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Abstract: Business processes (BPs) have become extremely complex with thousands of tasks to be
completed. These processes should be modelled to manage their complexity, but deviations from
these models can occur during execution. To account for the potential outcomes, models are often
over-specified, but in fact, it is impossible to anticipate every scenario. Therefore, the issue of how
to model the response to these problems arises. The approach put forward in this study entails the
creation of a primary model with the aid of domain experts. If a deviation occurs during execution,
the system searches for compatible patterns in a collaborative library of workflows, rather than
relying on dedicated solutions for specific problems. Nevertheless, the main challenges lie in selecting
the most appropriate set of candidates from a vast number of patterns, as well as identifying the
optimal injection points on the primary model to correct the deviation. One main objective is to
rapidly eliminate incompatible patterns by employing simple mathematical techniques to narrow
down the pool of candidate solutions. This serves to minimize the number of patterns that should
be considered where more sophisticated methods can then be utilized to rank and select the best
solution from this smaller set.

Keywords: BPMN elements characterization; workflow deviations handling; pattern-based solutions;
interoperability; process model repair

1. Introduction

Business processes have evolved to become increasingly complex, often consisting of
a multitude of tasks that need to be executed. While these processes are typically modelled
to manage their inherent complexity, deviations from these models can occur during their
execution. The ability to anticipate every possible scenario and incorporate it into the
models is practically impossible. Consequently, the challenge arises of how to effectively
model the response to these unforeseen problems.

The approach outlined in this study involves the creation of a primary model in col-
laboration with domain experts. In the event of a deviation during execution, the system
searches for compatible patterns within a collaborative library of workflows, rather than re-
lying on specific solutions tailored for individual problems. Selecting the most appropriate
candidates from a vast number of patterns and identifying optimal injection points in the
primary model to rectify the deviation constitute the main challenges in this approach.

The proposed method introduces three basic types of repairs, which differ from
conventional approaches that typically focus on predicting and solving locally identified
deviations or exceptions. By modifying the model dynamically through the insertion
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or deletion of parts of the workflow, the proposed method offers a more flexible and
comprehensive approach to addressing unexpected situations. Additionally, the compatible
solutions are evaluated and ranked based on performance indicators, enabling decision
makers to select the best solution automatically or manually.

Central to the proposed approach is a collaborative library of random patterns, which
stores patterns that may serve as potential candidates for unexpected deviations in work-
flow execution. Unlike conventional approaches that store solutions for each problem,
this library leverages the expertise of domain experts and external sources to identify
compatible solutions based on the current state of the system. The searching mechanism
employed in this approach efficiently narrows down the pool of candidate solutions by
rapidly eliminating non-compatible patterns using simple algorithms. Subsequently, more
sophisticated methods are utilized to refine and rank the remaining patterns, leading to
improved workflow performance.

In order to accurately calculate the impact of candidates on the system and determine
the most effective course of action, this study introduces new characterizations and nota-
tions that enrich BPMN elements. These characterizations provide a valuable framework
for accurately assessing the impact of repairs on the workflow. The ease of implementation
is another significant advantage of the proposed methodology, as demonstrated through
the utilization of Python to implement the entire approach, enabling practitioners to readily
incorporate it into existing systems and workflows.

Furthermore, the proposed iterative solution injection approach allows the system to
continuously analyse historical data and suggest optimizations at the main model level.
By learning from past experiences and adapting to new circumstances, the system can
continually enhance its performance. This opens up possibilities for future studies in
artificial intelligence, where historical databases can be leveraged to further refine and
improve the design of the model.

The remainder of this paper is organized as follows: Section 2 presents a compre-
hensive review of the related work, Section 3 provides a comprehensive overview of the
materials and methods employed in this study. In Section 4, a concise case study is pre-
sented as a compelling proof of concept, illustrating the ease with which this method can
be implemented in real-world scenarios. Section 5 delves into a comprehensive discussion
of the findings, exploring their implications, limitations, and potential applications. Lastly,
Section 6 presents a conclusion summarizing the key insights and contributions of this
approach. It also proposes future directions and potential research avenues to explore,
emphasizing the significance and potential impact of this work.

2. Related Work

As stated in the introduction, in recent years, there is growing attention towards
process-aware information systems, which are designed to aid in managing, supervis-
ing, and overseeing business processes. [1]. Business process management (BPM) is a
well-known method that encompasses a set of organized and interconnected tasks or
activities aimed at delivering a distinct service or product to one or multiple customers.
It is commonly represented as a flowchart illustrating the sequential progression of its
activities [2].

The Integrated Computer-Aided Manufacturing (ICAM) program, starting in the
1970s, recognizes the need for enhanced analysis and communication techniques among
individuals working to improve manufacturing productivity. As a result, the program
introduced a set of modelling approaches known as the ICAM definition (IDEF) methods [3].
Since the 1980s, scholars have strived to develop standardized and cohesive methods to
represent and quantify processes [4] such as the structured analysis and design technique
(SADT) (top-down approach) [5].

The Business Process Model and Notation (BPMN) was first developed by the Business
Process Management Initiative (BPMI), which made version 1.0 available to the public in
May 2004. Following the merger of BPMI with the Object Management Group (OMG) in
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June 2005 [6], the OMG published a BPMN specification document in February 2006 [7].
The strength of the BPMN resides in two important aspects: (i) simplicity, which is due to
the abstraction level provided by the standard; and (ii) the possibility of being automatically
translated into a business execution language and, then, to generate a machine-readable
prototype of business processes [8]. BPMN was created with the explicit purpose of bridg-
ing the gap between the business and technical perspectives regarding processes [9,10].
In BPMN, tokens serve as a theoretical concept to define a process’s behaviour, with ele-
ments interacting as the token moves through the process. However, the specific details
of what a token contains are not described in the official BPMN specification [11]. It is
common to associate tokens with details such as process instance ID, data, flow object ID,
timestamp, and state information. The data held by a token can differ depending on the
specific case and implementation [12].

