
Work in Progress: Thwarting Timing Attacks in Microcontrollers using
Fine-grained Hardware Protections

Nicolas Gaudin†, Jean-Loup Hatchikian-Houdot*,
Frédéric Besson*, Pascal Cotret‡, Guy Gogniat†, Guillaume Hiet⋄, Vianney Lapotre†, Pierre Wilke⋄

⋄: CentraleSupélec, Inria, CNRS, IRISA, Univ. Rennes, France
*: Inria, Univ. Rennes, CNRS, IRISA, France

†: UMR 6285, Lab-STICC, Univ. Bretagne-Sud, Lorient, France
‡: UMR 6285, Lab-STICC, ENSTA Bretagne, Brest, France

Abstract—Timing side-channels are an identified threat for
security critical software. Existing countermeasures have a
cost either on the hardware requirements or execution time.
We focus on low-cost microcontrollers that have a very low
computational capacity. Although these processors do not
feature out-of-order execution or speculation, they remain
vulnerable to timing attacks exploiting the varying latencies
of ALU operations or memory accesses.

We propose to augment the RISC-V ISA with security
primitives that have a guaranteed timing behavior. These
primitives allow constant time ALU operations and memory
accesses that do not alter the state of the cache. Our ap-
proach has a low overhead in terms of hardware cost, binary
code size, and execution time both for the constant time
secure program and other programs running concurrently
on the same hardware.

Index Terms—Cache-based Side-Channel, Internet of Things,
Security

1. Introduction

Side-channel attacks exploit power consumption, ex-
ecution time, or any other physical effect caused by an
implementation, in order to deduce information about
secret values, such as cryptographic keys. In this paper,
we mainly focus on cache-based side-channel attacks (i.e.
timing attacks exploiting shared cache memories [8]), e.g.
FLUSH+RELOAD [15] or PRIME+PROBE [9].

The principle behind these attacks is the following. By
measuring the time needed to perform a memory access,
an attacker can deduce whether the requested memory ad-
dress is cached (cache hit, fast) or not cached (cache miss,
slow). From this piece of information and by carefully
orchestrating the contention, an attacker can trace memory
accesses of any co-running processes. More generally, any
micro-architectural shared resource may induce a timing
channel that can be exploited by an attacker [5].

In the literature, several approaches have been ex-
plored to thwart cache-based side-channel attacks. On
the software side, the programming discipline known as
constant-time programming [3], [14] forbids memory ac-
cesses at addresses that depend on a secret, and condi-
tionals branches with secret conditions. This countermea-
sure indeed defends against cache side-channel attacks,

but requires a strict discipline from the programmer and
careful use of the compiler. Goldreich et al. [6] propose
a program transformation in order to make the memory
access patterns of different executions with different se-
crets indistinguishable from one another. Yet, this has a
prohibitive cost [9].

On the hardware side, there are two main approaches
to thwart cache-based side-channel attacks: cache ran-
domization and cache partitioning. RPCACHE [12], SCAT-
TERCACHE [13] and CEASER [11] propose cache de-
signs based on randomization. The randomness is pro-
vided by permutation tables or encryption algorithms.
Purnal et al. [10] evaluate these solutions and introduce
PRIME+PRUNE+PROBE which allows an attacker to find
eviction sets in randomized caches. In order to mitigate
this attack, the cache mapping needs to be periodically
updated (i.e. by generating a new permutation table or
encryption key) after a few hundred accesses. The induced
remapping cost limits the adoption of randomized cache.

The other approach is based on resource partitioning.
NOMO-CACHE [4] partitions the cache by allocating a
set of ways to sensitive applications. It implies a very low
hardware overhead but leads to a performance drop. Cache
partitioning techniques are effective at countering cache
side-channel attacks because of process isolation, how-
ever, this strong security is at the expense of performance.
Wang et al. [12] proposes PLCACHE, a lightweight mecha-
nism allowing the lock of process cache lines, with the aim
of protecting against a restricted class of cache-based side-
channel attacks. They introduce two instructions to LOCK
and UNLOCK a cache line. A locked cache line cannot
be evicted by any other process. However, in accordance
with the replacement policy, a locked cache line can be
evicted by the process which locked it. Moreover, memory
access can bypass the cache hierarchy when necessary
(e.g. if the replacement policy points to a locked cache
line owned by another process). Thus, this approach does
not guarantee constant time access to locked cache lines.
Yu et al. [16] propose a data oblivious Instruction Set Ar-
chitecture (ISA) extension. The goal is to expose security
guarantees independently of the micro-architecture and
not to preclude modern hardware performance techniques
(except when it leaks).

