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Random Forests for soil carbon storage prediction potential of organic residues based on organic matter characterization

In the context of agroecological and climate transition, the valorization of organic waste as exogenous organic matter (EOM) to promote carbon storage and soil fertilization in a circular bioeconomy way is of major concern. The variability of the EOM leads to variability of OM characteristics and stability. The development of practical indicator tools based on EOM characterization could help the sustainable use of these new soil inputs. A methodology combining chemical accessibility and fluorescence spectroscopy has been used to set up a model prediction of the soil mineralized carbon of EOM (C_bio). However, the model developed on a limited number and range of EOM is challenged by an updated dataset involving 100 EOM in a large range of C_bio values (from 3.3% to 84.7% of C). The old model was not able to properly predict the C_bio value (median absolute error of 12.1%).

Updated partial least square regression prediction was improved by 14% using a machine learning approach, namely Random Forests. The model analysis highlights that both accessibility and complexity are important to predict C_bio.

Introduction

To face global changes (climate change, food security, agroecological transition, and resource conservation, among others), new research challenges have emerged. The agroecological transition requires agricultural production practices that better preserve the environment and alternatives to chemical inputs, e.g. through increased recycling of waste products for more sustainable management of plant nutrition and soil quality [START_REF] Altieri | Agroecology: the science of natural resource management for poor farmers in marginal environments[END_REF]. In France, the equivalent of 350 million tons of organic waste are produced each year (Ministère de la Transition Energétique, 2021). The recovery of this resource into energy and/or organic fertilizer is a major challenge in the recycling of residual products to close the geochemical cycles (C, N, P, K, and S) and preserve the environment via a circular bioeconomy, for example, the "4‰ initiative" for the carbon [START_REF] Minasny | Soil carbon 4 per mille[END_REF]. In this context, the valorization of organic waste as inputs in the soil through the term exogenous organic matter (EOM) has been widely studied. EOM consists of various agricultural, industrial, and urban wastes, before and after valorization treatments such as anaerobic digestion to produce both energy and organic fertilizer or compost to produce organic amendment [START_REF] Levavasseur | Quantifying and simulating carbon and nitrogen mineralization from diverse exogenous organic matters[END_REF]. To optimize and predict the organic C mineralization and thus the fate of C in soil, indicators based on characterization methods have been proposed and applied. As shown by [START_REF] Levavasseur | Quantifying and simulating carbon and nitrogen mineralization from diverse exogenous organic matters[END_REF], EOM kinetics obtained through C mineralization of EOM in soil under controlled conditions can be used to predict C mineralization in fields with additional environmental factors. However, this method is time-consuming (from 91 days to 300 days) and resource-consuming. So, other characterization techniques have been tested such as biochemical fractions based on [START_REF] Van Soest | The Use of Detergents in the Analysis of Fibrous Feeds: II. A Rapid Method for the Determination of Fiber and Lignin[END_REF] combined with the proportion of EOM organic C mineralized during 3 days of soil incubation [START_REF] Lashermes | Indicator of potential residual carbon in soils after exogenous organic matter application[END_REF]. Based on organic amendment products, the Van Soest fractionation is suitable to characterize the fibrous content of EOM. However, as shown by [START_REF] Jimenez | A new organic matter fractionation methodology for organic wastes: Bioaccessibility and complexity characterization for treatment optimization[END_REF]2017;[START_REF] Mottet | Estimating anaerobic biodegradability indicators for waste activated sludge[END_REF] this fractionation method reaches its limits for a large panel of residues, in particular when poorly fibrous-like products are characterized.

