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Abstract6

We consider the stabilization of a class of linear evolution systems z′ = Az + Bv under the observation7

y = Cz by means of a finite dimensional control v. The control is based on the design of a Luenberger observer8

which can be infinite or finite dimensional (of dimension large enough). In the infinite dimensional case, the9

operator A is supposed to generate an analytical semigroup with compact resolvent and the operators B and10

C are unbounded operators whereas in the finite dimensional case, A is assumed to be a self-adjoint operator11

with compact resolvent, B and C are supposed to be bounded operators. In both cases, we show that if12

(A,B) and (A,C) verify the Fattorini-Hautus Criterion, then we can construct an observer-based control v13

of finite dimension (greater or equal than largest geometric multiplicity of the unstable eigenvalues of A)14

such that the evolution problem is exponentially stable. As an application, we study the stabilization of the15

N dimensional convection-diffusion system with Dirichlet boundary control and an internal observation.16
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2010 Mathematics Subject Classification 93B53, 93D15, 93C20.18

Contents19

1 Introduction and main results 220

1.1 Infinite-Dimensional Observer (IDO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

1.2 Finite-Dimensional Observer (FDO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422

1.3 Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

2 Infinite dimensional observer 525

2.1 Spectral decomposition of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

2.2 Construction of an infinite dimensional observer based control . . . . . . . . . . . . . . . . . . . . 627

2.3 Stability of the closed-loop system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 828

3 Finite dimensional observer 1029

3.1 Spectral decomposition of the system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1030

3.2 Finite dimensional observer based control and stability of the closed-loop system . . . . . . . . . 1131

4 Stabilization of the reaction-diffusion equation 1432

1



1 Introduction and main results1

Given b ∈ L2(0, 1), consider the one-dimensional controlled heat equation2 
∂tz(t, x) = ∂xxz(t, x) + b(x)v(t), t > 0, x ∈ (0, 1),

∂xz(t, 0) = 0, z(t, 1) = 0,

z(0) = z0.

(1.1)

Obviously, the open-loop system (i.e. for v = 0) is exponentially stable, with a decay rate defined by the3

smallest eigenvalue of the underlying operator describing the free dynamics (namely the positive definite self-4

adjoint operator −∂xx with Neumann boundary condition at x = 0 and Dirichlet boundary condition at x = 1).5

Based on the observation6

y(t) =

∫ 1

0

c(x)z(t, x) dx, (1.2)

where c ∈ L2(0, 1), a natural question that arises is to know wether it is possible to design a finite dimensional7

feedback control v, such that the closed-loop system (1.1) is exponentially stable with an arbitrary prescribed8

decay rate σ > 0. It a recent work, a positive and constructive answer to this question has been proposed by9

Katz and Fridman [11], using an observer-based feedback control. More precisely, the authors proposed feasible10

design conditions for the construction of such controls for a more general 1D reaction-diffusion equation with11

variable coefficients (i.e. for a free dynamics described by an operator of the form ∂x (p(x)∂x·)− q(x)·).12

In this paper, our objective is to generalize this result to a large class of parabolic systems, possibly multi-13

dimensional and involving unbounded control and/or observation operators. More precisely, given three Hilbert14

spaces H (the state space), U (the control space) and Y (the observation space), consider the linear infinite15

dimensional system16 
z′(t) = Az(t) +Bv(t),

z(0) = z0,

y(t) = Cz(t),

(1.3)

where A : D(A) −→ H is an unbounded operator, B ∈ L (U, (D(A∗))′) and C ∈ L (D(A),Y). Given σ > 0,
the goal of this paper is to prove the existence of an observer-based control v such that the solution of (1.3) is
exponentially stable, with a decay rate −σ:

∥z(t)∥H ⩽Me−σt∥z0∥H.

We will investigate two classes of systems, depending on whether the observer used is infinite-dimensional (IDO17

case) or finite-dimensional (FDO case). We will make the following assumptions on A, B and C in these two18

cases (below, ρ(A) denote the resolvent set of A):19

• Infinite-Dimensional Observer (IDO)20

A is an analytic operator with compact resolvent on H, (H1.A)

21

(µ0 Id−A)−γB ∈ L(U,H) is a linear bounded operator for some γ ∈ [0, 1) and µ0 ∈ ρ(A), (H1.B)
22

C(µ0 Id−A)−γ̂ ∈ L(H,Y) is a linear bounded operator for some γ̂ ∈ [0, 1) and µ0 ∈ ρ(A), (H1.C)
23 {

∀ε ∈ D(A∗), ∀λ ∈ C, Reλ ⩾ −σ, A∗ε = λε and B∗ε = 0 =⇒ ε = 0,
∀ε ∈ D(A), ∀λ ∈ C, Reλ ⩾ −σ, Aε = λε and Cε = 0 =⇒ ε = 0.

(H1.D)

• Finite-Dimensional Observer (FDO)24

A is a self-adjoint operator with compact resolvent, (H2.A)
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1

B ∈ L(U,H), (H2.B)
2

C ∈ L(H,Y), (H2.C)
3 {

∀ε ∈ D(A), ∀λ ∈ R, λ ⩾ −σ, Aε = λε et B∗ε = 0 =⇒ ε = 0,
∀ε ∈ D(A), ∀λ ∈ R, λ ⩾ −σ, Aε = λε et Cε = 0 =⇒ ε = 0.

(H2.D)

It is worth mentioning that assumption (H1.D) (and its counterpart (H2.D) in the self-adjoint case) is the4

well-known Fattorini-Hautus criterion for exponential stabilization (see [6], [8] and [2]).5

For every ν > 0, we set6

Σ+
ν := {λj ∈ σ(A) ; Reλj ⩾ −ν}, Σ−

ν := {λj ∈ σ(A) ; Reλj < −ν}, (1.4)

where σ(A) is the spectrum of A. Condition (H1.A) in the IFD case and (H2.A) in the FDO case imply that7

Σ+
ν describes a finite set. We define the projection8

P+
ν = − 1

2ıπ

∫
Γ+
ν

(ζ Id−A)−1 dζ, P−
ν = Id−P+

ν , (1.5)

where Γ+
ν is a curve enclosing Σ+

ν but no other point of the spectrum of A and oriented counterclockwise (see
[10, V.5, p.272] ). We set

z±ν := P±
ν z, ∀z ∈ H.

