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Abstract

We introduce a privacy measure called pointwise maximal leakage, defined based on the pre-existing notion of

maximal leakage, which quantifies the amount of information leaking about a secret X by disclosing a single outcome

of a (randomized) function calculated on X . Pointwise maximal leakage is a robust and operationally meaningful

privacy measure that captures the largest amount of information leaking about X to adversaries seeking to guess

arbitrary (possibly randomized) functions of X , or equivalently, aiming to maximize arbitrary gain functions. We

study several properties of pointwise maximal leakage, e.g., how it composes over multiple outcomes, how it is

affected by pre- and post-processing, etc. Furthermore, we propose to view privacy leakage as a random variable

which, in turn, allows us to regard privacy guarantees as requirements imposed on different statistical properties

of the privacy leakage random variable. We define several privacy guarantees and study how they behave under

pre-processing, post-processing and composition. Finally, we examine the relationship between pointwise maximal

leakage and other privacy notions such as local differential privacy, local information privacy, f -information, and so

on.

Index Terms

Privacy, information leakage, maximal leakage, g-leakage, pointwise leakage, privacy random variable, information

density.

I. INTRODUCTION

Suppose X is a random variable representing some data containing sensitive information. As we aim to remain

general, we intentionally keep X abstract. For example, X may be a single data entry collected from an individual

(the local setting), X may represent an entire database containing sensitive information (the centralized setting), or

X may be a secret such as a password that must be kept confidential (the side-channel setting).

Further, suppose Y is the output of a (randomized) function with input X . For example, in the local setting, Y

denotes the perturbed version of a single user’s data which is collected by a data curator. In the centralized setting,

Y may be some aggregate statistic calculated on a database, and in the side-channel setting, Y is the output of

a side-channel with input X , for instance, the inter-keystroke delays when typing in a password. In all of these

scenarios, we are interested in answering the following question: How much information is Y leaking about X?

The above question has been studied and answered in different contexts using a myriad of different privacy

measures. For instance, differential privacy (DP) [1, 2] was introduced in a centralized setting within the context

Part of this work has been accepted for presentation at ISIT 2022.
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of database privacy in order to ensure that no single individual’s participation can be revealed from the output

of a function calculated on a database (i.e., ensuring membership privacy). Later on, borrowing ideas from survey

privacy [3], the adaptation of differential privacy to the local setting led to the concept of local differential privacy [4–

6], where, roughly speaking, the goal is to provide plausible deniability for all possible values of input X . Parallel to

these developments, in the information theory literature, a wide range of privacy measures have been proposed and

studied that aim to measure the dependence between two random variables X and Y . These include, for example,

mutual information [7–10], and its generalizations [11, 12], divergence-based measures (e.g., metrics based on f -

divergence [13, 14]), probability of correctly guessing [15], information privacy [16, 17] and indistinguishability [9].

The two recent surveys by Wagner and Eckhoff [18] and Bloch et al. [19] contain an extensive list of various privacy

measures.

In much of the literature, the prevalent approach to tackling privacy problems has been to start with a particular

definition of privacy, study the properties that follow from the definition, and design/optimize mechanisms that

guarantee a certain level of privacy and utility. An alternative approach is to start from a threat model in which an

adversary with explicitly-described capabilities is pursuing a specific objective, and study the system’s vulnerability

as a result of this adversarial model. This approach has several advantages. First, it encourages us to make our

assumptions about the capabilities of the adversary (e.g., in terms of computational power or prior knowledge

of the system) and her objectives explicit. Second, the privacy definition obtained by studying a threat model is

operationally meaningful and easier to interpret. Third, the discussions around the advantages and limitations of dif-

ferent privacy measures become more transparent and objective. Note that here we are making a subtle but essential

distinction: Several notable privacy measures such as differential privacy and differential indistinguishability [20] can

be interpreted using powerful adversarial models, but their definitions do not follow from any such model. In fact,

not making this distinction may lead to misconceptions/disagreements about what a privacy definition does or does

not promise. An example of this is the long ongoing debate about whether or not differential privacy (implicitly)

requires assumptions about the data generating (prior) distribution, such as the assumption that the entries in a

database are drawn independently [21, 22]. This disagreement may have been avoided had the assumptions about

the adversarial model been made explicit in the definition.

The threat-model approach to privacy has been adopted in a line of work termed quantitative information flow [23–

28], in which several notions of information leakage are motivated, defined and studied. One such notion is min-

entropy leakage [23, 24] which is defined in a setup where a passive but computationally-unbounded adversary

is trying to guess the value of the secret X in one try. Min-entropy leakage, then, quantifies the increase in

the probability of correctly guessing X having observed the output Y , compared to guessing the secret with no

observations. Naturally, min-entropy leakage depends both on the prior distribution of X , denoted by PX , and the

channel from X to Y , denoted by PY |X . Therefore, to obtain a privacy measure that depends only on the channel

PY |X , Braun et al. [24] consider the problem of maximizing min-entropy leakage over all possible priors, which

leads to a quantity (later) called maximal leakage, and defined as

L(PY |X) = log
∑
y

max
x:PX(x)>0

PY |X=x(y). (1)
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Interestingly, the worst-case prior in this problem is the uniform distribution [24].

Subsequent works in this area have extended the above adversarial model [25–28], developed maximal leakage

into a practical tool for quantifying privacy in learning applications [29], and considered maximal leakage as the

privacy constraint in privacy-utility tradeoff problems [30–32]. We find two such works particularly interesting: the

g-leakage framework introduced by Alvim et al. [26] and the maximal leakage definition of Issa et al. [33]. The

g-leakage [26] formulation generalizes the setup by considering an adversary aiming to construct a guess of X

that maximizes a certain gain function, and constitutes a useful tool for modeling a variety of different adversarial

goals, such as guessing the secret X in k ≥ 1 attempts, or approximately guessing the secret [26]. Moreover, it has

been shown that for all prior distributions, maximizing g-leakage over all possible gain functions yields a quantity

that is equal to maximal leakage [27]. The setup put forward by Issa et al. [33], on the other hand, develops the

framework by considering adversaries interested in guessing a possibly-randomized discrete function of X , called

U . Then, taking the supremum over all such U ’s, the resulting quantity is once again equal to maximal leakage.

The above results lead us to believe that maximal leakage is a powerful privacy measure with a robust definition

that is relevant in a multitude of different scenarios. However, one apparent limitation of the definition given in (1) is

that maximal leakage is defined for the average outcome Y . Hence, a privacy guarantee given in terms of maximal

leakage does not allow us to distinguish between individual outcomes based on how much information they leak.

To see why this can be problematic, suppose X is a uniformly distributed ternary random variable defined over the

set X = {x1, x2, x3}, and consider the following channels from X to Y :

PY |X =


1 0 0

1
2

1
2 0

0 1
2

1
2

 , QY |X =


2
3

1
6

1
6

1
6

2
3

1
6

1
6

1
6

2
3

 ,
where Y is a random variable defined over Y = {y1, y2, y3} and [PY |X ]ij = PY |X=xi(yj), i, j ∈ {1, 2, 3}. It is easy

to see that both channels have equal maximal leakage L(PY |X) = L(QY |X) = log 2; however, they are qualitatively

different. For example, the third outcome in PY |X , y3, can be considered far less private compared to the other

two as it completely reveals the value of the secret (which is x3). On the other hand, due to the symmetry in

QY |X , we may expect that all outcomes leak the same amount of information. One justification for this issue is that

maximal leakage remains small as long as highly revealing outputs occur with small probability [33]. Nevertheless,

the average-case guarantee provided by maximal leakage may be deemed insufficient in privacy-critical applications

with strict requirements, which motivates the search for alternative privacy measures that capture the distribution

of privacy leakage over the outcomes. Using the leakage distribution not only do we get a precise description

of privacy in a given system, but we will also have the flexibility to adapt our definition of a private system to

each specific application. For example, system designers will be able to decide whether or not highly-revealing but

low-probability outcomes pose a privacy risk on a per-application basis.

We should point out that a distributional view of privacy also exists in the differential privacy literature, where the

log likelihood ratio is referred to as the privacy loss random variable [34–36]. This approach is further formalized

in [37] by introducing the notion of privacy loss distribution. The framework we develop in this paper differs from
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these works mainly in that here we let X represent any type of data containing sensitive information, while the

works on differential privacy target specifically the centralized setting, where the notion of neighboring databases

(that is, databases that differ in a single entry) plays a central role in all definitions. On top of that, the privacy

measure introduced in this paper has a clear and useful operational meaning, and is obtained by analyzing specific

threat models (more on this below).

A. Overview

1) Introducing pointwise maximal leakage: In this paper, our main goal is to define a robust and operationally

meaningful privacy measure that describes the amount of information leaking about the secret X due to disclosing

a single outcome Y = y. We consider the same adversarial models that were used to obtain maximal leakage as

a privacy measure (e.g., [33, 26]), but redirect our attention from the “average outcome” characterization of the

previous works to individual outcomes, and obtain a new privacy definition which we will call pointwise maximal

leakage (PML), denoted by `PXY (X → y), and expressed as

`PXY (X → y) = log max
x:PX(x)>0

PX|Y=y(x)

PX(x)
. (2)

In Section II-A, we start from the threat model of [33], in which an adversary is trying to guess the outcome of a

randomized function of X , denoted by U . More concretely, we define a quantity `U (X → y) as the logarithm of

the ratio of the probability of correctly guessing U having observed an outcome y, and the probability of correctly

guessing U with no observations. Then, we define pointwise maximal leakage as the supremum of `U (X → y)

over all U , that is

`PXY (X → y) := sup
PU|X

`U (X → y),

and obtain expression (2). We will call this approach the randomized function view of leakage. Afterwards, in

Section II-B, we consider the threat model of the g-leakage framework [26], in which an adversary is trying to

maximize a certain gain function g. More precisely, we define a quantity `g(X → y) as the logarithm of the ratio

of the expected gain having observed an outcome y, and the expected gain with no observations. We will call this

approach the gain function view of leakage, and show that it is in fact equivalent to the randomized-function view of

leakage. Specifically, we show that for all joint distributions over X and Y and for each randomized function of X ,

denoted by U , there exists a gain function g
U

such that `U (X → y) = `g
U

(X → y). Conversely, we show that for

each gain function g, there exists a randomized function of X , denoted by Ug , such that `g(X → y) = `Ug (X → y).

It follows that PML can alternatively be defined as

`PXY (X → y) := sup
g
`g(X → y).

This result not only unifies two seemingly different ways of defining pointwise maximal leakage, but also signifies

the robustness of pointwise maximal leakage as a privacy measure against a large class of adversaries with different

objectives. Once we have established the definition of pointwise maximal leakage, in Section II-C, we study several

properties following from the definition, e.g., how it composes due to observing several outcomes, how the leakage

is affected by pre- and post-processing, and so on.
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2) Defining privacy guarantees based on PML: Our second objective in this work is to argue in favor of viewing

privacy leakage as a random variable. The idea behind this is simple: The amount of information leaked due to

disclosing an outcome Y = y is equal to `PXY (X → y) which is a function of y. Since Y is a random variable

distributed according to PY (i.e., the output distribution induced by PX and PY |X ), this in turn allows us to define

a random variable `PXY (X → Y ) whose distribution is induced by PY . Adopting this view, a privacy guarantee

is essentially a requirement we impose on some statistical property of `PXY (X → Y ); thus, we have the flexibility

to define different types of guarantees depending on how strict we may want to be. For example, we may require

small privacy leakage with probability one. Less stringently, we can define guarantees that bound either the tail

of the privacy leakage random variable, or its expectation.1 These privacy guarantees, which are the subject of

Section III, can be informally expressed as follows: Given an arbitrary but fixed prior PX , we say that

• PY |X satisfies ε-PML with ε ≥ 0 if `PXY (X → Y ) is bounded by ε with probability one,

• PY |X satisfies (ε, δ)-PML with ε ≥ 0 and 0 ≤ δ ≤ 1 if `PXY (X → Y ) is bounded by ε with probability at

least 1− δ, and

• PY |X satisfies L(PY |X) ≤ ε with ε ≥ 0, if the expectation of exp
(
`PXY (X → Y )

)
is bounded by exp(ε),

where L(·) denotes maximal leakage.

In the rest of Section III, we study the data-processing and composition properties of the privacy guarantees

introduced in this paper. Specifically, in Section III-A, we study how ε-PML and (ε, δ)-PML are affected by pre-

and post-processing. Interestingly, it turns out that (ε, δ)-PML is not closed under post-processing, that is, given a

privacy mechanism PY |X that satisfies (ε, δ)-PML, we may be able to come up with a post-processing mechanism

PZ|Y such that the overall mechanism PZ|X does not satisfy (ε, δ)-PML (which might come across as somewhat

counter-intuitive). In response to this observation, we introduce another privacy guarantee, called (ε, δ)-EML (where

EML stands for event maximal leakage) with ε ≥ 0 and 0 ≤ δ ≤ 1, which resembles (ε, δ)-PML but is closed

under post-processing. Informally, a mechanism PY |X satisfies (ε, δ)-EML if all post-processed outcomes of PY |X

with probability at least δ have their PML bounded by ε.

Next, in Section III-B, we study how different privacy guarantees change as a result of composing privacy

mechanisms. More concretely, we are interested to find out what types of guarantees we can get for a mechanism

PY Z|X which is obtained by adaptively composing two mechanisms PY |X and PZ|XY . Naturally, one can formulate

different problems by making various assumptions about the involved mechanisms PY |X and PZ|XY . We present

several such problem formulations and their corresponding results.

3) Comparing PML with other privacy notions: In Section IV, we study how pointwise maximal leakage relates

to several other privacy/statistical notions, namely, max-information [38, 39], local differential privacy [17], local

information privacy [16], local differential identifiability [9], mutual information, f -information [13] and total-

variation privacy [14]. We derive bounds between the different notions and discuss their implications.

As a final note, in Section II-D we discuss a privacy framework called the dynamic consumption of secrecy [25]

which, in the same spirit as our work, attempts to quantify the privacy leakage due to disclosing a single outcome of

1By considering the expectation of privacy leakage, we retrieve the original definition of maximal leakage.
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the random variable Y . Somewhat surprisingly, [25] argues that the privacy definition resulting from this dynamic

view suffers from limitations that convince the authors against pursuing this line of research. In Section II-D, we

discuss what these limitations are, and explain why they do not apply to pointwise maximal leakage.

B. Notation

In this work, we restrict our attention to finite random variables, therefore, all sets are assumed to be finite. We

use uppercase letters to refer to random variables, e.g., X . Sets are represented by uppercase calligraphic letters,

for example, the alphabet of X will be denoted by X . Let E ⊆ X . We will use both PX(E) and PX∼PX [E ] to

describe the probability of an event E according to distribution PX . Similarly, we will use EX∼PX [·] to represent

expectation with respect to PX . The notation supp(PX) := {x ∈ X : PX(x) > 0} will be used to refer to the

support set of distribution PX . Given probability distributions PX and QX over a set X , we write PX � QX to

imply that PX is absolutely continuous with respect to QX .