Then, [START_REF] Jimenez | Methane production and fertilizing value of organic waste: Organic matter characterization for a better prediction of valorization pathways[END_REF] proposed a new fractionation methodology to better include both fibrous and not fibrous organic wastes and to improve the biodegradation understanding of OM in both anaerobic digestions of wastes and soil mineralization of EOM, including digestates. Based on a combination of the organic matter bioaccessibility fractionation and a spectrofluorimetry technique to reveal the complexity, [START_REF] Jimenez | Methane production and fertilizing value of organic waste: Organic matter characterization for a better prediction of valorization pathways[END_REF] proposed a new indicator named ISBAMO (Indicator of stability and bioaccessibility of OM) to predict both methane potential and soil incubation mineralized carbon on a large spectrum of EOM. The sequential chemical extraction developed in this indicator has been successfully used as a variable characterization of organic C and N in anaerobic digestion mechanistic models [START_REF] Bareha | Modeling the fate of organic nitrogen during anaerobic digestion: Development of a bioaccessibility based ADM1[END_REF][START_REF] Bareha | Characterization and prediction of organic nitrogen biodegradability during anaerobic digestion: A bioaccessibility approach[END_REF] and in mechanistic models of OM decomposition in soil [START_REF] Pérémé | SoilFract: A mechanistic model accounting for the fate of exogenous organic matter in soil carbon and nitrogen cycles[END_REF].

However, since the use of organic fertilizers has increased, a lot of new products are commercially proposed by suppliers based on a wide range of organic waste types as organic fertilizers rich in proteins. Animal by-products (such as manure or by-products from the meat and fish processing industries), agricultural residual products (green waste, composted green waste), or recycled bio-waste (compost or digestate from food waste, slurry) are the raw materials that are most used. In parallel, anaerobic digestion or organic wastes to produce both energy and organic fertilizers have been promoted. The consequence is a high variability of digestates composition leading to different fertilization purposes [START_REF] Guilayn | First fertilizing-value typology of digestates: A decision-making tool for regulation[END_REF]. The use of these new inputs leads to reconsidering the predefined indicators.

This study focused on the ISBAMO indicator developed by [START_REF] Jimenez | Methane production and fertilizing value of organic waste: Organic matter characterization for a better prediction of valorization pathways[END_REF]. First, the database has been updated to be adapted to a wider class of digestates. Then, the linear developed model based on partial least square (PLS) regression is challenged with a nonlinear machine learning model to study the potential benefit of these approaches. Indeed, nowadays, machine learning methods are promising computational approaches for modeling problems, which overtook most linear or semi-parametric methods in terms of prediction quality and sometimes even in terms of computational cost. A particularly well-suited method to tackle the presented challenges seems to be the well-known random forests (RF) [START_REF] Breiman | Random forests[END_REF], a versatile ensemble learning method based on decision trees that can be used both for regression and classification purposes. RF has been successfully applied in various areas such as omics studies [START_REF] Sartor | Identification of the expressome by machine learning on omics data[END_REF], e-health applications [START_REF] Kaur | Multi-objective differential evolution based random forest for e-health applications[END_REF], and environmental risk assessment [START_REF] Servien | Machine learning models based on molecular descriptors to predict human and environmental toxicological factors in continental freshwater[END_REF].

Material and methods

2.1. Database description 100 EOM have been characterized according to ISBAMO methodology and their associated C soil incubation.

The 47 EOM from the [START_REF] Jimenez | Methane production and fertilizing value of organic waste: Organic matter characterization for a better prediction of valorization pathways[END_REF] database was used as the associated PLS model.

The nature of EOM was the following: 22 digestates, 8 composts, 15 AD feedstock, and 2 soils. In addition, 53 EOM have been characterized since 2017. They could be clusterized as 45 digestates, 2 composts, 2 AD feedstocks, and 4 commercial organic fertilizers. 1. Different groups of EOM and their corresponding characteristics.

ISBAMO methodology

ISBAMO methodology is a combination of sequential chemical extractions and fluorescence spectroscopy. Sequential chemical extractions and 3D fluorescence spectroscopy were performed on the samples, according to the protocol described by [START_REF] Jimenez | A new organic matter fractionation methodology for organic wastes: Bioaccessibility and complexity characterization for treatment optimization[END_REF].