In contemporary organizations, as BPs are becoming increasingly complex, often
involving thousands of activities that need to be modelled to control their complexity.
Over-specifying the models to handle all foreseen situations and repair anomalies has
been common practice in industry to overcome unexpected malfunctions. However, this
approach is expensive and still cannot account for all possible situations, as evidenced
by the COVID-19 pandemic. Therefore, there is a pressing need to repair the model to
sustain business operations. Bendraou et al. [13] addressed the recurring issue of developer
deviations from the process model in the multi-viewpoint-based development of complex
systems. These deviations, which can be behavioural or structural in nature, arise without
proper methodological support. The authors proposed a solution to overcome these issues
through a viewpoint-based development process.

Earlier research has addressed four key areas related to the correction of deviations in
business models, namely: problem identification, solution evaluation, model validation
and model reparation.

Although, detecting deviations is not the subject of this study, and in this paper, it
is supposed that an anomaly detection has been flagged and a repairing mechanism is
proposed, numerous studies, and organizations such as Airbus have focused on the aspect
of problem identification in the One-Way project [14], which established a Numerical Twin
to identify any deviations in a system from its intended behaviour, whereas other stud-
ies have considered artificial intelligence (AI) to improve the system’s ability to identify
and describe systematic deviations present in data and models [15,16]. Hodge et al. [17]
outlined numerous methods for detecting deviations. More over TariQ et al. [18] proposed
a novel technique for detecting abnormalities in BP execution by extending conformance
analysis methods. It utilizes event logs to identify correlations and discrepancies, filters
logs into successful and failed instances, and classifies abnormalities based on confor-
mance dimensions. The approach includes the concept of a conformance lifeline for early
predictions and has been applied to a real-world event log, providing process-specific
improvement measures. While Weijian et al. [19] addressed the issue by presenting an
innovative method for identifying abnormalities in BP execution by extending conformance
analysis techniques. By analysing event logs, correlations and discrepancies are identified
using non-traditional conformance analysis approaches. The approach involves filtering
event logs into successful and failed instances, utilizing the former to derive an optimal
process model, and classifying abnormalities in the latter based on conformance dimen-
sions. While it is impractical to mention all of them in this article, it is essential to note
that this paper assumes deviation has already been detected, serving as a starting point
to identify an appropriate repair for the problem. Nonetheless, the tools and notations
presented in this manuscript can aid future studies in detecting model deviations.

Solution evaluation was also addressed by many studies. Ducq et al. [20] defined
different methods of aggregations of key performance indicators (KPIs). These method
will be use in this paper especially when it comes to estimating the KPI for multiple
blocks on the model. More, these indicators were used to evaluate the interoperability
of systems, as seen in Heguy’s study [21], and to aggregate KPIs computed on single
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BPMN elements to parts of the model, as described in Ougaabal’s work [22]. Numerous
theories have been introduced for model evaluation to validate models. One example is the
research by Kherbouche [23], proposing a technique to validate workflow modifications
resulting from the deletion or insertion of tasks based on KPIs. Another study by Mallek-
Daclin [24] suggested verification techniques to validate interoperability in a collaborative
process model based on data quality and time. In the evaluation of the model or the
candidate set of solutions, it was noted that some approaches used in the literature exhibit
similarities or can be complemented by the method employed in this manuscript. A fitness
function to optimize candidate solutions with respect to their overall quality of service
(QoS) attributes was suggested by Da Silva et al. [25]. This approach handles composition
dimensions simultaneously, resulting in solutions that are fully executable, adhere to
conditional constraints, and are optimized in line with QoS requirements. Importantly, this
method could be utilized in future work for the implementation of the objective function.
In the selection dimension, the labelling of candidate services based on their computing
ability is accomplished using a user utility function, as proposed by Zhang et al. [26].
The appropriate label types are chosen, and only services with good labels are selected by
genetic algorithms (GA) to determine the best service composition. Although efficiency in
computation time was demonstrated by Zhang’s method, our approach relies on the fast
elimination of non-compatible candidates and reserves more complex algorithms for later
stages when the candidate set is narrowed down.

There are two primary categories of model reparation: overspecified models (OSM)
and underspecified models (USM).

The OSM category places emphasis on the variability approach, which predefines all
possible solutions and determines the system’s response at runtime based on a variation
point and certain conditions. Certain techniques utilized object-oriented programming
languages to create workflows and manage potential deviations [27]. Svendsen [28] used
the common variability language (CVL) to describe and generate variants of the same
model to achieve application reconfigurations, while Honghao et al. [29] discussed the
workflow reconfiguration. In their investigation, La Rosa et al. [30] categorized four
diverse approaches to variability, where each approach considered a distinct variation
point. The first approach, node configuration, considers the node as the variation point,
and for each node, various paths exist [31]. The second approach, element annotation
assigns domain properties through Boolean expressions, and the selection can be made
either manually or with the aid of a model. It involves testing a specific condition at the task
level, such as a lower cost [32]. The third approach, activity specialization, emphasizes the
customization of a business model based on activity specialization [33]. Finally, the fourth
approach, fragment customization, depends on constraints: an activity is added if it
satisfies a given constraint or rejected otherwise [34]. In these OSM approaches, whether in
deviation or reparation models, rely on the concept that all paths must be predetermined.
However, in most real-life situations, it is impossible to anticipate all scenarios [35].

Adaptive case management (ACM) [36] is a software-driven approach that supports
knowledge work and unpredictable business processes by offering flexibility and informed
decision making based on real-time data. In contrast, traditional BPM focuses on structured
workflows and optimizing efficiency for repetitive tasks. By combining ACM and BPM,
organizations can effectively manage both structured and unstructured workflows, enhanc-
ing efficiency and decision making. While this method has many advantages demonstrated
in the literature [37], it is categorized under the OSM category as previously discussed.
The proposed approach in this study differs from ACM by avoiding predefined paths and
instead utilizing a library of patterns to iteratively select the most compatible pattern as a
candidate solution.