Let n be a positive integer. We use [n] := {1, . . . , n} to denote the set of all positive integers smaller than or

equal to n. Suppose X is a random variable defined over an alphabet with cardinality |X | = n, and Y is a random

variable induced by a channel PY |X , such that |Y| = m is the cardinality of the alphabet of Y . Then, the channel

PY |X ∈ [0, 1]n×m is a row-stochastic matrix with elements (PY |X)ij = PY |X=xi(yj) for i ∈ [n] and j ∈ [m]. We

say that a channel PY |X is deterministic if it consists of only zeros and ones. Similarly, we say that an outcome

yj with j ∈ [m] is deterministic if its corresponding column in the matrix PY |X consists of only zeros and ones.

Suppose the Markov chain X − Y − Z holds. We write PZ|X = PZ|Y ◦ PY |X to denote marginalization over Y ,

that is, PZ|X=x(z) =
∑
y∈Y PZ|Y=y(z)PY |X=x(y) for x ∈ X and z ∈ Z . Finally, we use log(·) to denote the

natural logarithm and 1[·] to denote the indicator function.

II. DEFINITION, INTERPRETATIONS AND PROPERTIES

A. Randomized Function View of Leakage

We begin by describing our threat model, which is a pointwise adaptation of the model described in [33]. Suppose

X is a random variable defined over a finite alphabet X . We will use X to represent some data containing sensitive

information. Further, suppose Y is a random variable taking values in a finite alphabet Y which is the output of a

channel (i.e., kernel) PY |X with input X . We will also refer to the channel PY |X as a privacy mechanism. Consider

an adversary who is interested in guessing the (realized) value of a possibly randomized function of X , called U ,

characterized by PU |X . The adversary, who is computationally unbounded, observes an outcome y ∈ supp(PY )

(where PY is the output distribution induced by PX and PY |X ) and constructs a guess of U called Û according

to a kernel PÛ |Y=y . The adversary is passive in the sense that she cannot affect the outcomes of the system, but

can verify if her guess is correct. Furthermore, the adversary knows the joint distribution PUXY , and therefore, can

optimize her choice of guessing kernel PÛ |Y=y to maximize her chances of correctly guessing U .

To measure the privacy leakage of a disclosed outcome y, the system designer considers the ratio of the probability

of correctly guessing U having observed y, and the probability of correctly guessing U with no observations (in



7

Fig. 1. System model for the randomized function view of leakage: An adversary observes an outcome y of the channel PY |X , and tries to

guess the value of a randomized function of X , denoted by U .

this case, the best guess is the most probable outcome according to PU ). Accordingly, we define the pointwise

U -leakage of X as follows:

`U (X → y) := log
supPÛ|Y=y

P
[
U = Û | Y = y

]
maxu∈U PU (u)

, (3)

where U denotes the alphabet of the random variable U . As the system designer may not know what U the adversary

is interested in, or different adversaries may be interested in guessing different U ’s, we investigate the worst-case

scenario by taking the supremum of (3) over all possible U ’s. Considering this setup, we define pointwise maximal

leakage (PML) denoted by `PXY (X → y) as follows.

Definition 1 (Pointwise maximal leakage): Let PXY denote the joint distribution of X and Y , and suppose the

Markov chain U −X − Y − Û holds. The pointwise maximal leakage from X to y ∈ supp(PY ), `PXY (X → y),

is defined as

`PXY (X → y) := sup
PU|X

`U (X → y)

= log sup
PU|X

supPÛ|Y=y
P
[
U = Û | Y = y

]
maxu∈U PU (u)

.

(4)

In the following result, we show that `PXY (X → y) can be written as a simple expression.

Theorem 1: Given a joint distribution PXY over finite alphabets X and Y , the pointwise maximal leakage from

X to y ∈ supp(PY ) is given by

`PXY (X → y) = log max
x∈supp(PX)

PX|Y=y(x)

PX(x)
. (5)

Proof: Fix an arbitrary random variable U . The numerator of (3) can be written as

sup
PÛ|Y=y

P
[
U = Û | Y = y

]
= sup
PÛ|Y=y

∑
u,û

1[u = û] PUÛ |Y=y(u, û)

= sup
PÛ|Y=y

∑
u,û

1[u = û] PU |Y=y(u) PÛ |Y=y(û)

= sup
PÛ|Y=y

∑
u

PU |Y=y(u) PÛ |Y=y(u)

= max
u∈U

PU |Y=y(u),
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where the last equality follows from the fact that the optimal estimator P ∗
Û |Y=y

in the above problem is the MAP

estimator defined as

P ∗
Û |Y=y

(u) =

1, for some u ∈ arg maxu∈U PU |Y=y(u),

0, otherwise.

Thus, we can write

exp
(
`U (X → y)

)
=

supPÛ|Y=y
P
[
U = Û | Y = y

]
maxu′∈U PU (u′)

=
maxu∈U PU |Y=y(u)

maxu′∈U PU (u′)

=
maxu∈U

∑
x∈supp(PX) PUX|Y=y(u, x)

maxu′∈U PU (u′)

=
maxu∈U

∑
x∈supp(PX) PX|Y=y(x) PU |X=x(u)

maxu′∈U PU (u′)

= max
u∈U

∑
x∈supp(PX)

PX|Y=y(x)

PX(x)
PX|U=u(x)

PU (u)

maxu′∈U PU (u′)

≤ max
u∈U

∑
x∈supp(PX)

PX|Y=y(x)

PX(x)
PX|U=u(x) (6a)

≤ max
x∈supp(PX)

PX|Y=y(x)

PX(x)
. (6b)

Taking the supremum over all U ’s satisfying U −X − Y we obtain

`PXY (X → y) ≤ log max
x∈supp(PX)

PX|Y=y(x)

PX(x)
. (7)

To prove the reverse inequality, we construct a U achieving the bound in (7). Note that inequality (6b) holds with

equality if there exists a u∗ ∈ U such that

PX|U=u∗(x) =

1, for some x ∈ arg maxx∈supp(PX)
PX|Y=y(x)

PX(x) ,

0, otherwise.

(8)

Furthermore, u∗ will also satisfy (6a) with equality if it holds that

PU (u∗) = max
u∈U

PU (u). (9)

An example of U satisfying both of the above conditions can be obtained through the “shattering” channel PU |X

defined in the proof of [33, Thm. 1]. Roughly speaking, the shattering channel breaks down each x ∈ supp(PX)

with probability PX(x) into k(x) corresponding elements with probability minx∈supp(PX) P (x), thus creating a

random variable U with an (almost) uniform distribution. We recall the definition of the shattering channel PU |X

for completeness.
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Definition 2 (Shattering channel [33]): Let p∗ := minx∈supp(PX) PX(x). For each x ∈ supp(PX), let k(x) :=

PX(x)/p∗, and let U =
⋃
x∈supp(PX){(x, 1), . . . , (x, dk(x)e)}, where dk(x)e denotes the smallest integer greater

than or equal to k(x). For each u = (iu, ju) ∈ U and x ∈ supp(PX), the shattering channel PU |X is defined as

PU |X=x((iu, ju)) =


p∗

PX(x) , if iu = x, ju = 1, . . . , bk(x)c,

1− bk(x)cp∗
PX(x) if iu = x, ju = dk(x)e,

0, otherwise,

where bk(x)c denotes the largest integer smaller than or equal to k(x).

The above channel induces the following joint distribution PUX :

PUX((iu, ju), x) =


p∗, if iu = x, ju = 1, . . . , bk(x)c,

PX(x)− bk(x)cp∗ if iu = x, ju = dk(x)e,

0, otherwise,

and PU is obtained as

PU (iu, ju) =

p
∗, if iu = x, ju = 1, . . . , bk(x)c,

PX(x)− bk(x)cp∗ if iu = x, ju = dk(x)e,

for (iu, ju) ∈ U . Clearly, each u is mapped to exactly one x, so condition (8) holds. Furthermore, each x corresponds

to at least one u with probability PU (u) = maxu′ PU (u′) = p∗, so condition (9) also holds. Consequently, the

random variable U obtained through the shattering channel satisfies both (8) and (9), and attains the bound in (7).

Remark 1: Given y ∈ supp(PY ), pointwise maximal leakage can alternatively be written as

`PXY (X → y) = max
x∈supp(PX)

log
PX|Y=y(x)

PX(x)

= max
x∈supp(PX)

log
PY |X=x(y)

PY (y)

= D∞
(
PX|Y=y‖PX

)
= max
x∈supp(PX)

iPXY (x; y),

where D∞
(
PX|Y=y‖PX

)
denotes the Rényi divergence of order infinity [40, 41] between the posterior PX|Y=y

and the prior PX , while iPXY (x; y) := log PXY (x,y)
PX(x)PY (y) denotes (the value of) the information density of the joint

distribution PXY at x and y. The above result is also related to a recent result by Kurri et al. [42], where a

variational formula for Rényi divergence of order infinity is derived as the ratio of the expected gains in guessing

a randomized function of X .

B. Gain Function View of Leakage

The threat model assumed in Theorem 1 considers a scenario in which an adversary is interested in guessing a

possibly randomized function U of X . In this section, we argue that pointwise maximal leakage can be obtained
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Fig. 2. System model for the gain function view of leakage: An adversary observes an outcome y of the channel PY |X , and tries to construct

a guess X̂ of X in order to maximize a gain function g.

using an alternative threat model based on (a pointwise adaptation of) the g-leakage framework introduced in [26].

First, we describe this alternative threat model.

Suppose a passive and computationally unbounded adversary observes y ∈ supp(PY ), an outcome of the channel

PY |X , and constructs a guess X̂ of X using a kernel PX̂|Y=y in order to maximize her expected gain. The adversary

selects her guess from a non-empty finite set X̂ (not necessarily equal to X ), and her gain is captured by a function

g of the form g : X ×X̂ → R+. In order to measure the amount of information leaking from y, the system designer

considers the ratio of the expected adversarial gain having observed y, and the expected adversarial gain with no

observations. Hence, we define the pointwise g-leakage of X as follows:

`g(X → y) := log
supPX̂|Y=y

E
[
g(X, X̂) | Y = y

]
supPX̂ E

[
g(X, X̂)

] . (10)

In Theorem 2, we will show that the randomized function view and the gain function view of leakage are

equivalent in the sense that for every gain function g, there exists a corresponding randomized function of X ,

Ug , such that `g(X → y) = `Ug (X → y), and conversely, for every randomized function of X , U , there exists

a corresponding gain function g
U

such that `U (X → y) = `g
U

(X → y). Before presenting this result, let us

demonstrate through a few examples how gain functions can be used to model different problems.

Example 1 (The identity gain function [26, Def. 3.5]): The simplest type of gain function is the identity gain

which models an adversary interested in guessing the secret X itself, who is only rewarded for correct guesses.

Here, the guessing space of the adversary is X̂ = X , and her gain function is given by gidentity(x, x̂) = 1[x = x̂].

The g-leakage for the identity gain is

`gidentity(X → y) =
maxx∈X PX|Y=y(x)

maxx∈X PX(x)
, (11)

which is equal to the dynamic min-entropy leakage defined in [25, Def. 3]. We will further discuss the identity

gain and its associated g-leakage in Section II-D.

Example 2 (Membership/group privacy): Consider a centralized setting in which each x ∈ X represents a database

whose rows constitute data collected from individuals, and the random variable X describes the random selection

of a database according to some distribution PX . Suppose an adversary is interested in guessing whether or not

Alice’s data is included in (the realization of) X , and is rewarded with a binary gain depending on whether or not
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her guess is correct. We can model this problem as follows: Let X1 = {x ∈ X : x contains Alice’s data} denote the

set of databases that contain Alice’s data, and let X0 = X \ X1 be the set of databases that do not contain Alice’s

data. An adversary who is interested in finding out Alice’s membership makes a binary guess from X̂ = {0, 1},

and is rewarded according to g(x, x′) = 1[x̂ = i] with i ∈ {0, 1} and x ∈ Xi.

More generally, suppose the adversary has a list of k individuals and is interested in guessing if any of their

data is included in (the realization of) X . Further, suppose the adversary is rewarded based on how many correct

guesses she makes. To model this problem, we (bi-)partition the set of all databases in k different ways, one for

each individual on the list. Let Xj1 = {x ∈ X : x contains the j-th individual’s data} and Xj0 = X \ Xj1 for

j = 1, . . . , k. Then, X̂ = {0, 1}k is the guessing space of the adversary, and g(x, x̂) =
∑k
j=1 1[x̂j = ji] with

x ∈ Xji and i ∈ {0, 1} is her gain function. This example can be easily extended to model cases where different

individuals signify different gains for the adversary.

As a side note, we should point out that in the membership privacy example above (or more generally, in our

consideration of the centralized setting) we are not assuming that the adversary is informed [43] (an informed

adversary knows all the entries in the database except for a single entry which may be Alice’s). In our setup,

we assume that the adversary knows the joint distribution PXY (and the spaces X and Y), while any other side

information should be explicitly modeled as such. The concept of an informed adversary was originally proposed as

a model for a very powerful adversary. However, it has been argued that more side information does not necessarily

make an adversary more effective [21]. For example, [21] provides three definitions of privacy against adversaries

that either (i) know all the entries in a database except for a single entry, (ii) know all the attributes in a database

except for a single attribute of a single entry, (iii) know all the bits in a database except for a single bit of a single

entry. Then, it is shown that the privacy definition that seeks to limit the inference of the more knowledgeable

adversary (i.e., option (iii)) may actually leak more sensitive information to the less knowledgeable adversaries.

In Section II-C, we will define a conditional form of pointwise maximal leakage that can be used to model an

adversary who possesses some side information about the secret. There, we will see that side information can both

increase and decrease the privacy leakage due to observing an outcome (more on this in Remark 5).

Example 3 (Multiple guesses (the k-tries gain function in [26])): Consider a side-channel setting in which X is

a random variable representing a password and Y is a random variable denoting some information leaking about

the password, for example, through the inter-keystroke delays. Suppose an adversary is allowed k ≥ 1 attempts at

guessing the password correctly before getting cut off from the system. Let X be the set of all possible passwords

and let X̂ = {x̂ ⊂ X : |x̂| ≤ k} denote the collection of subsets of X containing k or less passwords. Then, we can

model the adversary’s gain through the function g(x, x̂) = 1[x ∈ x̂], where x̂ denotes the set of k or less attempts

the adversary makes at guessing the true password x.

Example 4 (Metric spaces [26]): Suppose (X , ρ) is a metric space, where X is a finite set, and ρ is a metric

on X . Suppose the goal of the adversary is to construct a guess x̂ of x that minimizes ρ(x, x̂). This scenario can

be modeled by taking X̂ = X and some non-negative gain function that is decreasing in ρ(x, x̂), for example,

g(x, x̂) = exp(−ρ(x, x̂)). Many problems can be modeled as metric spaces. A simple example is in geo-location

applications where the goal of an adversary may be to locate a user as accurately as possible based on partial or
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noisy measurements.

We have now seen how a variety of adversarial objectives can be modeled using gain functions. In the following

result, which is one of the main contributions of this paper, we show that the definition of g-leakage given in (10) is

equivalent to the definition of U -leakage in (3). Thus, we unify two seemingly different ways of defining (pointwise)

maximal leakage. The proof of the theorem is deferred to Appendix A.

Theorem 2: For all joint distributions PXY over finite sets X and Y , the randomized function view and the gain

function view of leakage are equivalent. That is, for every randomized function of X , described by the random

variable U , there exists a space X̂U and a gain function g
U

: X ×X̂
U
→ R+ such that `U (X → y) = `g

U
(X → y).

Conversely, for every gain function g : X × X̂ → R+ there exists a randomized function of X , called Ug , such

that `g(X → y) = `Ug (X → y).