EOM samples were first freeze-dried and ground at 1 mm before analysis. The operationallydefined fractions from the biochemical fractionation include Soluble from Particulate Organic Matter (SPOM), Readily Extractable Organic Matter (REOM), Slowly Extractable Organic Matter (SEOM), Poorly Extractable Organic Matter (PEOM), and Non-Extractable Organic Matter (NEOM). Soluble Chemical Oxygen Demand (COD) measurements were performed on the extracted fractions and results are expressed as COD percentages. The COD was measured in duplicate using the kits Aqualytic® (0-1500 mg O 2 .L -1 ). The units were mgO 2 .L -1

for the liquid phases and mgO 2 .gDS -1 for the solid and total phases. The Dried Solids (DS)

were analyzed by gravimetry after 24h at 105°C and the Volatile Matter (VS) was analyzed by gravimetry after 2h at 550°C. The VS is obtained by subtraction of the mineral matter obtained after 550°C and the DS.

2.3.Soil incubation tests

The EOM incubations were performed under controlled laboratory conditions through various research projects and laboratories, according to the standard method (AFNOR, 2009). EOM was added in soil (from 25 g to 100 g of dried soil) at a rate of 2g of organic C.kg -1 dry soil during at least 91 days under moisture (soil water holding capacity pF =2.5) and temperature (28°C) controlled conditions. The EOM was dried and ground to a particle size of 1 mm. The addition of mineral nitrogen was performed not to be in limiting conditions for microbial growth. Incubation of the soil without the addition of EOM was also made to take into account the soil's organic carbon mineralization. Different soils have been used but were all loamy and non-calcareous with low carbon content (AFNOR, 2009). The main experiments (n = 68 EOM) were conducted with soil coming from a control treatment sampled in the field experiment QualiAgro (Ile de France, France) started in 1998 to study the effect of various organic fertilizers [START_REF] Houot | Agronomic value and environmental impacts of urban composts used in agriculture[END_REF]. A standardized sandy loam soil (LUFA SPEYER 2.3) has been used for 11 EOM and a loamy soil has been used for 10 EOM. Carbon mineralization was monitored using a 10 or 20-mL trap solution of NaOH (0.5N) for CO2

which was replaced periodically during the incubations. The CO 2 was analyzed by titration of the remaining NaOH with HCl (1 M) or measured by the conductivity of the NaOH trap, according to a calibration curve based on NaCO 3 . Cumulated mineralized carbon was obtained as a percentage of initial organic C. The mineralized organic C was named C_bio and results were expressed in gC. gC -1 .

Data analysis methodology

Principal Component Analysis, Hierarchical Clustering analysis and Pearson correlation matrix have been done using the R software (FactomineR package).

To compare one linear (PLS) and one non-linear (RF) modeling approach on this dataset, a classical train and test procedure were used on the dataset. The training test was chosen to be 80% of the dataset and the test set 20% (Pareto principle). To avoid a bias due to a single choice of training/test set, this procedure was bootstrapped 300 times and the final results were aggregated. All the performances were compared in terms of absolute error. The absolute error is the absolute difference between the prediction and the true value. It is the most natural and unambiguous measure of error [START_REF] Willmott | Advantages of the Mean Absolute Error (MAE) over the Root Mean Square Error (RMSE) in Assessing Average Model Performance[END_REF] and is chosen to be easily comparable to the data scale.

All the models were computed in the freeware R (R core team, 2019). The PLS has been computed using the package mixOmics [START_REF] Rohart | mixOmics: An R package for omics feature selection and multiple data integration[END_REF] and the random forests using the package ranger [START_REF] Wright | ranger: A fast implementation of random forests for high dimensional data in C++ and R[END_REF]. These two modeling methods have some parameters that needed to be fixed: the number of latent components for the PLS (fixed using the perf function) or the number of variables randomly sampled as candidates at each split for the random forests (selected using the tuneRanger function). All these different tuning functions are based on cross-validation (i.e. a training/test procedure to find the best value for the parameters) using default function values.