Dynamic BPM [38] refers to the capability of supporting process modifications by any
role with minimal delay. It encompasses a range of practices and technologies that empower
individuals and systems to make timely adjustments in response to both obvious and
underlying process requirements [39,40]. This enables the simulation of changes without
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disrupting the current operational processes, systems, or applications. Once more, as noted,
this method can also be categorized under OSMs in contrast with the proposed approach.

The second category, the USMs, employs a management by exception approach.
In this approach, a primary model is established for standard operations while an exception
handling mechanism is developed to address any unforeseen issues that may occur in the
model during runtime by utilizing a library of sub-models. Russel et al. [41] classified
different types of exceptions that may arise during the execution of a process and suggested
techniques to manage them. Similarly, Adams et al. [42] maintained a database of exception
handling procedures known as exlets to deal with predefined categories of exceptions.
The database may be built during the design stage or dynamically during runtime. In a
recent study, Jasinski et al. [43] presented a workflow management system that controls the
environment using dynamically generated workflows. Exception detection and handling
in the process creation provides solutions for possible occurrences. This approach enables
rapid development of new tasks, known or unknown, and assesses the quality of the
recommendations created through feedback from the managed environment. Taken a
step further by Kerstin et al. [44], they introduced an additional layer of fragments that
can be reused in workflows in case of failure. However, one notable drawback of USM
approaches is their limited scope when it comes to repairs. These approaches typically
focus on addressing issues within a specific area, and the solutions available are often
pre-defined and stored in databases. If a malfunction occurs, the primary workflow will
halt, a solution will be selected from a library, and the work will continue from the point
where the issue was detected.

Górski et al. [45] conducted a systematic literature review on the optimization of BP
execution in a service architecture, the authors categorized relevant methods into three
stages: resource allocation [46,47], service composition, and service scheduling [48,49].
While some of these aspects may not directly fall within the scope of the current paper,
the proposed method can complement the aforementioned stages. It should be noted that
resource allocation and service scheduling will not be the focus of this paper. Regarding
service composition, there are similarities that can be identified, and certain algorithms used
in the reviewed papers, such as GAs [50–52], can be beneficial for future work, particularly
in refining pattern selection. In the study by Kalasapur et al. [53], the authors proposed
defining a BP using basic services (building blocks) and searching for service instances that
realize one or several blocks, contrasting with our approach where patterns in the library
serve as potential repair solutions and are not explicitly linked to specific services. Another
study by Ukor et al. [54] stated that BPs can have multiple execution paths, with each
path having a distinct set of optimal service instances. The authors suggested performing
service composition for each execution path and selecting one path at the beginning based
on initial data. This approach differs from the proposed method in this paper, as it requires
over specification of multiple paths.

3. Materials and Methods

In modern BPs it has become common practice to create OSMs to accommodate all
possible scenarios. However, anticipating every potential failure is a costly and challenging
task. For instance, the recent COVID-19 pandemic demonstrated how quickly unforeseeable
situations can arise and disrupt even the most well-designed processes. Knowing that it is
critical to fix the deviation quickly to maintain business operations, this paper proposes
a new approach that builds a schema process with the aid of domain experts, and if
a deviation is detected during execution, the system searches a collaborative library of
workflows to find compatible solutions that can correct the deviation. One possible method
to address deviations in processes is the utilization of simulation. However, it is important
to note that this method can be time-consuming due to the requirement of simulating
numerous combinations for each pattern at every injection point pair of entry and exit
points. Instead, in this manuscript, a more efficient approach is proposed, involving
basic mathematical techniques to quickly eliminate non-compatible solutions and reduce
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the number of candidate patterns to a limited set. Furthermore, advanced mathematical
approaches, such as fuzzy set theory or simulation time management, can be used to
evaluate and rank the remaining solutions from which the best solution can then be
selected and applied to correct the deviated process. It is important to mention that the
proposed instance correction may not only affect the deviated block at the point of failure
P, but may also replace all blocks between P and any point Q on that instance. Therefore,
the solution workflow must satisfy both local compatibility at the injection points and
global compatibility at the process instance level. In other words, the solution workflow
should not endanger the entire process leading to the degradation of the schema process.

3.1. Element Characterization and Notations

Element characterization and annotations are used in this manuscript to help with the
explanation of the underlying concepts and methodologies. The benefit of using mathe-
matical expressions is that they offer a succinct and accurate representation of complicated
ideas. This is extremely helpful in understanding and communicating scientific findings.
In the remaining sections of this manuscript, resources can be more precisely defined and
discussed using mathematical notations, state tokens, and constraints.

3.1.1. State Token

This paper presents a novel version of the BPMN token, called the state token, which
is enriched with information related to KPIs, resources, products, and other variables
used in testing throughout the model execution. The state token provides a more detailed
understanding of the process dynamics, which facilitates distinguishing normal from
abnormal behaviour during deviation execution.
The state token proposed in this study is expressed as a tuple consisting of various types
of information that start circulating right after the process instance begins and continues
propagating throughout the model. This token is denoted as ST, which is a tuple defined as:

ST “ă K, P, R, V ą

• K is the set of KPIs.
• P is the set of products.
• R is the set of the available resources.
• V represents a set of system variables that are distinct from the variables included

in the KPIs, products, and resources sets. It is important to note that V is a limited
set of system variables that are specifically determined during the design phase of
the model, and their selection is contingent upon the particular business domain.
For instance, in the apiculture domain examples could include temperature, weight,
and weather conditions, while other domains may feature a distinct set of variables
along the execution.

The annotations STA and STA are used to differentiate the state token before and after the
execution of a task A, respectively. In this case, STA denotes the actual state token observed
before entry of task A, and STA denotes the actual state token observed after exit of task A.
Furthermore, we can define ĂSTA as the estimated state token (computed) after exiting task A.
ĂSTA will be detailed in the foloowing. Table 1 summarizes the latter annotations:

Table 1. State token notations.

