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Abstract

Catheter-based cardiac ablation, such as radiofrequency ablation (RFA) and pulsed elec-
tric field ablation (PFA), is the treatment of choice for atrial fibrillation (AF). However,
the underlying phenomena and differences between RFA and PFA are not well understood.
In this paper, we propose mathematical modeling of the cardiac electric signal of a cardiac
domain containing an ablated area by RFA or PFA. Both types of ablation consist of the
isolation of the pulmonary vein, but we describe them differently by using appropriate trans-
mission conditions. More specifically, we assume that in the case of RFA, both intracellular
and extracellular potentials are affected, leading to Kedem-Katchalsky type conditions at
the interface. In contrast, in the case of PFA, we assume an isolation of the intracellular
potential (due to the cardiomyocytes death induced by electroporation) whereas the extra-
cellular potential is continuous. Numerical simulations in a context of AF show that PFA
and RFA lead to isolation of the pulmonary vein. Our modeling also enables to propose a
numerical explanation for the higher rate of fibrillation recurrence after RFA compared with
PFA.
Keywords: Electrocardiology modeling; Radiofrequency ablation; Pulsed electric field ab-
lation.

1 Introduction

Cardiac arrhythmias are irregularities in the heartbeat that result in chaotic electrical
waves. While most of cardiac arrhythmias are benign, some of them can directly affect
the pumping function of the heart, leading then to stroke or heart failure. Isolation of
the pulmonary veins by catheter ablation has become the treatment of choice for atrial
fibrillation (AF). The goal is to isolate the pulmonary veins from which the fibrillation is
supposed to originate by physical procedures such as thermal ablation (cryoablation [17] or
radiofrequency ablation (RFA) [10]), and more recently pulsed electric field ablation (PFA),
which is based on nonthermal irreversible electroporation.

Despite the great interest that RFA and PFA have generated in the treatment of AF,
there is still a lack of understanding – and thus modelling – of the underlying biophysical
phenomena of these different therapies. On one hand, it is well known that RFA ablation
leads to coagulation necrosis with complete loss of cellular and vascular architecture [2]
by leaving a scar composed of a fibrotic tissue. On the other hand, PFA is known to
destroy mainly the cardiomyocytes, but the tissue scaffold is preserved [12, 3]. Therefore,
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the physical properties of the cardiac tissue after RFA and PFA are very different, although
they have the same goal, which is to isolate the pulmonary vein.

Recent medical studies have shown that the recurrence of atrial fibrillation with PFA [15]
is on the order of 15%, compared with 30% with RFA [19]. We hypothesize that these
treatment failures can somehow be explained by the long-lasting changes in the electrical
properties of the tissue after ablation.

Well-designed mathematical modeling could help to better understand the effects of
PFA on cardiac electrical wave and to develop numerical criteria for treatment evaluation.
For example, one of the challenges is to derive electroporation models at the cellular or
tissue level. This is a very interesting question, but in this work we focus on another one.
More precisely, we propose a mathematical modeling of the cardiac electrical signal of a
cardiac domain containing an area ablated by RFA or PFA. We study the effects of this
treated area on the propagation of the electrical wave, known to correspond to the so-called
bidomain model [18] in cardiac domain, through well-adapted transmission conditions across
the treated region.

After a detailed presentation of the mathematical modeling in Section 2, we perform
numerical simulations in a realistic configuration in Section 3. We show that our models are
able to represent very well the isolation of a pulmonary vein by RFA and PFA ablation, and
we propose an explanation for the higher recurrence rate of fibrillation after RFA.

2 Modeling

2.1 Geometrical setting

For numerical purposes, it is convenient to consider the cardiac tissue as a midsurface
as suggested in [4], to avoid meshing the thin volume. This configuration has been found to
be particularly well suited for the very thin wall of the atria.
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the identity tensor in the tangential plane. ⌧̄0 denotes a unit vector, linked to
the fiber direction of the midsurface of the atria, and ⌧̄?0 is such that (⌧̄0, ⌧̄

?
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gives an orthonormal basis to the tangential plane. Eventually, functions I0(✓) =
1
2 + 1

4✓ sin(2✓) and J(✓) = 1�I0(✓) describe the effect of a variation of a 2✓ angle
of the direction of the fibers across the wall. The well-posedness of the system is
ensured by adding some initial conditions for vm, ue and w at time t = 0.