We also introduce the finite dimensional operators

A±
ν := AP±

ν , B±
ν := P±

ν B, C±
ν := Cι±ν ,

where ι±ν is the embedding operator from H±
ν := P±

ν H to H. Finally, we denote by Q+
ν the orthogonal projection9

from Y onto Y+
ν := CP+

ν H.10

We are now in position to state our main results in the (IDO) and (FDO) cases.11

1.1 Infinite-Dimensional Observer (IDO)12

Theorem 1.1. Let σ > 0 be given and assume that assumptions (H1.A), (H1.B), (H1.C) and (H1.D) hold true.13

Then, there exist two operators K+
σ ∈ L(H, B∗(P+

σ )∗H) and L+
σ ∈ L(CP+

σ H, P+
σ H) such that the observer-based14

feedback control defined by15

v(t) = K+
σ ẑ(t), (1.6)

where the infinite dimensional observer ẑ solves16 {
ẑ′(t) = Aẑ(t) +Bv(t) + L+

σQ
+
σ (Cẑ(t)− y(t)),

ẑ(0) = 0,
(1.7)

ensures that for any z0 ∈ H, the solution z of the closed loop (1.3)-(1.6)-(1.7), that is{
z′(t) = Az(t) +BK+

σ ẑ(t),

z(0) = z0,

satisfies17

∥z(t)∥H ⩽Me−σt∥z0∥H, ∀t > 0. (1.8)

To prove this result, we introduce the error e := z − ẑ and we check that systems (1.3) and (1.7) yield(
z
e

)′

=

(
A+BK+

σ −BK+
σ

0 A+ L+
σQ

+
σC

)(
z
e

)
.

The result follows then by choosing the operators K+
σ and L+

σ in such a way that both A+BK+
σ and A+L+

σQ
+
σC18

generate analytic semigroups with decay rate less than −σ. This is achieved by solving two Riccati equations,19

using the method proposed by Badra-Takahashi [1] (for K+
σ ) combined to a duality argument (for L+

σ ).20
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1.2 Finite-Dimensional Observer (FDO)1

In this case, the stabilizing control is based on a finite dimensional observer of size σ⋆ > 0, where σ⋆ > σ and2

need to be chosen large enough.3

Theorem 1.2. Let σ > 0 be given and assume that assumptions (H2.A), (H2.B), (H2.C) and (H2.D) hold true.4

Let K+
σ ∈ L(H, B∗P+

σ H) and L+
σ ∈ L(CP+

σ H, P+
σ H) be the operators defined in Theorem 1.1. Then, there exists5

σ⋆ > σ such that the observer-based feedback control defined by6

v(t) = K+
σ ẑ⋆(t) ∈ B∗P+

σ H ⊂ B∗P+
σ⋆H, (1.9)

where the finite dimensional observer ẑ⋆ ∈ P+
σ⋆H solves7 {

ẑ′⋆(t) = A+
σ⋆ ẑ⋆(t) +B+

σ⋆v(t) + L+
σQ

+
σ (C

+
σ⋆ ẑ⋆(t)− y(t)),

ẑ⋆(0) = 0,
(1.10)

ensures that for any z0 ∈ H, the solution z of the closed loop (1.3)-(1.9)-(1.10), that is{
z′(t) = Az(t) +BK+

σ ẑ⋆(t),

z(0) = z0,

satisfies8

∥z(t)∥H ⩽Me−σt∥z0∥H, ∀t > 0. (1.11)

To prove this result, we proceed as follows. Introducing the auxiliary variables

e := z+σ⋆ − ẑ⋆ X =

(
ẑ⋆
e

)
,

we show that the equations satisfied by the state z and the observer ẑ⋆ yield9 {
X′(t) = AX(t) + L(z−σ⋆(t)),

(z−σ⋆)′(t) = A−
σ⋆z−σ⋆(t) +B−

σ⋆K+
σX(t),

(1.12)

where

A =

(
A+

σ⋆ +B+
σ⋆K+

σ −L+
σQ

+
σC

+
σ⋆

0 A+
σ⋆ + L+

σQ
+
σC

+
σ⋆

)
, L(z−σ⋆) =

(
−L+

σQ
+
σCz

−
σ⋆

L+
σQ

+
σCz

−
σ⋆

)
, K+

σ = (K+
σ , 0).

We prove then that the matrix exp(tA) is exponentially stable with a decay rate less than −σ. Next, thanks
to the first equation in (1.12), we use Duhamel’s formula to express X in terms of z−σ⋆ . Plugging the obtained
relation in the second equation of (1.12), we obtain an integral equation for z−σ⋆ . We use a fixed point argument
to prove the well-posedness of this integral equation in the weighted space

L∞
σ (0,∞;H−

σ⋆) := {f ∈ L∞(0,∞;H−
σ⋆) such that eσ(·)f(·) ∈ L∞(0,∞;H−

σ⋆)}.

This provides the expected result, that is the exponential decay of the controlled system with a decay rate less10

than −σ.11

1.3 Related works12

As already mentioned, the closest reference to our work is [11], in which the authors considered the case of a13

one dimensional heat equation. Their strategy is based on a (modal) splitting of the system into two parts: a14

finite dimensional unstable one and a stable infinite dimensional one. A Luenberger observer of large enough15

dimension is then constructed and the stability of the closed loop system is proved using a Lyapunov function.16