Then, the final best RF model is built on the whole dataset and all 33 variables. The importance of each variable is assessed using the importance option of the ranger function, which is based on a classical permutation procedure.

Results and discussion

3.1.Database analysis and update impact

The database used for the model set-up of [START_REF] Jimenez | Methane production and fertilizing value of organic waste: Organic matter characterization for a better prediction of valorization pathways[END_REF] has been completed by 53 EOM, mainly digestates (45 digestates). A priori groups have been done depending on the EOM nature and transformation process as proposed by Table 1 as following : soil, compost, solid and liquid digestates after phases separation, raw digestates, AD feedstock and others.

The boxplots presented in Figure 1 show the C_bio variability before and after the addition of new samples. From Figure 1, the categories defined a priori are consistent with the expected medians of C_bio according to the nature of the EOM. Indeed, the lowest median values of C_bio found for soils and composts are consistent with their OM-stable nature [START_REF] Jimenez | Methane production and fertilizing value of organic waste: Organic matter characterization for a better prediction of valorization pathways[END_REF][START_REF] Levavasseur | Quantifying and simulating carbon and nitrogen mineralization from diverse exogenous organic matters[END_REF]. Then, the solid, liquid, and raw digestates follow. There is a gradient on C_bio values (solid > liquid > raw) translating the impact of phase separation on raw digestates. Indeed, solid digestates seem to contain more stable OM than liquid and raw digestates. C_bio values of digestates are weaker than AD feedstock, which is also consistent with the OM stabilization provided by AD (Fernández-Domínguez et al., 2021). However, the

The addition of new samples increases the C_bio values range (from 3.3%-45.8% to 3.3%-84.7%), the variability of the values in all EOM sub-groups and adds a new sub-group. More specifically, the number of solid digestates increases and the « other » sub-group appears associated with high C_bio values (40%-83%). Concerning ISBAMO variables, variability increases also in the fractionation of each sub-group with the addition of new samples (Supplementary Material, Figure S1). The addition of several types of digestates (raw, liquid, and solids) coming from different origins leads to a higher range of accessible fractions describes mainly the solid phases of digestates characterized by high levels of NEOM (lignocellulose compounds) and complex fluorescence zones of PEOM (5 and 6) as well as zone 4 from SEOM (fulvic-acid-like) highlighting its fibrous and stable composition. They are also anti-correlated with the C_bio value. These trends were also found in [START_REF] Jimenez | A new organic matter fractionation methodology for organic wastes: Bioaccessibility and complexity characterization for treatment optimization[END_REF]2017). Cluster 4 contains soils but also raw and liquid digestates from green wastes, catch crops, and cow manure in co-digestion described by different levels of complex fluorescences zones (i.e. 4 to 7) from SPOM to SEOM as well as fluorescence zones 4 and 5 from PEOM. Finally, the third cluster is an intermediary with a main part of raw digestate (54%) coming from several origins (cow manure in co-digestion, territorial and municipal wastes) highlighting the high variability of OM, related to the high variability of AD feedstock origin as shown by [START_REF] Guilayn | First fertilizing-value typology of digestates: A decision-making tool for regulation[END_REF](Fernández-Domínguez et al., 2021).

Composts are also in this cluster, but closed to the samples of cluster 4with low C_bio values (i.e. soils).

Despite some highlighted trends, the a priori clustering depending on the type of transformed products is not sufficient to classify the samples considering the ISBAMO variables. The feedstock origin plays also a significant role as shown by Fernández-Domínguez et al. (2021).