Note that while the above result establishes the equivalence of the gain-function view and the randomized-function

view for pointwise leakages, it generalizes readily to the average-case leakages of [27] and [33]. Furthermore, we

have the following corollary which provides an alternative definition of pointwise maximal leakage.

Corollary 1: Pointwise maximal leakage can be obtained as

`PXY (X → y) := sup
g
`g(X → y)

= log sup
g

supPX̂|Y=y
E
[
g(X, X̂) | Y = y

]
supPX̂ E

[
g(X, X̂)

] ,

where the supremum is taken over all gain functions with non-negative and finite range.

Remark 2: Unlike privacy measures such as maximal leakage and (local) differential privacy that depend only

on the mechanism PY |X , pointwise maximal leakage depends both on the mechanism PY |X and the prior PX , i.e.,

it is a property of the joint distribution PXY . Thus, in the rest of this paper, we commonly assume that the prior

PX is arbitrary but fixed, and study pointwise maximal leakage as a function of the mechanism PY |X .

C. Properties

In this section, we recount several useful properties of `PXY (X → y). For instance, we discuss how pointwise

maximal leakage composes over multiple outcomes, how it is affected by pre- and post-processing, and so on.

Before we discuss these properties, let us first define a conditional form of pointwise maximal leakage which

allows us to model adversaries who possess some side information about the secret X .

Definition 3 (Conditional pointwise maximal leakage): Let PXY Z denote the joint distribution of random variables

X , Y , and Z. Given z ∈ supp(PZ), where PZ denotes the marginal distribution of Z, the conditional pointwise

maximal leakage from X to y ∈ supp(PY |Z=z) is defined as

`PXY |Z (X → y | z) := log sup
PU|X

supPÛ|Y=y,Z=z
P
[
U = Û | Y = y, Z = z

]
supPŨ|Z=z

P
[
U = Ũ | Z = z

] .
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To obtain a simpler expression for `PXY |Z (X → y | z), we condition all the distributions in the proof of Theorem 1

on Z = z and get

`PXY |Z (X → y | z) = log max
x∈supp(PX|Z=z)

PX|Y=y,Z=z(x)

PX|Z=z(x)

= log max
x∈supp(PX|Z=z)

PY |X=x,Z=z(y)

PY |Z=z(y)

= D∞
(
PX|Y=y,Z=z‖PX|Z=z

)
= max
x∈supp(PX|Z=z)

iPXY |Z (x; y | z),

where

iPXY |Z (x; y | z) := log
PXY |Z=z(x, y)

PX|Z=z(x)PY |Z=z(y)
,

denotes the (value of the) conditional information density. In the remainder of this paper, when the joint distribution

used to calculate pointwise maximal leakage or information density is clear from the context, we do not specify it

as a subscript.

The following lemma provides several useful properties of pointwise maximal leakage. The proof of the lemma

is provided in Appendix B.

Lemma 1: Pointwise maximal leakage satisfies the following properties:

1) (Upper/lower bounds). Given an arbitrary but fixed prior PX , for all mechanisms PY |X and all y ∈ supp(PY )

it holds that

0 ≤ `(X → y) ≤ − log
(

min
x∈supp(PX)

PX(x)
)
,

where the left-hand side inequality holds with equality if and only if PY |X=x(y) = PY |X=x′(y) for all

x, x′ ∈ supp(PX), and the right-hand side inequality holds with equality if and only if PX|Y=y(x∗) = 1 for

some x∗ ∈ arg minx∈supp(PX) PX(x).

2) (Independence/deterministic mappings). If X and Y are independent random variables, then `(X → y) = 0 for

all y ∈ supp(PY ). If Y is the output of a deterministic mapping with input X , then `(X → y) = − logPY (y).

3) (Pre-processing). Suppose the Markov chain X − Y − Z holds, where Y represents some pre-processing of

the secret X , and Z denotes the observable outcome of a channel PZ|Y with input Y . For all z ∈ supp(PZ)

we have

`(X → z) ≤ `(Y → z),

with equality if i(y; z) = i(y′; z) = maxy∈supp(PY ) i(y; z) for all y, y′ ∈ supp(PY |X=x∗), where x∗ ∈

arg maxx∈supp(PX) i(x; z).

4) (Post-processing). Suppose the Markov chain X − Y − Z holds, where Y represents the observable outcome

of a channel with input X , and Z denotes some post-processing of Y . For all z ∈ supp(PZ) we have

`(X → z) ≤ max
y∈supp(PY )

`(X → y),
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where the inequality holds with equality if either of the following conditions are satisfied:

a) X and Y are independent, or

b) there exists yz ∈ supp(PY ) such that PY |Z=z(yz) = 1 and `(X → yz) = maxy∈supp(PY ) `(X → y).

5) (Conditionally-independent side information). Suppose the Markov chain Z−X−Y holds, where Z represents

some side information about X . For all z ∈ supp(PZ) and y ∈ supp(PY |Z=z) we have

`(X → y | z) = max
x∈supp(PX)

i(x; y | z) = `(X → y)− i(y; z).

6) (Composition). Given a prior PX and a mechanism PY Z|X , for all (y, z) ∈ supp(PY Z) it holds that

`(X → y, z) = max
x∈supp(PX)

i(x; y, z)

≤ `(X → z) + `(X → y | z),

with equality if and only if the two sets arg maxx∈supp(PX) i(x; y | z) and arg maxx∈supp(PX) i(x; z) have

non-empty intersection.

Remark 3: The second property in the above lemma describes the privacy leakage of deterministic mechanisms.

Surprisingly, not all deterministic outcomes leak the same amount of information, and outcomes with lower

probabilities have higher leakage. This is because pointwise maximal leakage is a relative privacy measure in which,

roughly speaking, the information leaked to an adversary scales depending on how consistent the observed outcome

is with the adversary’s prior beliefs (captured by the joint distribution PXY ). As such, deterministic outcomes with

smaller probabilities leak more information since an adversary would be “more surprised” by observing them.

Remark 4: Concerning the post-processing property stated above, one may hope for the stronger statement

`(X → z) ≤ `(X → y) for all y ∈ supp(PY ). To see why this statement is not valid, consider the situation

where Z = Y (or Z is a deterministic mapping of Y ). In this case, the best bound we can have is indeed

`(X → y) ≤ maxy `(X → y).

Remark 5: In general, side information can both increase and decrease privacy leakage. As an example, suppose

we have three binary random variables X , Y , Z where X = Y = Z = {0, 1}. Assume X is uniformly distributed,

and the joint distribution PXY Z is described by the following channels:

PZ|X =

 2
5

3
5

3
5

2
5

 , PY |XZ =



1
2

1
2

1
3

2
3

2
3

1
3

1
2

1
2


,

where the rows in the PY |XZ matrix correspond to (x, z) equals (0, 0), (0, 1), (1, 0), and (1, 1) from top to bottom.

Then, it can be verified through simple calculations that `(X → y = 0 | z = 0) = log 10
9 , `(X → y = 0 | z = 1) =

log 5
4 and `(X → y = 0) = log 6

5 . Therefore,

`(X → y = 0 | z = 0) < `(X → y = 0) < `(X → y = 0 | z = 1).
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D. Dynamic Consumption of Secrecy

In the last part of this section, we discuss a notion of privacy introduced in [25, Section 2.2 ] that, similar to our

work, aims to measure the privacy leakage associated with individual observations. In [25], the dynamic min-entropy

leakage of an outcome y ∈ supp(PY ) is defined as:

` dynamic(X → y) := log
maxx∈X PX|Y=y(x)

maxx∈X PX(x)
,

which is equal to the g-leakage associated with the identity gain given in (11). That is, the dynamic leakage is

derived under the assumption that the adversary is trying to guess the secret X itself, but does not consider other

gains that an adversary may be interested in.

The authors of [25] withdraw from further developing the idea of measuring the pointwise privacy leakage based

on ` dynamic(X → y) as they believe the above privacy measure suffers from two drawbacks. First, they argue that

the above definition cannot be axiomatically justified as it is shown that ` dynamic(X → y) may be negative (see [25,

Example 4]), that is, the adversary’s certainty about the secret may actually decrease by observing an outcome

y. Second, they believe that dynamic policy enforcement based on individual outcomes (for example, discarding

high-leakage outcomes) may reveal information about the secret X .

Note that the first issue mentioned above does not apply to `(X → y). It is easy to see that ` dynamic(X →

y) ≤ `(X → y), and we have shown in Lemma 1 that `(X → y) ≥ 0, which implies that in our current setup,

observations can never decrease certainty about a secret X . This is because `(X → y) is defined by considering all

possible gain functions an adversary may be interested in, while ` dynamic(X → y) is defined only for the identity

gain of Example 1.

Furthermore, while it is true that some policies defined based on individual outcomes, such as discarding high-

leakage outcomes, may reveal information about the secret, we believe that this is not sufficient reason for abandoning

the subject area altogether. In fact, contrary to [25], we believe that effective policy enforcement depends crucially

on the ability to quantify the information leaking from individual outcomes as this allows us to treat privacy leakage

as a random variable. Viewing privacy leakage as a random variable, we have the flexibility to define different

types of privacy guarantees by specifying requirements on the statistical properties of privacy leakage. The resulting

framework is then versatile enough to be applied to a wide range of problems. We develop this idea in the next

section.

III. PRIVACY GUARANTEES

In Theorem 1, we showed that `(X → y) can be written as a function of y. Since Y is a random variable

distributed according to PY , this in turn allows us to define a random variable `(X → Y ) with a distribution

induced by PY . From this point of view, a privacy guarantee is essentially a requirement we impose on some

statistical property of `(X → Y ); thus, we have the flexibility to define different types of privacy guarantees

depending on how strict privacy requirements we need to meet. This section contains several examples of such

guarantees: The almost-sure guarantee, which bounds privacy leakage with probability one, the tail-bound guarantee,
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which bounds leakage with high probability, and the average-case guarantee, which bounds maximal leakage. We

start by defining the almost-sure guarantee.

Definition 4 (Almost-sure guarantee): Given an arbitrary but fixed prior PX , we say that a privacy mechanism

PY |X satisfies ε-PML with ε ≥ 0 if

PY∼PY [`(X → Y ) ≤ ε] = 1. (12)

As we are assuming that the random variables X and Y are finite, the above condition can also be expressed as

max
x∈supp(PX)

max
y∈supp(PY )

iPXY (x; y) ≤ ε. (13)

The expression maxx,y iPXY (x; y) coincides with the definition of maximal realizable leakage [33, Def. 8] and also

max-information [38]. Moreover, expression (13) is also related to the notion of information privacy leakage [17, 16].

We will discuss the relationship between our privacy definitions and pre-existing notions from the literature in the

next section.

The following lemma establishes some basic facts about ε-PML guarantees.

Lemma 2: Given an arbitrary but fixed prior PX , we have:

1) All privacy mechanisms PY |X satisfy εmax-PML, where εmax := − log minx∈supp(PX) PX(x) and εmax ≥

log 2. Furthermore, we have

inf{ε ≥ 0: PY∼PY [`(X → Y ) ≤ ε] = 1} = εmax,

if and only if there exists y ∈ supp(PY ) such that PX|Y=y(x∗) = 1, or equivalently, PY |X=x(y) = 0 for all

x 6= x∗, where x∗ ∈ arg minx PX(x).

2) A privacy mechanism PY |X satisfies ε-PML with ε = 0 if and only if X and Y are independent random

variables.

Proof:

1) For all PY |X and all y ∈ supp(PY ) we have

log max
x∈supp(PX)

PX|Y=y(x)

PX(x)
≤ log max

x∈supp(PX)

1

PX(x)

= log
1

minx∈supp(PX) PX(x)
.

Note that minx∈supp(PX) PX(x) ≤ 1
2 which implies that εmax ≥ log 2. The second half of the statement is

clear from the above inequality.

2) If X and Y are independent, then PX|Y=y(x) = PX(x) for all x, y, thus the mechanism PY |X satisfies ε-PML

with ε = 0. Conversely, if PY |X satisfies ε-PML with ε = 0 this implies that PX|Y=y(x) = PX(x) for all x, y

which means that X and Y are independent.

In order for an ε-PML guarantee to hold, all y ∈ supp(PY ) must satisfy `(X → y) ≤ ε. As this condition

may prove to be too restrictive in practice, in what follows we define two possible relaxations of the almost-sure



17

guarantee: We either bound the privacy leakage by ε with high probability, or we bound the expected leakage (i.e.,

maximal leakage) by ε.

Definition 5 (Tail-bound guarantee): Given an arbitrary but fixed prior PX , we say that a mechanism PY |X

satisfies (ε, δ)-PML with ε ≥ 0 and 0 ≤ δ ≤ 1 if

PY∼PY [`(X → Y ) ≤ ε] ≥ 1− δ. (14)

Clearly, ε-PML and (ε, 0)-PML are equivalent. Also, note that given an arbitrary but fixed prior PX , if a channel

PY |X satisfies (ε, δ)-PML, then it also satisfies (ε′, δ′)-PML for all ε ≤ ε′ and all δ ≤ δ′ ≤ 1.

Definition 6 (Average-case guarantee): Given an arbitrary but fixed prior PX , we say that the expected privacy

leakage of a mechanism PY |X is bounded by ε ≥ 0 if

EY∼PY
[

exp
(
`(X → Y )

)]
≤ eε,

or equivalently,

L(PY |X) ≤ ε,

where L(PY |X) denotes maximal leakage as defined in [33, Thm. 1].

Note that here we denote maximal leakage by L(PY |X) instead of L(X → Y ) used in [33] to emphasize that

maximal leakage is a property of the channel PY |X and does not depend on the prior PX .2

The following lemma shows how almost-sure and tail-bound guarantees translate into maximal leakage guarantees.

Lemma 3: Given an arbitrary but fixed prior PX , it holds that

1) ε-PML implies L(PY |X) ≤ ε.

2) (ε, δ)-PML implies

L(PY |X) ≤ log
(

exp(ε) + δ exp(εmax)
)
,

where εmax := − log minx∈supp(PX) PX(x).

Proof:

1) By definition,

L(PY |X) = log
∑
y

PY (y) exp
(
`(X → y)

)
≤ log

(
exp(ε)

∑
y

PY (y)
)

= ε.

2Technically, maximal leakage depends on the support set of the prior PX , but we can without loss of generality assume that PX has full

support.
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2) We define the events E1(ε) = {y ∈ supp(PY ) : `(X → y) ≤ ε} and E2(ε) = {y ∈ supp(PY ) : `(X → y) >

ε}. Then, E1(ε) and E2(ε) are disjoint and supp(PY ) = E1(ε) ∪ E2(ε), for all ε ≥ 0. Clearly, (ε, δ)-PML

implies that P[E2(ε)] ≤ δ. Therefore, we have

L(PY |X) = log
∑
y

PY (y) exp
(
`(X → y)

)
= log

( ∑
y∈E1(ε)

PY (y) exp
(
`(X → y)

)
+

∑
y∈E2(ε)

PY (y) exp
(
`(X → y)

))

≤ log
(

exp(ε)P[E1(ε)] + exp(εmax)P[E2(ε)]
)

≤ log
(

exp(ε) + δ exp(εmax)
)
.

A. Data-processing Properties

Data-processing inequalities are often used while analyzing the end-to-end information leakage in larger systems.