4



Contrarily to the proof proposed here, the arguments used in [11] are valid only in dimension one and heavily rely1

on the type of the considered equation. Let us also mention that in [12], the authors used a similar approach to2

prove the stabilization of a one dimension convection diffusion equation in the case of a boundary control. The3

use of modal splitting for the stabilization of infinite dimensional systems has also been achieved in some specific4

settings, like Burgers equations [20, 4, 19], Navier-Stokes system [1, 2, 7, 16, 18], semi-linear wave equation [5]5

and populations dynamics [14, 15].6

1.4 Outline7

In Section 2, we prove Theorem 1.1, which provides the stabilizing observer-based feedback-control through8

an infinite dimensional observer. In Section 3, we construct a finite dimensional observer to design a similar9

feedback-control. For this case, we need to assume that the operator A is self-adjoint and the control and10

observation operators are bounded. Finally, in Section 4, these abstract results are applied to obtain a stabilizing11

control for a reaction-diffusion system.12

2 Infinite dimensional observer13

2.1 Spectral decomposition of the system14

In this section, we suppose that assumptions (H1.A), (H1.B), (H1.C) and (H1.D) hold true. We consider below
a classical modal decomposition (it has been used, for instance, in [1, 2, 7, 18]) that we recall it for the sake of
completeness. Let σ > 0. We first separate the spectrum of A into “unstable” and “stable” modes using the
projection P+

σ defined in (1.5). We set

H+
σ = P+

σ H, H−
σ = (Id−P+

σ )H, H = H+
σ ⊕H−

σ .

According to this projection, we set

A+
σ := A|H+

σ
: H+

σ → H+
σ , A−

σ := A|H−
σ
: D(A) ∩H−

σ → H−
σ .

Then the spectrum of A+
σ is exactly Σ+

σ and the spectrum of A−
σ is exactly Σ−

σ where Σ+
σ and Σ−

σ are defined15

in (1.4). We denote by A∗ the adjoint operator of A and we define similarly the projection (P+
σ )∗ such that16

(P+
σ )∗ = − 1

2ıπ

∫
Γ+
σ

(ζ Id−A∗)−1 dζ. (2.1)

The projection (2.1) provides also the following spaces17

(H+
σ )

∗ = (P+
σ )∗H, (H−

σ )
∗ = (Id−(P+

σ )∗)H, H = (H+
σ )

∗ ⊕ (H−
σ )

∗, (2.2)

with
(A+

σ )
∗ := A∗

|(H+
σ )∗

: (H+
σ )

∗ → (H+
σ )

∗, (A−
σ )

∗ := A|(H−
σ )∗ : D(A∗) ∩ (H−

σ )
∗ → (H−

σ )
∗.

Lemma 2.1. There exist ε > 0 and M > 0 such that for any δ ⩾ 0, t > 018 ∥∥∥eA−
σ t
∥∥∥
L(H−

σ )
⩽Me−(σ+ε)t,

∥∥∥(µ0 Id−A−
σ )

δeA
−
σ t
∥∥∥
L(H−

σ )
⩽
M

tδ
e−(σ+ε)t,∥∥∥e(A−

σ )∗t
∥∥∥
L(H−

σ )
⩽Me−(σ+ε)t,

∥∥∥(µ0 Id−(A−
σ )

∗)δe(A
−
σ )∗t

∥∥∥
L(H−

σ )
⩽
M

tδ
e−(σ+ε)t.

(2.3)

Proof. We detail the proof only for the operator A−
σ , as the arguments for its adjoint are similar. The first

inequality is obvious. Concerning the second one, we first note that

(µ0 Id−A−
σ )

δeA
−
σ t = (µ0 Id−A−

σ )
δ
(
A−

σ

)−δ (
A−

σ

)δ
eA

−
σ t.

5



Applying [13, Corollary 6.11] with B = (µ0 Id−A−
σ )

δ, A = A−
σ and x =

(
A−

σ

)−δ
y, for y ∈ H−

σ , we obtain that
for some constant positive C, ∥∥∥(µ0 Id−A−

σ )
δ
(
A−

σ

)−δ
y
∥∥∥
H
⩽ C∥y∥H, ∀y ∈ H−

σ ,

and thus ∥∥∥(µ0 Id−A−
σ )

δ
(
A−

σ

)−δ
∥∥∥
L(H−

σ )
⩽ C.

Consequently, ∥∥∥(µ0 Id−A−
σ )

δeA
−
σ t
∥∥∥
L(H−

σ )
⩽

∥∥∥(µ0 Id−A−
σ )

δ
(
A−

σ

)−δ
∥∥∥
L(H−

σ )

∥∥∥(A−
σ

)δ
eA

−
σ t
∥∥∥
L(H−

σ )
,

and the desired estimate follows then immediately from [13, Theorem 6.13].1

We also define
U+

σ := B∗(H+
σ )

∗, U−
σ := B∗ (D(A∗) ∩ (H−

σ )
∗) ,

and
p+σ : U → U+

σ , p−σ : U → U−
σ , i+σ : U+

σ → U, i−σ : U−
σ → U,

the orthogonal projections and the inclusion maps. Note that we have the following relations for the above2

maps:3

i+σ = (p+σ )
∗, i−σ = (p−σ )

∗. (2.4)

From [18], we can extend P+
σ and (Id−P+

σ ) as bounded operators

P+
σ ∈ L(D(A∗)′,H+

σ ), (Id−P+
σ ) ∈ L(D(A∗)′,

[
D(A∗) ∩ (H−

σ )
∗]′).

We can thus define

B+
σ := P+

σ Bi
+
σ ∈ L(U+

σ ,H+
σ ), B−

σ := (Id−P+
σ )Bi−σ ∈ L(U−

σ ,
[
D(A∗) ∩ (H−

σ )
∗]′).

We show as in [1, 2, 18] that
P+
σ B = B+

σ p
+
σ , (Id−P+

σ )B = B−
σ p

−
σ .

