Wagner and D. Eckhoff, “Technical privacy metrics: a systematic survey,” ACM Computing Surveys (CSUR), vol. 51, no. 3, pp. 1-38,
2018.

M. Bloch, O. Giinlii, A. Yener, F. Oggier, H. V. Poor, L. Sankar, and R. F. Schaefer, “An overview of information-theoretic security and
privacy: Metrics, limits and applications,” IEEE Journal on Selected Areas in Information Theory, vol. 2, no. 1, pp. 5-22, 2021.

J. Lee and C. Clifton, “Differential identifiability,” in Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2012, pp. 1041-1049.

D. Kifer and A. Machanavajjhala, “No free lunch in data privacy,” in Proceedings of the 2011 ACM SIGMOD International Conference
on Management of data, 2011, pp. 193-204.

M. C. Tschantz, S. Sen, and A. Datta, “Sok: Differential privacy as a causal property,” in 2020 IEEE Symposium on Security and Privacy
(SP), 2020, pp. 354-371.

G. Smith, “On the foundations of quantitative information flow,” in International Conference on Foundations of Software Science and
Computational Structures. Springer, 2009, pp. 288-302.

C. Braun, K. Chatzikokolakis, and C. Palamidessi, “Quantitative notions of leakage for one-try attacks,” Electronic Notes in Theoretical
Computer Science, vol. 249, pp. 75-91, 2009.

B. Espinoza and G. Smith, “Min-entropy as a resource,” Information and Computation, vol. 226, pp. 57-75, 2013.

M. S. Alvim, K. Chatzikokolakis, C. Palamidessi, and G. Smith, “Measuring information leakage using generalized gain functions,” in
2012 IEEE 25th Computer Security Foundations Symposium, 2012, pp. 265-279.

M. S. Alvim, K. Chatzikokolakis, A. Mciver, C. Morgan, C. Palamidessi, and G. Smith, “Additive and multiplicative notions of leakage,
and their capacities,” in 2014 IEEE 27th Computer Security Foundations Symposium, 2014, pp. 308-322.

M. S. Alvim, K. Chatzikokolakis, A. Mclver, C. Morgan, C. Palamidessi, and G. Smith, The Science of Quantitative Information Flow.
Springer, 2020.

S. Saeidian, G. Cervia, T. J. Oechtering, and M. Skoglund, “Quantifying membership privacy via information leakage,” IEEE Transactions
on Information Forensics and Security, vol. 16, pp. 3096-3108, 2021.

J. Liao, L. Sankar, F. P. Calmon, and V. Y. Tan, “Hypothesis testing under maximal leakage privacy constraints,” in 2017 IEEE International
Symposium on Information Theory (ISIT). 1EEE, 2017, pp. 779-783.

B. Wu, A. B. Wagner, and G. E. Suh, “Optimal mechanisms under maximal leakage,” in 2020 IEEE Conference on Communications and
Network Security (CNS). 1EEE, 2020, pp. 1-6.

S. Saeidian, G. Cervia, T. J. Oechtering, and M. Skoglund, “Optimal maximal leakage-distortion tradeoff,” in 2021 IEEE Information
Theory Workshop (ITW). 1EEE, 2021, pp. 1-6.

I. Issa, A. B. Wagner, and S. Kamath, “An operational approach to information leakage,” IEEE Transactions on Information Theory,
vol. 66, no. 3, pp. 1625-1657, 2019.

C. Dwork and G. N. Rothblum, “Concentrated differential privacy,” arXiv preprint arXiv:1603.01887, 2016.

M. Bun and T. Steinke, “Concentrated differential privacy: Simplifications, extensions, and lower bounds,” in Theory of Cryptography
Conference. Springer, 2016, pp. 635-658.

M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, 1. Mironov, K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
Proceedings of the 2016 ACM SIGSAC conference on computer and communications security, 2016, pp. 308-318.

D. Sommer, S. Meiser, and E. Mohammadi, “Privacy loss classes: The central limit theorem in differential privacy,” Cryptology ePrint
Archive, 2018.

C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. Roth, “Generalization in adaptive data analysis and holdout reuse,”
Advances in Neural Information Processing Systems, vol. 28, 2015.

