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A B S T R A C T   

Antimicrobial peptides (AMP) comprise a wide range of small molecules with direct antibacterial activity and 
immunostimulatory role and are proposed as promising substitutes of the antibiotics. Additionally, they also 
exert a role against other pathogens such as viruses and fungi less evaluated. NK-lysin, a human granulysin 
orthologue, possess a double function, taking part in the innate immunity as AMP and also as direct effector in 
the cell-mediated cytotoxic (CMC) response. This molecule is suggested as a pivotal molecule involved in the 
defence upon nervous necrosis virus (NNV), an epizootic virus provoking serious problems in welfare and health 
status in Asian and Mediterranean fish destined to human consumption. Having proved that NK-lysin derived 
peptides (NKLPs) have a direct antiviral activity against NNV in vitro, we aimed to evaluate their potential use as 
a prophylactic treatment for European sea bass (Dicentrarchus labrax), one of the most susceptible cultured-fish 
species. Thus, intramuscular injection of synthetic NKLPs resulted in a very low transcriptional response of some 
innate and adaptive immune markers. However, the injection of NKLPs ameliorated disease signs and increased 
fish survival upon challenge with pathogenic NNV. Although NKLPs showed promising results in treatments 
against NNV, more efforts are needed to understand their mechanisms of action and their applicability to the 
aquaculture industry.   

1. Introduction 

Conventionally, search and demonstration of the antiviral potential 
of synthetic or natural compounds has been relegated to the background 
in pursuit of bacterial control (Cabello, 2006). In particular, the prob
lematic of the viruses spread in aquaculture has upraised with the 
intensive fish culture and the constant transport of eggs and larvae be
tween farms all over the world, with no practical solutions in the 
short-middle term. Antimicrobial peptides (AMP) comprise a large 
number of different gene-encoded short peptides, generally cationic and 
amphipathic, with high number of hydrophobic residues recognized to 
act in a receptor-independent manner, and a priori not generating 

undesirable bacterial resistance as antibiotics do (Rakers et al., 2013). 
Therefore, though most of the research has focused on the immuno
modulatory actions and the antibacterial properties of AMPs, they have 
a direct lytic activity against a wider spectrum of targets including vi
ruses, fungi, parasites or tumour cells (Bahar and Ren, 2013). Thus, they 
are considered promising candidates to replace antibiotics but also to be 
used against other pathogens in both human health and animal 
production. 

NK-lysin, an orthologous to human granulysin, is synthetized by 
cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells and is 
stored into granules awaiting to be released after proper stimuli 
(Andersson et al., 1996; Peña and Krensky, 1997). Apart from its 
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primary role in the cell-mediated cytotoxicity (CMC), NK-lysin and 
shorter-derived peptides (NKLPs) have also demonstrated to play a role 
as AMP against bacteria, viruses, fungi, parasites and tumour cells (Ja
cobs et al., 2003). NK-lysin possesses a saposin-B (SapB) domain, 
composed by 3 α-helix and 6 well-conserved cysteines that conform 3 
disulphide bonds, and from which all the assayed NKLPs showing AMP 
activity are derived. NK-lysin has been already identified and charac
terized in several fish species (Acosta et al., 2019; Ding et al., 2019; Han 
et al., 2019; Liu et al., 2020; Pereiro et al., 2015, 2017; Valero et al., 
2020a; Wang et al., 2006, 2018; Zhang et al., 2019; Zhou et al., 2019). 
Beyond the direct involvement in the CMC response, which has not been 
properly demonstrated yet, fish NK-lysin caught the attention due to its 
immunomodulatory and antimicrobial activities upon a significant 
range of pathogens including virus (Chen et al., 2021; Hirono et al., 
2007; Lama et al., 2018; León et al., 2020; Liu et al., 2020; Pereiro et al., 
2017; Zhang et al., 2013, 2014; Zhou et al., 2016, 2019). Although the 
mechanisms by which its antiviral function is developed is still poorly 
understood, in vitro assays demonstrate that NKLPs disrupt the spring 
viremia of carp virus (SVCV) ability to fix membranes in a dose- and 
pH-dependent manner, and in turn, its fusion to the cell (Falco et al., 
2019). Moreover, several fish-derived NKLPs are shown to decrease the 
viral replication of nervous necrosis virus (NNV), viral septicaemia 
haemorrhagic virus (VHSV), infectious pancreatic necrosis virus (IPNV) 
and SVCV in vitro due to direct viral lysis (León et al., 2020). However, 
the in vivo potential antiviral activity of NK-lysin or NKLPs has been 
slightly evaluated in fish. In the teleost tongue sole (Cynoglossus semi
laevis) the administration of NK-lysin expressing plasmids or the syn
thetic NKLP27, derived from the NK-lysin, is able to reduce the viral load 
throughout tissues upon infection and up-regulates the transcription of 
immune-related genes at early times though the effective protection was 
not demonstrated (Zhang et al., 2013, 2014). Recently, synthetic NKLP 
showed the ability to reduce the mortality of barbel steed (Hemibarbus 
labeo) against Aeromonas hydrophila infection as well as to increase the 
transcription of pro-inflammatory cytokines and the chemotaxis of 
monocyte/macrophages (Chen et al., 2021). 

