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ABSTRACT

In this paper we examine the use of semantically-aligned
speech representations for end-to-end spoken language under-
standing (SLU). We employ the recently-introduced SAMU-
XLSR model, which is designed to generate a single embed-
ding that captures the semantics at the utterance level, seman-
tically aligned across different languages. This model com-
bines the acoustic frame-level speech representation learning
model (XLS-R) with the Language Agnostic BERT Sentence
Embedding (LaBSE) model. We show that the use of the
SAMU-XLSR model instead of the initial XLS-R model
improves significantly the performance in the framework of
end-to-end SLU. Finally, we present the benefits of using this
model towards language portability in SLU.

Index Terms— Spoken language understanding, speech
representation, language portability, cross modality

1. INTRODUCTION

Spoken language understanding (SLU) refers to natural lan-
guage processing tasks related to semantic extraction from
speech [1]. Different tasks can be addressed as SLU tasks,
such as named entity recognition from speech, call routing,
slot filling task in a context of human-machine dialogue.

To our knowledge, end-to-end neural approaches have
been proposed four years ago in order to directly extract
the semantics from speech signal, by using a single neural
model [2, 3, 4], instead of applying a classical cascade ap-
proach based on the use of an automatic speech recognition
(ASR) system, followed by a natural language understanding
processing (NLU) module applied to the automatic tran-
scription [1]. Two are the main advantages of end-to-end
approaches. The first one is related to the joint optimization
of the ASR and NLU part, since the unique neural model is
optimized only for the final SLU task. The second one is
the mitigation of error propagation: when using a cascade
approach, errors generated by the first modules propagate to
the following ones.

Since 2018, end-to-end approaches have became very
popular in the SLU literature [5, 6, 7, 8, 9]. A main issue

of these approaches is the lack of bimodal annotated data
(speech audio recordings with semantic manual annotation).
Several methods have been proposed in order to address
this issue, e.g. transfer learning techniques [10, 11], [12]
or artificial augmentation of the training data using speech
synthesis [13, 14].

Self-supervised learning (SSL), that benefits from unla-
belled data, recently opened new perspectives for automatic
speech recognition and natural language processing [15, 16].
SSL has been successfully applied to several SLU tasks, es-
pecially through cascade approaches [17]: the ASR system
benefits from learning better speech unit representations [18,
19, 20] while the NLU module benefits from BERT-like mod-
els [16]. The use of an end-to-end approach exploiting di-
rectly both speech and text SSL models is limited by the dif-
ficulty to unify the speech and textual representation spaces,
in addition to the complexity of managing a huge number of
model parameters. Some approaches have been proposed in
order to exploit the BERT-like capabilities within an end-to-
end SLU model, e.g. by projecting some kinds of sequences
of embeddings extracted by an ASR sub-module to a BERT
model [21, 22], or by tying at the sentence level the acoustic
embeddings to a SLU fine-tuned BERT model for a speech
intent detection task [12, 23]. In [24], a similar approach
is extended in order to build a multilingual end-to-end SLU
model, again for speech intent detection.

Earlier this year, a new promising model was introduced
in [25]. The model combines a state-of-the-art multilingual
acoustic frame-level speech representation learning model
XLS-R [26] with the Language Agnostic BERT Sentence
Embedding [27] (LaBSE) model to create an utterance-
level multimodal multilingual speech encoder. This model
is named SAMU-XLSR, for Semantically-Aligned Multi-
modal Utterance-level Cross-Lingual Speech Representation
learning framework.

In this paper, we analyze the performance and the be-
havior of the SAMU-XLSR model using the French MEDIA
benchmark dataset, which is considered as a very challeng-
ing benchmarks for SLU [28]. Moreover, by using the Italian
PortMEDIA corpus [29], we also investigate the potential of
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porting an existing end-to-end SLU model from one language
(French) to another (Italian) through two scenarios concern-
ing the target language: zero-shot or low-resource learning.

2. SAMU-XLSR

Self-supervised representation learning (SSL) approaches
such as Wav2Vec-2.0 [15], HuBERT [20], and WavLM [30]
aim to provide powerful deep feature learning (speech em-
bedding) without requiring large annotated datasets. Speech
embeddings are extracted at the acoustic frame-level i.e. for
short speech segments of 20 ms duration, and they can be
used as input features to a model that is specific for the down-
stream task. These speech encoders have been successfully
used in several tasks, such as automatic speech recogni-
tion [15], speaker verification [31, 32] and emotion recog-
nition [33, 34]. Self-supervision learning for such speech
encoders is designed to discover speech representations that
encode pseudo-phonetic or phonotactic information rather
than high-level semantic information [35]. On the other hand,
high-level semantic information is particularly useful in some
tasks such as Machine Translation (MT) or Spoken Language
Understanding (SLU). In [25], the authors propose to ad-
dress this issue using a new framework called SAMU-XLSR,
which learns semantically-aligned multimodal utterance-level
cross-lingual speech representations.

