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Abstract

Most methods for publishing data with privacy guarantees introduce randomness into datasets which reduces the

utility of the published data. In this paper, we study the privacy-utility tradeoff by taking maximal leakage as the

privacy measure and the expected Hamming distortion as the utility measure. We study three different but related

problems. First, we assume that the data-generating distribution (i.e., the prior) is known, and we find the optimal

privacy mechanism that achieves the smallest distortion subject to a constraint on maximal leakage. Then, we assume

that the prior belongs to some set of distributions, and we formulate a min-max problem for finding the smallest

distortion achievable for the worst-case prior in the set, subject to a maximal leakage constraint. Lastly, we define

a partial order on privacy mechanisms based on the largest distortion they generate. Our results show that when the

prior distribution is known, the optimal privacy mechanism fully discloses symbols with the largest prior probabilities,

and suppresses symbols with the smallest prior probabilities. Furthermore, we show that sets of priors that contain

more uniform distributions lead to larger distortion, while privacy mechanisms that distribute the privacy budget more

uniformly over the symbols create smaller worst-case distortion.

I. INTRODUCTION

How to publish sensitive data safely? This is a question encountered by many data curators. On the one hand,

thanks to the rapid progress in big data technologies, it is now possible to extract valuable information from

datasets, leading to numerous applications in areas such as image and speech recognition technologies, fraud

detection schemes, spam filters, and more. On the other hand, depending on the nature of the data, it may also

be possible to extract sensitive information from datasets which raises privacy concerns in data publishing. For

instance, it may be inferrable from a person’s financial transactions that they have diabetes if they regularly buy

insulin. A prime example of this tradeoff concerns health data, where data analysis methods can provide invaluable

insights for detecting/treating disorders or the planning of healthcare resources. However, due to the very sensitive

nature of health data, a breach of privacy may have severe consequences for the involved participants.

The most commonly used methods for publishing sensitive data with privacy guarantees rely on privacy mech-

anisms that introduce randomness into datasets. While randomizing datasets can to some extent alleviate privacy

concerns by providing plausible deniability, it may also partly destroy the useful information in the published data.

In the privacy literature, this problem is usually referred to as the privacy-utility tradeoff. Roughly speaking, stricter

privacy guarantees require increased randomization of the original data, which in turn leads to less utility in the

published data.

In this paper, we will study the privacy-utility tradeoff, where we use the notion of maximal leakage [1], [2]

to measure the amount of information leaking through a privacy mechanism. Maximal leakage is an operationally
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meaningful privacy measure: It captures the inference capabilities of an adversary who observes the published data

and tries to guess some (discrete) function of the original data. Furthermore, maximal leakage satisfies a number

properties that make it a suitable choice as a privacy metric. For example, no post-processing of the published

data can undermine the initial privacy guarantee (i.e., maximal leakage satisfies a data processing inequality) [2]. In

addition, maximal leakage can be employed as a tool for studying the privacy guarantees of practical algorithms [3].

In order to measure the utility of a privacy mechanism, we will use the expected Hamming distortion incurred by

the mechanism. Hamming distortion is a commonly used utility measure for discrete data, which is the setting

considered in this paper.

Many previous works have studied the privacy-utility tradeoff using different notions of privacy and different

utility measures. To give a few relevant examples, taking (local) differential privacy [4] as the privacy measure, the

privacy-utility tradeoff is investigated using Hamming distortion [5]–[7], Bayes risk [8], minimax risk [9], and a

class of convex utility functions [10]. In [11], maximal α-leakage (a generalization of maximal leakage) is taken

as the privacy measure, and the privacy-distortion tradeoff is studied using a hard distortion measure which bounds

the distortion with probability one. In [12], total variation privacy is considered and the privacy-utility tradeoff is

investigated using mutual information, error probability and mean square error as the utility measures.

Perhaps the most similar previous work to our current work is [7], where the privacy-distortion tradeoff is

investigated under local differential privacy and Hamming distortion. In [7], the authors consider a setup in which

the distribution generating the original dataset (i.e., the prior distribution) is not exactly known. Instead, we are

given a set of distributions such that any member of this set can be the true prior. The authors then categorize sets

of distributions into three classes. Class I sets are those sets whose convex hull includes the uniform distribution.

Class II sets contain distributions that have the same order in the probabilities assigned to the elements of a given

alphabet. To illustrate this, let π = (π1, π2, π3) denote a probability distribution on an alphabet with three elements.

Then, the sets {π : π2 ≥ π1 ≥ π3} and {π : π3 ≥ π2 ≥ π1} are both examples of Class II sets. Lastly, Class III

sets are those sets that belong to neither of the two previous classes. The authors then study the problem of finding

the smallest privacy leakage achievable for the worst distribution in a particular set of priors, subject to a bound

on the expected distortion. This problem is considered separately for each class of sets of priors.