While the properties presented in Lemma 1 allow us to assess pointwise maximal leakage for the outcomes of a

pre- or post-processed random variable, it is also of practical benefit to understand how different privacy guarantees

are affected by pre- and post-processing. This type of characterization is useful when we do not have access to

the distribution of the leakage over the outcomes, but know that a privacy mechanism satisfies a certain privacy

guarantee.

What we are specifically interested in is to understand whether or not different privacy guarantees are closed3

under pre- and post-processing (in [44], a privacy guarantee that is closed under pre-processing is said to satisfy

the linkage inequality). Suppose the channel PY |X satisfies some privacy guarantee, say, ε-PML. If the ε-PML

guarantee is closed under post-processing, then we can rest assured that for all post-processing channels PZ|Y ,

the overall channel PZ|X also satisfies ε-PML, that is, there exists no channel PZ|Y that an adversary could use

to undermine the original guarantee. Similarly, if the ε-PML guarantee is closed under pre-processing, then all

(randomized) functions of X would be at least as well-protected as X .

The following lemma collects the data-processing properties satisfied by the privacy guarantees defined above.

Part 4 of the result concerning maximal leakage was shown in [33, Lemma 1], and we re-state it here for

completeness.

Proposition 1: Suppose the three random variables X , Y , and Z form the Markov chain X − Y − Z and that

the prior PX is arbitrary but fixed. Given ε ≥ 0 and 0 ≤ δ ≤ 1, we have

1) If PZ|Y satisfies ε-PML, then PZ|X also satisfies ε-PML.

2) If PY |X satisfies ε-PML, then PZ|X also satisfies ε-PML.

3) If PZ|Y satisfies (ε, δ)-PML, then PZ|X also satisfies (ε, δ)-PML.

3Suppose the channel PY |X satisfies Property A. Given a Markov chain X−Y −Z, we say that Property A is closed under post-processing

if the fact that PY |X satisfies Property A implies that PZ|X also satisfies Property A. Closedness under pre-processing is defined similarly.



19

4) L(PZ|X) ≤ min{L(PY |X),L(PZ|Y )}.

Proof:

1) By the pre-processing property of Lemma 1, if PZ|Y satisfies ε-PML then for all z ∈ supp(PZ) we have

`(Y → z) ≤ ε. Hence,

max
z∈supp(PZ)

`(X → z) ≤ max
z∈supp(PZ)

`(Y → z) ≤ ε,

and PZ|X satisfies ε-PML.

2) By the post-processing property of Lemma 1,

max
z∈supp(PZ)

`(X → z) ≤ max
y∈supp(PY )

`(X → y) ≤ ε,

so PZ|X satisfies ε-PML.

3) Similarly to the above, the pre-processing property of Lemma 1 yields

PZ∼PZ
[
`(X → Z) > ε

]
≤ PZ∼PZ

[
`(Y → Z) > ε

]
≤ δ,

hence, PZ|X satisfies (ε, δ)-PML.

Conspicuous by its absence in the above result is the post-processing property for the (ε, δ)-PML privacy

guarantee. It turns out that, in general, (ε, δ)-PML is not closed under post-processing. To understand why, let

us consider the following example.

Example 5: Suppose X is a uniformly distributed random variable defined over an alphabet with four elements,

and that the Markov chain X − Y − Z holds. Suppose the channels PY |X and PZ|Y are defined as

PY |X =



0 0 1
2

1
2

0 0 1
2

1
2

0 1
3

1
3

1
3

1
3 0 1

3
1
3


, PZ|Y =



1 0

0 1

1 0

0 1


.

It can be easily verified that `(X → y1) = `(X → y2) = log 4, and `(X → y3) = `(X → y4) = log 6
5 . Since

PY (y1) = PY (y2) = 1
12 , PY |X satisfies (ε1, δ1)-PML with ε1 = log 6

5 and δ1 = 1
6 . On the other hand, one may

also verify that PZ(z1) = PZ(z2) = 1
2 and `(X → z1) = `(X → z2) = log 4

3 . Hence, PZ|X does not satisfy

(ε1, δ1)-PML; instead, it satisfies ε2-PML with ε2 = log 4
3 > ε1 (and δ2 = 0). Note that the outcome z1 is equivalent

to the event {y1, y3}, z2 is equivalent to the event {y2, y4}, and both outcomes have probability greater than δ1.

Informally speaking, when we say that a mechanism PY |X satisfies (ε, δ)-PML this implies that supp(PY ) can be

partitioned into two sets: a set of “good” y’s with probability at least 1− δ whose members satisfy `(X → y) ≤ ε,

and a set of “bad” y’s with probability at most δ with `(X → y) > ε (see Definition 5). However, through a

post-processing channel PZ|Y , we may define new outcomes as a combination of the members of the good and

bad sets of y (as in Example 5). As a result, the probability of the set whose members satisfy `(X → z) > ε (that

is, the set of “bad” z’s) may no longer be bounded by δ. Also, note that while in Example 5 we have ε2 > ε1
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and δ2 < δ1, this need not always be the case; one may come up with examples where both ε and δ increase by

post-processing.

Remark 6: Interestingly, a similar behavior has been observed in differential privacy. Specifically, it has been

shown that probabilistic DP, that is, a type of privacy guarantee where we require pure DP to hold with probability

at least 1− δ [45, 46], is not closed under post-processing [47, 46]. Differential privacy resolves this problem by

introducing approximate DP (i.e., (ε, δ)-DP defined based on an additive parameter δ [48]) which is closed under

post-processing. Note that approximate DP is a strictly weaker guarantee compared to probabilistic DP in the sense

that probabilistic DP implies approximate DP but the reverse direction does not necessarily hold [46]. In our current

work with PML, we take a different approach to solving this issue and come up with a new privacy guarantee that

maintains its probabilistic flavor.

Now, we define a new probabilistic privacy guarantee that is similar to (ε, δ)-PML, but is closed under post-

processing. Drawing on Example 5, our new definition ensures that all post-processed outcomes with probability

at least δ have their PML bounded by ε. We provide two alternative formulations of our new privacy guarantee:

The first one in Definition 7 describes a somewhat technical condition, so we re-state it in a more intuitive form in

Definition 11.

Definition 7: Given an arbitrary but fixed prior PX , we say that a privacy mechanism PY |X satisfies (ε, δ)-

closedness with ε ≥ 0 and 0 ≤ δ ≤ 1, if for all post-processing channels PZ|Y , PZ(z) ≥ δ implies `PXZ (X →

z) ≤ ε where z ∈ supp(PZ).

Based on Definition 7, to check whether or not a certain mechanism PY |X satisfies the desired closedness property,

one needs to examine all possible post-processing channels PZ|Y . This raises the question of whether it is possible

to come up with a definition equivalent to Definition 7, which can be stated as a property of the channel PY |X

itself. In what follows, we show that this is indeed possible, but we need a few other ingredients before we are

ready to state this alternative definition. First, we recall two concepts from [49].

Definition 8 (Similar outcomes [49]): Given a channel PY |X , we say that the outcomes y, y′ ∈ supp(PY ) are

similar if their corresponding columns in the matrix of PY |X are scalar multiples of each other, or equivalently, if

PX|Y=y(x) = PX|Y=y′(x) for all x ∈ supp(PX).

Remark 7: Note that if the outcomes y, y′ ∈ supp(PY ) are similar, then i(x; y) = i(x; y′) for all x ∈ supp(PX)

and `(X → y) = `(X → y′).

Definition 9 (Reduced channel [49, Def. 3]): Given a channel PY |X , its reduced channel denoted by PYr|X is

formed by removing all-zero columns from PY |X , and merging (i.e., adding) the columns corresponding to similar

outcomes.

Let PYr|X denote the reduced channel of the mechanism PY |X . We can define an equivalence relation PȲ |X ∼ PY |X
if PȲ |X has PYr|X as its reduced channel. Then, the equivalence class of PY |X , denoted by C(PY |X), is the collection

of all mechanisms whose reduced channel is PYr|X . Suppose PȲ |X ∈ C(PY |X). We will use Ȳ to denote the (output)

random variable induced by the channel PȲ |X whose alphabet is represented by Ȳ , and whose marginal distribution

is denoted by PȲ .

Similar outcomes lead to the same posterior distribution, information density, and PML. Thus, the channels in a
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class C(PY |X) behave identically with respect to information measures that are defined based on the information

density, such as mutual information and maximal leakage. In the following, we show that if PY |X satisfies (ε, δ)-

closedness, then all PȲ |X ∈ C(PY |X) also satisfy (ε, δ)-closedness.

Proposition 2: Given an arbitrary but fixed prior PX and an (ε, δ) pair with ε ≥ 0 and 0 ≤ δ ≤ 1, if a mechanism

PY |X satisfies (ε, δ)-closedness then all PȲ |X ∈ C(PY |X) also satisfy (ε, δ)-closedness.

Proof: Let the function f : C(PY |X)× [0, 1]→ R+ be defined as

f(PȲ |X , δ) = sup
PZ|Ȳ

max
z∈supp(PZ):
PZ(z)≥δ

`PXZ (X → z),

that is, f represents the largest PML over all outcomes z of all post-processing channels with probability at least

δ. We argue that f(·, δ) is constant on C(PY |X) for all 0 ≤ δ ≤ 1. To see this, fix an arbitrary PȲ |X ∈ C(PY |X)

and note that the Markov chain X − Ȳ − Yr holds, where Yr denotes the random variable induced by the reduced

channel PYr|X . By definition, I(X; Ȳ ) = I(X;Yr), therefore Yr is a sufficient statistic of Ȳ for X , and the Markov

chain X − Yr − Ȳ also holds.4 Now, we write

f(PȲ |X , δ) = sup
PZ|Ȳ

max
z∈supp(PZ):
PZ(z)≥δ

`PXZ (X → z)

= sup
PZ|Yr :

PZ|Yr=PZ|Ȳ ◦PȲ |Yr

max
z∈supp(PZ):
PZ(z)≥δ

`PXZ (X → z)

≤ sup
PZ|Yr

max
z∈supp(PZ):
PZ(z)≥δ

`PXZ (X → z)

= f(PYr|X , δ).

Reversing the role of Ȳ and Yr, it can also be established that f(PYr|X , δ) ≤ f(PȲ |X , δ); hence, we obtain

f(PYr|X , δ) = f(PȲ |X , δ) for all PȲ |X ∈ C(PY |X) and 0 ≤ δ ≤ 1. Finally, if PY |X satisfies (ε, δ)-closedness then

f(PY |X , δ) ≤ ε, which implies that supPȲ |X∈C(PY |X) f(PȲ |X , δ) ≤ ε.

One last concept that we need to introduce is the notion of the maximal leakage associated with arbitrary events

(that is, subsets) of supp(PY ). We will call this new form of leakage event maximal leakage (EML), which is

defined fairly similarly to PML. That said, the real benefit of EML is in that it allows us to come up with an

alternative formulation of Definition 7.

Definition 10 (Event maximal leakage (EML)): Suppose the random variables X and Y are described by the joint

distribution PXY defined over the finite sets X and Y . Given an event E ⊆ supp(PY ), the maximal leakage from

X to E is defined as

`PXY (X → E) := log max
x∈supp(PX)

PY |X=x(E)

PY (E)
= log max

x∈supp(PX)

∑
y∈E PY |X=x(y)∑
y′∈E PY (y′)

= log max
x∈supp(PX)

∑
y∈E

PY (y)∑
y′∈E PY (y′)

exp
(
iPXY (x; y)

)
.

4We thank the anonymous reviewer of our paper for suggesting to use the concept of sufficient statistic to shorten the proof.
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Having defined the maximal leakage associated with arbitrary subsets of supp(PY ), we are now ready to provide

an alternative form of Definition 7.

Definition 11: Given an arbitrary but fixed prior PX , we say that a privacy mechanism PY |X satisfies (ε, δ)-

EML with ε ≥ 0 and 0 ≤ δ ≤ 1 if for all PȲ |X ∈ C(PY |X) and all events E ⊆ supp(PȲ ), PȲ (E) ≥ δ implies

`PXȲ (X → E) ≤ ε.

Clearly, (ε, 0)-EML and ε-PML are equivalent. Furthermore, given an arbitrary but fixed prior PX , if a channel

PY |X satisfies (ε, δ)-EML, then it also satisfies (ε′, δ′)-EML for all ε ≤ ε′, and all δ ≤ δ′ ≤ 1.

Next, we show that a privacy mechanism PY |X satisfies (ε, δ)-closedness if and only if it satisfies (ε, δ)-EML.

That is, Definitions 7 and 11 are equivalent.

Theorem 3: Given an arbitrary but fixed prior PX , and a pair (ε, δ) with ε ≥ 0 and 0 ≤ δ ≤ 1, a privacy

mechanism PY |X satisfies (ε, δ)-closedness if and only if it satisfies (ε, δ)-EML.

Proof: Suppose without loss of generality that PX has full support. We first show that if a privacy mechanism

PY |X satisfies (ε, δ)-closedness, then it satisfies (ε, δ)-EML. Informally, this result follows from the fact that for all

PȲ |X ∈ C(PY |X), optimizing over the events in supp(PȲ ) with probability at least δ is equivalent to optimizing

over the outcomes of all deterministic mappings PZ|Ȳ with probability at least δ. More concretely, suppose PZ|Ȳ

is a deterministic channel, that is, the matrix form of PZ|Ȳ consists only of zeros and ones. Then, each outcome

z ∈ supp(PZ) corresponds to some event Ez ⊆ Ȳ such that PZ|Ȳ=y(z) = 1 for all y ∈ Ez , and PȲ (Ez) = PZ(z).

Let DȲ denote the set of all deterministic mappings with domain Ȳ . We can write

ε ≥ sup
PȲ |X∈C(PY |X)

sup
PZ|Ȳ

max
z∈supp(PZ):
PZ(z)≥δ

`PXZ (X → z)

≥ sup
PȲ |X∈C(PY |X)

sup
PZ|Ȳ ∈DȲ

max
z∈supp(PZ):
PZ(z)≥δ

`PXZ (X → z)

= sup
PȲ |X∈C(PY |X)

sup
PZ|Ȳ ∈DȲ

max
z∈supp(PZ):
PZ(z)≥δ

log max
x

PZ|X=x(z)

PZ(z)

= sup
PȲ |X∈C(PY |X)

sup
PZ|Ȳ ∈DȲ

max
z∈supp(PZ):
PZ(z)≥δ

log max
x

PȲ |X=x(Ez)
PȲ (Ez)

= sup
PȲ |X∈C(PY |X)

max
E⊆supp(PȲ ):
PȲ (E)≥δ

log max
x

PȲ |X=x(E)

PȲ (E)

= sup
PȲ |X∈C(PY |X)

max
E⊆supp(PȲ ):
PȲ (E)≥δ

`PXȲ (X → E),

where the first inequality follows from Proposition 2. Thus, PY |X satisfies (ε, δ)-EML.