State Token Annotation

Actual state token before entry of task A STA
Actual state token after exit of task A STA
Estimated state token after exit of task A ĂSTA
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3.1.2. Task/Activity
Task Characterization

The BPMN is a well-established standard in BP modelling, as evident in previous
studies. Moreover, the BPMN standard offers an XML representation of each element in
the model, enabling the enrichment of tasks or activities in a manner similar to the SADT
annotation, a widely discussed modelling technique in the literature. By incorporating
constraints (CA), resources (RA), inputs (IA), and outputs (RA) into each task or activity (A)
in the BPMN, it is feasible to comprehensively define each element and monitor the model’s
performance. All these conditions (CA, RA, IA, OA) can be expressed as Boolean expressions.

• Constraints CA: The constraint defines a condition expressed by a Boolean expression
CA that must be true at entry, during, and at exit of task A. The constraints mostly
apply to elements K and V of the state token ST. For example:

pCost ă 30Keq ^ pT˝ ą 20˝q

where Cost is a KPI belonging to K and T˝ is a state variable belonging to V.
• Resources RA: Resources can be either local or global, and specifying them for each

task or activity helps manage them more efficiently. It is important to mention at
this point that resources management is not the object of this study. However, it is
crucial to ensure normal execution of the workflow. As reported in [55], resources
can be sorted in various ways. In this study, the main focus would be the behaviour
of a resource rather than its type, namely allocation, utilization, and consumption.
One can determine the availability of a resource r belonging to type T by verifying if
r is present in the set of resources of type T available for the process. RA represents
the availability of resources needed by A as a Boolean expression. RA must be true to
enter task A. This expression mostly applies to element R and P of the state token ST.
This expresses which resources are allocated by task A and will consequently be no
longer available for other tasks during the execution of task A.

• Inputs IA: IA stands for the state token’s necessary condition which is true at task
entry. These conditions are mainly applied to K and V.

• Outputs OA: OA stands for the state token’s necessary condition which is true
at task exit. These conditions are applied to K, P, V and R. OA represents the
transformation applied to the state token prior to entry, resulting in the state token
after exit. This expresses the changes in KPIs, such as duration and cost, as well as
the impact on resources and the product resulting from the task. In fact, RA indicates
which resources are kept by A during its execution but does not provide information
about which will be available again at the exit of task A. The expression of the
consumption of resources by task A is then expressed in OA.

This manuscript describes the use of the aforementioned characterizations represented in
Figure 1 to repair any potential deviations that may arise during model execution. However,
these characterizations may also be utilized in future studies for the detection of deviations,
as well as for model optimization and improvement.

Figure 1. General model of a task.
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Table 2 summarizes the new elements added to enrich the BPMN task and activity
characterization, including constraints, resources, input, and output, to enable monitoring
and control of model performance. Incorporating these elements can enhance the BPMN’s
representation of real-world processes and provide a more comprehensive framework
for process modelling and management. A detailed discussion of these elements will be
presented in the following.

Table 2. Task element characterization.

Task Characteri-
zation Annotation Task Entry During

Execution Task Exit

Resources RA True True . . .
Constraints CA True True True

Input IA True . . . . . .
Output OA . . . . . . True

Output State Token Estimation

The output state token represents the set of valid state tokens when exiting task A.
This information can be derived by applying transformations to the input state token
ST “ă K, P, R, V ą as described by OA (cf. Section Task Characterization in Section 3.1.2)
on KPIs, resources, products and variables. Instead of explicitly computing the complete
set of valid state tokens, for computational issues, only a simpler superset of the valid state
token is computed called an estimated state token ( ĂSTA). This estimated state token ( ĂSTA)
is a set of state tokens containing, at minimum, all the valid states resulting from the actual
transformation caused by task A. By extension, if the task’s input consists of an estimated
state token ĂSTA instead of a single state token (STA) the estimated output state token ĂSTA
is obtained by computing a superset of the union of all estimated output state tokens for
each state token in ĂSTA.

As previously mentioned, the estimated state token is a set of potential state tokens.
However, when the model is executed only one of the state tokens within this set will be
realized. For example, in the case where the duration of a task falls within the range of
[10 min, 20 min], it becomes impossible to ascertain the precise duration of this task during
the estimation of the exit state token. Therefore, all possible values within the duration
range must be taken into account in the estimated state token.

The following describes how the state token is estimated when tasks are connected to
each other in a BPMN model. This paper focus on three main configurations: sequential
execution (in series), parallel execution (AND) and exclusive execution (XOR).

• Sequential execution
Considering a sequential configuration, as shown in Figure 2, ĂSTA is estimated and
becomes ĂSTB. Then, as describe above, ĂSTB can be estimated (cd Section Output State
Token Estimation of Section 3.1.2). This can be easily generalized to a sequence of n tasks.

A B

Figure 2. Sequential execution of tasks.

• Parallel execution
In the parallel execution configuration, as illustrated in Figure 3, all paths are consid-
ered. Subsequently, each input state token is divided into several parts (one for each
branch) such that the recombination of all parts reconstitutes the original input state
token. Next, the estimated output state token for each branch is computed, and their
recombination yields the corresponding estimated output state token for the parallel
execution of W1, . . . , Wn. Furthermore, the estimated state token for the entire parallel
execution is obtained by computing a simple superset of the union of all the estimated
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state tokens. Instead of individually evaluating the transformation of each input state
token, an estimation is made for the set of state tokens associated with each part (input
of the branches). Nevertheless, this does not change the rest of the process.

W1

W2

Wn

‚
‚
‚

Figure 3. Parallel execution of workflows (AND).

• Exclusive execution
In the case of exclusive execution, as shown in Figure 4, each branch is executed with
the subset of the input state tokens that fit the entry condition of the branch. At the
end, a simple superset of the union of all the estimated output tokens obtained from
each branches is computed.

W1

W2

Wn

‚
‚
‚

Figure 4. Exclusive execution of workflows (XOR).

3.1.3. Evaluation of BPMN Models

In practice, when evaluating the outputs of a BPMN model (or a portion thereof),
the computation of estimated state tokens is performed throughout the model from an initial
state token. The computation of the superset of state tokens varies depending on the phases
of the entire process, as depicted in figure in Section 3.1.6. The further the phase, the more
intricate the computations become, and the more time it consumes. The primary objective
at each step is to eliminate as many impossible state tokens as possible. To optimize the
computational efficiency, initial steps employ straightforward computations, requiring
minimal time to process a huge number of candidates and effectively eliminate many of
them (cf. Section 3.1.6).

