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1 Observer-based feedback-control for the stabilization of a class of

: parabolic systems

3 Imene Aicha Djebour!, Karim Ramdani®, and Julie Valein!

. "Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France

. July 7, 2023

6 Abstract

7 We consider the stabilization of a class of linear evolution systems z’ = Az + Bv under the observation
8 y = C'z by means of a finite dimensional control v. The control is based on the design of a Luenberger observer
9 which can be infinite or finite dimensional (of dimension large enough). In the infinite dimensional case, the
10 operator A is supposed to generate an analytical semigroup with compact resolvent and the operators B and
11 C' are unbounded operators whereas in the finite dimensional case, A is assumed to be a self-adjoint operator
12 with compact resolvent, B and C' are supposed to be bounded operators. In both cases, we show that if
13 (A, B) and (A, C) verify the Fattorini-Hautus Criterion, then we can construct an observer-based control v
14 of finite dimension (greater or equal than largest geometric multiplicity of the unstable eigenvalues of A)
15 such that the evolution problem is exponentially stable. As an application, we study the stabilization of the
16 N dimensional convection-diffusion system with Dirichlet boundary control and an internal observation.

1w Keywords: Parabolic systems, Feedback control, Stabilization, Luenberger observers.
18 2010 Mathematics Subject Classification 93B53, 93D15, 93C20.
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1 Introduction and main results

Given b € L?(0,1), consider the one-dimensional controlled heat equation
Oz(t,x) = Opzz(t,x) + b(x)v(t), t>0, xe€(0,1),
0:2(t,0) =0, z(t,1) =0, (1.1)
2(0) = 2°.

Obviously, the open-loop system (i.e. for v = 0) is exponentially stable, with a decay rate defined by the
smallest eigenvalue of the underlying operator describing the free dynamics (namely the positive definite self-
adjoint operator —d,, with Neumann boundary condition at = 0 and Dirichlet boundary condition at x = 1).
Based on the observation

y(t):/o c(x)z(t, z) dz, (1.2)

where ¢ € L? (0,1), a natural question that arises is to know wether it is possible to design a finite dimensional
feedback control v, such that the closed-loop system is exponentially stable with an arbitrary prescribed
decay rate o > 0. It a recent work, a positive and constructive answer to this question has been proposed by
Katz and Fridman [I], using an observer-based feedback control. More precisely, the authors proposed feasible
design conditions for the construction of such controls for a more general 1D reaction-diffusion equation with
variable coefficients (i.e. for a free dynamics described by an operator of the form 9, (p(x)0:-) — q(z)-).

In this paper, our objective is to generalize this result to a large class of parabolic systems, possibly multi-
dimensional and involving unbounded control and/or observation operators. More precisely, given three Hilbert
spaces H (the state space), U (the control space) and Y (the observation space), consider the linear infinite
dimensional system

N
~
—
~+
~—

I

Az(t) + Bu(t),
2(0) = 2°, (1.3)
y(t) = Cz(t),

where A : D(A) — H is an unbounded operator, B € L (U,(D(A*))’) and C € L (D(A),Y). Given o > 0,
the goal of this paper is to prove the existence of an observer-based control v such that the solution of (1.3)) is
exponentially stable, with a decay rate —o:

l(®) ]l < Me™)|2 ez

We will investigate two classes of systems, depending on whether the observer used is infinite-dimensional (IDO
case) or finite-dimensional (FDO case). We will make the following assumptions on A, B and C' in these two
cases (below, p(A) denote the resolvent set of A):

e Infinite-Dimensional Observer (IDO)
A is an analytic operator with compact resolvent on H, (H1.A)

(1pId—A)™"B € L(U,H) is a linear bounded operator for some v € [0,1) and po € p(4), (H1.B)
C(uoId—A)™7 € L(H,Y) is a linear bounded operator for some 7 € [0,1) and po € p(A4),  (HL.C)

Ve € D(A*), YA €C, ReA > —0, A*c=Xe and B**=0 =— =0, (H1.D)
Ve € D(A), VA€ C, ReA>2 -0, Ac=X and Ce=0 = e=0. '
e Finite-Dimensional Observer (FDO)
A is a self-adjoint operator with compact resolvent, (H2.A)



B e £(U,H), (H2.B)
C e L(H,Y), (H2.C)