Now, we show that if a mechanism PY |X satisfies (ε, δ)-EML, then it satisfies (ε, δ)-closedness. Let the function

h : C(PY |X)× [0, 1]→ [1,∞) be defined as

h(PȲ |X , δ) = sup
PZ|Ȳ

max
z∈supp(PZ):
PZ(z)≥δ

exp
(
`PXZ (X → z)

)
. (15)
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We can write h as

h(PȲ |X , δ) = max
x

hx(PȲ |X , δ),

where

hx(PȲ |X , δ) := sup
PZ|Ȳ

max
z∈supp(PZ):
PZ(z)≥δ

PZ|X=x(z)

PZ(z)

= sup
PZ|Ȳ

max
z∈supp(PZ):
PZ(z)≥δ

∑
y∈supp(PȲ ) PZ|Ȳ=y(z)PȲ |X=x(y)∑
y′∈supp(PȲ ) PZ|Ȳ=y′(z)PȲ (y′)

= sup
PZ|Ȳ

max
z∈supp(PZ):
PZ(z)≥δ

∑
y∈supp(PȲ )

PZ|Ȳ=y(z)PȲ (y)∑
y′∈supp(PȲ ) PZ|Ȳ=y′(z)PȲ (y′)

(
PȲ |X=x(y)

PȲ (y)

)
. (16)

Using Proposition 2, it suffices to show that for each x, there exists PȲ |X ∈ C(PY |X) satisfying hx(PȲ |X , δ) ≤

exp(ε). Hence, we solve the above optimization problem for the reduced channel associated with the class C(PY |X),

denoted by PYr|X .

Fix some x ∈ X . Let nr := |Yr| denote the cardinality of Yr (recall that PYr has full support). We re-write (16)

for PYr|X as

hx(PYr|X , δ) = max
a1,...,anr

nr∑
j=1

ajPYr (yj)∑nr
j′=1 aj′PYr (yj′)

exp
(
iPXYr (x; yj)

)
,

subject to

nr∑
j=1

ajPYr (yj) ≥ δ,

0 ≤ aj ≤ 1, ∀j ∈ [nr],

(17)

where {aj} specify PZ|Yr=yj (z) for the z ∈ supp(PZ) with the largest PML which also satisfies PZ(z) ≥ δ.

Suppose the elements in Yr are labelled such that iPXYr (x; y1) ≥ iPXYr (x; y2) ≥ . . . ≥ iPXYr (x; ynr ). Given an

integer k ∈ [nr], let Fk := {y1, . . . , yk} be the set containing k elements from Yr that have the largest information

density with x. Let k∗ ∈ [nr] be the smallest integer such that PYr (Fk∗) ≥ δ. The objective function in problem (17)

is a linear-fractional function which is quasi-convex (in fact, quasi-linear) [50, Section 3.4], and the feasible region

is a convex polytope. Therefore, the optimal solution is an extreme point of the feasible region given by

a∗j =


1, if j = 1, . . . , k∗ − 1,

ζ, if j = k∗,

0, otherwise,

where the parameter 0 < ζ ≤ 1 can be calculated by

PYr (Fk∗−1) + ζPYr (yk∗) = δ. (18)

Hence, we obtain hx(PYr|X , δ) as

hx(PYr|X , δ) =
1

δ

(
PYr|X=x(Fk∗−1) + ζPYr|X=x(yk∗)

)
. (19)
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Since k∗ is the smallest integer such that PYr (Fk∗) ≥ δ, we need to consider the following two possibilities: We

either have PYr (Fk∗) = δ or PYr (Fk∗) > δ. First, suppose Fk∗ = δ. In this case, the optimal parameters become

a∗j =

1, if j = 1, . . . , k∗,

0, otherwise,

that is, ζ = 1 in (18). Since {a∗j} consist of only zeros and ones, it in fact specifies a deterministic outcome z∗ ∈

supp(PZ∗) for some channel PZ∗|Yr . This outcome corresponds to the event Fk∗ in the sense that PZ|Yr=y(z∗) = 1

for all y ∈ Fk∗ , and PYr (Fk∗) = PZ(z∗). Thus, we get

hx(PYr|X , δ) = sup
PZ|Ȳ

max
z∈supp(PZ):
PZ(z)≥δ

PZ|X=x(z)

PZ(z)

=
PZ∗|X=x(z∗)

PZ∗(z∗)

=
PYr|X=x(Fk∗)
PYr (Fk∗)

≤ exp(ε),

(20)

where the last inequality follows from the fact that PY |X satisfies (ε, δ)-EML.

Now, suppose PYr (Fk∗) > δ which implies that 0 < ζ < 1 in (18). In this case, we construct PŶ |X ∈ C(PY |X)

whose columns are identical to the columns of PYr|X , except that the k∗-th column of PYr|X is split into two

corresponding columns in PŶ |X given by

PŶ |X=x(yk∗
(1)

) = ζPYr|X=x(yk∗), and PŶ |X=x(yk∗
(2)

) = (1− ζ)PYr|X=x(yk∗),

for all x ∈ X . Note that the outcomes yk∗
(1)
, yk∗

(2)
∈ supp(PŶ ) defined above are similar, and satisfy

iPXŶ (x; yk∗
(1)

) = iPXŶ (x; yk∗
(2)

) = iPXYr (x; yk∗).

Now, we find hx(PŶ |X , δ). Forming the optimization problem (16) for PŶ |X , it is easy to see that the optimal

parameters are

a∗j =

1, if j = 1, . . . , k∗ − 1, k∗(1)

0, otherwise,

which, once again, specifies a deterministic outcome. Using arguments similar to (20), we get hx(PŶ |X , δ) ≤ exp(ε).

Finally, as x was chosen arbitrarily, we conclude that h(PY |X , δ) ≤ exp(ε), that is, PY |X satisfies (ε, δ)-

closedness.

Remark 8: The proof of Theorem 3 sheds light on the role of the class C(PY |X): For each 0 ≤ δ ≤ 1, there

exists PȲ |X ∈ C(PY |X) and a “least private” event E∗ ⊆ supp(PȲ ) satisfying PȲ (E∗) = δ. As such, without loss

of generality, we unify the channels in the equivalence class C(PY |X) and assume that E∗ ⊆ supp(PY ). Then, to

show that PY |X satisfies (ε, δ)-EML, it suffices to show that `PXY (X → E∗) ≤ ε.

Now, recall that our motivation for introducing the notion of (ε, δ)-EML was to obtain a probabilistic privacy

guarantee which is closed under both pre- and post-processing. The following result formally shows that this is

indeed the case.
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Proposition 3: Suppose the three random variables X , Y , and Z form the Markov chain X − Y − Z. Given

ε ≥ 0 and 0 ≤ δ ≤ 1, it holds that:

1) (Pre-processing) If PZ|Y satisfies (ε, δ)-EML, then PZ|X satisfies (ε, δ)-EML.

2) (Post-processing) If PY |X satisfies (ε, δ)-EML, then PZ|X satisfies (ε, δ)-EML.

Proof: In both cases, we use Theorem 3 and verify the conditions of Definition 7. Consider the Markov chain

X − Y − Z − T .

1) Fix an arbitrary PT |Z and t ∈ supp(PT ) satisfying PT (t) ≥ δ. Then,

`(X → t) ≤ `(Y → t) ≤ ε,

where the first inequality is due to Lemma 1 and the second inequality follows by the assumption that PZ|Y

satisfies (ε, δ)-EML. Thus, PZ|X satisfies (ε, δ)-EML.

2) The result follows directly by noticing that T is a post-processing of Y through the channel PT |Y = PT |Z◦PZ|Y .

Hence, PT (t) ≥ δ implies `(X → t) ≤ ε with t ∈ supp(PT ) and PZ|X satisfies (ε, δ)-EML.

Now, let us re-visit Example 5 and analyze it through the lens of event maximal leakage.

Example 6: Suppose PX , PY |X and, PZ|Y are defined as in Example 5, and let δ = 1
6 . Our goal is to find the

smallest ε1 ≥ 0 such that PY |X satisfies (ε1, δ)-EML, and the smallest ε2 ≥ 0 such that PZ|X satisfies (ε2, δ)-EML.

First, note that the outcomes y3 and y4 are similar; hence, by merging them, we obtain the reduced channel PYr|X

as

PYr|X =



0 0 1

0 0 1

0 1
3

2
3

1
3 0 2

3


.

Now, for each x, we find hx(PYr|X , δ) defined in (19):

hx1
(PYr|X , δ) = hx2

(PYr|X , δ) =
6

5
,

hx3(PYr|X , δ) = hx4(PYr|X , δ) =
12

5
,

which implies that PY |X satisfies (ε1, δ)-EML with

ε1 = log max
x

hx1(PYr|X , δ) = log
12

5
.

Furthermore, the channel PZ|X is given by

PZ|X =



1
2

1
2

1
2

1
2

1
3

2
3

2
3

1
3


.
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Since PZ(z1) = PZ(z2) = 1
2 and `(X → z1) = `(X → z2) = log 4

3 , it follows that PZ|X satisfies (ε2, δ)-EML

with ε2 = log 4
3 . Note that since ε2 < ε1, PZ|X also satisfies (ε1, δ)-EML which was expected from Proposition 3.

Remark 9: The above example also describes the computational complexity of finding the smallest ε associated

with a given δ in an (ε, δ)-EML privacy guarantee (or alternatively, finding the least private event with probability

δ). For each x ∈ X , finding hx(PY |X , δ) requires sorting the vector of information density i(x; y1), . . . , i(x; y|Y|),

which can be implemented with time complexity of O(|Y| log|Y|). Hence, the overall procedure can be implemented

relatively efficiently.

As the final topic in this section, we discuss the relationship between the (ε, δ)-EML and (ε, δ)-PML privacy

guarantees. By Examples 5 and 6, it is clear that (ε, δ)-PML does not imply (ε, δ)-EML. In general, (ε, δ)-EML

does not imply (ε, δ)-PML either. For example, consider the binary symmetric channel

PY |X =

0.6 0.4

0.4 0.6

 ,
with uniform PX . It is straightforward to verify that PY |X satisfies (ε1, δ1)-EML with ε1 = log 34

30 and δ1 = 0.6.

However, due to the symmetry of the channel, PY |X satisfies (ε2, δ2)-PML with ε2 = log 6
5 and all 0 ≤ δ2 < 1.

Note that for δ1 = δ2 = 0.6 we have ε1 < ε2.

While in general (ε, δ)-EML does not imply (ε, δ)-PML, there exists a condition under which (ε, δ)-EML does

in fact imply (ε, δ)-PML. This is shown in our next result.

Proposition 4: Given an arbitrary but fixed prior PX , suppose the privacy mechanism PY |X satisfies (ε, δ)-EML.

LetA = {y ∈ supp(PY ) : `(X → y) > ε}. If there exists x∗ ∈ supp(PX) satisfying x∗ ∈ arg maxx∈supp(PX) i(x; y)

for all y ∈ A, then PY |X satisfies (ε, δ)-PML.

Proof: We need to show that PY (A) ≤ δ. We can write

`(X → A) = log max
x∈supp(PX)

∑
y∈A PY |X=x(y)∑
y∈A PY (y)

= log

∑
y∈Amaxx∈supp(PX) PY |X=x(y)∑

y∈A PY (y)
(21a)

≥ log min
y∈A

max
x∈supp(PX)

PY |X=x(y)

PY (y)

= log min
y∈A

`(X → y)

> ε, (21b)

where (21a) follows from the assumption that all PY |X=x(y) are maximized at the same x, and (21b) follows from

the definition of the event A. Since PY |X satisfies (ε, δ)-EML, `(X → A) > ε implies that PY (A) < δ.

B. Composition Properties

A second group of properties that are helpful while assessing the privacy levels of more complicated systems

are composition properties. Let X denote the sensitive data, and let Y be the output of a channel PY |X . Suppose
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X and Y are fed into another channel PZ|XY inducing a random variable Z in its output. What we are interested

in is to find out how much information the overall channel PZY |X leaks about X .

The composition property stated in Lemma 1 describes an upper bound on the PML resulting from composing

the two channels PY |X and PZ|XY . In this section, our goal is to understand how different privacy guarantees,

namely, ε-PML, (ε, δ)-PML and (ε, δ)-EML are affected by adaptively composing two channels. We note that some

related results have been derived in [51], where non-adaptive composition is studied asymptotically for maximal

leakage and Sibson mutual information [52, 11]. The bounds we derive in this section differ from previous works

in that here we study adaptive composition, that is, we allow Z to depend arbitrarily on both X and Y .

Naturally, one can formulate various problems by making different assumptions about the channels PY |X and

PZ|XY . The following result contains several such problem formulations and results, and its proof is deferred to

Appendix C.

Theorem 4: Consider three random variables X , Y and Z where X denotes the secret, Y is the output of a

channel PY |X , and Z is the output of a channel PZ|XY .

1) Suppose PY |X satisfies ε1-PML, and for all y ∈ supp(PY ), the channel PZ|X,Y=y satisfies ε2-PML, where

ε1, ε2 ≥ 0. Then, the channel PY Z|X satisfies ε-PML with ε = ε1 + ε2.

2) Suppose PY |X satisfies (ε1, δ1)-PML, and for all y ∈ supp(PY ), PZ|X,Y=y satisfies (ε2, δ2)-PML. Then, the

channel PY Z|X satisfies (ε, δ)-PML with ε = ε1 + ε2 and δ = δ1 + δ2 − δ1δ2.

3) Suppose PY |X satisfies (ε1, δ1)-PML, and

P(Y,Z)∼PY Z

[
`(X → Z | Y ) ≤ ε2

]
≥ 1− δ2.

Then, the channel PY Z|X satisfies (ε, δ)-PML with ε = ε1 + ε2 and δ = δ1 + δ2.

4) Suppose PY |X satisfies (ε1, δ1)-EML, and for all y ∈ supp(PY ), PZ|X,Y=y satisfies (ε2, δ2)-EML. Given an

event E ⊆ supp(PY Z), define the sets

EY := {y ∈ supp(PY ) : (y, z) ∈ E , z ∈ supp(PZ)}

EZ(y) := {z ∈ supp(PZ) : (y, z) ∈ E}.

Then, for all events E such that 0 ≤ δ2 ≤ miny∈EY PZ|Y=y(EZ(y)), PY Z(E) ≥ δ1 implies `(X → E) ≤ ε1+ε2.

Specifically, if PY |X satisfies (ε1, δ1)-EML, and PZ|X,Y=y satisfies ε2-PML, then PY Z|X satisfies (ε1 +ε2, δ1)-

EML.

5) Suppose PY |X satisfies (ε1, δ1)-EML, and for all y ∈ supp(PY ), PZ|X,Y=y satisfies (ε2, δ2)-EML. Then,

PY Z|X satisfies (ε, δ)-EML with ε = log
(

δ2
δ1+δ2

· exp(εmax) + exp
(
ε1 + ε2

))
and δ = δ1 + δ2, where

εmax := − log minx∈supp(PX) PX(x).

IV. RELATIONSHIP TO OTHER PRIVACY/STATISTICAL NOTIONS

In this section, we study how pointwise maximal leakage and the privacy guarantees defined in the previous

section relate to several pre-existing privacy/statistical notions from the literature. More specifically, we discuss

max-information [38, 39], local differential privacy [5, 6], local information privacy [17, 16], local differential
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TABLE I

SUMMARY OF THE RESULTS OF SECTION IV

Privacy/Statistical Notion Relation/Bound Ref.