Although viral pandemics wrongly appear to be restricted to 
humans, there are epizootic viruses severely affecting fish species that 
are spread all over the world. Moreover, the replication, mutation and 
reassortment abilities of different viruses have led to diminish the wel
fare and health of farmed fish and cause impressive economic losses in 
the aquaculture sector (Lafferty et al., 2015). One of these viruses is NNV 
(genus Betanodavirus), the causative agent of the viral encephalopathy 
and retinopathy (VER) disease, that affects more than 170 fish species 
worldwide (Bandín and Souto, 2020). One of the most susceptible ones 
is the European sea bass (Dicentrarchus labrax), which is the highest 
contributor to the Mediterranean aquaculture in both economic value 
and production volume (APROMAR, 2019). NNV is lethal mainly to 
early stages of sea bass development (larvae and early juveniles) 
reaching in most cases up to 100% of mortality rates at those stages 
(Breuil et al., 1991). NNV triggers in European sea bass innate (anti
microbial, type-I interferon, CMC or inflammatory responses) and ac
quired (specific antibodies, B and T cellular responses) immunity at both 
local (brain and retina) and systemic levels (Buonocore et al., 2017; 
Chaves-Pozo et al., 2012, 2017, 2019; González-Fernández et al., 2020, 
2021; Esteban et al., 2013; Moreno et al., 2018; Novel et al., 2013; 
Scapigliati et al., 2010; Valero et al., 2015a, 2015b, 2015c, 2015d, 2016, 
2020a, 2020b). However, the immune response was inefficient and 
certainly insufficient to kill and clear the virus. Regarding sea bass 
NK-lysin, gene expression or protein levels are increased upon NNV 
infection in several tissues as well as upon leucocyte incubation with T 
cell mitogens (Valero et al., 2020a). 

Taking all this information into account, we have injected European 
sea bass with different NKLPs and evaluated the transcription of NNV 
capsid gene and some immune markers and the protection upon NNV 
challenge. Our results show that though synthetic NKLPs produce little 
changes in the transcriptomic profile of sea bass, the disease signs were 

reduced and survival of fish improved, pointing to their potential 
application as an effective preventive measure in the aquaculture. 

2. Material and methods 

2.1. Synthetic peptides 

Peptides used were previously designed, synthetized and their 
characteristics resumed elsewhere (León et al., 2020). In brief, synthetic 
European sea bass NKLPs were based on the complete sequence avail
able in the UniProtKB database (https://www.uniprot.org/; acc. number 
A0A218MG56) and contained the following sequences: NKLP23 
(KLLAVCDQIGLLKSLCRKFVKKH), NKLP20.1 (AGKLPGLCWACK
WALKKVKK) and NKLP20.2 (CKWALKKVKKVMGPNATAEN). The syn
thetic NKLP27 (KVKARLIKICNKIGFLKSRCHKFVITH) from tongue sole 
(acc. number R4TXU3) was also used for comparisons. Sequences, 
properties, helical wheel models, in silico predictions and determinations 
of their antimicrobial activity were already published (León et al., 
2020). All the peptides were resuspended in sterile ultrapure water at 
10 mg/mL and aliquots stored at − 20 ◦C till use. 