3.1.4. Library of Patterns

The library of patterns is a database of patterns containing both atomic activities and
sets of activities or a workflow. Unlike previous literature this library serves as a resource
for storing fragments or full workflows without explicit mapping to specific deviations
in process execution. The library of patterns can be viewed as a resource that can begin
with no content and gradually expand to encompass thousands of workflows, ultimately
serving to resolve deviations in process execution in an implicit manner. Different users
contribute through collaboration. Moreover, it can be characterized by its input and output,
required resources, and associated constraints, similar to how activities were previously
characterized in Section Task Characterization in Section 3.1.2. Figure 5 illustrates the
general model of the library of patterns. Hence, the library of patterns can be a valuable
resource for all users in resolving deviations during process execution.



Appl. Sci. 2023, 13, 7722 10 of 23

Pat1

R1 ; C1

I1 O1

Patn

Rn ; Cn

In On

‚
‚

‚

Figure 5. General model of a library.

3.1.5. Repairing Typology

In this paper, three main types of basic repairs are proposed to restore a BP model to
an “executable state”. The first type is called correction and involves correcting the system
state at the start or end of a process. The second type is restore, which aims to fix a specific
failing task A. The third type is bypass, which involves replacing one or more activities
within the process. These repairs are illustrated in Figure 6.
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Figure 6. Repairing typology.

At this stage, it should be emphasized that the bypass option can be customized to
replace one or multiple blocks as required, depending on where a library pattern can be
injected as a solution in the main model. This approach is innovative when compared to
previous methods described in the literature.

3.1.6. Repairing Mechanism

The proposed repairing mechanism can benefit from task characterization, state tokens,
and a library of patterns. These concepts provide a better understanding of a task’s role
and expected outcome, aiding in identifying process deviations. In fact, monitoring task
input, output, constraints, and resource requirements can quickly identify deviations in
process execution, while, repairing deviations in a model can be a complex and challenging
task, especially when dealing with large and complex systems. The proposed method
employs pattern matching to identify candidates for deviation repairing. It utilizes a library
of patterns to search for suitable solutions to the problem. An efficient search is achieved
by using simple methods to quickly remove incompatible patterns as simple as comparing
intervals and mathematical operations, reducing the set of candidates to a more manageable
size. Afterwards, more complex analyses and methods, such as fuzzy sets and probabilistic
approaches or even simulation, can be employed to further refine the search, and rank and
choose the best solution.

Each phases of the method uses a different approach to process the evaluated esti-
mated states throughout the model to compute the estimated state tokens as mention in
Section 3.1.3. In each phases it is assumed that the set of valid state tokens is included in
the estimated state tokens computed by the method. While using more complex solutions,
the number of states in the estimated state tokens is narrowed down, converging towards
the real set of state tokens. However it is important to mention that the more complex the
methods, the longer the computation time. Thus, due to enormous number of potential
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reparations, it is necessary to start with very simple computations that allow as many
candidates as possible to be eliminated with minimum computations. The remaining
candidates are then reduced using more and more complex methods; however, these are
also more costly in terms of time (cf. Section Output State Token Estimation of Section 3.1.2).
As shown in Figure 7, the first step of computation comprises using a method based on
valid interval computation without considering resources. It can easily be proven that
the obtained estimated state tokens follow the definition in Section Output State Token
Estimation of Section 3.1.2, meaning that all real state tokens are included in any of the
computed estimated state tokens. The temporal management of resources is one of the
most time-consuming processes and is executed in the last steps of computation on a very
limited set of alternatives (couple ppattern, returning´ pointq).

The proposed repair mechanism comprises several steps as outlined in the BPMN,
Figure 7, and in the following.

1. Deviation detection:
This paper assumes that a deviation has already been detected and focuses on the repair
mechanism. Before calculating the state token, it is important to highlight three types of
deviations: at the entry, during the execution and at the exit of a task (cf. Figure 6).

2. State token calculation:
The subsequent step entails the computation of all estimated state tokens ĂSTXi that
would be correct if no deviation had been encountered. All ĂSTXi (at the start and
exit of tasks, and AND and XOR gates) between the deviation point D and the exit
of the model are computed. In the following Xi is called nodes. The estimated state
tokens ( ĂSTXi ) are compared with the estimated state token of the exit point for each
pattern from the library to assess their compatibility and identify potential points of
return for each pattern in the main model. (cf. matching output requirements below
3). This step is reprocessed for each advanced computational iteration. However,
with each iteration, the number of computed nodes is reduced. As the computational
method becomes more complex, it become more time consuming. Nevertheless,
the number of elements to compute decreases. It is anticipated that the reduction in
the number of computed elements surpasses the increase in time consumption per
element computation.).

3. Library search:
The stage is set for exploring the library of patterns containing workflows that may
serve as solutions for the identified deviation. This process involves three phases: val-
idating constraints, matching input requirements, and matching output requirements.
At each phase, a significant number of incompatible patterns are swiftly discarded,
resulting in a refined and condensed set of candidate solutions.

• Validating constraints:
This refers to the first step of the elimination process in which patterns that
do not meet the required global constraints are swiftly removed, as defined in
constraints in Section 3.1.2 and Table 2.

• Matching input requirements:
The state token is evaluated against the inputs of each pattern. Recalling Task
Characterization in Section 3.1.2 and Table 2, the input requirements are con-
straints that must be verified with the state token. Two methods in matching the
inputs requirements are distinguished:
Method 1:
Only patterns which strictly satisfy the constraints are kept in the potential
solution set and all others are eliminated. This method is highly restrictive,
and there is a possibility of overlooking candidates. Moreover, the selected cases
may not necessarily represent valid solutions.
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Method 2:
The proposed method involves retaining patterns that partially satisfy the con-
straints, while discarding those outside a set threshold value. The ratio of
satisfaction can be expressed as a percentage and compared to a threshold value
determined by the domain expert during the design phase. Patterns falling below
the threshold value are discarded. This method is less restrictive, as it does not
miss any solutions, but it requires more computation.
The difference between the two methods lies in the number of patterns retained in
the potential set. Method 1 results in few selected patterns, with many discarded,
while the second method retains more solutions in the solution set. In practice,
one or a combination of the two methods can be applied to each constraint.
For example, exceeding a cost constraint by €4 in the car industry may be tolera-
ble, whereas exceeding a €4 cost constraint in a electronic chip manufacturing
may not be acceptable.