Max-information I∞(X;Y ) = maxy `(X → y) Def. 13

Approximate max-information (ε, δ)-PML =⇒ Iδ∞(X;Y ) ≤ ε Prop. 5

Local information privacy ε-LIP =⇒ ε-PML Def. 15

Local differential privacy ε-LDP =⇒ log 1
pmin+e

−ε(1−pmin)
-PML Prop. 6

Local differential identifiability ε-LDI =⇒ log 1

pmin

(
1+e−ε(|supp(PX )|−1)

) -PML Prop. 6

Mutual information I(X;Y ) ≤ EY∼PY [`(X → Y )] Prop. 7

f -information If (PXY ) ≤ EY∼PY
[
max {f (exp(`(X → Y ))) , f(0)}

]
Prop. 8

Total variation privacy T (X;Y ) ≤ min
{

1
2
EY∼PY

[
max {exp(`(X → Y ))− 1, 1}

]
, exp

(
L(PY |X)

)
− 1
} Prop. 8

Prop. 9

identifiability [20, 9], mutual information, f -information [13], and total variation privacy [14]. The results of this

section are summarized in Table I.

A. Max-information

Max-information is a statistical quantity that was introduced as a tool for studying generalization in adaptive

data analysis [38, 39]. Note that while max-information has not been developed as a notion of privacy, it is

defined similarly to pointwise maximal leakage, and therefore, their comparison is appropriate. Before we give

the definition of (approximate) max-information, we need the following definition of approximate max-divergence

which is a weakening of max-divergence (that is, Rényi divergence of order infinity).

Definition 12 (Approximate max-divergence [38]): Let P and Q be two probability distributions over a finite set

Ω and suppose P � Q. Given 0 ≤ δ ≤ 1, the δ-approximate max-divergence between P and Q is defined as

Dδ
∞(P‖Q) = log max

E⊆Ω,P (E)≥δ

P (E)− δ
Q(E)

.

Note that for δ = 0 the above definition reduces to the max-divergence between P and Q, denoted by D∞(P‖Q).

Definition 13 ((Approximate) max-information [38]): Suppose V and W are two random variables supported

over finite sets V and W , respectively, and let PVW denote their joint distribution. The max-information between

V and W is defined as

I∞(V ;W ) := D∞(PVW ‖PV PW )

= log max
v∈V,w∈W

PVW (v, w)

PV (v)PW (w)
.
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Similarly, the δ-approximate max-information between V and W is defined as

Iδ∞(V ;W ) := Dδ
∞(PVW ‖PV PW )

= log max
E⊆V×W:PVW (E)≥δ

PVW (E)− δ
PV PW (E)

,

where

PV PW (E) =
∑

(v,w)∈E

PV (v)PW (w).

It follows from the definition of max-information that, given a fixed prior PX , a mechanism PY |X satisfies ε-

PML if and only if I∞(X;Y ) ≤ ε. Therefore, in the following we examine how (ε, δ)-PML privacy compares with

guarantees given in terms of the δ-approximate max-information. To do this, first we recall a lemma from [53]. As

the proof of the lemma was omitted in [53], here we also provide a proof.

Lemma 4 ([53, Lemma 18]): Let P and Q be two probability distributions over a finite set Ω and suppose P � Q.

Let the event O ⊂ Ω be defined as

O := {ω ∈ Ω :
P (ω)

Q(ω)
> eε}.

If P (O) ≤ δ, then Dδ
∞(P‖Q) ≤ ε.

Proof: Let Õ ⊆ Ω be any event satisfying P (Õ) ≥ δ. Then, we have

P (Õ) = P (Õ ∩ O) + P (Õ ∩ Oc)

≤ P (O) +Q(Õ ∩ Oc)eε

≤ δ +Q(Õ)eε,

which gives
P (Õ)− δ
Q(Õ)

≤ eε, ∀Õ ⊆ Ω, P (Õ) ≥ δ.

Now, we use Lemma 4 to relate PY∼PY [`(X → Y ) ≤ ε] and the δ-approximate max-information.

Proposition 5: Given an arbitrary but fixed PX , if the channel PY |X satisfies (ε, δ)-PML, then Iδ∞(X;Y ) ≤ ε.

Proof: First, note that

P(X,Y )∼PXY

[
PXY (X,Y )

PX(X)PY (Y )
≤ eε

]
≥ PY∼PY

[
max

x∈supp(PX)

PXY (x, Y )

PX(x)PY (Y )
≤ eε

]
, (22)

since the RHS of the above equality can be written as

PY∼PY
[

max
x∈supp(PX)

PXY (x, Y )

PX(x)PY (Y )
≤ eε

]
=

∑
y∈supp(PY )

PY (y) 1

[
max

x∈supp(PX)

PXY (x, y)

PX(x)PY (y)
≤ eε

]
,

=
∑

(x,y)∈supp(PXY )

PXY (x, y) 1

[
max

x∈supp(PX)

PXY (x, y)

PX(x)PY (y)
≤ eε

]
,

and for all (x, y) ∈ supp(PXY ) we have

PXY (x, y)

PX(x)PY (y)
≤ max
x∈supp(PX)

PXY (x, y)

PX(x)PY (y)
.
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Now, since the privacy mechanism PY |X satisfies (ε, δ)-PML, we have

PY∼PY

[
max

x∈supp(PX)

PXY (x, Y )

PX(x)PY (Y )
≤ eε

]
= PY∼PY [`(X → Y ) ≤ ε] ≥ 1− δ,

which combined with (22) yields

P(X,Y )∼PXY

[
PXY (X,Y )

PX(X)PY (Y )
≤ eε

]
≥ 1− δ,

or equivalently,

P(X,Y )∼PXY

[
PXY (X,Y )

PX(X)PY (Y )
> eε

]
≤ δ.

Finally, using the above inequality and Lemma 4 we conclude that

Iδ∞(X;Y ) = Dδ
∞(PXY ‖PXPY ) ≤ ε.

The previous result shows that (ε, δ)-PML is a stronger guarantee compared to Iδ∞(X;Y ) ≤ ε. Roughly speaking,

this is because under a Iδ∞(X;Y ) ≤ ε guarantee, the “good” y’s are those that have small information density i(x; y)

with high probability over the x’s. However, under an (ε, δ)-PML guarantee, the “good” y’s need to have small

i(x; y) for all x’s in supp(PX), that is, i(x; y) must be small with probability one over the x’s. In addition, note

that Iδ∞(X;Y ) treats random variables X and Y symmetrically and the probability of a good event is calculated

according to PXY . On the other hand, under (ε, δ)-PML, the probability of a good event (i.e., low leakage) is

calculated according to PY over the y’s.

B. LDP, LIP, and LDI

Now, we discuss the relationship between PML-based guarantees and three other notions of privacy, namely,

local differential privacy (LDP) [5, 6], local information privacy (LIP) [17, 16] and local differential identifiability

(LDI) [20, 9]. First, we recall their definitions.

Definition 14 (Local differential privacy [5, 6]): A privacy mechanism PY |X satisfies ε-LDP with ε ≥ 0 if for

all y ∈ supp(PY ), x, x′ ∈ supp(PX) we have

PY |X=x(y)

PY |X=x′(y)
≤ eε.

Note that the above definition depends only on the channel PY |X , so an ε-LDP guarantee is valid for all priors PX .

Definition 15 (Local information privacy [17, 16]): Given an arbitrary but fixed prior PX , we say that a privacy

mechanism PY |X satisfies ε-LIP with ε ≥ 0 if for all y ∈ supp(PY ) and x ∈ supp(PX) we have

e−ε ≤
PX|Y=y(x)

PX(x)
≤ eε.

While the definition of ε-LIP privacy is similar to ε-PML privacy, it differs from ε-PML in that it requires an

additional lower bound on the information density, that is, we must also have

PX(x)

PX|Y=y(x)
≤ eε.
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The above bound has no clear operational interpretation in our current framework, and may be superfluous. To see

why, consider the following simple example. Suppose PX is a binary random variable that is uniformly distributed

over X = {x1, x2}. Assume PX|Y=y(x1) = p for some y ∈ supp(PY ), where p > 0 is a small positive number.

Since we must have PX|Y=y(x1) + PX|Y=y(x2) = 1, this in turn implies that PX|Y=y(x2) = 1 − p where 1 − p

is close to one. Thus, the pointwise maximal leakage `(X → y) becomes

`(X → y) = log max
x∈{x1,x2}

PX|Y=y(x)

PX(x)
= log

(
2(1− p)

)
,

which is close to εmax = log 2. Hence, the outcome y has large privacy leakage.

The point of the above example is to show that small values of the ratio PX|Y=y(x)

PX(x) can increase the pointwise

maximal leakage simply because we must have
∑
x PX|Y=y(x) = 1 for all y ∈ supp(PX). As such, it may not

necessary to impose a lower bound on the information density as a separate constraint; a privacy guarantee defined

based on an upper bound on information density will be automatically penalized for small values of the ratio
PX|Y=y(x)

PX(x) .

Definition 16 (Local differential identifiability [20, 9]): Given an arbitrary but fixed prior PX , we say that a

privacy mechanism PY |X satisfies ε-LDI with ε ≥ 0 if for all y ∈ supp(PY ), x, x′ ∈ supp(PX) we have

PX|Y=y(x)

PX|Y=y(x′)
≤ eε.

Note that the notion of identifiability has been previously considered in centralized settings [20, 9], where x and

x′ denote neighboring databases. Here, we have given a local version of the definition, where the ratio PX|Y=y(x)

PX|Y=y(x′)

must be bounded by eε for all x, x′ ∈ supp(PX).

What the above three notions of privacy have in common is that they are strictly intolerant of zero-probability

assignments in the channel PY |X , that is, the existence of a single input-output pair (x, y) such that PY |X=x(y) = 0

(where x ∈ supp(PX) and y ∈ supp(PY )) immediately implies that the channel does not satisfy any of the above

notions of privacy. On the other hand, `(X → y) is always bounded by εmax, so naturally a guarantee given in

terms of pointwise maximal leakage may not satisfy any of the above notions of privacy.

To see why zero-probability assignments in the channel PY |X do not necessarily imply “bad privacy”, consider

the following simple example. Suppose X and Y are random variables defined over sets with cardinality n, and

assume that X is uniformly is distributed. Consider the following channel:

PY |X=x1
(yi) =

0, if i = 1,

1
n−1 otherwise,

and PY |X=xj (yi) = 1
n with i ∈ {1, . . . , n} and j ∈ {2, . . . , n}. Intuitively, for large n the above channel leaks

very little information which also becomes apparent by calculating the pointwise maximal leakages:

`(X → y1) = log
n

n− 1
,

`(X → yi) = log
n2

n2 − n+ 1
, i = 2, . . . , n.
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However, under LDP/LIP/LDI, no matter how large n is, the above channel is considered to be equally non-private

as a deterministic mapping from X to Y . This is clearly an overly pessimistic privacy assessment.

That being said, it is straightforward to verify that ε-LDP/LIP/LDI guarantees imply a guarantee based on

pointwise maximal leakage. According to Definition 15, ε-LIP implies ε-PML. We also have the following relations.

Proposition 6: Let pmin := minx∈supp(PX) PX(x). Given an arbitrary but fixed prior PX , if a mechanism PY |X

satisfies ε-LDP, then PY |X satisfies ε′-PML, where

ε′ = log
1

pmin + e−ε(1− pmin)
.

Moreover, if PY |X satisfies ε-LDI, then it satisfies ε̃-PML, where

ε̃ = log
1

pmin

(
1 + e−ε(|supp(PX)| − 1)

) .
Proof: The first statement regarding LDP is an intermediate step in the proof of [16, Thm. 3]. To see the

second statement, note that PY |X satisfies ε-LDI if

PY |X=x(y)PX(x)

PY |X=x′(y)PX(x′)
≤ eε,

for all y ∈ supp(PY ), x, x′ ∈ supp(PX). Fix y ∈ supp(PY ). We write

max
x∈supp(PX)

PY |X=x(y)

PY (y)
= max
x∈supp(PX)

PY |X=x(y)∑
x′ PY |X=x(y)PX(x′)

= max
x∈supp(PX)

PY |X=x(y)

PY |X=x(y)PX(x) +
∑
x′ 6=x PY |X=x′(y)PX(x′)

≤ max
x∈supp(PX)

PY |X=x(y)

PY |X=x(y)PX(x) +
∑
x′ 6=x PY |X=x(y)PX(x)e−ε

= max
x∈supp(PX)

1

PX(x)
(
1 + e−ε(|supp(PX)| − 1)

)
=

1

pmin

(
1 + e−ε(|supp(PX)| − 1)

) .

C. Mutual Information

Mutual information has been studied as a privacy measure in a number of works, e.g., [7–10], although it has been

argued that in some cases mutual information underestimates privacy leakage [33]. Previous works have shown that

maximal leakage upper bounds mutual information, and in fact, no scalar multiple of mutual information can upper

bound maximal leakage [26, 33]. Here, we show how mutual information can be bounded in terms of `(X → Y ).

Proposition 7: Given a joint distribution PXY , it holds that I(X;Y ) ≤ EY∼PY [`(X → Y )] with equality if and

only if PY |X=x(y) = PY |X=x′(y) for all x, x′ ∈ X and y ∈ Y such that PXY (x, y) > 0 and PXY (x′, y) > 0.

Hence, given an arbitrary but fixed prior PX ,

1) if PY |X satisfies ε-PML, then I(X;Y ) ≤ ε, and

2) if PY |X satisfies (ε, δ)-PML, then I(X;Y ) ≤ ε+ δ · εmax.
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Proof:

I(X;Y ) = EY∼PY
[
EX∼PX|Y

[
log

PXY (X,Y )

PX(X)PY (Y )

]]
≤ EY∼PY

[
max

x∈supp(PX)
log

PXY (x, Y )

PX(x)PY (Y )

]
= EY∼PY [`(X → Y )],

where the inequality holds with equality if and only if for all x, x′, y such that PXY (x, y) > 0 and PXY (x′, y) > 0

we have i(x; y) = i(x′; y), or equivalently, PY |X=x(y) = PY |X=x′(y) (the condition for equality has also been noted

in [33, Lemma 2]). The remaining statements then follow directly from the definitions of ε-PML and (ε, δ)-PML,

and the above inequality.

D. f -information

f -information [13] refers to a class of information measures that are defined based on f -divergences [54]. First,

we recall the definition of f -divergence.

Definition 17 (f -divergence): Let f : (0,∞) → R be a convex function satisfying f(1) = 0. Let P and Q be

two probability distributions defined over a finite set Ω, and suppose P � Q. The f -divergence between P and Q

is defined as

Df (P‖Q) := EQ
[
f

(
P

Q

)]
=
∑
ω∈Ω

Q(ω)f

(
P (ω)

Q(ω)

)
.

Common f -divergences include, for example, KL-divergence, total variation distance, and χ2-divergence. Now, we

can define f -information as the f -divergence between the joint distribution and the product of the marginals of two

random variables.

Definition 18 (f -information [13, Def. 7]): Let f : (0,∞)→ R be a convex function such that f(1) = 0. Given

a joint distribution PVW defined over the finite alphabets V and W , the f -information of PVW is defined as

If (PVW ) := Df (PVW ‖PV PW ) = E(V,W )∼PV PW

[
f

(
PVW (V,W )

PV (V )PW (W )

)]
.

Diaz et al. [13] justify the definition of f -information as an information/privacy measure on account of its operational

meaning for specific choices of the function f , such as mutual information (associated with KL-divergence) and

χ2-information [55, 56] (associated with χ2-divergence). Next, we show how PML can be used to upper bound

f -information.

Proposition 8: Let f : (0,∞) → R be a convex function satisfying f(1) = 0, and suppose limt→0+ f(t) < ∞.