2.2. Animals 

Healthy juvenile specimens of European sea bass (15.5 ± 0.7 g body 
weight) were purchased from a hatchery (PREDOMAR S.L., Carboneras, 
Almería, Spain). The fish were maintained in closed flow-through ma
rine aquaria (28% salinity, 22-26 ◦C and with a 12 h light: 12 h dark 
photoperiod) with suitable aeration and filtration systems and were fed 
daily with a commercial diet (Skretting). The handling of the specimens 
was always performed in accordance with the Guidelines of the Euro
pean Union Council (2010/63/UE) and the Bioethical Committees of the 
University of Murcia (reference REGA ES300305440012 and Permit 
Number A13150104). 

2.3. Fish treatment and sampling 

Two-hundred and fifty European sea bass fish specimens were 
randomly divided into five experimental groups and acclimatised for 15 
days. Six additional fish were reserved for later infection control. After 
light sedation with 40 μg/L of clove oil in sea water, specimens received 
an intramuscular injection (im) with 100 μL of phosphate buffered saline 
(PBS) alone (Control) or containing the synthetic peptides NKLP23, 
NKLP20.1, NKLP20.2 or NKLP27 at a dosage of 15 μg of NKLPs/fish (~1 
μg NKLP/g fish). After injection, fish (n = 6 fish/group and time point) 
were sampled at 3, 24 and 72 h post-injection. Fish were sacrificed by an 
overdose of clove oil, completely bled, immediately beheaded and 
weighed. Head-kidney, the main lymphohematopoietic tissue in fish, 
was removed by dissection, immediately frozen in TRIzol Reagent (Life 
Technologies) and stored at − 80 ◦C until use. 

2.4. Nodavirus infection in vivo 

After the sampling at 72 h post-injection, remaining fish (n = 32 fish/ 
group) were infected with NNV (strain It/411/96, genotype RGNNV) as 
previously described (Chaves-Pozo et al., 2012). For this, fish slightly 
sedated received a single im injection of 100 μL of culture medium 
containing 107.75 NNV TCID50/fish (Aranguren et al., 2002). Six un
treated fish were mock-infected with 100 μL of culture medium alone 
and served as controls. Three days after NNV infection, brain (the main 
target tissue for NNV replication) and head-kidney (n = 6 fish/group) 
were removed by dissection, immediately frozen in TRIzol Reagent and 
stored at − 80 ◦C until use. Disease signs and mortalities were recorded 
daily for 25 days post-infection (dpi). Four ranks of disease signs were 
established attending to their severity as follows: 1) changes of the 
colour of the skin, slower rhythm of swimming and/or slower reaction to 
external stimuli as feeding, 2) alterations in the swimming balance 
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and/or erratic swimming spasms, 3) continuous erratic swimming and 
4) complete incapacity to keep balance, swim and/or move without 
external stimuli. Mortality was presented by Kaplan-Meier survival 
curves. Relative percent survival (RPS) was determined: RPS = (1 – 
cumulate mortality in NKLP-treated and NNV-infected group/cumulate 
mortality in PBS-treated and NNV-infected group). 

2.5. Gene expression 

Total RNA from TRIzol Reagent-frozen head-kidney or brain tissues 
was isolated following the manufacturer’s instructions. One μg of total 
RNA from each individual fish was treated with DNAse I to remove 
genomic DNA, and the first strand of cDNA was synthesized by reverse 
transcription using the SuperScript IV™ Reverse Transcriptase (Invi
trogen) with random hexamers (Invitrogen). 

