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Abstract 23 

Although pre-movement beta-band event-related desynchronization (13-30 Hz; β-ERD) 24 

from sensorimotor regions is modulated by movement speed, current evidence does not support 25 

a strict monotonic association between the two. Given that β-ERD is thought to increase 26 

information encoding capacity, we tested the hypothesis that it might be related to the expected 27 

neurocomputational cost of movement, here referred to as action cost. Critically, action cost is 28 

greater both for slow and fast movements as compared to a medium or “preferred” speed. 29 

Thirty-one right-handed participants performed a speed-controlled reaching task while 30 

recording their EEG. Results revealed potent modulations of β power as a function of speed, 31 

with β-ERD being significantly greater both for movements performed at high and low speeds 32 

as compared to medium speed. Interestingly, medium-speed movements were more often 33 

chosen by participants than low- and high-speed movements, suggesting that they were 34 

evaluated as less costly. In line with this, modeling of action cost revealed a pattern of 35 

modulation across speed conditions that strikingly resembled the one found for β-ERD. Indeed, 36 

linear mixed models showed that estimated action cost predicted variations of β-ERD 37 

significantly better than speed. This relationship with action cost was specific to β power, as it 38 

was not found when averaging activity in the mu (µ; 8-12 Hz) and gamma (γ; 31-49 Hz) bands. 39 

These results demonstrate that increasing β-ERD may not merely speed up movements, but 40 

instead facilitate the preparation of high- and low-speed movements through the allocation of 41 

additional neural resources, thereby enabling flexible motor control. 42 

  43 
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Significance statement 44 

Heightened β activity has been associated with movement slowing in Parkinson’s 45 

disease and modulations of β activity are commonly used to decode movement parameters in 46 

brain-computer interfaces. Here we show that pre-movement β activity is better explained by 47 

the neurocomputational cost of the action rather than its speed. Instead of being interpreted as 48 

a mere reflection of changes in movement speed, pre-movement changes in β activity might 49 

therefore be used to infer the amount of neural resources that are allocated for motor planning.  50 
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Introduction 51 

Unveiling the neurophysiological basis and functional role of brain activity in the beta-52 

band (β; 13-30 Hz) is of particular interest to basic motor control scientists as well as clinicians 53 

because of its characteristic pattern of modulation with movement, described as event-related 54 

desynchronization (ERD; Pfurtscheller and Lopes da Silva, 1999), and its specific alteration in 55 

neurological disorders such as Parkinson’s disease (PD; Jenkinson and Brown, 2011). Although 56 

numerous studies have attempted to link these movement-related changes in β power to 57 

behavior, the evidence so far has been inconsistent, making its functional interpretation still an 58 

area of active debate (Engel and Fries, 2010; Brittain and Brown, 2014; Spitzer and Haegens, 59 

2017).  60 

β power has often been related to motor activity: the amplitude of β-ERD has been 61 

positively correlated with corticospinal excitability (Takemi et al, 2013) and with the activation 62 

level of the sensorimotor cortex (Yuan et al, 2010), and β power from local field potentials of 63 

the subthalamic nucleus has been related to the encoding of motor effort (Tan et al, 2015). 64 

Furthermore, non-invasive neurostimulation studies have shown that specifically increasing β-65 

band activity tends to decrease movement speed (Pogosyan et al., 2009; Wach et al, 2013). The 66 

most striking evidence of a significant association between β power and movement speed comes 67 

from patients suffering from PD. PD is notably characterized by motor symptoms such as 68 

bradykinesia (i.e., movement slowing; Bloem et al., 2021). β power is increased in PD, and can 69 

be attenuated with treatments (Kühn et al., 2006; Ray et al., 2008). The greater the decrease in 70 

β power, the greater the improvement in bradykinesia (Jenkinson and Brown, 2011), making β 71 

power a promising therapeutic target. Although PD treatment most often targets β power at the 72 

subcortical level, there is evidence of abnormalities in cortical β power as well, such as an 73 

attenuation of pre-movement β-ERD (Heinrichs-Graham et al., 2014). Still, the relationship 74 
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between β power and movement speed does not appear monotonic, as several studies have 75 

reported no significant difference in β-ERD between slow and fast movements (Stancák and 76 