Fig. 1. Training process of SAMU-XLSR.

SAMU-XLSR is based on the pre-trained multilingual

XLS-R 1 [26] on top of which all the embeddings gener-
ated by processing an audio file are connected to an attentive
pooling module.

Thanks to this pooling mechanism (which is followed
by linear projection layer and the tanh function), the frame-
level contextual representations are transformed into a single
utterance-level embedding vector. Figure 1 summarizes the
training process of the SAMU-XLSR model. Notice than the
weights from the pre-trained XLS-R model continue being
updated during the process.

The utterance-level embedding vector of SAMU-XLSR
is trained via knowledge distillation from the pre-trained
language agnostic LaBSE model [27]. The LaBSE model2

has been trained on 109 languages and its text embedding
space is semantically aligned across these 109 languages.
LaBSE attains state-of-the-art performance on various bi-text
retrieval/mining tasks, while yielding promising zero-shot
performance for languages not included in the training set
(probably thanks to language similarities). Thus, given a spo-
ken utterance, the parameters of SAMU-XLSR are trained to
accurately predict a text embedding provided by the LaBSE
text encoder of its corresponding transcript. Because LaBSE
embedding space is semantically-aligned across various lan-
guages, the text transcript would be clustered together with
its text translations.

By pulling the speech embedding towards the anchor em-
bedding, cross-lingual speech-text alignments are automati-
cally learned without ever seeing cross-lingual associations
during training. This property is particularly interesting in
the SLU context in order to port an existing model built on a
well-resourced language to another language with zero or low
resources for training.

3. APPLICATION TO SPOKEN LANGUAGE
UNDERSTANDING

As defined in [1], spoken language understanding is the in-
terpretation of signs conveyed by a speech signal. This in-
terpretation refers to a semantic representation manageable
by computers. Usually, this semantic representation is ded-
icated to an application domain that restricts the semantic
field. With the massive deployment of voice assistants like
Apple’s Siri, Amazon Alexa, Google Assistant, etc. a lot
of recent papers aim to process speech intent detection as an
SLU task [12, 13, 14, 24, 23]. In such a task, only one speech
intent is generally expected by sentence: the speech intent
detection task could be considered as a classification task at
the sentence-level and, in addition, the SLU model has to fill
some expected slots corresponding to the detected intent.

SLU benchmarks related to task-driven human-machine
spoken dialogue can be more or less complex, depending on
the richness of the semantic representation. In this study, we

1https://huggingface.co/facebook/wav2vec2-xls-r-300m
2https://huggingface.co/sentence-transformers/LaBSE



focus on a hotel booking scenario through a telephone con-
versation, where the semantic representation is not related to
speech intent detection, but based on a more complex ontol-
ogy that derives from frames [36].

Our experimental work is carried out on the MEDIA SLU
benchmark, described in section 4.1. We first expect to eval-
uate the performance of SAMU-XLSR used as a frame-wise
feature extractor in comparison to the use of the initial XLS-
R. Then we analyse the quality of the semantic encoding for
each layer of the SAMU-XLSR and XLS-R model, to better
understand the impact of the SAMU-XLSR training on the
XLS-R model. We continue this investigation by fine-tuning
the SAMU-XLSR and the XLS-R models on the downstream
task. We also investigate the capability of SAMU-XLSR to
transfer the semantic knowledge captured on French data to
Italian data related to the same SLU task, thanks to the Port-
MEDIA corpus described in section 4.2. Last, we focus on
the sentence-level embedding produced by the SAMU-XLSR
model in order to measure the relevance of its semantic con-
tent to the target task, including in a language portability sce-
nario and in a cross-modal setting.

4. DATA

4.1. The MEDIA benchmark

The French MEDIA benchmark [37] was created in 2002 as a
part of a French governmental project named Technolangue.
The MEDIA Evaluation Package3 4 is distributed by ELRA
and freely accessible for academic research. Apart from the
data itself, it defines a protocol for evaluating SLU modules,
with a task of semantic extraction from speech in a context of
human-machine dialogues.