The expression of the genes coding for the proteins of the i) NK-lysin; 
ii) type-I interferon/antiviral response marker; iii) cellular markers of 
innate and specific immune response; iv) pro-inflammatory cytokines; v) 
chemokines and their receptors, and vi) NNV capsid were analysed by 
real-time PCR and are described in Table 1. PCR was performed with an 
ABI PRISM 7500 instrument (Applied Biosystems) using PowerUp SYBR 
Green PCR Core Reagents (Applied Biosystems) as elsewhere (Valero 
et al., 2020a). Briefly, the reaction mixtures were incubated for 10 min 
at 95 ◦C, followed by 40 cycles of 15 s at 95 ◦C, 1 min at 60 ◦C, and 
finally 15 s at 95 ◦C, 1 min 60 ◦C and 15 s at 95 ◦C. For each mRNA, gene 
expression was corrected by the elongation factor 1-alpha (ef1a) and 
ribosomal protein L13 alpha (l13a) content in each sample and 
expressed as 2-ΔCt, where ΔCt is determined by subtracting the geo
metric mean of the endogenous genes l13a and ef1a Ct values from the 
target Ct. The primers used are shown in Table 1. A melting curve 
analysis of the amplified products validated the primers for specificity. 
Negative controls with no template were always included in the 
reactions. 

2.6. Calculations and statistical analysis 

Data are represented as the mean ± standard error of the mean 

(SEM). Data were analysed by one-way ANOVA (p ≤ 0.05) followed by 
Tukey’s post-hoc analysis to study the differences between groups. A 
non-parametric Kruskal–Wallis test, followed by a multiple comparison 
test, was used when data did not meet parametric assumptions. All 
statistical differences were conducted using IBM SPSS20 software. 

3. Results 

3.1. Synthetic NKLPs slightly regulate the transcription of cellular 
immune markers 

The injection of European sea bass with the different synthetic NKLPs 
provoked some alterations in the gene expression of different immune 
markers at early time-points compared with controls (Fig. 1). Genes 
coding for nkl, mx, mpo or cxcl9 were not significantly altered by the 
NKLP injection at any time (Fig. 1A,B,F,J). Sea bass NKLP23 signifi
cantly up-regulated the gene expression of ighm and csf1r after 3 h of 
treatment and of cxcr3 after 24 h whilst NKLP20.2 induced and increase 
in the transcript levels of the tcrb, il1b, il8 and cxcr3 genes after 24 h, 
when compared with controls (Fig. 1C,D,E,G,H,I). The comparison of 
the effect of the different peptides revealed that, at 3 h post-injection, 
the gene expression of ighm, csf1r and cxcr3 was statistically different 
in specimens treated with NKLP23 compared with the rest of peptides 
(Fig. 1C,E,I), whilst in the case of the tcrb, il1b and il8 genes, NKLP23- 
and NKLP20.1-treated fish showed significant differences with those 
receiving NKLP20.2 and NKLP27 (Fig. 1D,G,H). Otherwise, fish injected 
with NKL20.2 showed the highest transcriptional levels of tcrb at 24 h 
when compared with the rest of the peptides (Fig. 1D). No mortality 
rates were registered during the NKLP treatment (72 h; data not shown). 

3.2. Sea bass NKLPs improve the resistance to NNV 

NKLP-treated sea bass juveniles were challenged with NNV after 72 h 
and disease signs and mortality recorded during 25 dpi (Fig. 2, Sup
plementary Videos 1–6) as well as the gene expression after 3 dpi 
(Fig. 3). Regarding the clinical signs, the number of fish with each score 
were annotated daily and the cumulated number of fish with each score 

Table 1 
Primer sequences used for gene expression analysis.   

Protein name Gene 
name 

Accession number Sequence (5’ – 3′) 

NK-lysin NK-lysin nkl KY801205 F GAAGAAACACCTCGGGGAAT 
R GCAGGTCCAACATCTCCTTC 

Antiviral response marker Mx Interferon-induced 
GTP-binding protein Mx 

mx AM228977 
HQ237501 
AY424961 

F GAAGAAGGGCTACATGATCGTC 
R CCGTCATTGTAGAGAGTGTGGA 

Cellular markers of specific immune 
response 

Immunoglobulin mu heavy chain ighm FN908858 F AGGACAGGACTGCTGCTGTT 
R CACCTGCTGTCTGCTGTTGT 

T cell receptor beta chain tcrb FN687461 F GACGGACGAAGCTGCCCA 
R TGGCAGCCTGTGTGATCTTCA 