Then,

If (PXY ) ≤ EY∼PY
[

max {f (exp(`(X → Y ))) , f(0)}
]
,

where f(0) is defined by continuity as f(0) := f(0+).
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Proof:

If (PXY ) = EY∼PY
[
EX∼PX

[
f

(
PXY (X,Y )

PX(X)PY (Y )

)]]
≤ EY∼PY

[
max

x∈supp(PX)
f

(
PXY (X,Y )

PX(X)PY (Y )

)]
= EY∼PY

[
max

{
f

(
max

x∈supp(PX)

PXY (X,Y )

PX(X)PY (Y )

)
, f

(
min

x∈supp(PX)

PXY (X,Y )

PX(X)PY (Y )

)}]
(23a)

≤ EY∼PY
[
max

{
f
(

max
x∈supp(PX)

PXY (X,Y )

PX(X)PY (Y )

)
, f(0)

}]
(23b)

= EY∼PY
[

max {f (exp(`(X → Y ))) , f(0)}
]
,

where (23a) follows from the fact that the maximum of a convex function is attained at an extreme point, and (23b)

follows from minx∈supp(PX)
PX|Y=y(x)

PX(x) ≥ 0 for all y ∈ supp(PY ).

E. Total variation privacy

Let P and Q be two probability distributions defined over a finite set Ω. The total variation distance between P

and Q is defined as

TV(P,Q) :=
1

2
EQ
[∣∣∣∣PQ − 1

∣∣∣∣] =
1

2

∑
ω∈Ω

|P (ω)−Q(ω)| ,

which is an f -divergence with f(x) = 1
2 |x− 1|. Total variation privacy [14] is a privacy measure that is defined as

the expected total variation distance between the posterior distribution PX|Y and the prior PX , given by

T (X;Y ) := EY∼PY
[
TV(PX|Y , PX)

]
=
∑
y∈Y

PY (y) TV(PX|Y=y, PX). (24)

Rassouli and Gündüz [14] motivate the use of total variation distance as a privacy measure by arguing that T (X;Y )

is closed under pre- and post-processing, and by showing that controlling T (X;Y ) restricts the inference quality

of an adversary optimizing an additive gain function, described in [17]. Furthermore, the following bound between

T (X;Y ) and maximal leakage is derived:

T (X;Y ) ≤ (|X | − 1) ·max
x∈X

PX(x) ·
(
exp(L(PY |X))− 1

)
, (25)

which is a rather loose bound as it depends on the cardinality of X (considering that 0 ≤ T (X;Y ) ≤ 1). Note that

T (X;Y ) is actually the f -information associated with the total variation distance, so by applying Proposition 8

with f(x) = 1
2 |x− 1| we get

T (X;Y ) ≤ 1

2
EY∼PY

[
max {exp(`(X → Y ))− 1, 1}

]
, (26)

which is tighter than (25). In the following result, we derive another upper bound on T (X;Y ) in terms of maximal

leakage L(PY |X), and also show how (ε, δ)-PML privacy guarantee constrains T (X;Y ).

Proposition 9: The following relationship holds between T (X;Y ) and L(PY |X):

T (X;Y ) ≤ exp
(
L(PY |X)

)
− 1.
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Furthermore, given an arbitrary but fixed prior PX , if the channel PY |X satisfies (ε, δ)-PML, then T (X;Y ) is

bounded as follows:

1) if ε ≤ log 3
2 , then

T (X;Y ) ≤ eε − 1 +
δ

2
(eεmax − 1) ,

2) if log 3
2 ≤ ε ≤ log 2, then

T (X;Y ) ≤ 1

2
+
δ

2
(eεmax − 1) ,

3) if ε ≥ log 2, then

T (X;Y ) ≤ 1

2
(eε − 1) +

δ

2
(eεmax − 1) .

Proof: Fix some y ∈ supp(PY ) and define the set Ay := {x ∈ supp(PX) : PX|Y=y(x) ≥ PX(x)}. We can

write

TV(PX|Y=y, PX) =
1

2

∑
x∈supp(PX)

∣∣PX|Y=y(x)− PX(x)
∣∣

=
∑
x∈Ay

PX|Y=y(x)− PX(x)

=
∑
x∈Ay

(
PX|Y=y(x)

PX(x)
− 1

)
PX(x)

≤ max
x∈Ay

(
PX|Y=y(x)

PX(x)
− 1

) ∑
x∈Ay

PX(x)

≤ exp (`(X → y))− 1. (27)

Taking the expectation of the above expression over y, we get

T (X;Y ) ≤ exp
(
L(PY |X)

)
− 1.

Now, define the function η(y) := exp (`(X → y))− 1, y ∈ supp(PY ). By (26) and (27), we obtain

T (X;Y ) ≤ EY∼PY
[
min

{
η(Y ),max

{
1

2
η(Y ),

1

2

}}]
.

Suppose PX is arbitrary but fixed, and the mechanism PY |X satisfies (ε, δ)-PML. Define ηmax := eεmax − 1.

Using the fact that εmax ≥ log 2, we conclude that with probability smaller than δ over Y , we have

TV(PX|Y=y, PX) ≤ 1

2
ηmax =

1

2
(eεmax − 1) . (28)

We need to consider the following three cases for ε:

1) ε ≤ log 3
2 : With probability at least 1− δ we have TV(PX|Y=y, PX) ≤ η(y) ≤ eε − 1, which implies that

T (X;Y ) ≤ eε − 1 +
δ

2
(eεmax − 1) .

2) log 3
2 ≤ ε ≤ log 2: With probability at least 1− δ we have TV(PX|Y=y, PX) ≤ 1

2 , which implies that

T (X;Y ) ≤ 1

2
+
δ

2
(eεmax − 1) .
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3) ε ≥ log 2: With probability at least 1 − δ we have TV(PX|Y=y, PX) ≤ 1
2 η(y) ≤ 1

2 (eε − 1), which implies

that

T (X;Y ) ≤ 1

2
(eε − 1) +

δ

2
(eεmax − 1) .

V. CONCLUSIONS

In this paper, we have introduced a new privacy measure called pointwise maximal leakage defined based on

the pre-existing notion of maximal leakage, which quantifies the amount of information leaking about a secret

X by disclosing a single outcome of a (randomized) function calculated on X . Our results demonstrate that a

framework centered around PML can be used to reason about privacy in a wide range of problems: First, we

make no assumptions about the nature of the sensitive data, e.g., X can represent an entire database or a single

data point collected from an individual. Then, PML is operationally meaningful in the sense that it is obtained

by analyzing threat models in which all assumptions about adversaries are made explicit. Next, PML is a robust

measure of privacy since it is meaningful when considering any adversary whose objective can be described by a

gain function. In addition, PML satisfies useful properties, for example, it behaves well under composition, enables

us to model side information, and satisfies data-processing (i.e., pre- and post-processing) inequalities. Last but

not least, pointwise maximal leakage allows us to view privacy leakage as a random variable; consequently, we

have the freedom to define different types of privacy guarantees based on the particular requirements of different

applications, both in terms of privacy and utility.

APPENDIX A

PROOF OF THEOREM 2

Suppose without loss of generality that PX has full support. Given an arbitrary gain function g, the g-leakage

of X can be written as

`g(X → y) = log
supPX̂|Y=y

E
[
g(X, X̂) | Y = y

]
supPX̂ E

[
g(X, X̂)

]
= log

supPX̂|Y=y

∑
x∈X

∑
x̂∈X̂ g(x, x̂)PX|Y=y(x)PX̂|Y=y(x̂)

supPX̂
∑
x∈X

∑
x̂∈X̂ g(x, x̂)PX(x)PX̂(x̂)

= log
maxx̂∈X̂

∑
x∈X g(x, x̂)PX|Y=y(x)

maxx̂∈X̂
∑
x∈X g(x, x̂)PX(x)

, (29)

where the last equality follows by plugging in P ∗
X̂|Y=y

defined as

P ∗
X̂|Y=y

(x̂) :=


1, for some x̂ ∈ arg max

x̂

∑
x∈X

g(x, x̂)PX|Y=y(x)

0, otherwise,
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in the numerator, and P ∗
X̂

defined as

P ∗
X̂

(x̂) :=


1, for some x̂ ∈ arg max

x̂

∑
x∈X

g(x, x̂)PX(x),

0, otherwise,

in the denominator. Furthermore, as shown in the proof of Theorem 1, given a randomized function of X denoted

by U , the U -leakage of X can be expressed as

`U (X → y) = log
maxu∈U PU |Y=y(u)

maxu PU (u)

= log
maxu∈U

∑
x∈X PU |X=x(u) PX|Y=y(x)

maxu∈U
∑
x∈X PU |X=x(u) PX(x)

. (30)

To show the equivalence, first, we prove the simpler direction by showing that each U -leakage can be written as

a g-leakage. Given an arbitrary randomized function of X denoted by U , define X̂
U

:= U such that each u ∈ U

corresponds uniquely to some x̂u ∈ X̂U , and let g
U

(x, x̂u) := PU |X=x(u) for all x ∈ X and u ∈ U . By computing

expressions (29) and (30), it is easy to see that `U (X → y) = `g
U

(X → y). This construction implies that a

randomized function of X is simply a gain function that satisfies
∑
x̂ gU (x, x̂) = 1, for all x ∈ X , that is, the total

gain associated with each secret x ∈ X is a constant.

Now, we show that each g-leakage can be written as a U -leakage. Fix an arbitrary gain function g. Without loss

of generality, suppose g(x, x̂) ≤ 1 for all x ∈ X and x̂ ∈ X̂ (this can be achieved by normalizing the gain function

by maxx,x̂ g(x, x̂)). In what follows, we construct a randomized function of X using a channel that generalizes the

shattering channel of Definition 2. We need to consider the following two cases:

Case 1: The same x̂ maximizes the numerator and the denominator in (29).

Here, we will construct a randomized function of X , denoted by V , which is described by the kernel PV |X

and satisfies `V (X → y) = `g(X → y). Let x̂V ∈ arg maxx̂
∑
x g(x, x̂)PX|Y=y(x) which (following from the

definition of Case 1) also satisfies x̂V ∈ arg maxx̂
∑
x g(x, x̂)PX(x). Informally, x̂V denotes the adversary’s best

guess both after observing Y = y, and with no observations.

Define the set XV := {x ∈ X : g(x, x̂V ) > 0}. For now, let us assume that XV = X but later we will discuss

how the proof can be adapted if XV is a proper subset of X . For each x ∈ XV , let kV (x) := 1/g(x, x̂V ), and

define kV := maxx∈XV kV (x). Roughly speaking, kV (x) is the cardinality of the support of PV |X=x while kV is

the cardinality of the support of PV .

Now, we construct a random variable V taking values in an alphabet V such that |V| = dkV e. For all x ∈ XV ,

the kernel PV |X=x is defined by

PV |X=x(vi) :=


g(x, x̂V ), if 1 ≤ i ≤ bkV (x)c,

1− bkV (x)c g(x, x̂V ), if i = dkV (x)e,

0, if dkV (x)e+ 1 ≤ i ≤ dkV e.
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Informally, for each x, the above kernel allocates chunks of probability equal to g(x, x̂V ) to the first bkV (x)c

letters, and the dkV (x)e-th letter is used to contain the remaining probability 1− bkV (x)c g(x, x̂V ). Note that the

above kernel indeed satisfies
dkV e∑
i=1

PV |X=x(vi) = 1,

for all x ∈ XV .

Renaming V to Ug , we verify that the random variable constructed above satisfies `Ug (X → y) = `g(X → y):

max
u∈Ug

∑
x

PUg|X=x(u)PX|Y=y(x) =
∑
x

g(x, x̂Ug )PX|Y=y(x)

= max
x̂

∑
x

g(x, x̂)PX|Y=y(x),

where the last equality follows from the definition of x̂Ug . Similarly, we have

max
u∈Ug

∑
x

PUg|X=x(u)PX(x) =
∑
x

g(x, x̂Ug )PX(x)

= max
x̂

∑
x

g(x, x̂)PX(x).

Case 2: The maximizing x̂’s in the numerator and the denominator of (29) are different.

We will construct two randomized functions of X denoted by V and W , one for the numerator of (29) and one

for the denominator. Let

x̂V ∈ arg max
x̂

∑
x

g(x, x̂)PX|Y=y(x),

x̂W ∈ arg max
x̂

∑
x

g(x, x̂)PX(x),

and define

XV := {x ∈ X : g(x, x̂V ) > 0},

XW := {x ∈ X : g(x, x̂W ) > 0},

where x̂V denotes the adversary’s best guess having observed Y = y, and x̂W denotes the adversary’s best guess

without an observation. We need to consider the following two cases:

Case 2.1: XV = XW .

Let XUg := XV = XW . Once again, let us assume that XUg = X . Similarly to what we had in Case 1, for all

x ∈ XUg we define

kV (x) := 1/g(x, x̂V ), kV := max
x∈XUg

kV (x),

kW (x) := 1/g(x, x̂W ), kW := max
x∈XUg

kW (x).
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Let V denote the support set of random variable V , and W denote the support set of random variable W , where

|V| = dkV e and |W| = dkW e. For all x ∈ XUg , the kernels PV |X=x and PW |X=x are defined as

PV |X=x(vi) :=


g(x, x̂V ), if 1 ≤ i ≤ bkV (x)c,

1− bkV (x)c g(x, x̂V ), if i = dkV (x)e,

0, if dkV (x)e+ 1 ≤ i ≤ dkV e,

and

PW |X=x(wj) :=


g(x, x̂W ), if 1 ≤ j ≤ bkW (x)c,

1− bkW (x)c g(x, x̂W ), if j = dkW (x)e,

0, if dkW (x)e+ 1 ≤ j ≤ dkW e.

Finally, we define the random variable Ug as the Bernoulli mixture of V and W . Let Ug := V ∪ W denote the

alphabet of Ug . For all x ∈ XUg , we define PUg|X=x(u) := 1
2PV |X=x(u) + 1

2PW |X=x(u), where PV |X=x(u) = 0

for u ∈ W and PW |X=x(u) = 0 for u ∈ V .5 Let us verify that Ug satisfies `Ug (X → y) = `g(X → y):

max
u∈Ug

∑
x

PUg|X=x(u)PX|Y=y(x) =
∑
x

1

2
g(x, x̂V )PX|Y=y(x)

=
1

2
max
x̂

∑
x

g(x, x̂)PX|Y=y(x),

and also,

max
u∈Ug

∑
x

PUg|X=x(u)PX(x) =
∑
x

1

2
g(x, x̂W )PX(x)

=
1

2
max
x̂

∑
x

g(x, x̂)PX(x).

Thus, we have

`Ug (X → y) = log
maxu∈Ug

∑
x PUg|X=x(u)PX|Y=y(x)

maxu∈Ug
∑
x PUg|X=x(u)PX(x)

= log
1
2 maxx̂

∑
x g(x, x̂)PX|Y=y(x)

1
2 maxx̂

∑
x g(x, x̂)PX(x)

= `g(X → y).

Case 2.2: XV 6= XW .

Let nV and nW be positive integers. Here, the idea is that we increase the sizes of the sets V and W by nV and

nW , respectively, where these extra letters are used to support those x’s for which we either have g(x, x̂V ) = 0 or

g(x, x̂W ) = 0. We need to distinguish between three types of x’s:

5This is a slight abuse of notation. Strictly speaking, PV |X=x(u) is defined only for u ∈ V and PW |X=x(u) is defined only for u ∈ W .
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Fig. 3. Illustration of the channel PUg|X constructed in Case 2.2. We assume X = XV ∪ XW , where X contains m elements. Each row of

the above matrix corresponds to an x from X , and the columns correspond to letters from Ug . In this example, we have kV (x1) = kV and

kW (xm) = kW . Also, we are assuming x2 ∈ XV \ XW and xl ∈ XW \ XV , where 2 < l < m.