• Matching output requirements:
At this stage, the remaining workflow patterns are validated against the estimated
state tokens from the deviation point to the end of the model, using the same
methods described in Output State Token Estimation of Sections 3.1.2 and 3.1.3.
However, at this stage, the set of candidates is comprises a combination of a
workflow pattern with its potential injection point within the model (couple
ppattern, returning´ pointq). In simpler terms, the same pattern can be injected
(pattern’s input and output) at the deviation point or it can bypass one or more
blocks within the main model.

4. Advanced techniques:
At this stage, with a smaller set of candidates, more sophisticated computational
techniques can be utilized to further refine the analysis. For instance, methods such
as probability theory, fuzzy logic, and simulation tools can be considered as viable
options. These techniques can help in the identification of the most effective solution
patterns among the reduced set of candidates.

5. Solution ranking:
Once the set of candidates has been reduced to combinations of workflows with
corresponding returning points, the next step is to evaluate each solution to rank and
present them to the user. The evaluation process is critical in selecting the optimal
solution(s) that meet the BP requirements while minimizing any potential negative
effects on the system. In doing so, this aids in the decision-making process. To eval-
uate and rank candidates after narrowing them down to a collection of workflows
with returning points, a BP specialist can set an objective function based on KPIs,
such as quality, granularity, cost, and interoperability. The subjective nature of this
function means that KPIs and their weights can differ across industries and specialists,
highlighting the need for customized solutions. The objective function is denoted
as ObjpKq, and can include KPIs such as granularity and overquality, providing an
additional layer of evaluation. Granularity helps determine whether the proposed
solutions are too general or too specific by analysing the number of blocks being
bypassed on the main model; while overquality assesses whether a solution pro-
duces a higher output or quality than required, which may not be preferable over
other solutions.
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6. Solution selection:
The solution selection process can either be manual or automatic, depending on the
configuration. Automatic selection involves the system choosing the top-ranked
solution based on the objective function, while manual selection involves presenting
all the relevant performance indicators and the objective function to the decision
maker for each solution. Regardless of the selection method, the chosen solution must
not only solve the local problem but also align with the global objective.

7. Solution injection:
After selecting a preferred solution, manually or automatically, it will be injected into
the executed process. At this level there are two modes of injection: Non-recursive
deviation and recursive deviation. The former is for isolated incidents while the latter
involves an iterative approach where the system proposes an optimization at the
main model level based on historical data. This enables the system to learn from past
experiences, adapt to new circumstances, and continually improve its performance.
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Figure 7. Repair mechanism.
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4. Experiments and Results

In order to showcase the proposed approach and to demonstrate how fast the elimina-
tion of non-compatible patterns can be, the authors selected a piece of honeybee BPMN
model developed with help of amateur and professional beekeepers in Lebanon and France,
and well discussed in a previous publication from the same authors [16]. Before establish-
ing the proof of concept for the bee hibernation model, the working environment was set
up to interface with an existing BPMN model and process its tasks. Python 3.9.13 was
chosen as the main scripting language as it includes a BPMN parsing package developed by
Bocciarelli et al. [56] called py-bpmn-0.4.0, which allows for straightforward data extraction.
The Tkinter Python package was used to create a GUI to display the final report. After
setting up the environment, the first step was to extract all useful data from the given
BPMN model in Figure 8 and access them inside the Python script. After specifying the
path to the model’s XML file, the py-bpmn-0.4.0 package scanned the file for its tags to map
them to the respective tasks, gates, or conditions in the code.

Figure 8. Part of the bee hibernation model.

After iterating over all the tasks, the script gains access to the methods named after
each task, allowing the developer to simulate an action that takes place either before, during,
or after the respective task, as shown in Figure 9.

Figure 9. XML snippet of the BPMN hibernation process (a).

Once the XML file is parsed, every task in the process gains access to a shared variable
called the ‘payload’ (represents the state token, see Section 3.1.1), which is automati-
cally updated after every executed task, as discussed in Section Task Characterization in
Section 3.1.2, where Oi was set to denote the transformation applied to the state token
before entry. In addition, it can be updated manually by the user. This provides the op-
portunity to manually insert constraints and variables into the ‘payload’ variable to create
a flow between the tasks representing task characterization, as discussed in Section Task
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Characterization in Section 3.1.2. After setting custom constraints before and after some of
the tasks, deviations can be simulated by, for instance, requiring a variable to be within a
certain range at the end of a task, leading to the state token after exit. Upon completion,
the ‘payload’ holds the location where the error took place based on the content of the state
token, as shown in Figures 10 and 11.

class header();
def on_entertask ( self, **kargs ): ...
def on_exit_task ( self, **kargs ): ...
def on_CheckDate ( self, **kargs ): ...
def on_CheckProvisions ( self, **kargs ): ...
def on_CheckProteinFeeding ( self, **kargs ): ...
def on_VarioseVaccineNovember ( self, **kargs ): ...

def test_process:
instance = BpmnProcess()
instance.start_process ( open ( "model/simple_bee.xml" , "r").read() , Handler() )
display_interface ( instance.payload )

if __name__ = ’__main__’:
test_process()

Figure 10. Parsed task methods, payload variables, and constraints (a).

def on_CheckDate ( self, **kargs ):
kargs[’payload’][’token_state’] = {}
kargs[’payload’][’deviations’] = {}
kargs[’payload’][’token_state’][’date’] = 20230701
kargs[’payload’][’token_state’][’temperature’] = 18
kargs[’payload’][’token_state’][’weather’] = ’Sunny’
kargs[’payload’][’token_state’][’cost’] = 100

def on_CheckProvisions ( self, **kargs ):
CheckConstraints ( "CheckProvisions", "enter", kargs )
kargs[’payload’][’token_state’][’num_provisions’] = 20
kargs[’payload’][’token_state’][’weight’] = 10
kargs[’payload’][’token_state’][’cost’] += 40
CheckConstraints ( "CheckProvisions", "exit", kargs )

Figure 11. Parsed task methods, payload variables, and constraints (b).