Using the projections P+
σ and Id−P+

σ , system (1.3) can be split into the two sub-systems (see [1, 2, 18]).4

(z+σ )
′(t) = A+

σ z
+
σ (t) +B+

σ p
+
σ v(t), z+σ (0) = P+

σ z
0, (2.5)

5

(z−σ )′(t) = A−
σ z

−
σ (t) +B−

σ p
−
σ v(t), z−σ (0) = (Id−P+

σ )z0. (2.6)

We also introduce the orthogonal projections Q+
σ from Y into Y+

σ = CH+
σ and we define

C+
σ = Cι+σ ,

where ι+σ designates the injection operator from H+
σ to H. We are now in position to prove Theorem 1.1.6

2.2 Construction of an infinite dimensional observer based control7

Let us consider first the system8 {
z̃′(t) = Az̃(t) +Bu(t),

z̃(0) = z̃0.
(2.7)

We want to construct a finite dimensional vector u such that the system (2.7) is exponentially stable. Let
Nσ ∈ N∗ and (wj)1⩽j⩽Nσ

⊂ U, and let us suppose that the control u(t) is of the form

u(t) =

Nσ∑
j=1

uj(t)wj ,

6



where uj(t) ∈ C, for 1 ⩽ j ⩽ Nσ and t ⩾ 0. It is natural to introduce the mapping

B : CNσ −→ D(A∗)′, Θ = (θ1, · · · , θNσ
) 7−→ BΘ =

Nσ∑
j=1

θjBwj ,

in such a way that setting
u(t) := (u1(t), · · · , uNσ

(t)),

system (2.7) is equivalent to1 {
z̃′(t) = Az̃(t) +Bu(t),
z̃(0) = z̃0.

(2.8)

It is worth noticing that the adjoint B∗ ∈ L(D(A∗),CNσ ) is given by

B∗ψ =
(
⟨w1, B

∗ψ⟩U, · · · , ⟨wNσ , B
∗ψ⟩U

)
.

Using the projection P+
σ , we get that (2.8) is equivalent to2 {
(z̃+σ )

′(t) = A+
σ z̃

+
σ (t) +B+

σ u(t), z̃+σ (0) = P+
σ z̃

0, B+
σ = P+

σ B,
(z̃−σ )′(t) = A−

σ z̃
−
σ (t) +B−

σ u(t), z̃−σ (0) = P−
σ z̃

0, B−
σ = P−

σ B,
(2.9)

where z̃±σ = P±
σ z̃. We need to show that the finite dimensional part (2.9)1 is exactly controllable. Let3

Nσ ⩾ max
Reλj⩾−σ

ℓj , (2.10)

where ℓj is the geometric multiplicity of the eigenvalue λj of the operator A. From [1, Theorem 5] and the4

first condition in (H1.D), there exists a family (wj)1⩽j⩽Nσ
⊂ U+

σ ⊂ U such that (2.9)1 is exactly controllable.5

Moreover, it is proved that u is expressed by means of a linear feedback operator6

u = K+
σ z̃, K+

σ (·) = −
Nσ∑
j=1

⟨wj , B
∗ΠP+

σ (·)⟩Uwj = −
Nσ∑
j=1

(B∗(ΠP+
σ (·)))jwj , (2.11)

where Π ∈ L(H+
σ , (H+

σ )
∗) is the unique solution of the algebraic Riccati equation: for all ξ, ζ ∈ H+

σ7  ⟨ξ, ζ⟩H + ⟨(A+
σ + σ Id)ξ,Πζ⟩H + ⟨Πξ, (A+

σ + σ Id)ζ⟩H −
Nσ∑
j=1

⟨B∗Πξ, wj⟩U⟨B∗Πζ, wj⟩U = 0,

⟨Πξ, ζ⟩H = ⟨ξ,Πζ⟩H, and ∀ξ ̸= 0, ⟨Πξ, ξ⟩H > 0.

(2.12)

This choice ensures that the solution of the finite dimensional system (2.9)1

(z̃+σ )
′(t) = A+

σ z̃
+
σ (t)−B+

σ (B
∗(ΠP+

σ z̃(t)))

is exponentially stable i.e.
∥z̃+σ (t)∥H ⩽Me−(σ+ε)t∥z̃0∥H, t > 0.

It follows from Duhamel’s formula that the whole system (2.9) is exponentially stable (see [1]). We can construct8

L+
σ similarly considering the system9 {

z̃′⋆(t) = A∗z̃⋆(t) + C∗u⋆(t),
z̃⋆(0) = z̃0⋆.

(2.13)

Using similar arguments and the second condition in (H1.D), we show that there exists a family (w⋆
j )1⩽j⩽Nσ ⊂

Y+
σ such that

u⋆ = L⋆z̃⋆, L⋆(·) = −
Nσ∑
j=1

⟨w⋆
j , CΠ⋆(P

+
σ )∗(·)⟩Yw⋆

j = −
Nσ∑
j=1

(C∗
⋆(Π⋆(P

+
σ )∗(·)))jw⋆

j ,

7



where

C⋆ : CNσ −→ D(A∗)′, Θ = (θ1, · · · , θNσ
) −→ C⋆Θ =

Nσ∑
j=1

θjC
∗w⋆

j ,

where Π⋆ ∈ L((H+
σ )

∗,H+
σ ) is the unique solution of the algebraic Riccati equation: for all ξ, ζ ∈ (H+

σ )
∗

1  ⟨ξ, ζ⟩H + ⟨((A+
σ )

∗ + σ Id)ξ,Π⋆ζ⟩H + ⟨Π⋆ξ, ((A
+
σ )

∗ + σ Id)ζ⟩H −
Nσ∑
j=1

⟨CΠ⋆ξ, wj⟩Y⟨CΠ⋆ζ, wj⟩Y = 0,

⟨Π⋆ξ, ζ⟩H = ⟨ξ,Π⋆ζ⟩H, and ∀ξ ̸= 0, ⟨Π⋆ξ, ξ⟩H > 0.