Our work is similar to [7] in that we are also interested in a robust characterization of the privacy-distortion

tradeoff, albeit using a different notion of privacy. More specifically, we have the following setup: Suppose we

want to disclose some data, represented as the outcome of a random variable, and subject to a bound on the

information leakage. Among all the privacy mechanisms that satisfy the information leakage constraint, we wish

to pick the mechanism that incurs the smallest expected distortion. In this setup, we consider three different but

related problems:

• Given a fixed prior distribution, what is the smallest expected distortion achievable, subject to an upper bound

on the information leakage? What is the optimal privacy mechanism?

• Given a set of priors, what is the smallest expected distortion for the worst-case prior in the set, subject to an

upper bound on the information leakage? What is the optimal privacy mechanism?

• Given two privacy mechanisms satisfying the information leakage constraint, and considering the set of all



priors, which mechanism can produce larger distortion?

In our study of the second problem, we consider three sub-problems. First, we assume that the set of priors

includes the uniform distribution. Then, we relax this assumption, and assume that the set of priors includes a

distribution which we will call a least-informative distribution. Informally, the least-informative distribution is the

most “uniform-like” distribution in the set (we will formally define this later). Lastly, we will consider arbitrary

sets of priors.

Hence, our approach differs from [7] in a few key aspects. First, we will argue that it is not necessary to consider

different classes of sets of priors depending on the order of the probabilities assigned to elements in the alphabet.

That is, we need not distinguish between Class II and Class III sets. Roughly speaking, this is because maximal

leakage does not depend on the labels of the input and output alphabets, and therefore, we can re-label both alphabets

without affecting the privacy guarantee of a mechanism. While in our work we consider maximal leakage as our

privacy metric, the same argument applies to analysis using local differential privacy since the guarantees of local

differential privacy also remain unaffected by re-labelling of the input/output alphabets.

Another major difference between our work and previous works is that our objective goes well beyond finding

the optimal privacy mechanism and characterizing the smallest expected distortion. Here, our goal is to “order”

both prior distributions and privacy mechanisms based on the utility they provide. For this, we will use methods

from majorization theory [13], which allow us to partially order vectors. In doing so, we will show that, roughly

speaking, priors which are more uniformly distributed incur larger expected distortion, while privacy mechanisms

that distribute the privacy budget more uniformly over the symbols create smaller worst-case distortion.

The remainder of this paper is organized as follows. In Section II, we will go through some definitions/results

related to maximal leakage, Hamming distortion, and majorization theory. We will also define some notations used

in the paper. In Section III, we will consider the problem of finding the optimal privacy mechanism in the sense

of minimizing the expected distortion for a given prior and subject to a constraint on the maximal leakage of

the mechanism. In Section IV, we will generalize the previous scenario by assuming that the prior is not known,

but belongs to some fixed set of distributions. Here, we will consider the problem of finding the optimal privacy

mechanism for the worst-case prior in the set. Section V, concerns a slightly different problem. We assume that we

are given two privacy mechanisms satisfying the maximal leakage constraint, and we compare the largest distortion

generated by them. Section VI presents our conclusions.

II. PRELIMINARIES AND NOTATION

A. Maximal Leakage

Suppose X is a random variable taking values in a finite alphabet X . We will use X to represent some sensitive

data that we want to publish. In order to release a sanitized version of X , we will use the privacy mechanism PY |X ,

which is a conditional probability kernel. This produces a random variable Y taking values in a finite alphabet Y ,

which represents the published data.



Let L(X → Y ) denote the maximal leakage from X to Y . It is shown in [2, Thm. 1] that for finite alphabets

maximal leakage takes the form

L(X → Y ) = log
∑
y∈Y

max
x∈X :PX(x)>0

PY |X(y | x), (1)

where log denotes the natural logarithm. From (1), it is clear that maximal leakage depends on the distribution

over X (i.e., the prior) only through its support. Therefore, if we fix the support of X , we can view maximal

leakage as a property of the privacy mechanism PY |X . Hence, for a fixed support of X , we will adopt the notation

L(PY |X) := L(X → Y ), and write

L(PY |X) = log

m∑
j=1

max
i∈[n]

PY |X(yj | xi), (2)

where |supp(X)| = |X | = n ≥ 2, and |Y| = m. In the above definition, we can interpret exp(L(PY |X)) as the

overall privacy cost and maxi∈[n] PY |X(yj | xi) as the privacy cost caused by disclosing the jth output symbol.

We will frequently refer back to this interpretation. In addition, the following upper and lower bounds on maximal

leakage, proved in [2, Lem. 1], will be repeatedly used in the rest of the paper:

0 ≤ L(PY |X) ≤ min{log n, logm}, (3)

where the lower bound holds with equality when X and Y are independent, and the upper bound holds with equality

when Y is obtained from X through a deterministic mapping.