To close the system, appropriate transmission conditions on the interface �
has to be written. They depend on the ablation that we consider and they are
presented in the following subsections. We will denote by �+ (resp. ��) the side
of DLA (resp. DPV).

2.2 Radiofrequency Ablation

To represent RFA without fibrosis, we will consider a full separation between
the two cardiac parts DLA and DPV. The transmission conditions are in fact
degenerated and read as follows
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However, fibrosis is known to appear in some cases after RFA [ajouter 1 citation].
To model that, we will consider the well-known Kedem–Katchalsky transmission
conditions – initially introduced in [11] – which write
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The considered coefficient ↵ is a positive constant which must be chosen carefully.
Indeed by varying the parameter, the transmembrane potential wave will be able
or not to overtake the interface � . In particular, when ↵ = 0, it is equivalent to
the conditions (3) corresponding to RFA without fibrosis. When ↵ >> 1, it can
be seen as a penalty method [13] for weak imposition of the continuity conditions
between the both parts meaning it corresponds to have the classical bidomain
model in the full domain.

Annabelle : j’hésite à virer Equation (3) en couplant directement (3) et (4).

2.3 Pulsed Field Ablation

Unlike RFA, the PFA method has been proven to be non-invasive, only destroy-
ing cells, by ensuring tissue specificity, specifically targeting the myocardium
thanks to its non-thermal approach. Therefore, the extra-cellular potential is
revealed to be continue with its derivative at the interface � . Concerning the
intra-cellular potential, we consider a Neumann boundary condition. We then
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2 Modeling

2.1 Bidomain model

We consider two parts of the cardiac tissue that should have be isolated during
ablation (RFA or PFA). We denote by DPV one of the pulmonary vein domain
and by DLA the rest of the left atrium. In our modeling the ablated area is
assumed to be small and we consider that it is represented only by the interface
between the two domains � = DLA \ DPV. PFA, RFA and fibrosis after RFA
will be modeled through the transmission conditions on � . We also define the
exterior boundaries �LA = @DLA \ � and �PV = @DPV \ � .

Inside the cardiac tissue, we will consider the well-known bidomain model [1],
widely studied in literature. This is a non linear reaction-diffusion partial differ-
ential equation (PDE), coupled with an ordinary differential equation (ODE),
representing the cellular activity. In particular, considering a quite simple phe-
nomenological ionic model, equations can be rewritten in terms of the intra-
cellular potential (ue +vm), the extra-cellular potential ue and the ionic variable
w. Moreover, in order to simplify notations, a transmembrane potential vm can
be introduced and defined as vm := (ue + vm) � ue. The system of equations
reads as

Am(Cm@tvm + Iion) �r · (¯̄�i · r(vm + ue)) = 0, DLA [ DPV ⇥ (0, T ),

r · ((¯̄�i + ¯̄�e)rue) + r · (¯̄�i · rvm) = 0, DLA [ DPV ⇥ (0, T ),

@tw + g(vm, w) = 0, D ⇥ (0, T ),

(1a)

(1b)
(1c)

where the functions Iion and g are defined as in the model proposed by Mitchell
and Schaeffer [4], Am, the fraction of membrane area per unit volume and Cm,
the membrane capacitance per unit surface. We assume that the heart is iso-
lated, so we make the standard assumption that the extra- and intra- cellular
currents do not propagate outside the heart meaning that we consider Neumann
homogeneous boundary conditions on �LA [ �PV,

(¯̄�i · rvm) · n̄ = �(¯̄�i · rue) · n̄, �LA [ �PV ⇥ (0, T ),

(¯̄�e · rue) · n̄ = 0, �LA [ �PV ⇥ (0, T ),

(1d)

(1e)

where n̄ is the outside normal of �LA [ �PV. More precisely, we consider here
the surface bidomain model proposed in [5], particularly well-suited to the atria
very thin walls. This amounts to considering DLA (resp. DPV) as the midsurface
of the left atrium (resp. one of the pulmonary vein) and the following description
for the anisotropic intra- and extra-cellular conductivity tensors,

¯̄�i,e = �t
i,e

¯̄I + (�t
i,e � �l

i,e)
⇥
I0(✓)⌧̄0 ⌦ ⌧̄0 + J0(✓)⌧̄

?
0 ⌦ ⌧̄?0

⇤
, (2)

where �t
i,e and �l

i,e denote the conductivity coefficients in the intra-cellular
medium measured along and across the fiber direction, respectively and ¯̄I is
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Figure 1: Geometrical setting. Domains with interfaces (left-top), computational mesh (right-
top), fibers orientation at the endocardium (left-bottom) and at the epicardium (right-bottom).
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2.1.1 Domains of interest and mesh