{VsGD(A),V)\GI[&)\)—a, Ae =X et B*s=0 =— =0,

Ve e D(A), VAER, A > -0, Ae=X et Ce=0 = e=0. (H2.D)

It is worth mentioning that assumption (H1.D) (and its counterpart (H2.D|) in the self-adjoint case) is the
well-known Fattorini-Hautus criterion for exponential stabilization (see [6], [8] and [2]).
For every v > 0, we set
Shi={\j€0(A); Re); = —v}, X, :={)\ €0d(A); Re\; < —v}, (1.4)

where o(A) is the spectrum of A. Condition (HI.A]) in the IFD case and (H2.A]) in the FDO case imply that
¥+ describes a finite set. We define the projection

Pf=—5— | (ld-A)"'d,, Py =1d-P/, (1.5)
Ty

where I'} is a curve enclosing ¥7 but no other point of the spectrum of A and oriented counterclockwise (see
[10, V.5, p.272] ). We set
2E = Ptz Vz € H.

We also introduce the finite dimensional operators
A* .= APF, ~ Bf:=PfB, Cf.=C,
where Ll:,t is the embedding operator from Hljf = PfH to H. Finally, we denote by Q' the orthogonal projection

from Y onto Y := CPH.
We are now in position to state our main results in the (IDO) and (FDO) cases.

1.1 Infinite-Dimensional Observer (IDO)

Theorem 1.1. Let o > 0 be given and assume that assumptions (H1.A)), (HL.B), (H1.C|) and (H1.D) hold true.
Then, there ezist two operators K € L(H, B*(P,7)*H) and L} € L(CPH, P, H) such that the observer-based
feedback control defined by

o(t) = KF3(t), (1.6)

where the infinite dimensional observer Z solves

Z(t) = AZ(t) + Bo(t) + L Qg (CZ(t) — y(1)),
{ o )
ensures that for any 2° € H, the solution z of the closed loop --, that is
2 (t) = Az(t) + BK}Z(t),
{ 2(0) = 2°,
satisfies
Izl < Me™*| %), ¥t >0. (1.8)

To prove this result, we introduce the error e := z — z and we check that systems (|1.3) and ([1.7) yield

2\' (A+BK, -BK/ 2
e) 0 A+ LIQIC) \e)"

The result follows then by choosing the operators K and L} in such a way that both A+ BK} and A+ LI Q}C
generate analytic semigroups with decay rate less than —o. This is achieved by solving two Riccati equations,
using the method proposed by Badra-Takahashi [1] (for K) combined to a duality argument (for L7).
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1.2 Finite-Dimensional Observer (FDO)

In this case, the stabilizing control is based on a finite dimensional observer of size ¢* > 0, where ¢* > ¢ and
need to be chosen large enough.

Theorem 1.2. Let o > 0 be given and assume that assumptions (H2.Al), (H2.B)), (H2.C)) and (H2.D)) hold true.
Let K} € L(H, B*P,H) and L} € L(CP,; H, P, H) be the operators defined in Theorem . Then, there exists
o > o such that the observer-based feedback control defined by

v(t) = K}Z,(t) € B*P,/H C B*P}.H, (1.9)

where the finite dimensional observer z, € P;*H solves

Z.(t) = A7 Z.(t) + Bloo(t) + L7 QF (CLZ.(t) — y (1)),
{ 00 (1.10)

ensures that for any 2° € H, the solution z of the closed loop (1.3)-(1.9)-(1.10), that is
2 (t) = Az(t) + BKSZ, (),
2(0) = 2°,

satisfies
lz()]la < Me )| 2°||m, vt > 0. (1.11)

To prove this result, we proceed as follows. Introducing the auxiliary variables

o+ ~ 2
€= Z g« — Zx X(e)’

we show that the equations satisfied by the state z and the observer z, yield

X'(t) = AX(t) + L(z,. (1)),
(1.12)
(25:)'(t) = Agez5. () + Bo KIX(2),
where At + 7+ +)+ o+ ++
_ o* + BU*KO' _Lo Qa C(0'* i _LO' QO’ C"Zo_'* + _ +
A= ( 0 A, +L;Qjc,,t> L(z.) = ( LIQrCz. ) . Ky = (K7,0).