Our proposal. We introduce a flexible solution
against timing side-channel attacks. More precisely, our
design has the following features:

• We augment the RISC-V ISA with two instruc-
tions, lock and unlock, which allow to lock and
unlock a cache line inside the cache. This guaran-
tees that memory accesses at locked addresses are
constant-time, thus preventing cache side-channel
attacks.

• We implement an instruction to switch between
constant-time mode and normal mode. This pre-
vents timing attacks exploiting operand-dependent
latencies.

• We develop a RISC-V simulator which models the
aforementioned addition to the ISA. The simulator
generates an abstract leakage trace that is indepen-
dent of the micro-architecture. Our claim is that
this abstraction is sufficient to ensure the absence
of timing leakage at the cycle level.

• We implement the proposed solution by extending
the CV32E40P RISC-V core. It includes the sup-
port of both lock and unlock instructions and
a constant time mode. Furthermore, we develop
a data L1 cache hardware design that supports
the proposed locking mechanism. We synthesize
this core and the associate memory hierarchy on
a Xilinx Kintex-7 FPGA.

The rest of the paper is organized as follows. Section 2
describes our threat model and the hypotheses we make
about our execution platform. Section 3 gives a high-
level overview of our approach, using a few motivating
examples to illustrate the need for our new cache locking
mechanism.

Then, Section 4 describes in more detail the design of
our software simulator, and Section 5 presents the hard-
ware implementation of our solution. Section 6 discusses
the limitations of our approach, gives perspectives for
further work, and concludes.

2. Threat Model and hypotheses

We consider a platform on which two programs are
running concurrently on a single-thread in-order core
without speculation. The memory hierarchy is physically
addressed and there is one level of data-cache.

One of the programs is the victim program, which
manipulates secrets. Another program is a malicious pro-
gram, under the control of an attacker, and attempts to
discover the victim’s secrets. We also suppose that the
binary of the victim program is known to the attacker and
read-only (i.e., we do not consider self-modifying code).

The attacker and the victim programs share the same
memory hierarchy, but their address spaces are disjoint.
The attacker can perform memory accesses; infer the
cache state before and after the victim execution and learn
how many cache lines are evicted for each cache set (i.e.
cache lines used by the victim). The attacker can measure
time in a cycle-accurate manner to determine whether its
cache access is a cache hit or a cache miss. The attacker
can also measure the time of the victim execution to infer
information about the victim execution (e.g. control flow,
multi-cycle instruction, memory access). Interrupts can be
triggered at any time by the attacker in order to modify
the state of hardware shared resources (e.g. cache state)
or start/stop cycle accurate timers.

3. Motivating Examples and Approach

Our solution improves the security guarantees of
PLcache [12]. We first recall their solution, show their
limitations and how we propose to fix them.

PLcache introduces a mechanism to lock and unlock
a memory block in the cache. A memory block locked
into the cache by the victim program cannot be evicted
by the attacker program, but can be evicted by the victim
program itself while performing another lock.

Lock and unlock instructions are restricted by the
same memory protection as load and store instructions.
I.e. a program cannot lock or unlock an address out of its
memory space.

In the event of a cache miss, the cache line to evict is
chosen regardless of whether it is locked. If the cache line
chosen for eviction happens to be locked by another pro-
cess, it is not evicted, and the metadata associated to this
cache line for the replacement policy (in this case LRU
(Least Recently Used)) is updated as if it had been used,
and the memory block that was fetched from memory
does not overwrite the locked cache line. Symmetrically,
a store would be applied directly on RAM, i.e. the cache
is bypassed.

3.1. Forcing the victim to self-evict

A first attack against PLcache takes advantage of the
fact that the victim can accidentally evict its own locked
data from the cache when performing new locks. The
attack is illustrated in Figure 1.

1 lock A1
2

3 lock A3

(a) Victim code.

1

2 load A2
3

(b) Attacker code.

Figure 1: First attack: forcing self-eviction. A1, A2, and
A3 are mapped to the same cache set.