Let ∆(m−1) denote the m−1-dimensional probability simplex. We will useMn,m to denote the set of all n×m

row-stochastic matrices, that is, matrices whose rows are elements from ∆(m−1). To simplify the notation, a privacy

mechanism PY |X will be represented by a row-stochastic matrix P = [pij ] ∈ Mn,m, where pij = PY |X(yj | xi)

for i ∈ [n] and j ∈ [m]. Using this notation, the maximal leakage of a privacy mechanism P can be written as

L(P ) =

m∑
j=1

max
i∈[n]

pij , (4)

that is, maximal leakage is calculated as the sum of the largest elements in each column of P .

B. Hamming Distortion

In order to measure the utility of a mechanism PY |X , we will calculate the expected distortion E[d(X,Y )] using

Hamming distortion defined as d(x, y) = 1(x 6= y), where 1(·) denotes the indicator function. Let π = (π1, . . . , πn)

denote the prior distribution on X , where πi denotes the probability of xi. Note that we require πi > 0 for all

i ∈ [n] since we are assuming that X has full support. The expected Hamming distortion can be written as

EP,π[d(X,Y )] =

m∑
j=1

n∑
i=1

pijπi 1(xi 6= yj)

= 1−
m∑
j=1

n∑
i=1

pijπi 1(xi = yj).

(5)

From (5), it is easy to see that mechanisms with m > n, i.e., matrices with more columns than rows, cannot be

optimal in terms of minimizing the expected distortion since for j > n, we have 1(xi = yj) = 0 for all i ∈ [n]

(this is formally proved in [7, Lem. 3] using local differential privacy, and similar arguments can be made for our



case). Hence, in the rest of the paper, we will assume that m = n. Note that this also includes the case m < n by

having columns in matrix P that consist only of zeros. Therefore, the expected distortion can be written as

EP,π[d(X,Y )] = 1−
n∑
j=1

pjj πj . (6)

C. Vector Notations

Consider some vector x = (x1, . . . , xn) ∈ Rn. We will be using the following notations to represent a few simple

operations on vectors:

• x↓ = (x[1], . . . , x[n]) denotes a permutation of x that orders it decreasingly, where x[k] is the kth largest

element in x. We will call x↓ the decreasing rearrangement of x.

• x↑ = (x(1), . . . , x(n)) denotes the increasing rearrangement of x, where x(k) denotes the kth smallest element

in x.

• x̃k =
∑k
j=1 xj denotes the sum of the first k elements in x.

• x̃[k] =
∑k
j=1 x[j] denotes the sum of the k largest elements in x.

• x̃(k) =
∑k
j=1 x(j) denotes the sum of the k smallest elements in x.

• ix = (ix(1), . . . , ix(n)) denotes the sequence of indexes corresponding to the decreasing rearrangement of x,

that is, x↓ = (x[1], . . . , x[n]) = (xix(1), . . . , xix(n)), where ix(j) ∈ [n] is the index of the jth largest element

in x.

D. Majorization

In this section, we will give a few definitions and results from majorization theory. Informally, majorization

theory allows us to order vectors based on how “uniform” the elements of the vectors are. All of the following

definitions/results can be found in [13].

Definition 1 (Majorization): Consider two vectors p, q ∈ Rn. We say that p majorizes q, and write q ≺ p if

q̃[m] ≤ p̃[m] for m = 1, . . . , n− 1 and p̃n = q̃n, (7)

or alternatively,

q̃(m) ≥ p̃(m) for m = 1, . . . , n− 1 and p̃n = q̃n. (8)

Majorization defines a partial order on n-dimensional vectors, i.e., a relation that is reflexive, transitive, and anti-

symmetric. Note that not all n-dimensional vectors can be compared in terms of majorization. For example, (4, 4, 1)

and (5, 2, 2) cannot be compared in terms of majorization. On the other hand, if we define Q = {(q1, q2, q3) ∈ R3
+ :∑3

i=1 qi = 9}, then (3, 3, 3) is majorized by all q ∈ Q while (9, 0, 0), (0, 9, 0) and (0, 0, 9) majorize all q ∈ Q. A

graphical illustration of majorization is given in Figure 1.

In Definition 1, the sum of the elements in vectors p and q are required to be equal. If we remove this condition,

we will get the following two extensions of majorization, which also define partial orders on vectors.

Definition 2 (Weak majorization): Consider two vectors p, q ∈ Rn. We say that p weakly sub-majorizes q, and

write q ≺w p if

q̃[m] ≤ p̃[m] for all m = 1, . . . , n. (9)



(a) p̃[k] > q̃[k], r̃[k] for k = 1, 2 and p̃[3] = q̃[3] = r̃[3]. Since

q̃[1] > r̃[1] but q̃[2] < r̃[2], q and r cannot be compared.

(b) p̃(k)<q̃(k), r̃(k) for k = 1, 2 and p̃(3)= q̃(3)= r̃(3). Since

q̃(1) < r̃(1) but q̃(2) > r̃(2), q and r cannot be compared.