Pfurtscheller, 1995; Zhang et al., 2020; see Kilavik et al., 2013 for a review).  77 

From a functional perspective, several studies have provided evidence in favor of a 78 

specific role of β activity in regulating computational power through (de)synchronization of 79 

neuronal populations within sensorimotor regions (Brittain et al, 2014), being proposed to be 80 

related to top-down interactions (Fries, 2015) and expressing the influence of priors on newly 81 

formed neuronal assemblies (Betti et al, 2021). Put another way, β power would decrease in 82 

order to augment neurocomputational power required for information processing (Brittain and 83 

Brown, 2014), as exemplified by greater β-ERD when increasing cognitive demand during 84 

motor planning (Grent-‘t-Jong et al., 2013; Wiesman et al., 2020). One intriguing conjecture is 85 

that β-ERD amplitude may increase as a function of the neurocomputational cost of the 86 

movement being prepared, referred to herein as action cost. Action cost can be represented as 87 

the sum of a biomechanical cost, which increases with movement speed, and a temporal cost, 88 

which decreases with movement speed (Berret and Jean, 2016; Shadmehr et al., 2016). This 89 

leads to a u-shaped action cost function, the minimal value of which has been shown to predict 90 

the preferred speed of participants in various motor contexts (Berret and Jean, 2016). According 91 

to this hypothesis, β-ERD amplitude would thus vary non-monotonically with movement speed, 92 

being greater both for slow and fast movements in comparison to movements performed at 93 

medium (i.e., near-preferred) speed.  94 

We tested this hypothesis by using a speed-controlled reaching paradigm while applying 95 

computational modeling to estimate the associated action cost. Results revealed that β-ERD 96 

amplitude varied non-monotonically with movement speed, in a manner that was strikingly well 97 

predicted by estimated action cost. These results invite to rethink the interpretation of β power 98 
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as a marker of cortical resources allocated for movement instead of a mere correlate of 99 

movement kinematics such as speed. 100 

  101 
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Materials and methods 102 

1. Participants 103 

Thirty-one participants (15 females, 23 ± 3 (mean ± SD) years old) were recruited for this 104 

study. All of them were right-handed based on self-report. They had normal or corrected-to-105 

normal vision and were free of any known neurological or psychiatric condition. All 106 

participants gave their informed written consent and received a 30$ CAD compensation. All 107 

procedures were approved by the local ethics committee. The experiment conformed to the 108 

standards set by the 1964 Declaration of Helsinki. 109 

2. Experimental task 110 

2.1. Setup 111 

The experimental setup consisted of a table supporting a 20-inch computer monitor that 112 

projected visual stimuli onto a mirror positioned horizontally in front of the participants. The 113 

monitor (Dell P1130 20-inch monitor; resolution: 1024 × 768; refresh rate: 150 Hz) was 114 

mounted face down 29 cm above the mirror with the latter positioned 29 cm above the table 115 

surface. Participants' movements were recorded with an acquisition frequency of 100 Hz, using 116 

a two-joint manipulandum composed of two lightweight metal rods with a potentiometer at the 117 

hinges of the manipulandum. Participants performed their movements by grasping a handle 118 

located at the mobile end of the manipulandum with their right hand and sliding it over the 119 

table. The position of the handle (and thus participants’ hand) was shown to participants using 120 

a cursor on the monitor. This provided constant visual feedback of participants’ hand position, 121 

similar to a computer mouse. A 64-electrode actiCAP (extended 10/20 system, Brain Products) 122 

was positioned on participants’ head to record scalp electroencephalography (EEG). This was 123 

done by measuring the head dimensions in the sagittal and frontal planes to localize the vertex 124 
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and positioning the reference electrode (FCz) over it. The EEG data were acquired using the 125 

BrainVision Recorder software 2.0 (Brain Products) with a sampling rate of 500 Hz. 126 

 2.2. Overview 127 

Participants were seated in front of the table and asked to reach a visual target (cyan-128 

filled circle, diameter = 3 cm) with their right hand. Visual stimuli were presented using 129 