The left-hand side of this figure shows the victim code,
which locks two memory blocks at addresses A1 and A3,
while the right-hand side shows the attacker code, that
runs concurrently with the victim program, and loads the
memory block at address A2 between the two locks. The
three addresses A1, A2 and A3 need to be such that they
all map to the same cache set. For the sake of brevity,
these example programs make the assumption that each
cache set consists of only 2 cache ways.

Initially, the cache set in which all three addresses A1,
A2 and A3 will be mapped is empty. First, the victim locks
memory address A1. Then, the attacker loads memory
address A2 into the cache. At this point, the cache set
is full. According to the LRU cache line replacement
policy, the next line to evict is the one containing memory
block A1. The lock A3 instruction will therefore evict
memory block A1.

In the rest of the victim program, memory accesses
that should have been protected by the lock instruction
are now visible to the attacker, and the usual cache-based
timing attacks become possible again.

Our solution. In order to prevent this type of attack,
we make the following modifications. Alike PLcache, The
lock instruction fetches data from memory and locks it
into the cache. Unlike PLcache, locked data stays in the
cache until it is released with the unlock instruction, i.e.
a process cannot accidentally evict its own locked data.
This means that in our proposal, a memory access to a
locked piece of data will always result in a cache hit, and
therefore be constant-time. We also make the choice to
always keep at least one way available in each cache set,
so that we never need to bypass the cache. Because of our
design choices, the lock instruction may now fail. When
a lock instruction would lock the last available way in a
set, an exception is raised that the operating system can
then handle.

3.2. Leakage through LRU

This second attack shows how information can leak
through the metadata associated with the cache line re-
placement policy.

1 lock A1, B1
2

3 load s ? A1 : B1
4 unlock A1, B1
5

6

(a) Victim.

1

2 load A2
3

4

5 load A3
6 load A2

(b) Attacker.

Figure 2: Second attack: leaking information through
LRU. A1, A2 and A3 are mapped to the same cache set.
B1 is mapped to a different cache set.

Figure 2 shows the code for the victim and attacker
programs. In this example, we also consider that cache sets
consist of 2 ways, that addresses A1, A2 and A3 map to
the same cache set and B maps to a different cache set.

Line 1, the victim locks memory blocks at addresses
A1 and B1. Line 2, the attacker fills the cache set contain-
ing A1 such that the other way in this cache set is now
filled with A2. At this point, the LRU state for this cache
set indicates that the least recently used way is the one
containing memory block A1.

Line 3, the victim accesses memory block at address
A1 or B1, depending on a secret value s. Because both
memory blocks are locked in cache, the access is guar-
anteed to be a cache hit, and the attacker should not be
able to learn which address was accessed. However, the
LRU state of the cache set containing A1 and A2 now
depends on the secret. If s is true, then the least recently
used way is the one containing A2. Otherwise, it is the
one containing A1.

Line 4, the memory blocks at addresses A1 and B1
are unlocked. Line 5, memory block A3 is loaded into
memory instead of the least recently used block. This is
guaranteed to be a cache miss, and is thus constant-time.
Now the cache contains A1 and A3 if s is true, and A2
and A3 otherwise. The next access at line 6, for memory
block at address A2 will now be either a cache hit or

miss, depending on the secret. By timing this last access,
the attacker can learn the value of s.

Our solution. In order to prevent this attack, accesses
on locked lines in our proposal will not update the meta-
data associated with these lines related to eviction policies
(e.g. LRU).

3.3. Non constant-time arithmetic operations

The division and modulo instructions are the costliest
integer arithmetic operations performed by our processor.
In addition to being costly, their execution time (expressed
in number of cycles) depends on the value of the divisor.

Solution. We use an execution mode in which all
instructions execute in constant time, similar to the Data
Operand Independent Timing mode of Intel [7].

This mode can be enabled and disabled through the
use of a dedicated instruction. More details are given in
Section 5, which describes the implementation of this so-
called “constant-time” mode.

4. Leakage Simulator

Our design ensures that locked data are immune to
cache side-channel attacks. However, locking is only a
security mechanism. Our high-level security objective is to
ensure that no secret information can be obtained through
the timing channel if this mechanism is correctly used.
As this is a non-trivial task, we provide a RISC-V leakage
simulator which allows checking on actual executions that
the observations of an attacker do not depend on secret
information.