(2.14)

Hence, we define2

L+
σ (·) = L∗

⋆(·) = −
Nσ∑
j=1

⟨w⋆
j , ·⟩Yχj , (2.15)

with3

χj = P+
σ Π⋆C

∗w⋆
j ∈ H+

σ . (2.16)

With this choice, we get that (A + L+
σC)

∗ and hence A + L+
σQ

+
σC is exponentially stable with decay rate less4

than −σ. Finally, using K+
σ and L+

σ we construct the observer ẑ satisfying (1.6)-(1.7), that is5 {
ẑ′(t) = Aẑ(t) +BK+

σ ẑ(t) + L+
σQ

+
σ (Cẑ(t)− y(t)),

ẑ(0) = 0.
(2.17)

2.3 Stability of the closed-loop system6

We define the error e = z − ẑ. Then, we obtain7 {
e′(t) = (A+ L+

σQ
+
σC)e(t), e(0) = z0,

z′(t) = (A+BK+
σ )z(t)−BK+

σ e(t), z(0) = z0.
(2.18)

We prove that e is exponentially stable with decay rate −σ.8

Proposition 2.2. Systems (2.17) and (2.18) are exponentially stable with decay rate −σ.9

Proof. Since (A+ L+
σQ

+
σC) is of negative type strictly less than −σ, then there exists 0 < ε′′ < ε such that10

∥e(t)∥H ⩽Me−t(σ+ε′′)∥z0∥H. (2.19)

Going back to system (2.5) with the control given by (1.6), we have, since K+
σ z

−
σ = 0,

(z+σ )
′(t) = (A+

σ +B+
σ K

+
σ )z+σ (t)−B+

σ K
+
σ e(t), z+σ (0) = P+

σ z
0.

Moreover, there exists ε′ > 0 with ε′′ < ε′ < ε such that (A+
σ +B+

σ K
+
σ ) is exponentially stable with rate −σ−ε′.

We have

z+σ (t) = et(A
+
σ +B+

σ K+
σ )P+

σ z
0 −

∫ t

0

e(t−s)(A+
σ +B+

σ K+
σ )B+

σ K
+
σ e(s)ds.

From (2.19), we see that11

∥z+σ (t)∥H ⩽Me−t(σ+ε′′)∥z0∥H. (2.20)

We deal now with the infinite dimensional part z−σ of the state. From (2.6) with the control given by (1.6), we
have

(z−σ )′(t) = A−
σ z

−
σ (t) +B−

σ p
−
σK

+
σ z

+
σ (t)−B−

σ p
−
σK

+
σ e(t), z−σ (0) = (Id−P+

σ )z0.

8



Using Duhamel’s formula, we obtain that

z−σ (t) = etA
−
σ (Id−P+

σ )z0 +

∫ t

0

e(t−s)A−
σ B−

σ p
−
σK

+
σ

(
z+σ (s)− e(s)

)
ds.

We note that since the resolvent commutes with the projection P+
σ and e(t−s)A−

σ , we obtain for µ0 ∈ ρ(A) and1

γ ∈ [0, 1),2

e(t−s)A−
σ B−

σ = e(t−s)A−
σ (µ0 Id−A)γ(Id−P+

σ )(µ0 Id−A)−γBi−σ

= e(t−s)A−
σ (µ0 Id−A−

σ )
γ(Id−P+

σ )(µ0 Id−A)−γBi−σ

= (µ0 Id−A−
σ )

γe(t−s)A−
σ (Id−P+

σ )(µ0 Id−A)−γBi−σ .

(2.21)

Using (H1.B), (2.3), (2.19), (2.20) and (2.21), we get3

∥z−σ (t)∥H ⩽ M∥z0∥H
(
e−t(σ+ε) +

∫ t

0

1

(t− s)γ
e−(t−s)(σ+ε)e−s(σ+ε′′) ds

)
⩽ Me−t(σ+ε′′)∥z0∥H

(
1 +

∫ t

0

1

(t− s)γ
e(t−s)(ε′′−ε) ds

)
.

(2.22)

Then, since ε′′ < ε, we obtain4

∥z−σ (t)∥H ⩽Me−t(σ+ε′′)∥z0∥H. (2.23)

Then from (2.19), (2.20) and (2.23), we obtain that z, ẑ and the error e are exponentially stable.5

That concludes the proof of Theorem 1.1.6

Remark 2.3. According to (1.6) and (2.11), the control reads

v(t) =

Nσ∑
i=1

Ki

(
ẑ+σ

)
wi,

with Ki ∈ L(H+
σ ,C) and wi ∈ U+

σ , i = 1, . . . , Nσ. From decomposition (2.2) and the fact that (H+
σ )

⊥ = (H−
σ )

∗,
we have that if ζ ∈ (H+

σ )
∗, then

∀ϕ ∈ H+
σ , ⟨ϕ, ζ⟩H = 0 =⇒ ζ = 0.

Since dim
(
(H+

σ )
∗) = dimL(H+

σ ,C), we infer that there exists a unique ζi ∈ (H+
σ )

∗ ⊂ D(A∗) such that

Ki

(
ẑ+σ

)
= ⟨ẑ, ζi⟩H .

In other words, the control can also be written in the form

v(t) =

Nσ∑
i=1

⟨ẑ, ζi⟩H wi.

In the special case where there is only one unstable simple eigenvalue (with an eigenspace spanned by an eigen-
function ε1 ∈ H), the above relations take simpler forms. Indeed, we have then

w1 = B∗ε1

and for all φ ∈ H+
σ = Span{ε1}:

K1(φ) = −⟨B∗ε1, B
∗ΠP+

σ φ⟩U = ⟨ζ1, φ⟩(H+
σ )∗,H+

σ
, ζ1 = −(P+

σ )∗ΠBB∗ε1.
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3 Finite dimensional observer1

3.1 Spectral decomposition of the system2

In this section, we assume hypotheses (H2.A), (H2.B), (H2.C) and (H2.D) to hold true.
Consider ν > 0 and let us introduce the projection operators P+

ν as in (1.5) where in this case Γ+
ν is a circle

enclosing Σ+
ν but no other point of the spectrum of A and oriented counterclockwise (see [10, V.5, p.272]). Since

A is a self-adjoint operator, then P+
ν is well defined. Moreover from the expression of the projections, it follows

that
(P+

ν )∗ = P+
ν .

Thus, P+
ν is orthogonal projection of norm equal to 1. We set

H+
ν = P+

ν H, H−
ν = (Id−P+

ν )H, H = H+
ν ⊕H−

ν ,

and
A+

ν := A|H+
ν
: H+

ν → H+
ν , A−

ν := A|H−
ν
: D(A) ∩H−

ν → H−
ν .