Fig. 1: Illustration of majorization using three vectors p, q, r ∈ R3
+, where we have q, r ≺ p, but q and r cannot be

compared in terms of majorization.

(a) q, r ≺w p but q and r cannot be compared. (b) q, r ≺w p but q and r cannot be compared.

Fig. 2: Illustration of weak majorization using three vectors p, q, r ∈ R3
+.

Furthermore, we say that p weakly super-majorizes q, and write q ≺w p if

q̃(m) ≥ p̃(m) for all m = 1, . . . , n. (10)

Weak majorization is illustrated in Figure 2.

Definition 3 (Schur-convex function): Consider two vectors p, q ∈ Rn. We say that a real-valued function Φ :

Rn → R is Schur-convex if q ≺ p implies Φ(q) ≤ Φ(p).

The previous definition states that Schur-convex functions are order-preserving (i.e., increasing) with respect to

the majorization partial order. In the next lemma, we describe a common method for proving Schur-convexity of

functions.



Lemma 4 (Schur’s condition): Let I ⊂ R be an open interval and suppose Φ : In → R is a continuously

differentiable function. Then, necessary and sufficient conditions for Φ to be Schur-convex are

Φ is symmetric on In (11)

and

(pi − pj)
( ∂Φ

∂pi
− ∂Φ

∂pj

)
≥ 0 for all i, j ∈ [n]. (12)

In order for a Schur-convex to be order-preserving with respect to weak majorization, we need to specify an extra

condition on the function. This is illustrated in the following lemma.

Lemma 5: Suppose Φ : Rn → R is a Schur-convex function. If Φ is increasing, then q ≺w p implies Φ(q) ≤ Φ(p).

Conversely, if Φ is decreasing, then q ≺w p implies Φ(q) ≤ Φ(p).

III. KNOWN PRIOR DISTRIBUTION

In this section, we study our first problem formulated as follows. Suppose we want to disclose the outcome of a

random variable X such that the information leakage about X is below a predefined threshold, and assuming that

the prior distribution π over X is known. Among all the privacy mechanisms that satisfy the leakage constraint,

we want to pick the mechanism that creates the smallest expected Hamming distortion, and therefore, provides the

highest utility. Considering this setup, let

Sγ = {P ∈Mn,n : L(P ) ≤ γ} (13)

be the set of all n× n row-stochastic matrices whose maximal leakage is bounded by some γ ≤ log n, where eγ

represents our overall privacy budget. Note that when γ ≥ log n, we are allowed to fully disclose the outcomes of

X , in which case Sγ = Mn,n, i.e., the set Sγ contains all n × n row-stochastic matrices. Thus, in the following

we consider γ ≤ log n. Our goal is to find Dmin(γ, π) defined as

Dmin(γ, π) := inf
P∈Sγ

EP,π[d(X,Y )] = inf
P∈Sγ

(1−
∑
j

pjjπj) = 1− sup
P∈Sγ

∑
j

pjjπj . (14)

Problem (14) describes a constrained convex optimization problem: The objective function is linear, and one can

easily verify that the set Sγ is convex. The following result shows that the optimal mechanism for this problem fully

discloses symbols with the largest prior probabilities, and suppresses symbols with the smallest prior probabilities.

Theorem 6: Suppose k is a positive integer such that k ≤ eγ ≤ k+ 1 and k ≤ n−1. Then, the smallest expected

distortion in problem (14) is

Dmin(γ, π) = 1−
(
π̃[k] + (eγ − k)π[k+1]

)
. (15)

In addition, the optimal privacy mechanism P ∗ satisfies

max
i∈[n]

p∗ij = p∗jj , (16)



for all j ∈ [n] (i.e., the largest element in each column is located on the diagonal), and has the following diagonal

entries:

p∗jj =


1 j = iπ(1), . . . , iπ(k),

eγ − k j = iπ(k + 1),

0 j = iπ(k + 2), . . . , iπ(n).

(17)

Proof: Take two vectors x, y ∈ Rn+. We will define a partial order on Rn+ induced by iπ as follows:

x ≺iπ y if and only if
l∑

j=1

xiπ(j) ≤
l∑

j=1

yiπ(j), (18)

for all l = 1, . . . , n, where iπ(j) is the index of the jth largest element in π (see Section II-C). Note that this partial

order is very similar to the weak sub-majorization order, except the elements in the vectors x and y are ordered

according to iπ instead of decreasingly. Now, let pdiag = (p11, . . . , pnn) denote the vector of diagonal entries for

matrix P . We will use our partial order induced by iπ on vectors with non-negative elements to define a pre-order

on the matrices in Sγ : for P,Q ∈ Sγ , we have

P ≺iπ Q if and only if pdiag ≺iπ qdiag. (19)

Note that iπ only induces a pre-order on matrices since the relation in (19) is reflexive and transitive but not

anti-symmetric. The result stated in the theorem is then immediate by noting that:

(a) The function fπ(P ) =
∑
j pjjπj is order-preserving (i.e., increasing) with respect to the pre-order ≺iπ , that is,

P ≺iπ Q =⇒ fπ(P ) ≤ fπ(Q). (20)

(b)
∑n
j=1 pjj ≤

∑n
j=1 maxi pij ≤ eγ , for all P ∈ Sγ , with equality when maxi pij = pjj for all j ∈ [n] and∑

j pjj = eγ .