4.1. Abstract Leakage

Our leakage model is inspired by Barthe et al. [2]
which model the cryptographic constant-time property and
prove how it can be preserved by compiler passes [1].
In our case, the leakage model is meant to ensure that
attackers scheduled on the same processors cannot extract
more secret information by observing the timing of the
micro-architecture than by observing the abstract leakage
trace.

In addition to updating the micro-architectural state,
each RISC-V instruction emits an event e ∈ Event :

e ::= • | jmp pc | lock a | unlock a | rw a | div n

where pc is a program counter, a is an address and n a
32-bit integer.

We assume that the attacker can always know the
current program counter. The rationale is that this infor-
mation can be inferred because an instruction present in
the instruction cache would be executed faster and incur a
timing channel. Note that this happens even in the absence
of branch prediction. As a result, each branching instruc-
tion emits jmp pc where pc is the target of the branch.
Every constant-time instruction (i.e. which executes in a
fixed number of cycles whatever their arguments) emits
the event •. In that case, the attacker only learns that
an instruction elapsed. The event does not distinguish
between ALU instructions because this information can
be obtained from the program counter that is already

leaked by jump instructions. For our micro-architecture,
division and modulo are the only non-constant time ALU
operation. By looking at the implementation, the timing
behavior only depends on the range of the divisor. As a
result, an unprotected division emits the event div n where
n is the value of the divisor. Yet, if the constant-time mode
is enabled, the hardware enforces the worst-case number
of cycles of the division, and therefore we emit the •
event.

To protect against cache side-channel attacks, the ad-
dress of unprotected memory accesses are also leaked. Yet,
we make a distinction between lock, unlock and other
load and store instructions. Every unprotected load or store
instruction emits the event rw a where a is the address
that is accessed. As the program counter is assumed to
be known to the attacker, the emitted event does not
distinguish between a read or a write access. Because
a lock instruction is similar to a load, an attacker could
mount a cache side-channel attack to obtain information
about the range of locked addresses. Therefore, the lock
instruction makes the worst case assumption and emits a
lock a event where a is the locked address. For the same
reason, the unlock instruction also emits a unlock a. For
load and store instructions over addresses that are locked
in cache, we only emit the • event. The reason is that the
locking mechanism ensures that the data is necessarily
in cache and a cache hit is constant-time. Moreover, the
access does not update the cache state e.g. the eviction
policy, and therefore no information may leak even after
an address is unlocked.

4.2. Attacker Trace

Our abstract traces are meant to over-approximate
what an attacker could learn by observing the concrete
timing behavior of an execution. To validate this as-
sumption, we also have lower-level traces which are only
relevant for an explicit attacker. In our model, an attacker
is a pair made of some arbitrary code running in a distinct
memory space and an attacker controlled scheduling pol-
icy. The so-called hardware events e ∈ HEvent are given
below:

e ::= • | jmp pc | rw b | div n

where b is a boolean and n is a number of cycles.
Similarly to the abstract trace, the current program

point is still leaked, and jump instructions emit a jmp pc
event. Constant-time operations still leak the • event. For
the division, we leak the exact number of cycles. For
memory load and store, the attacker cannot directly learn
the accessed address. However, through timing channels,
it may learn whether this is a cache hit or a cache miss. As
a result, each lock, unlock, load and store emits a rw true
if this is a cache hit and rw false if it is a cache miss.

4.3. Constant-time Claim

The constant-time property is expressed as a non-
interference property, based on the following definition
of timing leakage.

Definition 1 (Clock cycle leakage). The clock cycle leak-
age of executing a program p on a secret input s, together

with an attacker program a, according to a scheduling
policy sp, is expressed as the sequence of integers repre-
senting the number of clock cycles between each context
switch.

Definition 2 (Cycle-accurate constant-time). A program p
is cycle-accurate constant-time for two distinct secrets s1
and s2, if for any attacker program a and any scheduling
policy sp, the clock cycle leakage of executing p with
secret s1 and the clock cycle leakage of executing p with
secret s2 is the same.

Our claim is that the equality of abstract leakage for
any possible inputs is a sufficient condition to ensure
cycle-accurate constant-time.

Claim 1. Suppose that executing a program p with two
distinct secrets s1 and s2 generates the same abstract
leakage trace. We have that p is cycle-accurate constant-
time for s1 and s2.