Psychtoolbox on MATLAB (MathWorks). Trials were initiated by placing the cursor (white 130 

filled circle, diameter = 0.6 cm) on a starting point (light gray filled circle, diameter = 0.6 cm) 131 

located at the center of the screen. Participants were told to place their chin on a small support, 132 

to keep their right arm in contact with the surface of the table, and to minimize postural changes 133 

during the experiment. The target was presented either on the right side of the screen (60°, Rt) 134 

at a distance of 10 cm from the starting point, or on the left side of the screen (150°, Lt) 6 cm 135 

away from the starting point. These positions were chosen to ensure that the maximal peak 136 

velocity participants could reach was significantly different for each target. Indeed, maximal 137 

peak velocity increases with distance (Gottlieb et al., 1989) as well as with the biomechanical 138 

constraints of the movement (Gordon et al., 1994). The biomechanical constraints of a reaching 139 

movement depend upon movement direction and can be represented as an ellipse of mobility 140 

of the arm, due to changes in its effective mass because of its inertial properties (Shadmehr et 141 

al., 2016). The major axis of the ellipse of mobility corresponds to the directions associated 142 

with the lowest effective mass of the arm, and thus the easiest and fastest to reach. Conversely, 143 

the minor axis of the ellipse corresponds to the directions in which the effective mass of the 144 

arm is the highest, resulting in more difficult and slower movements. In the present task, Rt was 145 

located on the major axis and Lt on the minor axis. Hence, maximal velocity was expected to 146 

be significantly higher for movements oriented toward Rt than Lt.  147 

 2.3. Trial timeline 148 
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Trial timeline is illustrated on Figure 1A. Trials started with the display of a white 149 

fixation cross (1.1 x 1.1 cm) 4 cm above the starting point on the screen. Once the cursor was 150 

placed on the starting point, participants were required to keep their gaze on the fixation cross 151 

for the entire trial duration. They were also asked to minimize eye blinks until they reached the 152 

target to avoid artifacts in the EEG signal during the period of interest. After a 2 s delay, the 153 

target appeared on the screen. A gauge (6.6 x 1.3 cm) centered on the fixation cross appeared 154 

simultaneously to the target. The filling level of the gauge was informative of the speed at which 155 

participants would have to perform their movement toward the target: one-quarter filling 156 

indicated a slow speed (Low), half filling a medium speed (Med), and three-quarter filling a 157 

fast speed (High) (see Figure 1B and next section for details about speed requirements). An 158 

auditory go cue occurred 2 s after target and gauge appearance, signaling that the movement 159 

could be initiated. Participants were asked to start their movement quickly after they heard the 160 

go cue. If participants initiated their movement before the go cue, an error message was 161 

displayed for 1 s (“false start”) and the trial was automatically re-run. Once the movement 162 

ended, all stimuli disappeared and were replaced by visual feedback of whether the speed 163 

criterion was reached or not in the form of a message (“well done!” if the speed criterion was 164 

attained, or the difference in cm/s between the peak velocity reached during the trial and the 165 

speed criterion if it was not attained). Movements were required to end inside the chosen target 166 

to ensure accuracy and thus comparability of trials across conditions. In case the target was 167 

missed, an error message was displayed for 1 s (“target missed”) and the trial was re-run. 168 

Whatever the visual feedback, it was replaced after 1 s by the appearance of the white fixation 169 

cross with the starting point and the cursor. The next trial started when the cursor was placed 170 

inside of the starting point. Participants were encouraged to take a break between trials by not 171 

immediately replacing the cursor inside of the starting point if they felt the need to move their 172 

eyes, head or body, or if they wanted to rest for a few seconds. The experiment was organized 173 
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in 4 blocks of 60 trials, which comprised 2 blocks of trials requiring movements toward Rt, and 174 

2 blocks of movements directed to Lt. The speed conditions varied pseudo-randomly 175 

throughout trials in one block so that a same speed condition was not presented twice in a row 176 

and each block comprised 20 trials of each speed condition. 177 

Participants familiarized with the experimental task and their maximal speeds were 178 

estimated before doing the trials described above. Participants first performed 10 movements 179 

toward each target at a comfortable pace, organized in blocks of 5 trials presented in an 180 

alternating order (5 Rt trials, 5 Lt trials, 5 Rt trials and 5 Lt trials), to familiarize with the setup. 181 