To go further in the data analysis, the Pearson correlation matrixes of old and new datasets are presented in Supplementary material (Figure S2). In both datasets, the C_bio value is positively and moderately correlated with SPOM (0.4196 and 0.4755 for new and old datasets respectively, p-value < 0.0001) and with the fluorescence zone 3 related to the protein of SPOM (0.4755 and 0.6437 for new and old dataset respectively, p-value<0.0001) and of REOM (0.3335 and 0.5598 for new and old dataset respectively, p-value<0.0001) showing than the accessibility crossed with the protein-like compounds revealed by fluorescence impacts positively the biodegradability of C in soil. On the other hand, the C_bio value is negatively correlated with NEOM (-0.4494 and -0.6979 for new and old datasets respectively, p-value < 0.0001) as well as with the fluorescence zone 4 (fulvic-acid-like compounds) from SEOM (-0.4553 and -0.5603 for new and old dataset respectively, p-value <0.0001) showing that low accessibility and complex fluorescence zones affect negatively the C_bio. However, some strong correlations found in the old dataset are not significant considering the new dataset. The dataset update brings higher variability leading to fewer correlations strength with ISBAMO variables.

3.2.Validity of the PLS model from Jimenez et al. (2017)

The [START_REF] Jimenez | Methane production and fertilizing value of organic waste: Organic matter characterization for a better prediction of valorization pathways[END_REF] model has been applied to the new dataset. The prediction quality is presented in Figures 3a and3b. The model is not adapted to the new type of samples that were recorded since. A systematic underestimation of C_bio is found. Comparison between predicted C_bio with the model from 2017 and experimental values considering the quality of the predictions are presented in Supplementary Material (Figure S3a andS3b). 64% of the data follow the perfect fit line (y=x) with an absolute deviation below 10%, such as the soil, compost, and the majority of feedstocks considered. The worst predictions are obtained on digestates (raw, liquid, and solids) and commercial organic fertilizers (others), as well as feedstocks coming from chicken droppings. Not only high values of C_bio are underestimated but also 40% of the digestates groups are predicted with an absolute deviation higher than 10%. Inside the digestates groups, an absolute deviation higher than 10% comes mainly from raw and liquid digestates obtained after the digestion of co-digestion of cow manure, pig manure, catch crops, and biowastes (Figure S3a). Sludge and municipal digestates are quite well predicted (Figure S3b), as they were mainly considered in the calibration dataset from 2017.

Challenging Partial Least Square Regression with Random Forest

The comparison procedure between linear PLS and non-linear RF leads to the results gathered in the following Table 2.

RF seems to be the best choice here with mean absolute errors of prediction (MAEP) below those of PLS. In terms of the median, the gain is near 14% and the worst predictions (i.e. the 3rd quartile and the maximum) with the RF are also better, highlighting the robustness of the method. The final RF model could then be analyzed to study which variables have major importance, these results are gathered in Figure 4. Moreover, this result points out that PEOM fluorescence could be removed from the model to reduce the experimental work associated with ISBAMO.

Finally, the RF model used helps to decrease the error of prediction and, thus, to make models more usable. Nevertheless, some improvements could still be made. Indeed, the failure of the old PLS model [START_REF] Jimenez | Methane production and fertilizing value of organic waste: Organic matter characterization for a better prediction of valorization pathways[END_REF] seems to indicate that several categories of samples have been taken into account. In this case, a cluster-then-predict approach [START_REF] Servien | Machine learning models based on molecular descriptors to predict human and environmental toxicological factors in continental freshwater[END_REF] could be an interesting option, to improve the final results of the models. This approach is based on a first clustering method, that regroups together samples that share some common traits to help the predictive models that are then performed in each cluster separately. To apply this modeling approach, the unsolved problem remains the clustering of a new sample, which is not an easy task as shown in the database analysis section where no clear and simple definition of the clusters can be highlighted.

Conclusions

The characterization of EOM soil mineralized carbon could benefit from a non-linear machine learning modelization. The RF model improve precision and robustness of the old PLS model.