The arguments to back this claim is that abstract
leakage traces contain more information that any attacker
trace, which provides indirect information about memory
cache state. Indeed, whereas abstract traces leak the exact
addresses that are accessed unprotected, an attacker only
observes a cache hit or cache miss. For lock protected
addresses, our implementation of the lock instruction en-
sures that the subsequent memory accesses are necessarily
a cache hit i.e. event rw true. Moreover, as the eviction
policy i.e. the LRU tag, does not depend on locked ad-
dresses, the attacker cannot learn information about the
past accesses even after the address is unlocked.

There is still a gap between the attacker trace and the
cycle-accurate timing of the execution. However, for our
micro-architecture, we are confident that the attacker trace
leaks enough information to reconstruct the exact timing
behavior. A subtle point are the hazards of the pipeline
that may introduce timing delays. However, as the traces
leak the program counter, the hazards of the pipeline can
be inferred because they only depend on the sequence of
executed instructions.

4.4. Security Evaluation

This section reports preliminary security evaluations
of our leakage simulator. The simulator takes as input a
RISC-V ELF-32 file and command line inputs; runs the
program and outputs abstract leakage traces. It can also
be parameterized with an attacker and a scheduling policy
to check that the equality of abstract traces indeed implies
the equality of concrete traces.

4.4.1. Security evaluation of LRU eviction policies. In
Section 3, we have shown that the locking mechanism is
vulnerable to a cache side-channel attack if the metadata
needed by the eviction policy is updated. To validate
our leakage simulator, we have replayed the attack for a
vulnerable lock implementation, which updates the LRU
tag. In that case, we observe that the concrete attacker
traces vary depending on whether the accessed address
is either A1 or B1. As the abstract traces are not iden-
tical, this vulnerable implementation of the lock violates
Claim 1. For the fixed lock implementation which freezes
the eviction policy for locked addresses, the traces are the

	0

	20

	40

	60

	80

	100

	120

	0 	500 	1000 	1500 	2000 	2500 	3000

Ac
ce
ss
ed

	c
ac
he

	se
t

Time	(in	amount	of	executed	instructions)

input	1 input	2

Figure 3: Memory accesses of unprotected Camellia.

same; the vulnerability vanishes and Claim 1 holds for
this example.

4.4.2. Lock protected S-boxes. Unprotected implemen-
tations of symmetric block cipher encryption algorithms
such as AES or Camellia are vulnerable to cache side-
channel attacks. The reason is that the S-boxes are ac-
cessed using indexes that are key-dependent.

In Figure 3, we show a graphical representation of
the abstract leakage trace of two runs of Camellia1 for
two different keys. We display only the memory accesses
performed during the first 3000 executed instructions.
Memory accesses done during the execution with the first
secret input are shown with a + and those done during
the execution with the second secret input are shown with
a ×.

We can categorize memory accesses in two groups:
those where the cache set accessed is the same for both
inputs (where × and + are superposed), and those where
the accessed cache sets change depending on the input
(disjoint × and +). This second category causes the
vulnerability to cache side-channel attacks.

We added our lock to the S-box of Camellia and run
it again twice with the same two inputs, as displayed in
Figure 4. Memory accesses performed on locked addresses
do not appear anymore, since they have no observable
effects. There is now only superposed × and + because
secret-dependent accesses are all done on the S-box once it
is fully locked. Locks are always done in the same order
regardless of the input, since they are also visible to a
potential attacker.

We have identical abstract traces for both inputs once
the S-box is locked. We can deduce that, with a correct
implementation of the lock (i.e. no LRU alteration when
accessing locked lines), an attacker observing one of those
executions would be unable to distinguish which secret
input was used. For this example, this validates that the
addresses of the S-boxes are correctly locked. Moreover,
under Claim 1, the protected implementation would not
be vulnerable to timing attacks.

1. Experimentation done with Camellia implementation of
https://github.com/jkivilin/camellia-simd-aesni/tree/master/camellia-
BSD-1.2.0

	0

	20

	40

	60

	80

	100

	120

	0 	500 	1000 	1500 	2000 	2500 	3000

Ac
ce

ss
ed

	c
ac

he
	se

t

Time	(in	amount	of	executed	instructions)

memory	access	for	input	1
memory	access	for	input	2

lock	for	input	1
lock	for	input	2

Figure 4: Memory accesses of protected Camellia.

5. Hardware implementation

The proposed implementation is built around a RISC-
V processor. We choose the 4-stage in-order 32-bit
CV32E40P core that implements the RV32I ISA extended
with the standards M (multiplication, division) and C
(compressed). The memory is physically addressed on 22
bits, allowing to access 4 MiB of memory (program and
data).