(c) A matrix P ∗ described by (16) and (17) satisfies P ≺iπ P ∗ for all P ∈ Sγ .

Remark 7: Conditions (16) and (17) together imply that for γ such that k < eγ ≤ k + 1, the optimal privacy

mechanism for problem (14) has n− (k+1) all-zero columns. Hence, the output alphabet has support of size k+1.

Remark 8: The optimal mechanism for problem (14) depends on the prior only through iπ . We will frequently

use this property in the rest of the paper.

In Theorem 6, if we view maxi∈[n] pij as the privacy cost of disclosing the jth symbol, then the optimal

mechanism is highly opportunistic in that the privacy budget is allocated only to the most likely symbols. Note that

we must be careful in interpreting this result. While for a fixed prior an opportunistic mechanism is optimal, we

cannot conclude that, in general, privacy mechanisms that allocate the privacy budget uniformly to all symbols will

generate larger distortion. In fact, we will see in Section V that when considering the set of all priors, mechanisms

that distribute the privacy budget more uniformly among the symbols generate smaller worst-case distortion.

IV. A SET OF PRIOR DISTRIBUTIONS

Now, suppose the prior distribution is not known, but belongs to some set Π of probability distributions with

support of size n (the largest set Π is the relative interior of ∆(n−1)). Our goal is to find a privacy mechanism in



Sγ that minimizes the expected distortion for the worst-case prior in Π. Thus, the problem is changed to finding

Dmin(γ,Π) defined as

Dmin(γ,Π) := inf
P∈Sγ

sup
π∈Π

EP,π[d(X,Y )]

= inf
P∈Sγ

sup
π∈Π

(1−
∑
j

pjjπj)

= 1− sup
P∈Sγ

inf
π∈Π

∑
j

pjjπj .

(21)

We will study this problem by considering three sub-problems: first, we will assume that the set Π contains the

uniform distribution. Then, we will relax this condition, and assume that Π contains a least-informative distribution.

Informally, one can think of the least-informative distribution as the distribution in Π that is more uniform than

any other distribution in Π. Lastly, we will consider an arbitrary set Π.

A. Sets Containing the Uniform Distribution

Suppose the set Π contains the uniform distribution. Note that we are not making any other assumptions about

Π such as convexity, compactness, etc. In this case, we have the following result characterizing Dmin(γ,Π).

Proposition 9: Suppose the set Π contains the uniform distribution denoted by πu. Then, the smallest expected

distortion for problem (21) is

Dmin(γ,Π) = 1− eγ

n
, (22)

which is achieved by any privacy mechanism P ∈ Sγ satisfying
∑
j pjj = eγ with πu as the prior.

Proof: We prove this result by showing that the RHS of (22) both lower bounds and upper bounds the LHS.

Lower bound: Let πu denote the uniform distribution, that is, πu1 = . . . = πun = 1
n . Then, for all P ∈ Sγ we

have

inf
π∈Π

∑
j

pjjπj ≤
∑
j

pjjπ
u
j

=
1

n

∑
j

pjj

≤ 1

n

∑
j

max
i
pij

≤ eγ

n
.

(23)

Hence, by taking the supremum of both sides we get

sup
P∈Sγ

inf
π∈Π

∑
j

pjjπj ≤
eγ

n
, (24)

and finally,

1− sup
P∈Sγ

inf
π∈Π

∑
j

pjjπj ≥ 1− eγ

n
. (25)

Upper bound: Fix some Q ∈ Sγ such that

max
i
qij = qjj =

eγ

n
(26)



for all j ∈ [n]. Then, we can write

1− sup
P∈Sγ

inf
π∈Π

∑
j

pjjπj ≤ 1− inf
π∈Π

∑
j

qjjπj = 1− eγ

n
. (27)

Finally, we verify that any matrix P ∈ Sγ satisfying
∑
j pjj = eγ achieves Dmin(γ,Π) with πu as the prior:

1−
∑
j

pjjπ
u
j = 1− 1

n

∑
j

pjj = 1− eγ

n
. (28)

Proposition 9 suggests that the worst prior in Π is in fact the uniform distribution. Therefore, in the next section we

will look into sets that do not necessarily contain the uniform distribution, but contain a distribution that is more

uniform that any other distribution in the set.

B. Sets Containing a Least-informative Distribution

Here, we will relax the condition on Π in that we no longer require Π to contain the uniform distribution; we only

require that Π contains a least-informative distribution. For the rest of this section, we will assume k ≤ eγ ≤ k+ 1

for some positive integer k ≤ n− 1.