The Wizard-of-Oz method has been used to create the
dataset, consisting of hotel reservation phone call recordings.
A human plays the role of a machine, by interacting with the
user who believes that he is actually speaking to an intelli-
gent machine. 1258 official recorded dialogues were gener-
ated from around 250 speakers. Only the user’s turns are se-
mantically annotated with both semantic annotation and tran-
scription. Table 1 presents the data distribution, in hours of
speech and number of words, into the official training, devel-
opment and test corpora.

Train Dev Test
Hours 10h52m 01h13m 03h01m
Words 94.5k 10.8k 26.6k

Table 1. Data distribution of the MEDIA corpus.

The semantic dictionary defined in MEDIA includes 83

3http://catalog.elra.info/en-us/repository/
browse/ELRA-E0024/

4International Standard Language Resource Number: 699-856-029-354-6

basic attributes (renamed as concepts in our study) – in-
cluding 73 database attributes, 4 modifiers, and 6 general
attributes – and 19 specifiers [38]: room-number, hotel-name,
location are examples of database attributes, comparative,
relative-distance are examples of modifiers, proposition-
connector and attribute-connector are examples of general
attributes, and address, travel are examples of specifiers, that
specializes the attribute role in a dialogue. Some complex
linguistic phenomena, like co-references, are also managed
thanks to this mechanism. By combining attributes and spec-
ifiers, the total number of possible attribute/specifier pairs is
1121. In this study, the “full” MEDIA version has been used
for all experiments. Compared to the “relax” one, the full’s
semantic annotations includes the use of specifiers and modi-
fiers. 150 different semantic concepts (i.e. attribute/specifier
pairs) are present in this version of MEDIA.

Each semantic concept is associated to values, also called
word-support in the MEDIA documentation. The follow-
ing translated sentence is an example of utterance present
in the MEDIA dataset: “I would like to book one double
room in Paris”. In this paper, we use annotations contain-
ing the transcript, the concepts and the location information
of their values: “I (would like to book, reservation), (one,
room-number), (double room, room-type) in (Paris, city)”.

4.2. The Italian PortMEDIA corpus

The Italian PortMEDIA corpus [29] has been produced on the
same hotel reservation task as MEDIA, and follows the same
specifications. ELRA was in charge of the data collection and
is currently distributing the corpus, as for MEDIA. 5

Train Dev Test
Hours 07h18m 02h32m 04h51m
Words 21.7k 7.7k 14.7k

Table 2. Data distribution of the PortMEDIA corpus.

The Italian PortMEDIA corpus is made of 604 dialogues
from more than 150 Italian speakers. Table 2 gives informa-
tion about the number of recorded hours and number of words
distributed into training, development and test datasets. The
PortMEDIA training corpus is more than four times smaller
than the MEDIA one in terms of words. If speech duration
seems not so low in comparison, this is due to a less precise
speech segmentation that includes large portions of silence.

The PortMEDIA corpus is only available with “full” se-
mantic annotations. 139 different concepts are present in the
whole Italian PortMEDIA dataset.

The PortMEDIA corpus is used in our study in order to
conduct experiments on language portability from French to
Italian for SLU.

5http://www.elra.info/en/projects/
archived-projects/port-media/

http://catalog.elra.info/en-us/repository/browse/ELRA-E0024/
http://catalog.elra.info/en-us/repository/browse/ELRA-E0024/
http://www.elra.info/en/projects/archived-projects/port-media/
http://www.elra.info/en/projects/archived-projects/port-media/


4.3. MEDIA and PortMEDIA Metrics

Historically, on the MEDIA corpus, two metrics are jointly
used: the Concept Error Rate (CER) and the Concept-Value
Error Rate (CVER). The CER is computed similarly to Word
Error Rate (WER), by only taking into account the concepts
occurrences in both the reference and the hypothesis files.
The CVER metrics is an extension of the CER. It considers
the correctness of the complete concept/value pair.

Since our models generate transcript with semantic con-
cepts, we also evaluate our systems in terms of Character Er-
ror Rate (ChER) and WER. The ChER is computed by taking
into account all the characters in the prediction that are not
related to concepts (tags or concepts themselves). The same
holds for WER but for words instead of characters.

For the semantic analysis of the sentence levels embed-
dings in section 5.3, we evaluate our bag-of-concepts outputs
with the micro F1-score, i.e. the harmonic mean between the
precision and recall.