Cellular markers of innate immune 
response 

Macrophage colony-stimulating factor 1 
receptor 1 

csf1r KM225787 F TTTCGGAAAGGTTGTTGAGG 
R TCTCATCTGAATGGGCACTG 

Myeloid-specific peroxidase mpo CX660745 F GAAGAGTGGGGCCTTTGTTT 
R CTGGGCCTCAGTGAAGACTC 

Pro-inflammatory cytokines Interleukin 1 beta il1b AJ269472 F CAGGACTCCGGTTTGAACAT 
R GTCCATTCAAAAGGGGACAA 

Chemokines and receptors Interleukin 8 iIl8 AM490063 F GTCTGAGAAGCCTGGGAGTG 
R GCAATGGGAGTTAGCAGGAA 

CXC chemokine receptor 3 cxcr3 ENSDLAT00005001752 F ATCCTGTACGCCTTTGTGGG 
R GTCGGCAGACTCAGACCAAA 

CXC chemokine ligand 9 cxcl9 DLAgn_00012980 F TCTGTCAGCTCGCCTTTCTG 
R TTCGTACTTGGACACGCACA 

Viral genome NNV capsid protein cp D38636 F CAACTGACAACGATCACACCTTC 
R CAATCGAACACTCCAGCGACA 

Housekeeping 60S Ribosomal Protein L13A l13a DT044539 F GCGAAGGCATCAACATCTCC 
R AGACGCACAATCTTGAGAGCAG 

Elongation factor 1 alpha ef1a FM019753 F CGTTGGCTTCAACATCAAGA 
R GAAGTTGTCTGCTCCCTTGG  
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during the 25 days challenge presented. First, mock-infected fish dis
played no clinical signs (Supplementary Video 1). In the PBS-Control 
group, and those in the group pre-treated with the sole NKLP27, NNV- 
challenged fish started to show the most typical signs (alterations in 
the swimming balance and/or erratic swimming) of the disease around 
5–7 dpi and many of them reached scores of 3 or 4 before they died; but 
score 1 was never observed (Fig. 2A; Supplementary Videos 2 and 6). By 
contrast, all the fish treated with sea bass-derived NKLPs showed lighter 

signs upon NNV infection. Thus, fish treated with NKLP20.2 only 
showed score 1, followed by NKLP20.1 and NKLP23 groups, where 
scarce fish displayed scores of 1–3 or 1 to 4, respectively (Fig. 2A, 
Supplementary Videos 3–5). 

Besides, the survival curves (Fig. 2B) and the RPS (Fig. 2C) were 
calculated and presented. PBS-injected fish challenged with NNV 
showed a cumulated mortality of 41.7%. However, fish treated with 
synthetic sea bass-derived NKLP23, NKLP20.1, NKLP20.2 showed 
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Fig. 1. Synthetic NK-lysin peptides (NKLPs) 
produce little changes in the transcription of 
immune-related markers in European sea bass 
juveniles. European sea bass juveniles were intra
muscularly injected with phosphate buffer (PBS- 
Control) or with 1 μg of synthetic NKLP23, 
NKLP20.1, NKLP20.2 or NKLP27/g fish and sampled 
3, 24 or 72 h post-injection to evaluate the tran
scription of nkl (A), mx (B), ighm (C), tcrb (D), csf1 
(E), mpo (F), il1b (G), il8 (H), cxcr3 (I) and cxcl9 (J) 
in the head-kidney by real-time PCR. Data represent 
the mean fold change of the relative gene expres
sion ± SEM (n = 6/group and time). Statistical 
differences between groups were analysed by 
ANOVA (p < 0.05) followed by Tukey’s post-hoc 
test. Asterisks denote differences with respect to 
the PBS-Control while different letters do for dif
ferences among NKLP treatments.   
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partial protection of 80, 20 and 60% upon NNV challenge, respectively 
though only in those treated with the NKLP23 the RPS reached signifi
cance respect to the control (Fig. 2C). Sole NKLP27-treated fish showed a 
RPS of 40%. 