We prove then that the matrix exp(tA) is exponentially stable with a decay rate less than —o. Next, thanks
to the first equation in (1.12)), we use Duhamel’s formula to express X in terms of z,.. Plugging the obtained
relation in the second equation of , we obtain an integral equation for z_.. We use a fixed point argument
to prove the well-posedness of this integral equation in the weighted space

L2(0,00;H.) := {f € L>(0,00; H.) such that e”) f(-) € L>(0, 00; H.)}.

This provides the expected result, that is the exponential decay of the controlled system with a decay rate less
than —o.

1.3 Related works

As already mentioned, the closest reference to our work is [I1], in which the authors considered the case of a
one dimensional heat equation. Their strategy is based on a (modal) splitting of the system into two parts: a
finite dimensional unstable one and a stable infinite dimensional one. A Luenberger observer of large enough
dimension is then constructed and the stability of the closed loop system is proved using a Lyapunov function.



Contrarily to the proof proposed here, the arguments used in [I1] are valid only in dimension one and heavily rely
on the type of the considered equation. Let us also mention that in [12], the authors used a similar approach to
prove the stabilization of a one dimension convection diffusion equation in the case of a boundary control. The
use of modal splitting for the stabilization of infinite dimensional systems has also been achieved in some specific
settings, like Burgers equations [20] ] [19], Navier-Stokes system [I], 2] [7} [16, [I8], semi-linear wave equation [5]
and populations dynamics [14} [15].

1.4 Outline

In Section [2| we prove Theorem which provides the stabilizing observer-based feedback-control through
an infinite dimensional observer. In Section [3] we construct a finite dimensional observer to design a similar
feedback-control. For this case, we need to assume that the operator A is self-adjoint and the control and
observation operators are bounded. Finally, in Section[d] these abstract results are applied to obtain a stabilizing
control for a reaction-diffusion system.

2 Infinite dimensional observer

2.1 Spectral decomposition of the system

In this section, we suppose that assumptions ([1.A)), (H1.B)), (H1.C)) and (HL.D]) hold true. We consider below
a classical modal decomposition (it has been used, for instance, in [I} 2| [7, [18]) that we recall it for the sake of
completeness. Let o > 0. We first separate the spectrum of A into “unstable” and “stable” modes using the
projection P defined in (L.F). We set

Hf =P H, H, =(Id-P,))H, H=HoH,.
According to this projection, we set
Al = Az HF — HY, A := Az :D(A)NH, — H,.

Then the spectrum of A} is exactly ©F and the spectrum of A} is exactly ¥, where ¥} and X7 are defined
in (T.4). We denote by A* the adjoint operator of A and we define similarly the projection (P, )* such that

(PH) = ——— [ (cTd—A")"" dc. 2.1)

"o )
The projection (2.1)) provides also the following spaces

(Hy)™ = (P5)"H, (H;)" = (Id—(F)")H, H=(H;)" e H,)", (2.2)

g

with
(AD)" i= Al (HD) — (D), (A7)" 1= A s DIAT) N (H)" — ()"

g

Lemma 2.1. There exist € > 0 and M > 0 such that for any 6 >0, ¢t >0

HeA;t < Me= e+t H(NO Id — A )PeAnt < %ef(odrs)t,
L(H7) LH;) 10
M (2.3)
(A;)*t” < Me—(o+ot H Id — (A=) )3 (A7)t < X o—(otort.
He L(H7) € ’ (1o (45)7)" LOHT) 1 °

Proof. We detail the proof only for the operator A, as the arguments for its adjoint are similar. The first
inequality is obvious. Concerning the second one, we first note that

(o Id —AF)0eAet = (uoId —A;)° (A*)fé (A*)(S efat,

o g



Applying [I3, Corollary 6.11] with B = (uoId —A;)°, A= A and 2 = (A;)_5 y, for y € H_, we obtain that
for some constant positive C,

(010 —47)° (47) "

yHH <C”yHH7 vy e H,,

and thus s
-4, (4,)7"| <
H(MO o’) ( a) £(H7)
Consequently,
T I P N (TS
Jmora—azyerse| < lmota—azy ()| [l et |
and the desired estimate follows then immediately from [I3] Theorem 6.13]. O

We also define
U= BYHEY, Uy o= B* (D(A") N (H5)"),

and
pf:U—UY, p,:U—=0U,, if :Uf—=U, i, :U, -0,
the orthogonal projections and the inclusion maps. Note that we have the following relations for the above
maps:
ig =(pg)", i, = ;)" (2.4)
From [I8], we can extend P, and (Id —P,") as bounded operators

P} e L(D(A*) HY), (d—Pf)e L(D(A*), [D(A*) N (H;)*]).

o

We can thus define

/

B = Py Bif € L(UF,HY), B, :=(d—F})Bi, € L(U;, [D(A") N (E,)*]).

ag

We show as in [I} 2], 18] that
PfB=B;p;, (Id-P;)B=DB,p,.