We also define as before
U+

ν := B∗H+
ν , U−

ν := B∗ (D(A) ∩H−
ν

)
,

and
p+ν : U → U+

ν , p−ν : U → U−
ν , i+ν : U+

ν → U, i−ν : U−
ν → U,

the orthogonal projections and the inclusion maps. Note that we have the following relations for the above3

maps:4

i+ν = (p+ν )
∗, i−ν = (p−ν )

∗. (3.1)

We can thus define

B+
ν := P+

ν Bi
+
ν ∈ L(U+

ν ,H+
ν ), B−

ν := (Id−P+
ν )Bi−ν ∈ L(U−

ν ,H−
ν ).

It is proved in [1] (see also [2] and [18]) that

P+
ν B = B+

ν p
+
ν , (Id−P+

ν )B = B−
ν p

−
ν .

We introduce also the orthogonal projection Q+
ν from Y into Y+

ν = CH+
ν and define

C+
ν = Cι+ν ,

where ι+ν designates the injection operator from H+
ν to H.5

Consider now σ⋆ > σ > 0. We take ν = σ or ν = σ⋆ in the maps and spaces defined previously. Since A is6

self-adjoint with compact resolvent, we deduce the existence of ε > 0 such that for all t ⩾ 07

∥eA
−
σ t∥L(H−

σ ) ⩽ e−(σ+ε)t, (3.2)

and8

∥eA
−
σ⋆ t∥L(H−

σ⋆ )
⩽ e−σ⋆t. (3.3)

The system (1.3) splits into9

(z+σ⋆)′(t) = A+
σ⋆z+σ⋆(t) +B+

σ⋆p+σ⋆v(t), z+σ⋆(0) = P+
σ⋆z0, (3.4)

10

(z−σ⋆)′(t) = A−
σ⋆z−σ⋆(t) +B−

σ⋆p−σ⋆v(t), z−σ⋆(0) = (Id−P+
σ⋆)z0. (3.5)
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3.2 Finite dimensional observer based control and stability of the closed-loop1

system2

We are now in position to prove Theorem 1.2. The matrices K+
σ and L+

σ being respectively given by (2.11) and3

(2.15), we define the finite dimensional observer-based feedback control by4

v(t) = K+
σ ẑ⋆(t) ∈ B∗P+

σ H ⊂ B∗P+
σ⋆H, (3.6)

where the finite dimensional observer ẑ⋆ ∈ P+
σ⋆H solves5 {

ẑ′⋆(t) = A+
σ⋆ ẑ⋆(t) +B+

σ⋆v(t) + L+
σQ

+
σ (C

+
σ⋆ ẑ⋆(t)− y(t)),

ẑ⋆(0) = 0.
(3.7)

Our goal is to prove that the coupled system (1.3), (3.6) and (3.7) is exponentially stable. We define the error6

e = z+σ⋆ − ẑ⋆ which satisfies the following system7 {
e′(t) = A+

σ⋆e(t) + L+
σQ

+
σ (C

+
σ⋆e(t) + Cz−σ⋆(t)),

e(0) = z+σ⋆(0).
(3.8)

We prove that ẑ and e are exponentially stable with decay rate −σ. Let us set

X =

(
ẑ⋆
e

)
, X0 =

(
0

z+σ⋆(0)

)
.

Using (3.7) and (3.8), X satisfies the system8 {
X′(t) = AX(t) + L(z−σ⋆(t)),

X(0) = X0,
(3.9)

where9

A =

(
A+

σ⋆ +B+
σ⋆K+

σ −L+
σQ

+
σC

+
σ⋆

0 A+
σ⋆ + L+

σQ
+
σC

+
σ⋆

)
, L(z−σ⋆) =

(
−L+

σQ
+
σCz

−
σ⋆

L+
σQ

+
σCz

−
σ⋆

)
. (3.10)

Let us first prove that A is stable matrix. In the sequel, the constant M is a generic constant that can change10

from a line to another but need to be independent of σ⋆.11

Lemma 3.1. The matrices A+
σ⋆ +B+

σ⋆K+
σ and A+

σ⋆ + L+
σQ

+
σC

+
σ⋆ are exponentially stable with a decay rate less12

than −σ.13

Proof. Let ξ0 ∈ H+
σ⋆ be given. To prove that A+

σ⋆ +B+
σ⋆K+

σ is exponentially stable, we only need to show that14

the solution ξ(t) of the finite dimensional system15 {
ξ′(t) = (A+

σ⋆ +B+
σ⋆K+

σ )ξ(t),

ξ(0) = ξ0,
(3.11)

is exponentially decaying. Consider then the infinite dimensional system16 {
x′(t) = (A+BK+

σ )x(t),

x(0) = ξ0.
(3.12)

From Section 2.2, we see that the system (3.12) is exponentially stable of decay rate −σ − ε′. It implies that17

∥x(t)∥H ⩽Me−t(σ+ε′)∥ξ0∥H. (3.13)
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On the other hand, applying P+
σ⋆ to (3.12) and recalling that K+

σ x(t) acts only on the projected part of x(t) on1

H+
σ , we obtain that2 {

(x+σ⋆)′(t) = A+
σ⋆x+σ⋆(t) +B+

σ⋆K+
σ x(t) = (A+

σ⋆ +B+
σ⋆K+

σ )x+σ⋆(t),

x+σ⋆(0) = ξ0.
(3.14)

This shows that x+σ⋆(t) is the unique solution ξ(t) of (3.11), and we get from (3.13), that

∥ξ(t)∥H = ∥x+σ⋆(t)∥H = ∥P+
σ⋆x(t)∥H ⩽Me−t(σ+ε′)∥ξ0∥H,

for all ξ0 ∈ H+
σ⋆ . Hence ∥∥∥et(A+

σ⋆+B+
σ⋆K

+
σ )ξ0

∥∥∥
H
⩽Me−t(σ+ε′)∥ξ0∥H,

and the matrix A+
σ⋆ +B+

σ⋆K+
σ is exponentially stable with a decay rate less than −σ. We use the same argument3

for A+
σ⋆ +L+

σQ
+
σC

+
σ⋆ by considering its adjoint (A+

σ⋆)∗ +(C+
σ⋆)∗(L+

σ )
∗ that has exactly the same form as the one4

previously studied.5

Since A is a triangular matrix, using Lemma 3.1 and Duhamel’s formula, we obtain that A is stable with6

exponential rate strictly less than −σ.7

We can now prove the exponential stability of the full closed-loop system (3.7) and (1.3):8 {
X′(t) = AX(t) + L(z−σ⋆(t)),

(z−σ⋆)′(t) = A−
σ⋆z−σ⋆(t) +B−

σ⋆p−σ⋆K+
σX(t),

(3.15)

where K+
σ = (K+

σ , 0) and with the initial conditions{
X(0) = X0,

z−σ⋆(0) = (Id−P+
σ⋆)z0.