Finally, we also evaluated the transcriptional level in the head- 
kidney and the brain upon NNV challenge (Fig. 3A and B). First, NNV 
capsid gene was detected by qPCR in all the NNV-challenged fish with no 
statistical differences between treatments (Fig. 3B). NNV was able to 
significantly induce the transcription of the antiviral mx gene in both the 

head-kidney and brain, and of cxcl9 in the brain, in control specimens. 
However, pre-treatment of sea bass juveniles with NKLPs failed to pro
duce any additional change in the mx or cxcl9 transcription (Fig. 3A and 
B). Transcription of nkl, ighm, tcrb, il1b, il8 or cxcr3 in the brain was 
always increased upon NNV infection but never reached significant 
values (Fig. 3A and B). 

4. Discussion 

Although AMPs have been widely proposed as an alternative to 
reduce the use of antibiotics, due to their antibacterial properties, their 
application against other pathogens is very limited, being this even more 
evident in the case of fish and aquaculture. In this sense, the use of AMP 
to prevent or treat viral diseases is a reliable and promising field of 
research. Thus, fish AMPs have shown very interesting immunomodu
latory effect on individuals and antiviral activity in vitro but their 
function against viral diseases in vivo has been slightly and preliminarily 
evaluated (Valero et al., 2020c). Among the potential fish AMPs, 
NK-lysin derived peptides are remarkable examples that, apart from the 
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Fig. 2. Synthetic NK-lysin peptides (NKLPs) reduce the disease signs and 
mortality of European sea bass upon nervous necrosis virus (NNV) 
infection. European sea bass juveniles were intramuscularly injected with 
phosphate buffer (PBS-Control) or with 1 μg of synthetic NKLP23, NKLP20.1, 
NKLP20.2 or NKLP27/g fish and after 72 h challenged by an intramuscular 
injection with 107.75 NNV TCID50/fish. (A) Clinical signs were daily observed 
and the cumulated number of fish showing VER disease signs presented 
attending to their severity: 1, changes of the colour of the skin, slower rhythm 
of swimming and/or slower reaction to external stimuli as feeding; 2, alterations 
in the swimming balance and/or erratic swimming spasms; 3, continuous 
erratic swimming; and 4, complete incapacity to keep balance, swim and/or 
move without external stimuli. (B) Kaplan-Meier survival curves showing the 
proportion of European sea bass survivors upon NNV infection. Different letters 
denote significant differences among groups according to the Log-rank (Mantel- 
Cox) test (p < 0.05). (C) Relative percent survival in NKLPs-treated European 
sea bass after NNV infection. 
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Fig. 3. Synthetic NK-lysin peptides (NKLPs) fail to modulate the NNV- 
induced transcription of immune-related genes in European sea bass. 
European sea bass juveniles were intramuscularly injected with phosphate 
buffer (PBS-Control) or with 1 μg of synthetic NKLP23, NKLP20.1, NKLP20.2 or 
NKLP27/g fish g and after 72 h challenged by an intramuscular injection with 
107.75 NNV TCID50/fish. A group of resting fish were mock-infected and served 
as controls. After 3 days of infection, head-kidney (A) and brain (B) tissues were 
sampled to evaluate the transcription of NNV cp, nkl, mx, ighm, tcrb, csf1, mpo, 
il1b, il8, cxcr3 and cxcl9 by real-time PCR. Data represent the mean fold change 
of the relative gene expression ± SEM (n = 6/group and time) respect to the 
mock-infected group. Statistical differences between groups were analysed by 
ANOVA (p < 0.05) followed by Tukey’s post-hoc test. Asterisks denote differ
ences with respect to the mock-infected control. 
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immunomodulatory role, have shown direct or indirect antibacterial, 
antiviral and antiparasitic activities (Chen et al., 2021; Hirono et al., 
2007; Lama et al., 2018; León et al., 2020; Pereiro et al., 2017; Valero 
et al., 2020a, 2020b; Zhang et al., 2013, 2014). However, the scarce 
studies evaluating the antiviral activity of fish NK-lysin in vivo were 
limited to quantify the viral load in fish tissues upon infection but the 
protection was not confirmed (Zhang et al., 2013, 2014). Thus, in this 
work, we selected different synthetic NKLPs derived from European sea 
bass (NKLP23, NKLP20.1 and NKLP20.2) or from tongue sole (NKLP27), 
all of them previously designed, synthetized and their direct antibacte
rial and antiviral activity probed in vitro (León et al., 2020; Zhang et al., 
2014). Since all of the NKLPs described inhibited the NNV replication 
(León et al., 2020; Zhang et al., 2014), and European sea bass is one of 
the most susceptible fish species to NNV, we aimed to evaluate whether 
the administration of NKLPs to sea bass was able to reduce the disease 
and mortality upon a NNV challenge. This might represent a potential 
preventive candidate against NNV disease in aquaculture. 