The geometric configuration is presented in Fig. 1. The left atrium, denoted by DLA is a
2D surface separated from one of the 4 pulmonary veins denoted by DPV by the interface Γ.
For the sake of simplicity, we only focus on the isolation of one pulmonary vein even though
in clinical cardiac ablation the 4 veins are isolated. We denote by ΓPV the outer boundary
of DPV, while the 3 other outer boundaries of the pulmonary veins are denoted by ΓLA (see
Fig. 1). The whole domain of interest is denoted by D:

D = DLA ∪ Γ ∪ DPV.

2.1.2 Fibers orientation

It is well-known that the fibers orientation impacts the propagation of the electrical wave
on the heart. Chapelle et al. have proposed an efficient model of the electrical properties
of the fibers [4] allowing to consider fiber variations inside the thickness of the atria. They

introduce the following tensors: ¯̄I denotes the identity tensor in the tangential plane, τ̄0
denotes a unit vector, linked to the fiber direction of the midsurface of the atria, and τ̄⊥0
is such that (τ̄0, τ̄

⊥
0 ) gives an orthonormal basis to the tangent plane. Eventually, they

introduce the functions I0(θ) = 1
2 + 1

4θ sin(2θ) and J0(θ) = 1 − I0(θ) to describe the effect
of a variation of a 2θ angle of the direction of the fibers across the wall. Then, the intra-
and extra-cellular conductivity tensors denoted by ¯̄σi and ¯̄σe respectively are defined by

¯̄σi,e = σti,e
¯̄I + (σti,e − σli,e)

[
I0(θ)τ̄0 ⊗ τ̄0 + J0(θ)τ̄⊥0 ⊗ τ̄⊥0

]
, in D. (1)

where σti,e and σli,e denote the conductivity coefficients in the intracellular medium measured
along and across the fiber direction, respectively.

2.2 Surface bidomain model in the atrium

To model the electrical wave propagation, we consider the well-known bidomain model [18],
widely studied in literature. It consists of a non linear degenerate parabolic partial differen-
tial equation (PDE), coupled with an ordinary differential equation (ODE), representing the
activity of the ion channels. In particular, considering a quite simple phenomenological ionic
model, equations can be rewritten in terms of the intracellular potential ui, the extracellular
potential ue and the ionic variable w. The system of equations writes, for any t > 0,

Am(Cm∂tvm + Iion(vm, w))−∇ · (¯̄σi · ∇ui) = 0, D,
∇ · (¯̄σe · ∇ue) +∇ · (¯̄σi · ∇ui) = 0, D,

∂tw + g(vm, w) = 0, D,
vm = ui − ue, D,

(2a)

(2b)

(2c)

(2d)

where the functions Iion and g are defined as in the model proposed by Mitchell and Scha-
effer [14], Am, the fraction of membrane area per unit volume and Cm, the membrane
capacitance per unit surface. We assume that the heart is isolated, so we make the standard
assumption that the extra- and intra-cellular currents do not propagate outside the heart
meaning that we consider Neumann homogeneous boundary conditions on ∂D, for any time
t > 0,

(¯̄σi · ∇ui) · n̄ = 0, (¯̄σe · ∇ue) · n̄ = 0, on ∂D, (2e)

n̄ being the normal vector to ∂D outwardly directed from D towards the exterior.

2.3 Transmission conditions through Γ

The above system (2) has to be complemented with initial conditions for ui, ue and w
at time t = 0 and a Gauge condition on ue to fix the constant. In this paper, we impose
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∫
D ue dx = 0. More importantly, to close the system, appropriate transmission conditions

through the interface Γ must be prescribed. They depend on the ablation that we consider
and they are presented in the following subsections. We first introduce few notations. Denote
by Γ+ (resp. Γ−) the interfaces

Γ+ = Γ ∩ DPV, Γ− = Γ ∩ DLA,

where DLA denotes the adherence of DLA, mutatis mutandis for DPV. For any function u
defined on D and discontinuous through Γ, the jump of u across Γ is

JuK|Γ = u|Γ+
− u|Γ− .