Using the projections P and Id —P,, system can be split into the two sub-systems (see [T 2] [18]).
(25)'(t) = AT25 (t) + BIpfo(t), 25(0) = Pf2°, (2.5)
(2)'(t) = Az 2 (1) + By g o(t), 7 (0) = (1 =P)=". (2:6)
We also introduce the orthogonal projections Q' from Y into Y} = CH and we define
ct=cuft,

where 11 designates the injection operator from H to H. We are now in position to prove Theorem 1.1

2.2 Construction of an infinite dimensional observer based control

Let us consider first the system

2(0) = 2°. @)

We want to construct a finite dimensional vector u such that the system (2.7) is exponentially stable. Let
N, € N* and (w;)1<j<n, C U, and let us suppose that the control u(t) is of the form

{ Z'(t) = AZ(t) + Bu(t),

N,
u(t) = Z u;(t)wy,



where u;(t) € C, for 1 < j < N, and ¢t > 0. It is natural to introduce the mapping

N,
B:CY — D(A"), ©= (b1, ,0n,) — BO =) 0;Buwj,
j=1
in such a way that setting
u(t) == (ua(t), -, un, (%)),
system ([2.7) is equivalent to
Z'(t) = Az(t) + Bu(t),
{ 3(0) = 3. (2:8)
It is worth noticing that the adjoint B* € L(D(A*),CN7) is given by

B*ip = (<w1,3*¢>m, . ,<wNU,B*¢>U).

o

Using the projection P, we get that (2.8) is equivalent to

GEH)'(t) = AfZH ) +Biu(t), 27 (0)=P;2% Bf =PSB, (2.9)
(Z)'(t) = AZZ; (t) + Bou(t), 2, (0) =P, 2% B =P;%, '
where Eo_i = PUiZ. We need to show that the finite dimensional part (2.9)); is exactly controllable. Let
N, > max ¢, (2.10)

Re\;>—0c

where /; is the geometric multiplicity of the eigenvalue A; of the operator A. From [I, Theorem 5] and the
first condition in (HI1.D]), there exists a family (w;)1<j<n, C UF C U such that (2.9); is exactly controllable.
Moreover, it is proved that u is expressed by means of a linear feedback operator

N, N,
u=KJZ Kf()=- Z<wj’B*HP;(')>ij = *Z(% (LIPS (+)))jw;, (2.11)

where IT € £(H}, (H})*) is the unique solution of the algebraic Riccati equation: for all £, ¢ € H}

No
(& Qu + (AT + 0 1d)¢, T )w + (1€, (AT + o 1d)¢)m — Z<B*Hfawj>U<B*HC>wj>U =0,
=1
<H£7 C)H = <57H<>Ha and vé 7é 07 <H£ﬂ§>H > 0.
This choice ensures that the solution of the finite dimensional system (2.9));
(Z5)'(t) = ATZZ (1) — BI (B (IIP;Z(1)))

(2.12)

is exponentially stable i.e.
125 ()]l < Me™ 20w, > 0.

It follows from Duhamel’s formula that the whole system (2.9) is exponentially stable (see [I]). We can construct
L7 similarly considering the system

Using similar arguments and the second condition in 1) we show that there exists a family (w})1<j<n, C
Y7 such that

No No
U = LiZy, (w}, CIL(P)"())vw) = =Y (CLAL(PF)" ()],
Jj=1 j=1



where
N,

¢, :CN — DAY, O= (b1, 0n,) — €O =) 0;,C*w}
j=1

where 1, € £((HF)*,H) is the unique solution of the algebraic Riccati equation: for all ¢, ¢ € (HF)*

No
(& Om + {((AD)" + 0 1), TL ) w + (ILE, ((AF)* + o 1d)¢ ; (CTLE wi)v (CTLG iy =0, g 4
<H*§a C>H = <£a H*C>Ha and vf 7& 0’ <H*€’§>H > 0.
Hence, we define
N,
LE() = Z Y¥X;s (2.15)
with
X = PjH*C*w]* € H}. (2.16)

With this choice, we get that (A + LT C)* and hence A + LT QY C is exponentially stable with decay rate less
than —o. Finally, using K and L} we construct the observer 2 satisfying (1.6)-(1.7), that is

{ Z(t) = AZ(t) + BKJ2(t) + Ly QY (C2(t) — y(t)),
(

(2.17)
2(0) = 0.