Once the ability to access and modify the BPMN information was verified, the focus
was shifted to simulating deviations and writing alternative search algorithms. Given the
lack of a meaningful BPMN model to hand, the alternative tasks were generated by another
Python script that includes a list of possible constraints and their range of values. Upon run-
ning the script, a number of alternatives are generated based on a random selection of
random constraints.

To test the limits of the script, the chosen number of alternative tasks varied starting
from 1000 and incrementally increased up to 2,000,000. This allowed the measurement of
the different elapsed times required to load and search through the tasks. The generated
number of alternatives was usually slightly less than desired due to discarding duplicates.

For the automated search, the main Python script was set to ensure that any constraint
found within all the tasks was validated. Whenever a deviation or a mismatched constraint, is
found, a method is triggered to search for alternative tasks among the generated pool that
can fix the deviation. All alternatives are evaluated based on their entry constraints and their
predicted exit values, depending on the number of remaining tasks in the process. For every
alternative task, the entry constraints are first compared with the values in the current state
token of the system. The number of mismatched constraints are recorded, and the alternatives
are subject to a second round of filtering. The second stage of the search algorithm evaluates
whether the alternatives’ predicted outputs fall within the range of the entry constraints of
the remaining tasks in the process, since it is possible for the same alternative task to connect
to more than one remaining task. Once all possible alternatives are processed, a report is
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generated describing the entire process, beginning with the original executed process and the
state token across all the tasks, as shown in Figure 12.

The time taken for the program to load all data related to the alternative tasks is also
displayed at the beginning of the report. This is used to evaluate how long the script takes
to handle loading the alternatives depending on the size of the generated pool.

Figure 12. Display of the original process with a detected deviation.

The alternative tasks are classified in ranges depending on their percentage validity,
which is the ratio of validated constraints over the task’s total number of constraints.
For alternative tasks that achieved total validity, i.e., when entry constraints and exit values
satisfy all conditions in the state token, the solution is displayed in its suggested location in
the updated process. The constraints of the original and new tasks in the updated process
are also available to be viewed by the user, as shown in Figure 13.

It is noted that for alternative tasks that are able to be linked to more than one re-
maining task, multiple solutions are displayed showing the different possibilities that can
be implemented.

Figure 13. Classification of possible alternatives and display of the corrected process for valid alternatives.
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Upon examining the elapsed time for each of the two filtering stages, for a small number
of alternative tasks (less than 100,000), the displayed time was a small fraction of a second.
This is due to the fact that the search process required very little time to complete given the
simplicity of its requirements, and the Python “time” package inaccurately measures time
when the intervals are very small. Increasing the number of generated alternatives increased
the initial loading time and elapsed processing time, with greater precision.

The elapsed times were recorded in multiple cases with a growing pool of generated
alternative tasks as shown in Table 3. The number of patterns written in the second column
represents the actual number of generated tasks due to the elimination of duplicates.
The values below are listed in seconds and are the averages of multiple executions of the
script on the same device.

Table 3. Elapsed time during a search vs. the size of the library of patterns.

Generated
Patterns

Patterns without
Duplication

Total Elapsed
Time (s)

1000 837 0.010
10,000 9930 0.153
100,000 93,606 1.589
1,000,000 905,217 26.291
2,000,000 1,809,169 55.908

As expected, there was a notable increase in the total elapsed time as the pool of
alternative tasks grew. Yet, despite reaching an unreasonable amount at around 2,000,000,
the script was able to process all alternatives in a matter of seconds and produced a
meaningful report for the user, saving them hours of manual planning.

For each test case performed on the growing number of generated alternatives,
the number of alternatives marked as a compatible solution and achieved partial validity
are presented in Table 4.

Table 4. Number of patterns vs. the number of matching candidates.

Number of
Patterns

100%
Matching

70%
Matching

50%
Matching

30%
Matching

1000 (837) 4 8 114 843
10,000 (9930) 6 26 280 5966
100,000 (93,606) 9 59 475 13,754
1,000,000 (905,217) 31 130 1174 25,149
2,000,000 (1,809,169) 64 274 2387 50,177

Alternative tasks with 100% validity were displayed on the user report at their correct
location in the process as a suggested fix for the detected deviation. For the rest, it can be
observed how the number of alternatives listed grew significantly larger as the percentage
validity was less, or in other words the restrictions for them to be considered valid were
looser. It is worth noting that, given the simplicity of the BPMN model used in these
experiments, the process tasks in general have fewer constraints, resulting in the large
number of alternatives with partial validity. For a realistic model where the tasks have
many constraints, this number is expected to be lower in the range of high percentages of
validity and higher as we approach 0% validity.

All the numerical results above were obtained by running the scripts on an ASUS
ROG Strix G15 laptop with an Intel Core i7-10750H CPU, which affected the performance
especially when the number of alternatives tested was in the millions. If ran on a server
with dedicated hardware and optimization, such as multithreading, the loading time is
expected to be significantly less for both the script that generates alternatives and the main
script that loads and processes the said alternatives.
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5. Discussion and Limitations

This paper presents a novel approach to address unexpected situations in a workflow
by introducing three basic types of repairs with the ability to verify and validate each
injected solution.

Unlike conventional approaches, where repairs are either predicted deviations or
exceptions that are solved locally, this study introduces a dynamic approach that modifies
the model by inserting or deleting parts of the workflow. In other words, the novelty lies
in the fact that the library does not inherently contain solutions mapped to each problem,
but rather it is populated with patterns stored by different collaborators. These patterns
serve as potential solutions for unexpected problems, which distinguishes our approach
from the existing literature. Furthermore, a unique aspect of this work is the replacement
of not only one block on the main model but multiple blocks, accomplished through the
utilization of a bypass-type repair mechanism.