From Duhamel’s formula, the two first equations in (3.15) also read
X(s) = esAX(0) +

∫ s

0

e(s−τ)AL(z−σ⋆(τ))dτ,

z−σ⋆(t) = etA
−
σ⋆ z−σ⋆(0) +

∫ t

0

e(t−s)A−
σ⋆

(
B−

σ⋆p−σ⋆K+
σX(s)

)
ds.

Substituting the first equation above into the second one yields9

z−σ⋆(t) = etA
−
σ⋆ z−σ⋆(0) +

∫ t

0

e(t−s)A−
σ⋆B−

σ⋆p−σ⋆K+
σ

(
esAX(0) +

∫ s

0

e(s−τ)AL(z−σ⋆(τ))dτ

)
ds. (3.16)

Setting

Z0 := etA
−
σ⋆ z−σ⋆(0) +

∫ t

0

e(t−s)A−
σ⋆

(
B−

σ⋆p−σ⋆K+
σ

(
esAX(0)

))
ds,

relation (3.16) can be written10

z−σ⋆(t) =

∫ t

0

∫ s

0

e(t−s)A−
σ⋆B−

σ⋆p−σ⋆K+
σ

(
e(s−τ)AL(z−σ⋆(τ))dτds

)
+ Z0. (3.17)

To prove the stability of z−σ⋆ , we prove the existence of a unique solution to (3.17) in a weighted space by using
a fixed point argument. More precisely, let us define the following map

Φ : L∞
σ (0,∞;H−

σ⋆) −→ L∞
σ (0,∞;H−

σ⋆)

g 7−→ Φ(g) :=

∫ t

0

∫ s

0

e(t−s)A−
σ⋆B−

σ⋆p−σ⋆K+
σ e

(s−τ)AL(g(τ)) dτds+ Z0.
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Then, equation (3.16) simply reads
Φ(z−σ⋆) = z−σ⋆ .

First, we prove that the function Φ is well defined. Given g ∈ L∞
σ (0,∞;H−

σ⋆). Since C is bounded, L is also
bounded. Hence using the last relation, (3.3) and (H2.B), we obtain that there exists ε′′ > 0 such that

∥Φ(g)(t)∥H ⩽M

∫ t

0

∫ s

0

e−(t−s)σ⋆

e−(s−τ)(σ+ε′′)e−τσ∥eτσg(τ)∥H dτ ds

+M
∥∥z0∥∥H ∫ t

0

e−(t−s)σ⋆

e−sσ ds+ e−tσ⋆

∥z0∥H.

Consequently1

∥Φ(g)(t)∥H ⩽ I1 + I2 + e−tσ⋆

∥z0∥H, (3.18)

where we have set

I1 :=M

∫ t

0

e−(t−s)σ⋆

e−sσ

(∫ s

0

e−(s−τ)ε′′∥eτσg(τ)∥H dτ

)
ds,

I2 :=M
∥∥z0∥∥H ∫ t

0

e−(t−s)σ⋆

e−sσ ds.

Noticing that ∫ s

0

e−(s−τ)ε′′ dτ =
1

ε′′

[
1− e−sε′′

]
⩽

1

ε′′
,

we get that ∫ s

0

e−(s−τ)ε′′∥eτσg(τ)∥H dτ ⩽
1

ε′′
∥g∥L∞

σ (0,∞;H−
σ∗ )
,

and hence

I1 ⩽M∥g∥L∞
σ (0,∞;H−

σ∗ )

e−tσ

ε′′

∫ t

0

e(t−s)(σ−σ⋆) ds.

Since ∫ t

0

e(t−s)(σ−σ⋆) ds =
1− e−t(σ∗−σ)

(σ⋆ − σ)
⩽

1

(σ⋆ − σ)
,

we have

I1 ⩽
Me−σt

ε′′(σ⋆ − σ)
∥g∥L∞

σ (0,∞;H−
σ⋆ )

and similarly

I2 ⩽Me−σt

(∫ t

0

e(t−s)(σ−σ⋆) ds

)∥∥z0∥∥H ⩽
Me−σt

(σ⋆ − σ)

∥∥z0∥∥H .
Using the above estimates in (3.18), we get that

∥Φ(g)(t)∥H ⩽Me−σt

(
1

ε′′(σ⋆ − σ)
∥g∥L∞

σ (0,∞;H−
σ⋆ )

+
∥∥z0∥∥H +

1

σ∗ − σ

∥∥z0∥∥H) ,
and hence Φ(g) ∈ L∞

σ (0,∞;H−
σ⋆).2

It remains to show that Φ is a contraction mapping. Given g1, g2 ∈ L∞
σ (0,∞;H−

σ⋆), the same calculations
as above show that

∥Φ(g1)− Φ(g2)∥L∞
σ (0,∞;H−

σ⋆ )
⩽

M

ε′′(σ⋆ − σ)
∥g1 − g2∥L∞

σ (0,∞;H−
σ⋆ )

.
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The application Φ is thus a contraction provided that σ⋆ is chosen large enough to ensure that

M

ε′′(σ⋆ − σ)
< 1.

Then, applying the fixed point theorem we get that there exists a unique z−σ⋆ ∈ L∞
σ (0,∞;H−

σ⋆) such that
Φ(z−σ⋆) = z−σ⋆ and

∥z−σ⋆(t)∥H ⩽Me−σt
∥∥z0∥∥H .