5. EXPERIMENTS

5.1. Layer-wise analysis of frame-level embeddings

Figure 2 presents the general architecture of the end-to-end
model used for this study.

Input WAV

Frozen or Fined-Tuned speech encoder
(XLS-R or SAMU-XLSR)

Embeddings

bi-LSTM x3

Fully Connected x3
Softmax

h h h e e l l ε l l o o

Output sequence

Fig. 2. Neural Architecture for an SLU layer-wise analysis of
speech encoders with the MEDIA dataset.

This model aims to produce a transcription with semantic
labels, such as: I <reservation> would like to book </reser-
vation> <room-number> one </room-number> <room-
type> double room </room-type> in <city> Paris </city>.

For comparison purposes, we used as an encoder the orig-
inal XLS-R or the SAMU-XLSR, taking WAV signal as input.
Both have been frozen or fine-tuned during our experiments.
The encoder is followed by three bi-LSTM layers of 1024
neurons, to keep the context of the entire segment when de-
coding the speech embedding. Then, the bi-LSTM outputs

are fed to three linear layers of the same number of neurons,
with a separate Adadelta optimizer starting with a 1.0 learn-
ing rate. When fine-tuning the encoder, the Adam optimizer
is used, with a initial learning-rate of 0.0001. The bi-LSTM
layers have a similar optimizer. All the decoding layers are
activated with a LeakyReLU function. The outputs are finally
passing through a Softmax function and a CTC loss function
is applied. For early stopping and for the optimizers, the Con-
cept Error Rate is the value we aim to minimize.

To make a layer-wise analysis, we removed the upper lay-
ers of each encoder, one by one, and extracted our speech em-
beddings.The encoder kept layers are frozen with their initial
weights for the “Frozen” architecture, or fine-tuned by super-
vision to solve the MEDIA task, leading to the “Fine-Tuned”
results.

Fig. 3. Layer-wise analysis of WER on the test data.

Figure 3 illustrates how the linguistic information is en-
coded through each layer of both encoders. First, we observe
that in terms of WER, SAMU-XLSR gets better results than
XLS-R. We also can see that the minimum WER is achieved
with higher layers for SAMU-XLSR than it is for XLS-R,
both frozen and fine-tuned. We assume this is due to the fine-
tuning made on SAMU-XLSR by forcing its highest repre-
sentations to be aggregated to LaBSE’s text embeddings.

Figure 4 presents results measured with the Concept Error
Rate metric, relevant to the specific semantics of the down-
stream task.

We observe that the original frozen XLS-R model lost al-
most 7 points of CER between its best generated embeddings
for semantic extraction task, layer 15, and its final gener-
ated embeddings, layer 24. On the other hand, since learn-
ing SAMU-XLSR consists on projecting its sentence-level
embedding into the semantic multi-lingual LaBSE’s encod-
ing space, the highest layers of its encoder tend to capture
and encode the semantics until the top layer. Both speech en-
coders give best CER results in middle layers. As expected,
fine-tuning the speech encoders allows the models to extract
as much semantic information as possible from the audio sig-



Fig. 4. Layer-wise analysis of Concept Error Rate on the test
data.

nal. Even if the semantics extracted from the frozen SAMU-
XLSR middle layers were already mostly kept through upper
layers, performances were enhanced by fine-tuning the en-
coder.

5.2. Language portability

5.2.1. Zero shot

To evaluate the multilingual portability of the SAMU-XLSR
encoder compared to the original XLS-R, we apply zero-shot
learning on our French (MEDIA) and Italian (PortMEDIA)
data. We first train each end-to-end SLU model on the French
data, by freezing or fine-tuning the speech encoder, and then
make a simple inference on the Italian data. We also aim to
measure how fine-tuning the speech encoder on the French
data impacts the language portability capabilities.

ChER WER CER CVER

XLS-R Frozen 68.77 129.08 88.24 100.44
Fine-T. 63.22 123.94 85.36 101.54

SAMU- Frozen 49.35 100.13 54.62 99.83
XLSR Fine-T. 59.10 124.49 83.45 101.63

Table 3. Zero-shot results (%) from French MEDIA training
to Italian PortMEDIA inference.