Lemma 10: Consider the function hγ : Rn+ → R+ defined as hγ(π) := supP∈Sγ
∑
j pjjπj . Then, hγ depends

on π through the function fγ : Rn+ → R2
+ defined as fγ(π) = (π̃[k], π[k+1]). Moreover, hγ is increasing and

Schur-convex in fγ(π), π ∈ Π. Thus, for all π, ρ ∈ Π such that fγ(π) ≺w fγ(ρ), we have hγ(π) ≤ hγ(ρ).

Proof: First, we apply the result of Theorem 6 to get

hγ(π) = sup
P∈Sγ

∑
j

pjjπj = π̃[k] + (eγ − k)π[k+1], (29)

from which we can see that hγ depends on π only through fγ(π) = (π̃[k], π[k+1]). Now, can prove the Schur-

convexity of hγ by verifying Schur’s condition (Lemma 4). Observe that hγ is symmetric with respect to permu-

tations of π. This is because maximal leakage L(P ) does not depend on the order of rows and column of P .

Therefore, if P ∈ Sγ , then TP ∈ Sγ , where T is some n× n permutation matrix. In addition, since

∂hγ(π)

π̃[k]
≥ ∂hγ(π)

π[k+1]
≥ 0, (30)

Schur’s condition is satisfied and hγ(π) is increasing in fγ(π).

Lemma 10 suggests that for calculating Dmin(γ,Π) one needs to consider the the most uniform prior in Π. To

formalize uniformity, we make the following definition.

Definition 11: Let fγ be the function defined in Lemma 10. We say that a distribution π∗ ∈ Π is k-least-informative

if it satisfies fγ(π∗) ≺w fγ(π) for all π ∈ Π.

Proposition 12: Assume that the set Π contains a k-least-informative distribution denoted by π∗. Then, the

smallest expected distortion for problem (21) is

Dmin(γ,Π) = 1−
(
π̃∗[k] + (eγ − k)π∗[k+1]

)
. (31)

Furthermore, Dmin(γ,Π) is achieved by any stochastic matrix satisfying (16) and (17) for prior π∗.



Proof: From (the proof of) Lemma 10, we know that supP∈Sγ
∑
j pjjπj is symmetric in π. Therefore, it

suffices to consider the decreasing rearrangement of the distributions in Π. That is, we assume π1 ≥ . . . ≥ πn for

all π ∈ Π. Now, we will prove an upper bound and a lower bound on Dmin(γ,Π).

Lower bound:

sup
P∈Sγ

inf
π∈Π

∑
j

pjjπj ≤ inf
π∈Π

sup
P∈Sγ

∑
j

pjjπj

(a)
=

k∑
j=1

π∗j + (eγ − k)π∗k+1

= π̃∗k + (eγ − k)π∗k+1,

(32)

where equality (a) follows from Lemma 10. Therefore,

1− sup
P∈Sγ

inf
π∈Π

∑
j

pjjπj ≥ 1−
( k∑
j=1

π∗j + (eγ − k)π∗k+1

)
. (33)

Upper bound: Fix some P ∗ ∈ Sγ satisfying (16), (17) for iπ = (1, . . . , n). Then, we can write

1− sup
P∈Sγ

inf
π∈Π

∑
j

pjjπj ≤ 1− inf
π∈Π

∑
j

p∗jjπj

= 1− inf
π∈Π

π̃k + (eγ − k)πk+1

= 1−
(
π̃∗k + (eγ − k)π∗k+1

)
.

(34)

Remark 13: The uniform distribution over an alphabet of size n is k-least informative for all k ≤ n−1. Therefore,

Proposition 9 can be considered as a special case of Proposition 12.

C. General Sets

In the previous section, we considered sets of priors which contain a least-informative distribution. One should

note that, in general, a set Π may not contain a least-informative distribution since ≺w is a partial order, and not

all members of Π may be comparable in terms of ≺w. To address this matter, in this section we present a general

approach for finding Dmin(γ,Π).

Let Π↓ be the set containing the decreasing rearrangement of the priors in Π, i.e., Π↓ = {π↓ : π ∈ Π}.

Theorem 14: For all Π 6= ∅, the smallest expected distortion Dmin(γ,Π) can be obtained as the solution to the

following optimization problem:

Dmin(γ,Π) = 1− inf
π∈Π↓

π̃k + (eγ − k)πk+1. (35)

Furthermore, the optimal privacy mechanism P ∈ Sγ for problem (35) satisfies (16) and (17) for iπ = (1, . . . , n).

Proof: First, we argue that in order to solve problem (21), we can consider the set Π↓ instead of Π. As stated

in (the proof of) Lemma 10, the set Sγ is permutation-invariant. That is, if P ∈ Sγ , then TP ∈ Sγ , where T is

some n× n permutation matrix. From this, we conclude that without loss of generality we can order the elements

of each π ∈ Π in some predefined way, for example, decreasingly.