2.3 Stability of the closed-loop system

We define the error e = z — z. Then, we obtain

e(t)=(A+LIQIO)e(t), e(0) = 20, 918
Z(t) = (A+ BK})z(t) — BKe(t), 2(0)=2°. (2.18)

We prove that e is exponentially stable with decay rate —o.
Proposition 2.2. Systems (2.17)) and (2.18) are exponentially stable with decay rate —o.

Proof. Since (A + LYQ7TC) is of negative type strictly less than —c, then there exists 0 < £” < & such that
le(®) [l < Me™ )20 . (2.19)
Going back to system (2.5 with the control given by (1.6]), we have, since K}z, =0,

(23)'(t) = (AT + BJ KJ)z7 (1) = Bf KJe(t), 2f(0) = P2’

g
Moreover, there exists ¢’ > 0 with ¢” < &’ < ¢ such that (AT + B K) is exponentially stable with rate —c —¢’.
We have ;
() = HALHBIKD pr 0 / U= ATHBIED) Bt fte(s)ds.

0
From (2.19)), we see that
23 ()l < Me =) 20 (2.20)

We deal now with the infinite dimensional part z of the state. From (2.6) with the control given by (1.6)), we
have
(25)'(t) = Ag 25 (t) + By p; K25 (t) = Byp; Kfe(t), 2, (0)=(Id—F})z"



Using Duhamel’s formula, we obtain that

t
()= 7 (A=) [ B K (2 (5) — el) s
0

We note that since the resolvent commutes with the projection P, and et=9)42 we obtain for po € p(A) and
v€[0,1),
=94 B= = (=94 (44 1d —A)Y(Id — P} ) (o Id —A) ™ Bi;
e =4 (1o 1d —AZ )Y (Id —P;) (o Id —A) ™Y Bi; (2.21)

= (pold—A7)7e=3)47 (Id =P} ) (uo 1d —A) " Bi .
Using (HL.BJ), (2.3)), (2.19), (2.20) and (2.21)), we get

| "
||Z;(t)HH < M”ZOHH (e—t(o-i-s) +/ (t )»y e—(t—s)(o+6)e—s(a+a ) dS)
—s
o (2.22)
—t(o+€") .0 (t—s)(e"—¢)
< Me 127 | (1—!—/0 (t—s)Ve ds).
Then, since ¢” < ¢, we obtain .
27 ()l < Me™ D20 (2.23)
Then from (2.19), (2.20) and (2.23)), we obtain that z, z and the error e are exponentially stable. O

That concludes the proof of Theorem [T.1]
Remark 2.3. According to (1.6) and (2.11)), the control reads

o(t) = iKi () wi,

with K; € L(HF,C) and w; € U, i =1,...,N,. From decomposition [2.2) and the fact that (H})* = (H)*,
we have that if ¢ € (H})*, then
Vo € H, (0, Qg =0 = ¢=0.

Since dim ((HI)*) = dim L(H/, C), we infer that there ewists a unique ¢; € (H})* C D(A*) such that
K; (27) = (2.C)u-
In other words, the control can also be written in the form
No

o(t) = 3 (3, Gy wie

1=

=

In the special case where there is only one unstable simple eigenvalue (with an eigenspace spanned by an eigen-
function g1 € H), the above relations take simpler forms. Indeed, we have then

w1 = B*Sl
and for all p € H} = Span{e;}:

Ki(p) = —(B'er, B'IP @)u = (1 @) gy mss G = —(PF)*TIBBz,.
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3 Finite dimensional observer

3.1 Spectral decomposition of the system
In this section, we assume hypotheses (H2.A)), (A2.B)), (A2.C)) and (A2.D) to hold true.