Results in Table 3 show that the use of a frozen SAMU-
XLSR speech encoder gives strongly better performance than
other setups for concept recognition in these conditions: a
CER of 54.62% is attained while with the other configura-
tions performs at more than 83% error rate. We notice that,
as expected, the performance related to the transcription it-
self is very bad: SAMU-XLSR is able to extract general se-
mantics, but is not designed to provide language-dependent
information useful to transcribe speech. It also appears that
fine-tuning SAMU-XLSR on French degrades the capability

of the module to generate good semantic embeddings on Ital-
ian.

5.2.2. Low resource

In these experiments, we exploit the training data in Italian
to train the models. IT in Table 4 means the SLU model has
been trained from scratch on the Italian data. FR→IT means
the SLU model weights have been initialized with the French
model before being trained on the Italian data.

Train ChER WER CER CVERData

Frozen IT 14.91 36.90 42.66 54.31
FR→IT 12.78 32.41 35.39 49.60

Fine-T. IT 13.36 37.02 42.72 57.47
FR→IT 7.55 20.01 26.92 40.11

Table 4. XLS-R PortMEDIA results (%) of PortMEDIA (IT)
training and MEDIA training followed by PortMEDIA fine-
tuning (FR→IT).

Tables 4 and 5 illustrate the potential of portability of both
encoders from French to Italian, with or without fine-tuning.
We can observe that using SAMU-XLSR as a speech en-
coder still outperforms XLS-R, with a CER of 33.01% (resp.
42.66% for XLS-R) without fine-tuning and without the use
of French data. With both fine-tuning and use of French data,
SAMU-XLSR is able to reach 26.18% of CER, but the gap
with XLS-R – that reaches 26.92% – is less significant.

Train ChER WER CER CVERData

Frozen IT 12.62 27.92 33.01 46.99
FR→IT 11.01 25.09 26.90 42.70

Fine-T. IT 6.47 16.59 30.66 42.09
FR→IT 7.04 17.81 26.18 39.28

Table 5. SAMU-XLSR PortMEDIA results (%) with Port-
MEDIA (IT) training and MEDIA training followed by Port-
MEDIA fine-tuning (FR→IT).

5.3. Semantic analysis of sentence-level embeddings

In the previous experiments, we analyzed the contents of
the sequence embeddings produced by XLS-R and SAMU-
XLSR. In this section, we examine if the pooled sentence
embeddings produced by SAMU-XLSR contain enough se-
mantic information according to the MEDIA and PortMEDIA
tasks, and we analyze their cross-modal and cross-lingual
abilities. We simplify the MEDIA and PortMEDIA bench-
mark tasks to a bag-of-concepts classification task. For each
segment, the system has to predict all the concepts that are



present in the speech segment. We use a multi-hot represen-
tation for the output. This simplification allows us to use the
sentence embeddings without needing a complex decoder,
that would bias our semantic analysis of the embeddings.

Input WAV Input text

Frozen model
SAMU-XLSR

Frozen model
LaBSE

or

Sentence embedding (dim = 768)

Embedding normalisation

Fully Connected x4

Sigmoid

1 0 0 0 0 0 1 0 0 1 0 0

Outputs concepts (multi-hot)

Fig. 5. Neural Architecture for an SLU language portabil-
ity analysis of speech encoders with the MEDIA and Port-
MEDIA datasets.

Figure 5 illustrates the simple architecture we imple-
mented for this sentence-level analysis. We extract the sen-
tence embeddings of either SAMU-XLSR or LaBSE depend-
ing on the model we analyse. We apply L2-normalisation
on the embeddings as follows: x ←−

√
d

||x||x, where d = 768,
i.e. the dimension of the embeddings. Fixing the norm (both
in training and evaluation) is critical; unnormalized embed-
dings with large norm generate many false positives, while
unnormalized embeddings with small norm generate many
false negatives. Note also that the norm of the SAMU-XLSR
embeddings may not be that informative, since the network
is trained using cosine similarity between SAMU-XLSR and
LaBSE embeddings, which is a norm-invariant objective
function. The network consists of four fully connected layers
with ReLU activation functions and Dropout, and it is trained
with weighted Binary Cross-Entropy loss.

In order to test both the cross-modal and cross-lingual
properties of the embeddings, we train our classification
models only on the French dataset. The Italian dataset is
only used for testing, to obtain cross-lingual results. For the
cross-modal properties, we trained a model on SAMU-XLSR
(speech) embeddings, and tested it on both SAMU-XLSR
and LaBSE (text) embeddings. We also trained a second
model on LaBSE embeddings in order to observe the differ-
ence when testing it with SAMU-XLSR speech embeddings.
The results, in terms of micro F1-score are given in Table
6. We did not test the XLS-R embeddings, as this model
only provides frame-level embeddings. We also report the
frame-wise baseline results obtained in the previous exper-
iments, by converting the sequence outputs of the models

to a bag-of-concepts output. For these results, the model is
trained to extract the sequence of concepts on the sequence
of embeddings provided by SAMU-XLSR.