Now, we show that the RHS of (35) both lower bounds and upper bounds the LHS.



Lower bound:

1− sup
P∈Sγ

inf
π∈Π

∑
j

pjjπj = 1− sup
P∈Sγ

inf
π∈Π↓

∑
j

pjjπj

≥ 1− inf
π∈Π↓

sup
P∈Sγ

∑
j

pjjπj

= 1− inf
π∈Π↓

k∑
j=1

πj + (eγ − k)πk+1,

(36)

where the last equality follows from Theorem 6 since iπ = (1, . . . , n) for all π ∈ Π↓.

Upper bound: Let P ∗ ∈ Sγ be some stochastic matrix satisfying (16) and (17) for iπ = (1, . . . , n). Then, we

have

1− sup
P∈Sγ

inf
π∈Π↓

∑
j

pjjπj ≤ 1− inf
π∈Π↓

∑
j

p∗jjπj

= 1− inf
π∈Π↓

k∑
j=1

πj + (eγ − k)πk+1.

(37)

Finally, the fact that the optimal mechanism for problem (35) satisfies (16) and (17) for iπ = (1, . . . , n) follows

from Remark 8.

Theorem 14 states that for an arbitrary set Π, the smallest expected distortion can be calculated as the solution

to an optimization problem over two variables. In fact, we can combine the first k elements of π into π̃k for all

π ∈ Π↓, and end up with an optimization problem with two variables over a two-dimensional set. This is of course

a very convenient property: Regardless of how large n is, we only need to optimize over two variables.

In the following two numerical examples, we will illustrate the results of this section.

Example 15: Suppose we want to solve problem (21) with γ = log 2.5 and for a set Π(1) of distributions over an

alphabet with four elements defined as Π(1) = {π ∈ ∆(3) : π = (0.4− 2δ, 0.3 + δ, 0.15 + 0.5δ, 0.15 + 0.5δ), 0 ≤

δ ≤ 0.1}. To solve the problem, first we need to construct the set Π
(1)
↓ . For this, we note that for 0 ≤ δ ≤ 1

30 we

have

0.4− 2δ ≥ 0.3 + δ > 0.15 + 0.5δ, (38)

while for 1
30 ≤ δ ≤ 0.1 we have

0.3 + δ ≥ 0.4− 2δ ≥ 0.15 + 0.5δ. (39)

However, since k = 2, we can sum over the two largest elements of all π to obtain the two dimensional set

Π
(1)
↓ = {π ∈ ∆(2) : π = (0.7 − δ, 0.15 + 0.5δ, 0.15 + 0.5δ), 0 ≤ δ ≤ 0.1}. Now, since the set Π

(1)
↓ describes a

polytope, we can solve problem (35) as a linear program, which gives Dmin(γ,Π(1)) = 0.3. Note that the set Π(1)

contains a least-informative distribution for k = 2, i.e., π∗ = (0.2, 0.4, 0.2, 0.2), so we could have also used the

result of Proposition 12 to solve the problem. An example of an optimal mechanism for this problem is:

P ∗ =


0 1

3
1
3

1
3

0 1 0 0

0 0 1 0

0 0.3 0.2 0.5

 , (40)



which achieves Dmin(γ,Π(1)) with π∗ as the prior.

Example 16: Now, suppose γ = log 2.5 and we wish to find Dmin(γ,Π) for Π = Π(1) ∪ Π(2), where Π(1) was

defined in the previous example, and

Π(2) = {(0.3, 0.3, 0.1, 0.3), (0.29, 0.28, 0.29, 0.14), (0.05, 0.15, 0.4, 0.4)}. (41)

Clearly, the set Π does not contain a least-informative distribution for k = 2. However, each of the two sets

Π(1) and Π(2) do contain a least-informative distribution ((0.29, 0.28, 0.29, 0.14) is least-informative in Π(2)), so

it suffices to compare Dmin(γ, π) for π = (0.2, 0.4, 0.2, 0.2) and π = (0.29, 0.28, 0.29, 0.14). By doing so, we get

Dmin(γ,Π) = 0.28 which is achieved by π = (0.29, 0.28, 0.29, 0.14). An example of an optimal mechanism for

this problem is:

P ∗ =


1 0 0 0

0.1 0.5 0.4 0

0 0 1 0

0.3 0.4 0.3 0

 . (42)

We conclude this section by stating an upper bound on Dmin(γ,Π) that is valid for all Π 6= ∅.

Remark 17: Consider a mechanism Q∗ ∈ Sγ satisfying maxi q
∗
ij = q∗jj = eγ

n for all j ∈ [n]. Then, for all Π 6= ∅,

Dmin(γ,Π) = 1− sup
P∈Sγ

inf
π∈Π

∑
j

pjjπj

≤ 1− inf
π∈Π

∑
j

eγ

n
πj

= 1− eγ

n
.