Consider v > 0 and let us introduce the projection operators P,f as in (1.5 where in this case T} is a circle
enclosing ¥7 but no other point of the spectrum of A and oriented counterclockwise (see [10, V.5, p.272]). Since
A is a self-adjoint operator, then P is well defined. Moreover from the expression of the projections, it follows
that

(Pf) =Pn/.
Thus, P, is orthogonal projection of norm equal to 1. We set
H} = PH, H, = (Id—P,)H, H=H ®H,,

and
A+

v

= Ay H} — HF, A, =Ay- :DA)NH, — H,.

We also define as before
U} = B*H,‘f, U, :=B* (D(A) N H;) ,

and
pf:U—U}, p,:U—=0U,, if:Uf—-TU, i, :U, -0,

the orthogonal projections and the inclusion maps. Note that we have the following relations for the above
maps:

=m0 i =) (3.1)
We can thus define

B} := PfBi} € (U}, H}), Bj :=(1d—P})Bi, € L(U;,H).
It is proved in [I] (see also [2] and [18]) that
PfB=BJp;, (d-P;)B=B,p,.
We introduce also the orthogonal projection Q; from Y into Y, = CH,} and define

+_ ot
cr=0Cuy,

where ¢} designates the injection operator from H to H.
Consider now ¢* > o > 0. We take v = ¢ or ¥ = ¢* in the maps and spaces defined previously. Since A is
self-adjoint with compact resolvent, we deduce the existence of € > 0 such that for all £ > 0

”eA;tHc(H;) < e*(a+s)t7 (3'2)
and -
leto* o,y < e (3.3)
The system (|1.3]) splits into
(252)'(t) = AL 25 (1) + Bf.pho(t),  25.(0) = P20, (3.4)
(252)'(t) = ALz, (t) + Bopyv(t), 25.(0) = (Id—P;)z°. (3.5)

10
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3.2 Finite dimensional observer based control and stability of the closed-loop
system

We are now in position to prove Theorem The matrices K and L} being respectively given by (2.11]) and
(2.15)), we define the finite dimensional observer-based feedback control by

v(t) = KSZ,(t) € B*P;H c B*P}.H, (3.6)
where the finite dimensional observer z, € P;QH solves
Z,(t) = ALZ.(t) + BLo(t) + LT QL (CL.Z.(t) — y(1)), 57)
2,(0) = 0. '

Our goal is to prove that the coupled system (|1.3)), (3.6) and (3.7) is exponentially stable. We define the error
e = z}. — 2, which satisfies the following system

e'(t) = At.e(t) + LTQF (CH.e(t) + Oz, (1)), 58)
e(0) = 2. (0). '
We prove that z and e are exponentially stable with decay rate —o. Let us set
(% 0o _ 0
=(2) *= ()
Using (3.7) and (3.8]), X satisfies the system
X'(t) = AX(t) + L(z,+ (1)),
(3.9)
X(0) = XY,
where AT + g+ ++F ot +0+
. o« + BLK] —LTQICL -\ (—LIQrCz.
A= ( 0 AF, +Lj@jc;> L(z.) = ( L O ) : (3-10)

Let us first prove that A is stable matrix. In the sequel, the constant M is a generic constant that can change
from a line to another but need to be independent of o*.

Lemma 3.1. The matrices AL, + BL K} and AL, + LT QY CY. are exponentially stable with a decay rate less
than —o.

Proof. Let £ € H. be given. To prove that A}, + B, K} is exponentially stable, we only need to show that
the solution £(t) of the finite dimensional system

€'(t) = (AJ. + BR. KJ)E(L),
{ 0 (3.11)
£(0) =&,
is exponentially decaying. Consider then the infinite dimensional system
2(t) = (A+ BK] )a(t),
(3.12)
z(0) = &°.

From Section we see that the system (3.12) is exponentially stable of decay rate —o — &’. It implies that

|z(t) |l < Me™" )| €0 | (3.13)
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On the other hand, applying P, to (3.12) and recalling that Kz (t) acts only on the projected part of x(t) on
M, we obtain that

xh, *3: T KTz(t) = (AL, LKk
{(U)() Ab.zh () + BL K x(t) = (AL + BL K )ak (1), (3.14)

z 7t (0) = ¢,
This shows that 2. (¢) is the unique solution &(¢) of (3:1I), and we get from (3.13)), that

el = ot (8)ll = [Pl < M+ )||£°||H7

for all ¢€° € HY.. Hence
+ + Kt _ /
Het(Ag*+BG*KG )§0HH < MeMo+||¢0)1,
and the matrix AJr + B}, K} is exponentially stable with a decay rate less than —o. We use the same argument
for AT, + LTQFCH by cons1dering its adjoint (AL.)* 4+ (CL)*(L})* that has exactly the same form as the one
previously studied. O

Since A is a triangular matrix, using Lemma [3.I] and Duhamel’s formula, we obtain that A is stable with
exponential rate strictly less than —o.
We can now prove the exponential stability of the full closed-loop system (3.7) and ( .