2.3.1 Radiofrequency Ablation

To model the effect of RFA, we consider the well-known Kedem–Katchalsky transmission
conditions – initially introduced in [11] – which read

αJueK|Γ =
(
(¯̄σe · ∇ue) · n̄

)
|Γ+

=
(
(¯̄σe · ∇ue) · n̄

)
|Γ−

,

αJuiK|Γ =
(
(¯̄σi · ∇ui) · n̄

)
|Γ+

=
(
(¯̄σi · ∇ui) · n̄

)
|Γ−

,

(3a)

(3b)

here n̄ is the normal vector to Γ oriented from Γ− towards Γ+. The coefficient α is a
positive constant homogeneous to a surface conductance. It takes into account the fact
that the treated region has a higher resistance due to RFA than the healthy tissue. This
parameter α is crucial because it is responsible for whether or not the transmembrane
potential wave can overcome the Γ interface. In particular, when α = 0, it is equivalent to
a complete decoupling of the two domains DLA and DPV, resulting in a perfect isolation of
the pulmonary vein.

In the asymptotic regime α� 1, the potentials ue and ui become asymptotically contin-
uous. The Kedem-Katchalsky can then be seen as a penalty term which weakly enforces the
continuity of the potential through the interface Γ [1]. In the following numerical section,
we consider different values of α showing different levels of pulmonary vein isolation.

2.4 Pulsed Field Ablation

It has been experimentally observed that PFA preserves the tissue scaffold and targets
the myocardium through the nonthermal, irreversible electroporation process. After PFA,
the mechanical properties (stiffness, elasticity...) of the cardiac tissue are preserved, whereas
the electrical functionalities of the ablation area are altered [2]. Most likely, PFA leads to
local death of cardiomyocytes, which are then replaced by nonexcitable fibroblasts.

Based on these considerations, we propose to model the electrical effect of PFA by a
continuity of both the extracellular potential ue and the extracellular normal flux (¯̄σe·∇ue)·n̄,
while assuming that the intracellular potential of DLA is isolated from the intracellular
potential of DPV, thus using a homogeneous Neumann boundary condition for ui. In other
words the transmission conditions describing the effect of PFA read

JueK|Γ = 0, J(¯̄σe · ∇ue) · n̄K|Γ = 0,
(
(¯̄σi · ∇ui) · n̄

)
|Γ+

=
(
(¯̄σi · ∇ui) · n̄

)
|Γ−

= 0.

(4a)

(4b)

The mathematical justification of these conditions is beyond the scope of the present paper
and will be presented in a forthcoming mathematical paper. Roughly speaking, these con-
ditions arise from an asymptotic analysis in which the small parameter is the thickness of
the electroporated region and its low intracellular conductivity tensor.
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3 Numerical illustrations

The aim of this section is to compare the transmembrane potential vm and the extracel-
lular potential ue satisfying (2) with either the transmission conditions for RFA (3) or the
transmission conditions for PFA (4). For the sake of simplicity, we assume that the treated
region behaves identically along the interface Γ. It means that the parameter α in (3) is
assumed to be constant.

3.1 Mesh, fibers and numerical schemes

The simplified geometry of the left atrium is constructed as an ellipsoid 50mm long and
35mm high (see Fig. 1). Its depth is intersected by a plane corresponding to the position of
the mitral valve. Four pulmonary veins – modeled by cutting cones with a mean diameter
of 13mm – are added. The appendage is modeled by an ellipsoid of 10mm × 5mm ×
5mm. The mesh, presented in Fig. 1 has been generated by Gmsh [6]. The surface mesh
is composed of 26141 nodes and 51904 triangular elements. The fibers directions – needed
to build the tensors (1) – at the endocardium and epicardium are derived according to the
literature [8, 13].

The numerical illustrations have been obtained using FreeFem++ [7], a PDE solver based
on finite element method. All the problems are solved with a BDF2 semi-implicit scheme
(∆t = 0.01ms) to deal with the nonlinear term Iion and with P1 elements. To numerically
solve the transmission conditions of RFA with fibrosis, we consider a weak coupling. Indeed,
the condition leads to a Neumann condition in which we use the trace of the solution on
Γ− (resp. Γ+) at the previous time step when solving the solution in PV domain (resp. LA
domain). To numerically solve the transmission conditions of PFA, we use a Schwarz-type
algorithm in which the penalty parameter is fixed at 2. This value has been chosen very
carefully through a mathematical study, following [9]. Mesh, fibers and codes are available
here: https://gitlab.inria.fr/snatipol/af-pfa-rfa.