Test Test Train

Data Encoder Encoder
SAMU-XLSR LaBSE

FR
SAMU-XLSR 77.52% 71.77%

LaBSE 78.04% 82.15%
frame-wise* 84.69% -

IT
SAMU-XLSR 68.55% 65.14%

LaBSE 62.05% 69.58%
frame-wise* 59.76% -

Table 6. Micro F1-scores for sentence-level semantic analy-
sis with classification model trained on French and tested on
French and Italian data. *Baseline results are obtained with
the language portability models on frame-wise embeddings,
and converted in bag-of-concepts outputs for evaluation.

We can observe that both LaBSE and SAMU-XLSR mod-
els obtain comparable results with their corresponding test
embeddings when tested on the MEDIA dataset (77.52% for
SAMU-XLSR, 82.15% for LaBSE). The capacity of SAMU-
XLSR to reproduce sentence-level embeddings close to the
LaBSE ones is noticeable, and validates the strategy used to
train SAMU-XLSR.

Finally, by comparing the results from the previous ex-
periments with the frame-wise embeddings and this sentence-
level embedding analysis, we observe that the sentence-level
embeddings are better in extracting cross-lingual representa-
tions than the frame-level ones.

6. CONCLUSION

In this work, we investigated the capacity of the recently in-
troduced SAMU-XLSR in addressing a challenging SLU
task. SAMU-XLSR is a speech encoder is a fine-tuned
version of the XLS-R model, using LaBSE embeddings
as targets. In addition to its promising performance, we
demonstrated how this speech encoder differs from the XLS-
R model in the way it encodes the semantic information in
its intermediate hidden representations. We also showed the
real potential of the SAMU-XLSR for language portability.
Finally, we showed its capacity to build a sentence-level em-
bedding able to highlight the semantic information of the task
and its promising cross-lingual and cross-modal properties.
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Rousseau, “On the use of self-supervised pre-trained acoustic
and linguistic features for continuous speech emotion recogni-
tion,” in 2021 IEEE Spoken Language Technology Workshop
(SLT). IEEE, 2021, pp. 373–380.

[34] Leonardo Pepino, Pablo Riera, and Luciana Ferrer, “Emo-
tion recognition from speech using wav2vec 2.0 embeddings,”
arXiv preprint arXiv:2104.03502, 2021.

[35] Ramon Sanabria, Wei-Ning Hsu, Alexei Baevski, and Michael
Auli, “Measuring the Impact of Individual Domain Fac-
tors in Self-Supervised Pre-Training,” arXiv preprint
arXiv:2203.00648, 2022.

[36] Collin F Baker, Charles J Fillmore, and John B Lowe, “The
berkeley framenet project,” in COLING 1998 Volume 1: The
17th International Conference on Computational Linguistics,
1998.

[37] Hélene Bonneau-Maynard, Matthieu Quignard, and Alexandre
Denis, “MEDIA: a semantically annotated corpus of task ori-
ented dialogs in French,” Language Resources and Evaluation,
vol. 43, no. 4, pp. 329–354, 2009.

[38] H. Bonneau-Maynard, C. Ayache, F. Bechet, A. Denis,
A. Kuhn, F. Lefevre, D. Mostefa, M. Quignard, S. Rosset,
C. Servan, and J. Villaneau, “Results of the French evalda-
media evaluation campaign for literal understanding,” in Pro-
ceedings of the Fifth International Conference on Language
Resources and Evaluation (LREC’06), Genoa, Italy, May
2006, European Language Resources Association (ELRA).


	1  Introduction
	2  SAMU-XLSR
	3  Application to Spoken Language Understanding
	4  Data
	4.1  The MEDIA benchmark
	4.2  The Italian PortMEDIA corpus
	4.3  MEDIA and PortMEDIA Metrics

	5  Experiments
	5.1  Layer-wise analysis of frame-level embeddings
	5.2  Language portability
	5.2.1  Zero shot
	5.2.2  Low resource

	5.3  Semantic analysis of sentence-level embeddings

	6  Conclusion
	7  Acknowledgements
	8  References