Firstly, we administered the synthetic NKLPs intramuscularly to ju
venile European sea bass and evaluated the transcription of immune- 
relevant genes in the head-kidney, the fish equivalent to the mamma
lian bone marrow. After the administration of NKLPs, the transcriptional 
levels of nkl remained stable and steady in all treatments suggesting that 
the exogenous supply does not interfere in the NKL synthesis pathway, 
maintaining then the homeostasis in the routes in which NK-lysin is 
involved. Similarly, we could observe that all the NKLPs failed to alter 
the transcription of the main antiviral marker, mx. In tongue sole 
overexpression of NK-lysin throughout expression plasmids, or admin
istration with synthetic NKLP27, produced an early up-regulation in the 
transcription of interleukin 1 beta (il1b), il8, chemokines (cck1 and 
cxce1), Toll-like receptor 9 (tlr9), myeloid differentiation primary 
response 88 (myd88), interferon-stimulated gene 15 (isg15), cd28 or 
major histocompatibility complex I alpha (mhc1a) in either head-kidney 
or spleen, indicating the activation of the type-I interferon pathway, 
chemotaxis, T-cell activation and inflammation (Zhang et al., 2013, 
2014). Similarly, barbel steed NKLP also up-regulates the 
pro-inflammatory cytokines il1b and tumour necrosis factor alpha (tnfa) 
both in vitro and in vivo as well as chemoattract to mono
cyte/macrophages (Chen et al., 2021). In our hands, only sea bass 
injected with NKLP23 or NKLP20.2 showed early and transitory 
up-regulation in the transcription of ighm, csf1r, tcrb, il1b, il8 or cxcr3. 
This suggests that NKLPs might improve, for the first time in fish, the 
adaptive immunity by increasing B and T cell biology, as well as the 
macrophage functions. By one side, NKLP23 up-regulates ighm tran
scription suggesting their involvement in the sea bass 
antibody-mediated immunity and pointing to its applicability as vaccine 
adjuvant, as has also been reported for other fish AMPs (Valero et al., 
2020c). In addition, NKLP23 also induces the increase of the csf1r 
transcription pointing to the activation and polarization of macrophages 
though we failed to detect any inflammatory response in contrast to 
previous studies (Acosta et al., 2019; Chen et al., 2021; Torraca et al., 
2015; Zhang et al., 2013, 2014). Interestingly, NKLP23 up-regulated the 
transcription of cxcr3, which is mainly expressed by NK and CD8 cells 
(Hosking and Lane, 2010; Kohli et al., 2021), suggesting the activation 
of the sea bass cytotoxic cells. In agreement with this idea, it has been 
reported that the injection of Epinecidin-1 to mice triggered the incre
ment of IgM/IgG serum levels concomitantly with the increment of 
genes coding for pro-inflammatory cytokines (Lee et al., 2012). By the 
other side, NKLP20.2 promoted the up-regulation of the 
pro-inflammatory il1b and il8 cytokines as well as the tcrb and cxcr3 
genes expression indicating inflammation and the activation of the NK 
and T cell biology, which might also improve the adaptive immunity. 
However, whether this involves cytotoxic or helper T cells was not 
elucidated herein. As suggested by our data, fish NK-lysin could be 
linked to the CMC since increased nkl transcription is parallel to 
increased CMC response (Chaves-Pozo et al., 2012; Huang et al., 2018; 
Lama et al., 2018; Valero et al., 2020b). Additionally, sole specimens 

treated with plasmids coding for the NK-lysin resulted in the 
up-regulated transcription of cd28 (Zhang et al., 2013), a T-cell 
co-stimulatory receptor, supporting the activation of both cytotoxic and 
helper T lymphocytes. Under the light of these results, different sea 
bass-derived NKLPs seem to promote the inflammation, the CMC 
response and the adaptive immunity although more exhaustive experi
ments must be carried to ascertain their immunomodulatory mode of 
action. 