X'(f) = AX(t)+ Lz (1),
(3.15)
(25:)'(t) = Azzu(t) + Brpr KIX(1),
where KI = (K}, 0) and with the initial conditions
X(0) = X%
2.(0) = (Id—P5)2°
From Duhamel’s formula, the two first equations in (3.15) also read
X(s) = eX(0)+ / DAL (27 (7)) dr,
0
¢
2. () = ez (0) +/ e (B p KEX(s)) ds.
0
Substituting the first equation above into the second one yields
t s
2. (t) = eer 2.(0) —|—/ e(=) 40 B- p= K (eSAX(O) +/ eGTIAL(27, (T))d7'> ds. (3.16)
0 0
Setting
t
Z0 = etor 2. (0) +/ elt=) 4 (Brpy KL (eSAX(O))) ds,
0
relation (3.16)) can be written
t s _
Zge (t) = / / et 40 B po K (e(s_T)AL(z; (T))des) + Z°. (3.17)
o Jo

—+, we prove the existence of a unique solution to (3.17) in a weighted space by using
a fixed point argument. More precisely, let us define the following map

To prove the stability of z_.

®:LX(0,00;H.) — L>°(0,00;H_.
g — g // (=94 B p K e~ L(g(7)) drds + Z°.
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Then, equation (3.16)) simply reads
D(z) = 2%

First, we prove that the function ® is well defined. Given g € L3°(0,00;H_.). Since C is bounded, L is also
bounded. Hence using the last relation, (3.3)) and (H2.B]), we obtain that there exists €’ > 0 such that

t s
12 (g) ()]l < M / / e (1=909" o~ (6= +") =70 |70 (1) |y dr ds
0 0
t
T A e &
0

Consequently
1@(9)(E)le < Iy + T2+ e [|2|m, (3.18)

t s
I = M/ e (t=s)0" g —s0 (/ e~ (s7me lle™ g(7)|lm dT> ds,
0 0

t

I =M HzOHH/O e~ (t=8)0" =57 g

where we have set

Noticing that

/ e dr = % {1 — 6758”} < %,
0 5 5

we get that
s —(e— 1" 1
| e e gl dr < ol o e
and hence t t
e "7 B .
I <M||g||L§°(O,oo;H;*) i /0 et=s)(e—0") g
Since ¢ . 1 — o—t(o™=0) .
/ =)= s = <
0 (O’*—g’) (0’*—0’)’
we have

Mefat
5//(0'* _ 0.) ”g”Lf,C(O,oo;H;*)

and similarly

o* —o

t —ot
ente ([ etnter as) ), < MO o,
0

Using the above estimates in (3.18]), we get that

1 1
—ot 0 0
|2 (9) ()l < Me™ (((,_(,) 902 0,00i80;) + 12l + =5 12 ||H) !
and hence ®(g) € L:°(0,00;H_,).
It remains to show that ® is a contraction mapping. Given g1,g2 € L3°(0,00;H_.), the same calculations
as above show that

M
) Hgl - gQ”Lgo(O,oo;H;*) :

[®(g1) — CD(QQ)HL?(O,OO;H;*) < (o — o

13



The application ® is thus a contraction provided that o* is chosen large enough to ensure that

M

— < 1.
e"(o* — o) <

Then, applying the fixed point theorem we get that there exists a unique z,. € L3°(0,00;H_.) such that
®(z,.) = z,» and
25 ()l < Me™7" || 2% 4 -

Moreover, going back to the first equation in (3.15)), and using Duhamel’s formula again, we easily obtain that
X8 s < Me™ [[2°]] .-

This completes the proof of Theorem [[.2]