3.2 Numerical illustrations before ablation

To compare the effects of the two ablations considered, a simulation corresponding to
atrial fibrillation before ablation is proposed.

Physiologically, the depolarization wave that triggers the heartbeat is initiated in the
sinoatrial node in the right atrium. It then propagates to the left atrium via two electric
pathways: the fastest leading to Bachmann’s bundles (BB) and the second to the fossa
ovalis (FO). The BB are modeled as two ellipsoids located at the top of the atrium near the
appendage. The FO is located on the right side of the left atrium, on the wall between the
right and left atria. They are also shown in Figure 1. The depolarization wave reaches the
FO at t = 10ms after depolarization of the BB corresponding to t = 0ms. To generate the
AF synthetically, we use a standard S1-S2 protocol [5]. The S1 stimulus corresponds to the
BB and the FO stimulus. The S2 stimulus location is near the left pulmonary inferior vein,
see Figure 1. Pulmonary veins are known to be prone to frequent reentry. The S2 stimulus
is triggered at t = 356 ms. Parameters were set in [16].

The first column of Figure 2 shows time snapshots of the transmembrane potential before
ablation. One first sees the healthy depolarization occurring during the first 90ms – see 20,
44, and 70ms snapshots – followed by the healthy repolarization – see 200ms snapshot – and
by the second stimulus illustrating a pathological area of one of the pulmonary veins – see
356ms snapshot – that triggers a pathological wave that unfolds in the left atrium – see 430
and 500ms snapshots.

3.3 Effects on the electric signal

The second column of Figure 2 gives the transmembrane potential corresponding to
successful RFA (Equation (3), α = 10−4). Because the two regions are nearly decoupled,
the pulmonary vein is well isolated: there is no entry of the wave into the left atrium, see
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Time

356 ms

200 ms

70 ms

44 ms

20 ms

430 ms

AF RFA PFA

500 ms

44 ms

-0.08 0.02 (V)vm

-0.025 0.035 (V)ue

Figure 2: First column: before ablation. Second column: successful RFA (Equation (3), α =
10−4). Third column: successful PFA. Lines 1 to 7: Snapshots of transmembrane potential vm.
Last line: Snapshot of extracellular potential ue.

356, 430, and 500ms snapshots. Uncoupling is also seen in the evolution of the extracellular
potential, shown in the last line of the same figure at time 44ms. The third column of
Figure 2 corresponds to a successful PFA. One can first see that there is no entry of the
transmembrane wave, showing the success of the ablation. However and contrary to RFA
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-0.08 0.02 (V)vm

Time

510 ms

430 ms

356 ms

α = 10−4 α = 10−3 α = 10−2

Figure 3: Snapshots of transmembrane potential vm in 3 situations of RFA corresponding to
transmission conditions (3). First column: α = 10−4. Second column: α = 10−3. Third column:
α = 10−2.

(second column), the PFA maintains the continuity of the extracellular potential ue, see the
last line of Figure 2.

The effects of the α parameter are shown in Figure 3. One can see that as it increases
– see the second and the third columns (α = 10−3 and α = 10−2) – the wave crosses the
interface from the pulmonary vein to the left atrium, resulting in a restart of the atrial
fibrillation even though the propagation of the wave is delayed. The larger the value of α,
the smaller the delay here. The increase in α can be viewed as the emergence of electrical
pathways between DLA and DPV.

4 Conclusion

In this work, we propose a mathematical modeling of the cardiac electric signal of a
cardiac domain containing a region ablated by RFA or PFA. It consists in determining the
transmission conditions of the very classical bidomain model at the interface of the ablated
area. Our goal was to propose a mathematical explanation for the lower recurrence of AF
after PFA compared with RFA as reported in the literature [15, 19]. Thanks to well-designed
transmission conditions, we were able to model the complete or partial disconnection – for
both transmembrane and extracellular potentials – of the pulmonary vein. Partial discon-
nection can be seen as the emergence of electrical pathways between the atrium and the
pulmonary vein. It could be caused by the development of necrotic fibrosis after RFA,
which is not the case in PFA. Thus, our work suggests that both RFA and PFA lead to
isolation of the pulmonary veins with respect to the electrical signal, but the nature of these
isolations is very different. We hypothesize that RFA-induced fibrosis may lead to conduc-
tion pathways. This work is a first step towards a fine modeling of the effects of a tissue
region ablated by PFA in cardiology.
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