5.1. Constant-time operators

In order to make constant-time the instructions whose
execution time depends on operand values, we extend
hardware operators to support a constant-time mode.
When enabled, this mode leads to the execution of extra
dummy states to force the worst execution time. In the
considered CV32E40P core, both division and modulo op-
erations latency are data-dependent, and require between
3 and 35 cycles. Thus, when the constant-time mode
is enabled, the operation latency is forced to 35 cycles.
In a concern of performance, the proposed constant-time
mode can be software-driven through a Control & Status
Register (CSR). In the proposed implementation, the CSR
address 0xD00 is used.

5.2. Lock and Unlock

We implement an 8 KiB, 4-way set-associative, L1
data cache as shown in Figure 5. Each cache line is 16-
byte long. This cache memory architecture is extended
to implement both locking and unlocking mechanisms, as
described in Section 3. Since N−1 ways can be locked in
each set, the proposed cache memory configuration allows
to lock a total of 6,144 bytes (3 ways on 128 sets with
cache lines of 16 bytes).

Figure 6 presents the Lock handling procedure for
our solution. First, LRU eviction policy assigns a way
if a cache miss occurs. When a lock is requested, we
first determine if the cache memory state permits to lock
the selected way. For that purpose, we check whether the
selected way is not the last non-locked way of the set.
If so, the selected way is locked (i.e. removed from the
LRU candidates for eviction) and the LRU updates the
remaining non-locked ways. Otherwise, an exception is
raised, since we do not allow an entire set to be locked.

tag

11

index

7

bytes
offset
4

memory address

tagV data tagV data

tagV data tagV data

tagV data tagV data

… …

…

…

…

way0 way3

set0

set1

set127

= =

hit0 hit3

LRU

selected way

{miss;hit}

Figure 5: Proposed 4-way set associative cache architec-
ture.

LRU way
selection

update LRU
unlocking

update LRU no update
LRU

exception
update LRU

locking

no

yes

no

yes

no

yes

no

yes

no

yes

yes

no

requested
lock ?

way locked ?
lock

permitted ?

hit ?

requested
unlock ?

way locked ?

Figure 6: Lock handling procedure.

When an unlock is requested on a locked way, the way is
reintegrated within the LRU candidates for eviction. Thus,
the way can be selected by the LRU policy. If an unlock
occurs on a non-locked way, the state of the LRU is not
updated, since a non-locked way cannot be unlocked. It is
worth noting that the LRU is not updated when a cache
hit is obtained on locked way. Indeed, a locked way is not
a LRU candidate for eviction. Finally, when a cache hit
occurs on a non-locked way, the LRU is updated for each
non-locked ways in the set.

TABLE 1: Post-synthesis area results on Kintex-7 FPGA

BRAMs LUTs FFs

CV32E40P - 4950 2142

Core+cache (w/o lock) 8 8660 4322
Core+cache (w/ lock) 8 11999 5207

We implemented the proposed solution targeting a
Xilinx Kintex-7 FPGA. Table 1 presents the post-synthesis
area results. The proposed implementation leads to an
area overhead around 39% in terms of LUT and 20 % in
terms of Flip-Flops. It is worth noting that these results
are preliminary, since the implementation has not been
optimized yet.

6. Conclusion and perspectives

We have proposed an extension of a RISC-V processor
with instructions to have a fine-grained control over the

data stored in cache, and hence a predictable behavior with
respect to the cache. We also introduced a “constant-time”
mode where all ALU instructions execute in the same
number of cycles, regardless of the operands values. We
evaluate our proposal both on an executable simulator and
on a hardware implementation. Our results show that we
can achieve better security than the state of the art (i.e.
Wang et al. [12]).

As future work, we plan to evaluate the performance
of our proposal. We hope that we can achieve better
performance than typical constant-time implementations.
On the hardware side, we need to fine-tune the hardware
parameters in order to find the best set-up for the cache
(number of sets and ways) for a large spectrum of applica-
tions, and reduce the hardware cost of the implementation.

We plan to generalize our lock design to multi-level
caches, thus allowing to lock larger ranges of addresses
at the cost of a slower access time. This requires the
implementation of additional precautions for ensuring the
secure interactions between levels of cache.