4 Stabilization of the reaction-diffusion equation

Let Q ¢ RY (N > 1) be a bounded domain of class C*'. In this section, we apply Theoremand Theorem|1.2
for the stabilization of the heat equation. Let us consider I' a non-empty open subset of 92 and the control
problem:
Oz(t,x) =V - (bVz(t,z)) —cz(t,z) =0 in (0,00) x €,
z(t,z) =v(t,x) on (0,00) x I,
z(t,z) =0 on (0,00) x (OQ\T), (4.1)
2(0,-) =2 in Q,
y(t,x) =1pz(t,x) in (0,00) x Q,

where b, ¢ € L°°(Q) and O an open subset of RY with O C Q. In order to write (#.1]) under the form (T.3)), we
introduce the following functional setting:
H=I2Q), U=IXT),
Az =V - (bVz)+cz, D(A) = H*(Q)N Hy(Q),
The operator (A, D(A)) generates an analytical semigroup, this is a direct consequence of 3, Theorem 2.12,
p.115]. Thus (H1.A) is satisfied. Moreover, the operator A is self-adjoint, then in particular, we see that (H2.A)
holds true. To define the control operator B, we use a standard method (see, for instance [2I], pp.341-343] or
[17]): we first consider the lifting operator Dy € L(L?*(99); L*(Q2)) such that for any v € L*(99Q), w = Dgv is
the unique solution of the following system
pow — V- (bBVw) —cw =0 in Q,
w=v on 0f),

where pg € p(A). Then, we set
B = (ugIld—A)Dg : U — (D(AY)),

where we have extended the operator A as an operator from L?(Q) into (D(A*))’ and where we see U as a closed
subspace of L*(99) (by extending by zero in 9Q \ T any v € U). Using standard results on elliptic equations,
we have that B satisfies (H1.BJ) for any v > 3/4 (see for instance [16, Theorem 2.6]). We set also

Y = L*(0), C=1p,

we see that C' € L(H,Y). Let us recall how we can reduce (4.1]) to an evolution problem (1.3]). We set z = z —w,
with w = Dgv. Then Z satisfies the system

Oz — V- (bVZ) — ¢z = —0ww + pow in (0,00) x £,
Z=0 on (0,00) x 09,
2(0,) =2°:= 2" —w(0,-) in Q.
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Using the Duhamel formula, we have

By integrating by parts, we obtain
t
2(t) = et42° +/ =)Ao Td — A)w(s) ds,
0

that is
{ 2/ (t) = Az(t) + Bo(t), 2(0) = 2°,
y(t) = Cz(t).

To apply Theorem [1.1] we only need to check (H2.D)). We recall that
D(A*) = H*(Q) N Hy(Q), A* = A.
Moreover, by classical results (see [2I], Proposition 10.6.7]), we see that

* 8 *\ — a —
Dg = =5 (po1d - A7) b= —5, (Hold —4) .

and thus
Oe

Covr

* —

Thus if € satisfies A*¢ = Ae and B*s = 0, then

A —V-(bVe) —ce =0 1in Q,

e=0 on 09,
Oe
Eoie onT.

From standard results on the unique continuation of the Laplace operator (see for instance [9, Theorem 5.3.1,
p.125]), we deduce that e = 0. In the other hand, if ¢ satisfies Ac = Ae and Ce = 0, then

Ae—V-(bVe) —ce =0 inQ,
e=0 on 09,
e=0 inO.

1 We obtain again from standard results on the unique continuation of the Laplace operator (see for instance [9,
2 Theorem 5.3.1, p.125]), we get also that ¢ = 0. Thus (H2.D]) holds for any o.

3 Now, we define the observer z using Remark Let us define N, by (2.10)) and Z the solution of the closed
4+ loop system

0z—V-(bV2) —cz = (lo(Z—z),w)y xi in (0,00) x €,

SIlNgE

z = (z, Gi)g wi on (0,00) x T, (4.2)
=1
z =0 on (0,00) x (9Q\ ),
,’Z\(Oa ) = 0 in €,

s where (w:)lgigNU C Y, (Xi)lgigNU C H, (Ci)lgigNa C 'D(A*) and (’wi)lgig]\]g cU (see equations ""
¢ and Remark . We deduce the following result by applying Theorem
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Theorem 4.1. Assume o > 0. There exists a control

No

oty =Y ( /Q 2006 dm) v, (4.3)

i=1

with ¢, € H*(Q) N HY(Q), v € Hl/z(l"), k = 1,...,N, such that the coupled system (4.1) and (4.2) is
exponentially stable that satisfies for 2° € L*(Q) the estimate

12(t)] 20y < Ce™7|2°] 2()- (4.4)
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