1) For x ∈ XV ∩ XW we define

PV |X=x(vi) :=


g(x, x̂V ), if 1 ≤ i ≤ bkV (x)c,

1− bkV (x)c g(x, x̂V ), if i = dkV (x)e,

0, if dkV (x)e+ 1 ≤ i ≤ dkV e+ nV ,

and

PW |X=x(wj) :=


g(x, x̂W ), if 1 ≤ j ≤ bkW (x)c,

1− bkW (x)c g(x, x̂W ), if j = dkW (x)e,

0, if dkW (x)e+ 1 ≤ j ≤ dkW e+ nW .

2) For x ∈ XV \ XW we let

PV |X=x(vi) :=


g(x, x̂V ), if 1 ≤ i ≤ bkV (x)c,

1− bkV (x)c g(x, x̂V ), if i = dkV (x)e,

0, if dkV (x)e+ 1 ≤ i ≤ dkV e+ nV ,

and

PW |X=x(wj) :=

0, if 1 ≤ j ≤ dkW e,

1
nW

, if dkW e+ 1 ≤ j ≤ dkW e+ nW .

3) For x ∈ XW \ XV we let

PV |X=x(vi) :=

0, if 1 ≤ i ≤ dkV e,

1
nV
, if dkV e+ 1 ≤ i ≤ dkV e+ nV ,
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and

PW |X=x(wj) :=


g(x, x̂W ), if 1 ≤ j ≤ bkW (x)c,

1− bkW (x)c g(x, x̂W ), if j = dkW (x)e,

0, if dkW (x)e+ 1 ≤ j ≤ dkW e+ nW .

Now, we define Ug as before. Suppose Ug = V ∪ W is the alphabet of Ug . For x ∈ XV ∪ XW (where we are

assuming X = XV ∪ XW ), let PUg|X=x(u) = 1
2PV |X=x(u) + 1

2PW |X=x(u), where PV |X=x(u) = 0 for u ∈ W

and PW |X=x(u) = 0 for u ∈ V . Then, we can write

max
u∈Ug

∑
x

PUg|X=x(u)PX|Y=y(x) = max

{∑
x∈XV

g(x, x̂V )

2
PX|Y=y(x),

∑
x∈XW \XV

1

2nV
PX|Y=y(x)

}
.

By taking nV to be large enough, we can ensure that∑
x∈XW \XV

1

2nV
PX|Y=y(x) ≤

∑
x∈XV

1

2
g(x, x̂V )PX|Y=y(x),

which yields

max
u∈Ug

∑
x

PUg|X=x(u)PX|Y=y(x) =
∑
x∈XV

1

2
g(x, x̂V )PX|Y=y(x)

=
1

2
max
x̂

∑
x∈X

g(x, x̂)PX|Y=y(x).

Similarly, for nW large enough we have

max
u∈Ug

∑
x

PUg|X=x(u)PX(x) = max

 ∑
x∈XW

1

2
g(x, x̂W )PX(x),

∑
x∈XV \XW

1

2nW
PX(x)


=
∑
x∈XW

1

2
g(x, x̂W )PX(x)

=
1

2
max
x̂

∑
x∈X

g(x, x̂)PX(x).

Hence, we conclude that `Ug (X → y) = `g(X → y).

The only point left to discuss is regarding the case where XV ∪XW is a proper subset of X . Let nO be a positive

integer. Once again, we increase the size of the alphabet Ug by nO letters, where these extra letters are used to

support the x’s in X \ (XV ∪XW ). Hence, we let Ug = V ∪W∪O, where O is a finite set containing nO elements.

For x ∈ X \ (XV ∪ XW ) we define the channel PUg|X=x as

PUg|X=x(u) =


1
nO
, if u ∈ O,

0, otherwise.

For x ∈ XV ∪ XW , we let PUg|X=x(u) = 0 when u ∈ O; otherwise PUg|X=x(u) is defined as in Case 2.2.

It is straightforward to verify that for nO large enough ( 1
nO

small enough), the values of the numerator and the

denominator in the expression of `Ug (X → y) remain as before, from which we may conclude `Ug (X → y) =

`g(X → y). �
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APPENDIX B

PROOF OF LEMMA 1

1) Upper bound:

`(X → y) = log max
x∈supp(PX)

PX|Y=y(x)

PX(x)

≤ log max
x∈supp(PX)

1

PX(x)
= log

1

minx∈supp(PX) PX(x)
,

where the inequality holds with equality if an only if PX|Y=y(x∗) = 1 with x∗ ∈ arg minx∈supp(PX) PX(x).

Lower bound: Here, the idea is that since both PX|Y=y and PX are probability distributions over supp(PX),

then for any fixed y ∈ supp(PY ), there exists at least one x ∈ supp(PX) such that PX|Y=y(x) ≥ PX(x).

Suppose to the contrary that for all x ∈ X , PX|Y=y(x) < PX(x). Then, 1 =
∑
x PX|Y=y(x) <

∑
x PX(x) = 1

which is a contradiction. Therefore,

`(X → y) = log max
x∈supp(PX)

PX|Y=y(x)

PX(x)
≥ log 1 = 0.

The above inequality holds with equality if and only if maxx PY |X=x(y) = PY (y) =
∑
x PY |X=x(y)PX(x)

which holds whenever PY |X=x(y) = PY |X=x′(y) for all x, x′ ∈ suppPX .

2) Both statements follow directly from the definition.

3) Let x∗ ∈ arg maxx PZ|X=x(z). Then,

`(X → z) = log max
x

PZ|X=x(z)

PZ(z)

= log

∑
y∈supp(PY |X=x∗ ) PZ|Y=y(z)PY |X=x∗(y)

PZ(z)

≤ log max
y′∈supp(PY |X=x∗ )

PZ|Y=y′(z)

PZ(z)

∑
y

PY |X=x∗(y)

≤ log max
y′∈supp(PY )

PZ|Y=y′(z)

PZ(z)
= `(Y → z),

where the first inequality holds with equality if PZ|Y=y(z) = PZ|Y=y′(z) for all y, y′ ∈ supp(PY |X=x∗), and

the second inequality holds with equality if maxy∈supp(PY ) i(y; z) is attained at some y ∈ supp(PY |X=x∗).

4)

`(X → z) = log max
x

PZ|X=x(z)

PZ(z)

= log max
x

∑
y∈supp(PY ) PZ|Y=y(z)PY |X=x(y)∑
y∈supp(PY ) PZ|Y=y(z)PY (y)

≤ log max
x

max
y∈supp(PY )

PY |X=x(y)

PY (y)

= max
y∈supp(PY )

`(X → y).
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Now, if X and Y are independent then `(X → z) = `(X → y) = 0 for all y, z, and the inequality holds with

equality. Furthermore, if PY |Z=z is deterministic, then z is mapped uniquely to some yz ∈ supp(PY ). This

implies that PZ|Y=y(z) = 0 for y 6= yz , hence, we have

`(X → z) = log max
x

PZ|X=x(z)

PZ(z)

= log max
x

PY |X=x(yz)

PY (yz)

= `(X → yz)

≤ max
y∈supp(PY )

`(X → y),

with equality if `(X → yz) = maxy∈supp(PY ) `(X → y).

5)

`(X → y | z) = log max
x

PY |X=x,Z=z(y)

PY |Z=z(y)

= log max
x

PY |X=x(y)PY (y)

PY (y)PY |Z=z(y)

= log max
x

PY |X=x(y)

PY (y)
+ log

PY (y)

PY |Z=z(y)

= `(X → y)− i(y; z).

6)

`(X → y, z) = log max
x

PY Z|X=x(y, z)

PY Z(y, z)

= log max
x

PY |X=x,Z=z(y)PZ|X=x(z)

PY |Z=z(y)PZ(z)

≤ log max
x

PY |X=x,Z=z(y)

PY |Z=z(y)
+ log max

x

PZ|X=x(z)

PZ(z)

= `(X → y | z) + `(X → z),

with equality if and only if there exists x∗ ∈ supp(PX) maximizing both i(x; y | z) and i(x; z). �

APPENDIX C

PROOF OF THEOREM 4

1) This result is an immediate consequence of the composition property given in Lemma 1. For all y ∈ supp(PY )

and all z ∈ supp(PZ) we have

`(X → y, z) ≤ `(X → y) + `(X → z | y)

≤ max
y∈supp(PY )

`(X → y) + max
y∈supp(PY ),
z∈supp(PZ)

`(X → z | y)

≤ ε1 + ε2.
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Therefore, PY Z|X satisfies ε1 + ε2-PML.

2) Since `(X → y, z) ≤ `(X → y) + `(X → z | y) for all (y, z) ∈ supp(PY )× supp(PZ), we can write

P(Y,Z)∼PY Z

[
`(X → Y,Z) > ε1 + ε2

]
≤ P(Y,Z)∼PY Z

[
`(X → Y ) + `(X → Z | Y ) > ε1 + ε2

]
= 1− P(Y,Z)∼PY Z

[
`(X → Y ) + `(X → Z | Y ) ≤ ε1 + ε2

]
.

We define the following “good” events:

G := {(y, z) ∈ supp(PY )× supp(PZ) : `(X → y) ≤ ε1 and `(X → z | y) ≤ ε2},

GY := {y ∈ supp(PY ) : (y, z) ∈ G for some z ∈ supp(PZ)},

GZ(y) := {z ∈ supp(PZ) : (y, z) ∈ G}.

Our goal is to lower bound the probability of event G. We can write

PY Z(G) =
∑

(y,z)∈G

PY (y)PZ|Y=y(z) =
∑
y∈GY

PY (y) PZ|Y=y(GZ(y))

≥ (1− δ2)
∑
y∈GY

PY (y) (31a)

≥ (1− δ2)(1− δ1), (31b)

where

• (31a) follows from the fact that for all y ∈ supp(PY ), PZ|X,Y=y satisfies (ε2, δ2)-PML which implies that

PZ|Y=y(GZ(y)) = PZ∼PZ|Y=y

[
`(X → Z | y) ≤ ε2

]
≥ 1− δ2,

• and (31b) follows from the fact that PY |X satisfies (ε1, δ1)-PML, that is,

PY (GY ) = PY∼PY
[
`(X → Y ) ≤ ε1

]
≥ 1− δ1.

It follows that

P(Y,Z)∼PY Z

[
`(X → y) + `(X → z | y) ≤ ε1 + ε2

]
≥ PY Z(G) ≥ (1− δ2)(1− δ1),

which yields

P(Y,Z)∼PY Z

[
`(X → Y,Z) > ε1 + ε2

]
≤ δ1 + δ2 − δ1δ2.

3) Define the event

AY = {y ∈ supp(PY ) : `(X → y) ≤ ε1}.

As PY |X satisfies (ε1, δ1)-PML, we have

1− δ1 ≤ PY (AY ) =
∑
y∈AY

PY (y) =
∑

(y,z)∈AY ×supp(PZ)

PY Z(y, z) = PY Z(A),

where A := AY × supp(PZ). Moreover, we define the event

B := {(y, z) ∈ supp(PY )× supp(PZ) : `(X → z | y) ≤ ε2}.
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By assumption, PY Z(B) ≥ 1− δ2. Therefore,

P(Y,Z)∼PY Z

[
`(X → Y,Z) ≤ ε1 + ε2

]
≥ P(Y,Z)∼PY Z

[
`(X → Y ) + `(X → Z | Y ) ≤ ε1 + ε2

]
≥ PY Z(A ∩ B)

= 1− PY Z(Ac ∪ Bc)

≥ 1− δ1 − δ2.

4) Let E ⊆ supp(PY Z) be an event satisfying PY Z(E) ≥ δ1 and 0 ≤ δ2 ≤ miny∈EY PZ|Y=y(EZ(y)). Since

PZ|X,Y=y satisfies (ε2, δ2)-EML for all y ∈ EY , we have

max
x∈supp(PX)

PZ|Y=y,X=x(EZ(y))

PZ|Y=y(EZ(y))
≤ exp(ε2). (32)

Now, we write

exp
(
`(X → E)

)
= max
x∈supp(PX)

PY Z|X=x(E)

PY Z(E)

= max
x∈supp(PX)

∑
y∈EY

∑
z∈EZ(y) PY Z|X=x(y, z)∑

y∈EY
∑
z∈EZ(y) PY Z(y, z)

= max
x∈supp(PX)

∑
y∈EY PY |X=x(y)

∑
z∈EZ(y) PZ|Y=y,X=x(z)∑

y∈EY PY (y)
∑
z∈EZ(y) PZ|Y=y(z)

= max
x∈supp(PX)

∑
y∈EY

PY (y)PZ|Y=y(EZ(y))∑
y′∈EY PY (y′)PZ|Y=y′(EZ(y′))

(
PY |X=x(y)

PY (y)

)(
PZ|Y=y,X=x(EZ(y))

PZ|Y=y(EZ(y))

)

≤ exp(ε2) max
x∈supp(PX)

∑
y∈EY

PY (y)PZ|Y=y(EZ(y))∑
y′∈EY PY (y′)PZ|Y=y′(EZ(y′))

(
PY |X=x(y)

PY (y)

)
(33a)

≤ exp(ε2) max
x∈supp(PX)

hx(PY |X=x, δ1) (33b)

≤ exp(ε2 + ε1), (33c)

where

• (33a) follows from inequality (32),

• the function hx in (33b) is defined in (16),

• and (33c) follows from the fact that PY |X satisfies (ε1, δ1)-EML.

5) Let E ⊆ supp(PY Z) be an event satisfying PY Z(E) ≥ δ1 + δ2. We define the following “bad” sets

BY := {y ∈ EY : PZ(EZ(y)) < δ2},

B := {(y, z) ∈ E : y ∈ BY },

and the “good” sets GY = EY \ BY and G = E \ B. Note that

PY Z(B) =
∑
y∈BY

PY (y)PZ|Y=y(EZ(y)) < δ2,
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which implies that PY Z(G) = PY Z(E)− PY Z(B) > δ1. Now, similarly to the previous part, we write

exp
(
`(X → E)

)
= max
x∈supp(PX)

∑
(y,z)∈E PY Z|X=x(y, z)

PY Z(E)

≤ max
x∈supp(PX)

∑
(y,z)∈B PY Z(y, z)

(
PY Z|X=x(y,z)

PY Z(y,z)

)
PY Z(E)

+ max
x∈supp(PX)

∑
(y,z)∈G PY Z|X=x(y, z)

PY Z(E)

≤ δ2
δ1 + δ2

exp(εmax) + max
x∈supp(PX)

∑
(y,z)∈G PY Z|X=x(y, z)

PY Z(G)
(34a)

≤ δ2
δ1 + δ2

exp(εmax) + exp(ε1 + ε2), (34b)

where

• (34a) follows from the fact that PY Z(B) < δ2, PY Z(E) ≥ δ1 + δ2, and for all (y, z) ∈ supp(PY Z),

max
x∈supp(PX)

PY Z|X=x(y, z)

PY Z(y, z)
≤ exp(εmax),

• and (34b) follows from the definition of the set G and the previous part.

�
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