The addition of new samples has increased the variability of the dataset not handled by the old model which reach its limits. Accessibility is the most important variable involved in the new set-up model but is not enough to predict soil mineralized carbon. The complexity of each accessible fraction obtained by 3D fluorescence spectroscopy is also crucial to consider.

Moreover, the study reveals that some experimental work could be simplified by removing some fluorescence variables of the last extracted fraction, not enough relevant for both prediction and organic matter description. Besides, a cluster-then-predict approach could be thought to improve the models but an optimal a priori clustering could be difficult to perform considering ISBAMO variables.
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 1 Figure 1: Soil mineralized organic carbon (C_bio) variability before and after the dataset update

  SPOM and SEOM as well as more variability of poorly extractible fraction PEOM. To better understand the new dataset variability, a principal component analysis (PCA) has been done on ISBAMO indicators (fractionation and fluorescence zone percentages) and C_bio values (Figure 2).
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 2 Figure 2: Loadings (a) and scores (b) obtained from Principal Component Analysis and biplot from PCA combined with hierarchical clustering analysis applied on dataset (c)

Figure 3 :

 3 Figure 3: Prediction performance comparison in terms of determination coefficient R² (a) and of mean absolute error (MAE) (b) using the (Jimenez et al., 2017) model on the « Old dataset » and on the « New dataset ».

Figure 4 .

 4 Figure 4. Variable importance for the final RF model.

Table 1 presents the groups of EOM and the associated soil mineralized organic C called hereafter C_bio.

 1 

	EOM group	EOM subgroup (for digestates) and origin	Number	TS	VS	C/N	C	Ntot	C_bio (% of C)
				(%)	(%TS)		(g/kgTS)	(g/kgTS)	
	Soils n= 2	Soil and potting mix	2	89.6+/-	10.8+/-	22.02 (1) 22.4 (1)	4.4(1)	5.4+/-2.9
				14.5	9.8				
	Composts n =10	Sewage sludge (9), grape pomace (1)	10	45.9+/-	72.0+/-	11.6+/-	351.6+/-	32.4+/-8.6 17.1+/-7.8
				15.9	13.4	4.6	97.93		
	Digestates n = 67	Raw (n= 49)	49	11.5+/-	64.5+/-	7.9+/-5.1 353.9+/-	66.4+/-	32.8+/-14.1
		(urban n=11, cow manure =13, pig slurry =10, catch crop		13.2	1.7		61.2	39.4	
		n=9, territorial, n=4, biowastes=2)							
		Liquid ( n = 8)	8	5.9+/-2.6 60.2+/-	3.16+/-	311.4+/-	122.0+/-	33.7+/-17.01
		(cow manure co-digestion = 2, pig slurry co-digestion n=3,			5.6	1.6	26.9	56.8	
		catch crop n =2, territorial n=1)							
		Solid (n=10)	10	25.6+/-	78.9+/-	14.8+/-	417.2+/-	35.2+/-	24.8+/-9.8
		(territorial n= 5, cath crop n=1, sludge =1)		2.3	7.9	7.1	49.9	17.2	
	AD feedstock n=17 Sewage sludge	4	11.0+/-	80.5+/-	6.6+/-	435.8+/-	68.6+/-	41.4+/-3.3
				7.9	6.4	1.03	40.8	15.9	
		Cow manure	2	26.6+/-	73.5+/-	17.4+/-	318.5+/-	19.4+/-5.3 28.2+/-17.2
				6.4	23.1	7.2	45.7		
		Chicken droppings	2	66.9+/-	76.2+/-	7.9 (1)	380.8+/-	52.8 (1)	
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 2 Results of the comparison procedure in terms of MAE of prediction (MAEP) between PLS and RF in % of C.

	Method	Minimum	1st quartile	Median	Mean	3rd quartile	Maximum
	PLS	0.000	0.045	0.080	0.096	0.119	0.661
	RF	0.000	0.035	0.069	0.089	0.113	0.489
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