Moreover, going back to the first equation in (3.15), and using Duhamel’s formula again, we easily obtain that

∥X(t)∥H×H ⩽Me−σt
∥∥z0∥∥H .

This completes the proof of Theorem 1.2.1

4 Stabilization of the reaction-diffusion equation2

Let Ω ⊂ RN (N ⩾ 1) be a bounded domain of class C1,1. In this section, we apply Theorem 1.1 and Theorem 1.23

for the stabilization of the heat equation. Let us consider Γ a non-empty open subset of ∂Ω and the control4

problem:5 
∂tz(t, x)−∇ · (b∇z(t, x))− cz(t, x) = 0 in (0,∞)× Ω,

z(t, x) = v(t, x) on (0,∞)× Γ,
z(t, x) = 0 on (0,∞)× (∂Ω \ Γ),
z(0, ·) = z0 in Ω,

y(t, x) = 1Oz(t, x) in (0,∞)× Ω,

(4.1)

where b, c ∈ L∞(Ω) and O an open subset of RN with O ⊂ Ω. In order to write (4.1) under the form (1.3), we
introduce the following functional setting:

H = L2(Ω), U = L2(Γ),

Az = ∇ · (b∇z) + cz, D(A) = H2(Ω) ∩H1
0 (Ω),

The operator (A,D(A)) generates an analytical semigroup, this is a direct consequence of [3, Theorem 2.12,
p.115]. Thus (H1.A) is satisfied. Moreover, the operator A is self-adjoint, then in particular, we see that (H2.A)
holds true. To define the control operator B, we use a standard method (see, for instance [21, pp.341-343] or
[17]): we first consider the lifting operator D0 ∈ L(L2(∂Ω);L2(Ω)) such that for any v ∈ L2(∂Ω), w = D0v is
the unique solution of the following system{

µ0w −∇ · (b∇w)− cw = 0 in Ω,
w = v on ∂Ω,

where µ0 ∈ ρ(A). Then, we set
B = (µ0 Id−A)D0 : U −→ (D(A∗))′,

where we have extended the operator A as an operator from L2(Ω) into (D(A∗))′ and where we see U as a closed
subspace of L2(∂Ω) (by extending by zero in ∂Ω \ Γ any v ∈ U). Using standard results on elliptic equations,
we have that B satisfies (H1.B) for any γ > 3/4 (see for instance [16, Theorem 2.6]). We set also

Y = L2(O), C = 1O,

we see that C ∈ L(H,Y). Let us recall how we can reduce (4.1) to an evolution problem (1.3). We set z̃ = z−w,
with w = D0v. Then z̃ satisfies the system

∂tz̃ −∇ · (b∇z̃)− cz̃ = −∂tw + µ0w in (0,∞)× Ω,
z̃ = 0 on (0,∞)× ∂Ω,

z̃(0, ·) = z̃0 := z0 − w(0, ·) in Ω.
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Using the Duhamel formula, we have

z̃(t) = etAz̃0 +

∫ t

0

e(t−s)A(−∂tw(s) + µ0w(s)) ds.

By integrating by parts, we obtain

z(t) = etAz0 +

∫ t

0

e(t−s)A(µ0 Id−A)w(s) ds,

that is {
z′(t) = Az(t) +Bv(t), z(0) = z0,
y(t) = Cz(t).

To apply Theorem 1.1, we only need to check (H2.D). We recall that

D(A∗) = H2(Ω) ∩H1
0 (Ω), A∗ = A.

Moreover, by classical results (see [21, Proposition 10.6.7]), we see that

D∗
0 := − ∂

∂ν
(µ0 Id−A∗)−1 = − ∂

∂ν
(µ0 Id−A)−1,

and thus

B∗ε := − ∂ε

∂ν |Γ
.

Thus if ε satisfies A∗ε = λε and B∗ε = 0, then
λε−∇ · (b∇ε)− cε = 0 in Ω,

ε = 0 on ∂Ω,
∂ε

∂ν
= 0 on Γ.

From standard results on the unique continuation of the Laplace operator (see for instance [9, Theorem 5.3.1,
p.125]), we deduce that ε = 0. In the other hand, if ε satisfies Aε = λε and Cε = 0, then λε−∇ · (b∇ε)− cε = 0 in Ω,

ε = 0 on ∂Ω,
ε = 0 in O.

We obtain again from standard results on the unique continuation of the Laplace operator (see for instance [9,1

Theorem 5.3.1, p.125]), we get also that ε = 0. Thus (H2.D) holds for any σ.2

Now, we define the observer ẑ using Remark 2.3. Let us define Nσ by (2.10) and ẑ the solution of the closed3

loop system4 

∂tẑ −∇ · (b∇ẑ)− cẑ =

Nσ∑
i=1

⟨1O(ẑ − z), w⋆
i ⟩Y χi in (0,∞)× Ω,

ẑ =

Nσ∑
i=1

⟨ẑ, ζi⟩H wi on (0,∞)× Γ,

ẑ = 0 on (0,∞)× (∂Ω \ Γ),
ẑ(0, ·) = 0 in Ω,

(4.2)

where (w⋆
i )1⩽i⩽Nσ ⊂ Y, (χi)1⩽i⩽Nσ ⊂ H, (ζi)1⩽i⩽Nσ ⊂ D(A∗) and (wi)1⩽i⩽Nσ ⊂ U (see equations (2.15)-(2.16)5

and Remark 2.3). We deduce the following result by applying Theorem 1.1:6
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Theorem 4.1. Assume σ > 0. There exists a control1

v(t) =

Nσ∑
i=1

(∫
Ω

ẑ(t)ζi dx

)
vi, (4.3)

with ζk ∈ H2(Ω) ∩ H1
0 (Ω), vk ∈ H1/2(Γ), k = 1, . . . , Nσ such that the coupled system (4.1) and (4.2) is2

exponentially stable that satisfies for z0 ∈ L2(Ω) the estimate3

∥z(t)∥L2(Ω) ⩽ Ce−σt∥z0∥L2(Ω). (4.4)
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