In this paper, candidate solutions were evaluated and sorted based on performance
indicators, and the decision maker can define an objective function to select the best
solution automatically or manually. The proposed method utilizes a collaborative library
of random patterns that are stored by domain experts. This library serves to identify
compatible solutions based on the current state of the system, thus leveraging the expertise
of both internal and external sources to address unexpected problems. Unlike conventional
approaches found in the literature, this library does not store solutions for each problem.
Instead, it stores patterns that may or may not serve as candidates for an unexpected
deviation in the execution of a model.

One of the notable strengths of the proposed approach is its searching mechanism,
which involves the system searching through a large number of patterns to identify, rank,
and select the most suitable solution set. This was demonstrated in the previous section.
The underlying concept behind this mechanism is to swiftly eliminate patterns that are not
compatible by utilizing basic computing tools. For example, the system can compare if a
range of values falls within a given interval or compute the likelihood of an event occurring.
By employing these simple computational techniques, the potential set of solutions can be
rapidly narrowed down to a smaller subset of patterns. Subsequently, more sophisticated
tools can be applied to refine and accurately rank the results. In order to comprehensively
evaluate the performance of our proposed mechanism, additional tests were conducted
as part of the experiment. Specifically, the mechanism was tested on various library sizes,
encompassing different scenarios including 1000; 10,000; 100,000; 1,000,000; and 2,000,000
patterns. The results of these tests are summarized in Table 3. This table provides valuable
insights into the performance of our approach and demonstrates its effectiveness in terms
of time efficiency.

This approach is in stark contrast to using intricate methods, such as simulations,
from the outset, which are time-consuming to reduce the set of patterns. The proposed
approach is designed to be efficient and effective by leveraging simple tools in the initial
stages of the search process, and then using more advanced techniques as the set of
candidates is narrowed down. By adopting this approach, the proposed method can
provide a rapid and accurate identification of solutions.

In this paper new characterization and notations were provided, enriching the BPMN
elements to better describe a deviation, a pattern and the system state. Basic BPMN gates
were put in focus in terms of what is happening to the state token when it propagates
throughout these gates. These characterizations were necessary to be able to compute
where the output of a pattern can be injected later and how many blocks on the main model
can be bypassed.

These characterizations provided a valuable framework for accurately calculating the
impact of candidates on the system and identifying the most effective course of action
to repair the workflow. It would have been challenging to reach the degree of accuracy
and efficiency needed to appropriately resolve unforeseen issues in the workflow without
these characterizations. The ease of implementing the methodology described in this
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study through coding, as shown in the prior proof-of-concept case study, is one of its key
benefits. By characterizing and formulating the approach, it was possible to easily add new
characterizations to the existing BPMN elements and implement the entire approach using
Python. This ease of implementation is a crucial factor in making the approach accessible
and feasible for real-world applications, as it enables practitioners to quickly and efficiently
incorporate it into their existing systems and workflows.

In addition, the proposed iterative solution injection approach involves the system
continuously analysing historical data to suggest optimizations at the main model level.
By learning from past experiences and adapting to new circumstances, the system can
continually improve its performance. This approach opens up new possibilities for artificial
intelligence studies in the future, where the system could use the historical database to
further enhance the model’s design. With this approach, the system can identify recur-
ring deviations and propose improvements to the main model to prevent or minimize
their impact.

The proposed approach has several limitations that should be acknowledged. Firstly,
the types of repairs introduced, namely entry/exit corrections and bypass, are considered
basic repairs. There may be room to explore additional types of repairs and alternative meth-
ods of injection. Further research could investigate more sophisticated repair techniques to
expand the repertoire of available repair options.

Secondly, the focus of this research was primarily on forward repairs, addressing
deviations and enabling the system to proceed with the remaining steps. However, it is
essential to recognize that backward repairs, which involve revisiting previous steps to
rectify errors or inconsistencies, may also play a crucial role in real-world scenarios.

More, it is important to note that resource management and scheduling aspects were
intentionally excluded from the scope of this paper. While the proposed approach addresses
deviations within the BP, the management of resources and scheduling considerations
remain separate concerns. Future research could explore how resource management and
scheduling techniques can complement this approach, providing a more comprehensive
solution for process optimization.

The paper aimed to showcase the applicability of the proposed approach in real-
world scenarios, with a particular focus on the apiculture domain due to time limitations.
However, it is recognized that conducting broader tests in various other domains would
provide further validation of the approach in diverse contexts.

6. Conclusions

In conclusion, this paper presented a novel approach to address unexpected deviations
in a workflow. The proposed method leverages a collaborative library of random patterns
curated by domain experts, and employs a rapid searching mechanism that eliminates
non-compatible patterns using simple computing tools. The method introduces new
characterizations and notations to enhance BPMN elements and adopts an iterative solution
injection approach.

The effectiveness of the proposed method was demonstrated through its implementa-
tion in a proof-of-concept case study in the apicultural domain, aiding decision-making
processes. Furthermore, the approach offers the potential for future integration of artificial
intelligence and simulation studies, expanding its capabilities and scope.

During the evaluation of the proposed mechanism, we conducted comprehensive tests
on various library sizes, covering a range of scenarios. The results of these tests showcase
the performance of our approach and highlight its time efficiency.

While the proposed method represents a significant improvement over previous
approaches, it is important to recognize its dynamic and efficient nature in addressing
unexpected deviations. Notably, the solution injection capability allows bypassing one or
several blocks within the model, enhancing its versatility and adaptability.

Finally, the ease of implementation of the proposed method ensures accessibility and
feasibility for real-world applications. This combination of enhanced functionality, practical



Appl. Sci. 2023, 13, 7722 21 of 23

implementation, and proven performance makes the proposed method a compelling
solution for effectively managing workflows and aiding decision-making processes.
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