R. Rogers, A. Roth, A. Smith, and O. Thakkar, “Max-information, differential privacy, and post-selection hypothesis testing,” in 2016
IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS). 1EEE, 2016, pp. 487-494.

A. Rényi, “On measures of entropy and information,” in Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and



[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]

[52]
[53]

[54]

[55]

[56]

48

Probability, Volume 1: Contributions to the Theory of Statistics. University of California Press, 1961, pp. 547-561.

T. Van Erven and P. Harremos, “Rényi divergence and Kullback-Leibler divergence,” IEEE Transactions on Information Theory, vol. 60,
no. 7, pp. 3797-3820, 2014.

G. R. Kurri, O. Kosut, and L. Sankar, “A variational formula for infinity-Rényi divergence with applications to information leakage,” arXiv
preprint arXiv:2202.06040, 2022.

C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private data analysis,” in Theory of cryptography
conference. Springer, 2006, pp. 265-284.

Y. Wang, Y. O. Basciftci, and P. Ishwar, “Privacy-utility tradeoffs under constrained data release mechanisms,” arXiv preprint
arXiv:1710.09295, 2017.

A. Machanavajjhala, D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber, “Privacy: Theory meets practice on the map,” in 2008 IEEE 24th
international conference on data engineering. 1EEE, 2008, pp. 277-286.

S. Meiser, “Approximate and probabilistic differential privacy definitions,” Cryptology ePrint Archive, 2018.

D. Kifer and B.-R. Lin, “An axiomatic view of statistical privacy and utility,” Journal of Privacy and Confidentiality, vol. 4, no. 1, 2012.
C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor, “Our data, ourselves: Privacy via distributed noise generation,” in Annual
international conference on the theory and applications of cryptographic techniques. Springer, 2006, pp. 486-503.

A. Mclver, C. Morgan, G. Smith, B. Espinoza, and L. Meinicke, “Abstract channels and their robust information-leakage ordering,” in
International Conference on Principles of Security and Trust. Springer, 2014, pp. 83-102.

S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

B. Wu, A. B. Wagner, G. E. Suh, and I. Issa, “Strong asymptotic composition theorems for sibson mutual information,” in 2020 IEEE
International Symposium on Information Theory (ISIT), 2020, pp. 2222-2227.

R. Sibson, “Information radius,” Zeitschrift fiir Wahrscheinlichkeitstheorie und verwandte Gebiete, vol. 14, no. 2, pp. 149-160, 1969.

C. Dwork, V. Feldman, M. Hardt, T. Pitassi, O. Reingold, and A. Roth, “Generalization in adaptive data analysis and holdout reuse,” arXiv
preprint arXiv:1506.02629, 2015.

I. Csiszar, “Information-type measures of difference of probability distributions and indirect observation,” studia scientiarum Mathemati-
carum Hungarica, vol. 2, pp. 229-318, 1967.

F. P. Calmon, A. Makhdoumi, M. Médard, M. Varia, M. Christiansen, and K. R. Duffy, “Principal inertia components and applications,”
IEEE Transactions on Information Theory, vol. 63, no. 8, pp. 5011-5038, 2017.

H. Wang and F. P. Calmon, “An estimation-theoretic view of privacy,” in 2017 55th Annual Allerton Conference on Communication,
Control, and Computing (Allerton). 1EEE, 2017, pp. 886-893.



	I Introduction
	I-A Overview
	I-A1 Introducing pointwise maximal leakage
	I-A2 Defining privacy guarantees based on PML
	I-A3 Comparing PML with other privacy notions

	I-B Notation

	II Definition, interpretations and properties
	II-A Randomized Function View of Leakage
	II-B Gain Function View of Leakage
	II-C Properties
	II-D Dynamic Consumption of Secrecy

	III Privacy guarantees
	III-A Data-processing Properties
	III-B Composition Properties

	IV Relationship to other privacy/statistical notions
	IV-A Max-information
	IV-B LDP, LIP, and LDI
	IV-C Mutual Information
	IV-D f-information
	IV-E Total variation privacy

	V Conclusions
	Appendix A: Proof of Theorem 2
	Appendix B: Proof of Lemma 1
	Appendix C: Proof of Theorem 4