(43)

As we showed in Proposition 9, this upper bound is attained when Π contains the uniform distribution. The intuition

behind this upper bound will be made clear in the next section.

V. ORDERING PRIVACY MECHANISMS IN TERMS OF WORST-CASE DISTORTION

In this section, we will consider a slightly different problem. Suppose the set Π contains all prior distributions

with support of size n, that is, Π is the relative interior of ∆(n−1). We are given two privacy mechanisms P,Q ∈ Sγ ,

and we want to compare the largest distortion generated by them. Thus, we want to find Dmax(P ) defined as

Dmax(P ) := sup
π∈Π

(1−
∑
j

pjjπj) = 1− inf
π∈Π

∑
j

pjjπj , (44)

and compare it with Dmax(Q).

Theorem 18: Let pdiag = (p11, . . . , pnn) denote the vector of diagonal entries for matrix P . Dmax(P ) is Schur-

convex and decreasing in pdiag. Therefore, for P,Q ∈ Sγ ,

qdiag ≺w pdiag =⇒ Dmax(Q) ≤ Dmax(P ). (45)

Proof: We can write

Dmax(P ) = 1− inf
π∈Π

∑
j

pjjπj = 1−min
j
pjj . (46)



Note that the infimum in (46) cannot be attained since the prior attaining it is on the boundary of ∆(n−1). Schur-

convexity of Dmax(P ) follows from the fact that 1−minj pjj is convex and symmetric with respect to permutations

of pdiag [13, 3.C.2]. It is also easy to see that Dmax(P ) is decreasing in every component of pdiag, while keeping

the other components constant.

Intuitively, we can view Dmax(P ) as the capacity of mechanism P for generating distortion. Therefore, Theo-

rem 18 states that mechanisms with larger and more uniform diagonal entries have a lower capacity for generating

distortion. Hence, if there is high uncertainty in what the true prior is, such as the case when Π is the relative

interior of ∆(n−1), it is better to pick a mechanism with larger and more uniform diagonal entries to avoid large

distortion.

Corollary 19: Let Q∗ be the mechanism satisfying maxi q
∗
ij = q∗jj = eγ

n for all j ∈ [n]. From Theorem 18, we

can conclude that Dmax(Q∗) ≤ Dmax(P ) for all P ∈ Sγ . Furthermore, the expected distortion generated by Q∗

does not depend on the prior distribution. Hence, for all π, we have

EP∗,π[d(X,Y )] = 1−
∑
j

p∗jjπj = 1− eγ

n

∑
j

πj = 1− eγ

n
. (47)

The previous corollary and Remark 17 state that the distortion generated by mechanism Q∗, which has a uniform

privacy cost over the symbols, has no dependency on the prior distribution. Intuitively, we can conclude that Q∗

is the most reliable mechanism when either there is high uncertainty in the true value of the prior (i.e., when Π is

the set of all distributions), or when the prior is not informative (i.e., when π is the uniform distribution).

VI. CONCLUSIONS

In this paper, we have studied the privacy-utility tradeoff using maximal leakage as the measure of privacy and

the expected Hamming distortion as the measure of utility. In this context, we have formulated three different but

related problems. First, we assumed that the prior distribution is known, and we considered the problem of finding

the optimal privacy mechanism that minimizes the expected Hamming distortion subject to a maximal leakage

constraint. Then, we generalized this setup to a scenario in which the prior is not exactly known, but belongs to

some set of distributions. Here, we formulated a min-max problem for finding the smallest expected distortion for

the worst-case prior in the set subject to a maximal leakage constraint. In our last problem, we compared privacy

mechanisms in terms of the largest distortion they can create, and partially ordered them accordingly.

Our results show that when the prior distribution is known, the optimal privacy mechanism is opportunistic in

that the privacy budget is allocated only to symbols with the largest prior probabilities, while symbols with the

smallest prior probabilities are completely suppressed. Roughly speaking, this is because both our utility and privacy

measures can be decomposed as the sum of the corresponding per-symbol measures. More specifically, the expected

Hamming distortion is a weighted sum utility: The diagonal entries in the matrix of a privacy mechanism represent

the per-symbol utilities which are weighted by the prior probabilities. Similarly, maximal leakage can be thought

of as the sum of the privacy costs incurred by the output symbols. Taking this interpretation into account, we may

expect conceptually comparable results in studying the privacy-utility tradeoff using other privacy/utility measures

that demonstrate a similar decoupling behavior. As such, the methods used in our work can be applied to studying

other privacy-utility problems.



For our second and third problems, we used majorization theory to show that priors which are more uniform, and

therefore less informative, lead to larger distortion. On the other hand, privacy mechanisms that allocate the privacy

budget more uniformly to the symbols generate smaller worst-case distortion. Hence, these results are valuable in

that they provide general guidelines for designing high-utility privacy mechanisms.
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