Upon an in vivo infection with NNV, our results reflect a noticeable 
decrease of sea bass clinical signs concomitantly with the increment of 
survival, ranging from 20 to 80%. In this sense, all sea bass-derived 
NKLP-treated fish showed lower signs than control- or NKLP27-treated 
ones upon NNV challenge, though this was not completely related to 
the protection. For example, NKLP27-treated fish displayed more severe 
disease signs (2–4 rank) than those treated with the sea bass-derived 
NKLPs, but the protection was higher than in fish treated with the 
NKLP20.1. However, our results showed no descent viral load in the 
brain of NKLPs-treated fish compared with controls, pointing to a major 
immunomodulatory role of these peptides upon NNV infection. In the 
only available study, NKLP27-treated sole specimens resulted in 
decreased viral load upon megalocytivirus challenge though the disease 
signs and protection were not evaluated (Zhang et al., 2014). Previous in 
vitro study also showed that both NKLP23 and NKLP27 showed the same 
direct anti-NNV activity, which was lower than the antiviral activity of 
NKLP20.1 and NKLP20.2 (León et al., 2020). All these data point to the 
complexity and uncertainty of the mechanisms of NKLP response (León 
et al., 2020). For example, despite that several amino acids such as lysin 
are related to a direct antiviral activity (Butorov, 2015), the difference in 
the composition of NKLPs used in this work is mainly based in leucine 
and alanine residues (Supplementary Table S1). In fact, NKLP20.1 and 
NKLP20.2 are richer in alanine than NKLP23 or NKLP27. Alanine-rich 
peptides have shown to possess a potent antiviral activity in mammals 
or even potentiate it (Bogen et al., 2005; Migliolo et al., 2012); however, 
deeper studies should be needed to clarify this issue. Thus, NKLP23 and 
NKLP20.2 show the highest RPS value and were the only producing 
significant up-regulation of the immune-related genes related to B, T and 
NK lymphocytes and macrophages. Very interestingly, the transcription 
of the cxcl9 chemokine is significantly up-regulated by NNV challenge 
though the cxcr3 was increased but not significant. Cxcl9 is known to be 
expressed by virus-infected and tumour cells and recruits cxcr3-ex
pressing cells (mainly NK and CD8 cells) (Hosking and Lane, 2010; Kohli 
et al., 2021). Therefore, our data suggest that NKLP23 and NKLP20.2 
induce the proliferation of cytotoxic cells in the head-kidney and their 
recruitment to the infection site, the brain, where the cxcl9 is greatly 
up-regulated upon NNV challenge. Unfortunately, no differences in 
challenged fish with respect to the NKLPs are evidenced. Curiously, 
NKLP27 failed to produce sea bass immunomodulation whilst it greatly 
up-regulated the transcription of important immune-genes in sole 
(Zhang et al., 2014). This implies that fish immunostimulation, or at 
least the genes evaluated herein, is not strictly necessary to control the 
NNV infection and suggests a multifactorial mechanism. In fact, sea bass 
treated with the NKLPs and then challenged with NNV failed to increase 
the transcription of immune-related genes compared to NNV-challenged 
fish. This is reasonable since it has been already mentioned that NNV 
infection induces the sea bass immunity, but this is not enough to clear 
the virus. 

5. Conclusions 

To conclude, synthetic NKLPs corresponding to different NK-lysin 
regions, diverse amino acid composition and structure, produce little 
immunomodulation of European sea bass involving markers of B and T 
lymphocytes and macrophages as well as inflammatory cytokines and 
chemokines. Furthermore, pre-treatment of European sea bass with 
synthetic NKLPs resulted in decreased disease signs and mortality upon 
NNV challenge. Although the mechanisms by which these peptides are 
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able to decrease VER progression and mortality are still unknown, our 
results point to the use of NKLPs as potential preventive agents against 
NNV in aquaculture. 
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