We also intend to prove the claims we did in Sec-
tion 4, i.e. that reasoning over the abstract traces allows
to establish non-interference properties. We also want to
investigate whether the program counter can be hidden
from the attacker, by protecting the instruction cache, and
reasoning about the possible timing leakage associated
with the pipeline.

Acknowledgements

This work is supported by the SCRYPT project (grant
ANR-18-CE25-0014) and the SCRATCHS project of the
Cominlabs excellence laboratory (grant ANR-10-LABX-
07-01) funded by the French National Research Agency.

References

[1] Gilles Barthe, Sandrine Blazy, Benjamin Grégoire, Rémi Hutin,
Vincent Laporte, David Pichardie, and Alix Trieu. Formal verifi-
cation of a constant-time preserving C compiler. In Proc. ACM
Program. Lang., volume 4, pages 7:1–7:30, 2020.

[2] Gilles Barthe, Benjamin Grégoire, and Vincent Laporte. Secure
compilation of side-channel countermeasures: The case of crypto-
graphic ”constant-time”. In CSF, pages 328–343. IEEE Computer
Society, 2018.

[3] Sandrine Blazy, David Pichardie, and Alix Trieu. Verifying
constant-time implementations by abstract interpretation. Journal
Comput. Secur., 27:137–163, 2019.

[4] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh,
and Dmitry Ponomarev. Non-monopolizable caches: Low-
complexity mitigation of cache side channel attacks. ACM Trans-
actions on Architecture and Code Optimization, 2012.

[5] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A
survey of microarchitectural timing attacks and countermeasures
on contemporary hardware. Journal of Cryptographic Engineering,
2018.

[6] Oded Goldreich and Rafail Ostrovsky. Software protection and
simulation on oblivious RAMs. Journal ACM, 43:431–473, 1996.

[7] Intel. Data Operand Independent Timing Instruction Set Architec-
ture (ISA) Guidance.

[8] Maria Mushtaq, Muhammad Asim Mukhtar, Vianney Lapotre,
Muhammad Khurram Bhatti, and Guy Gogniat. Winter is here! a
decade of cache-based side-channel attacks, detection & mitigation
for RSA. Information Systems, 92:101524, 2020.

[9] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of aes. In Proc. The Cryptographers’
Track at the RSA Conference on Topics in Cryptology (CT-RSA),
2006.

[10] Antoon Purnal, Lukas Giner, Daniel Gruss, and Ingrid Ver-
bauwhede. Systematic analysis of randomization-based protected
cache architectures. In Proc. IEEE Symposium on Security and
Privacy (SP), 2021.

[11] Moinuddin K. Qureshi. Ceaser: Mitigating conflict-based cache at-
tacks via encrypted-address and remapping. In Proc. International
Symposium on Microarchitecture (MICRO), 2018.

[12] Zhenghong Wang and Ruby B. Lee. New cache designs for
thwarting software cache-based side channel attacks. In Proc.
International Symposium on Computer Architecture (ISCA), 2007.

[13] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael
Schwarz, Daniel Gruss, and Stefan Mangard. ScatterCache:
Thwarting cache attacks via cache set randomization. In Proc.
28th USENIX Security Symposium (USENIX Security), 2019.

[14] Hans Winderix, Jan Tobias Mühlberg, and Frank Piessens.
Compiler-assisted hardening of embedded software against inter-
rupt latency side-channel attacks. In Proc. IEEEEuropean Sympo-
sium on Security and Privacy (EuroS&P), 2021.

[15] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high
resolution, low noise, l3 cache side-channel attack. In Proc. 23th
USENIX Security Symposium (USENIX Security), 2014.

[16] Jiyong Yu, Lucas Hsiung, Mohamad El’Hajj, and Christopher
Fletcher. Data oblivious isa extensions for side channel-resistant
and high performance computing. In Proc. Network and Dis-
tributed SystemSecurity Symposium (NDSS), 2019.

	Introduction
	Threat Model and hypotheses
	Motivating Examples and Approach
	Forcing the victim to self-evict
	Leakage through LRU
	Non constant-time arithmetic operations

	Leakage Simulator
	Abstract Leakage
	Attacker Trace
	Constant-time Claim
	Security Evaluation
	Security evaluation of LRU eviction policies
	Lock protected S-boxes

	Hardware implementation
	Constant-time operators
	Lock and Unlock

	Conclusion and perspectives
	References