Then, they performed 60 trials in which they were asked to reach the presented target as fast as 182 

possible (30 Rt trials followed by 30 Lt trials) to estimate their maximal speeds. Rt and Lt trials 183 

were separated by a short break that ended when participants felt rested, to avoid an effect of 184 

physical fatigue on motor performance (even though fatigue was also minimized on a single-185 

trial basis by allowing participants to delay the start of the next trial by not immediately placing 186 

their cursor inside of the starting point as previously explained). Finally, participants 187 

familiarized with the different speed criteria by performing trials in each speed condition. More 188 

precisely, trials from a given speed condition were repeated until achieving the correct speed 189 

five times (not necessarily back-to-back). All of these familiarization and “maximal speed” 190 

trials were organized the same way as those in the main experiment, except that no gauge was 191 

displayed in the first familiarization and maximal speed trials. 192 

2.4. Experimental conditions and their related hypotheses 193 

Speed criteria were defined in order to create conditions requiring different peak velocities 194 

but similar relative effort (i.e., difference from maximal peak velocity). 6 velocity criteria (2 195 

Targets x 3 Gauges) were used in total: for movements toward Rt 120 cm/s when the gauge had 196 

a three-quarter filling (HighRt), 95 cm/s when the gauge was half-filled (MedRt), and 70 cm/s 197 
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when the gauge had a one-quarter filling (LowRt); for movements toward Lt 60 cm/s when the 198 

gauge had a three-quarter filling (HighLt), 40 cm/s when the gauge as half-filled (MedLt) and 199 

20 cm/s when the gauge had a one-quarter filling (LowLt) (Figure 1B). During trials, these 200 

speed criteria were considered as attained if the peak velocity of the movement was comprised 201 

in an interval of ± 5 cm/s centered on the speed criterion of the corresponding condition. In 202 

addition, to ensure significant differences in movement speed across conditions, these criteria 203 

were set so that the High speed criteria was to be close to the maximal speed participants could 204 

reach for each target considering differences in amplitude and inertial anisotropy (Gordon et 205 

al., 1994; Shadmehr et al., 2016). To verify this assumption, participants were first asked to 206 

perform 30 reaching movements toward each target as fast as possible ("maximal speed" trials 207 

defined before) and the average maximal peak velocity was then compared to the average peak 208 

velocity in High trials a posteriori (see Results section). Therefore, the present design allowed 209 

to test the respective influences of speed and effort on β power. Indeed, if β power is influenced 210 

by absolute movement speed, then both an effect of Gauge and Target should be expected 211 

considering that the two factors significantly influence peak velocities (Figure 1C, left panel), 212 

whereas if β power is influenced by the movement speed relative to its maximal value as a 213 

measure of expected effort (Tan et al., 2015), then only a significant effect of Gauge should be 214 

found in spite of the significantly different speed ranges reached for each target (Figure 1C, 215 

middle panel). Finally, modeling work has demonstrated that optimal/preferred movement 216 

speed could be selected based on the joint minimization of a trajectory or metabolic cost that 217 

increases as movement speed increases, and of a cost of time that increases as movement speed 218 

decreases (Berret and Jean, 2016). Based on this model, the relationship between movement 219 

speed and action cost is not linear but instead follows a u-shaped curve. As a consequence, β 220 

power may vary non-linearly with speed, and therefore decrease in High and Low conditions 221 

as compared to Med (Figure 1C, right panel). 222 
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[Insert Figure 1] 223 

3. Data analysis 224 

3.1. Behavior 225 

Hand position was estimated in real-time with the coordinates of the cursor recorded 226 

with the two potentiometers located on the manipulandum. Recorded signals were sampled at 227 

100 Hz and were low-pass filtered at 10 Hz using a second-order Butterworth filter. Real-time 228 

velocities were determined for each trial using numerical differentiation. The maximal value of 229 

these real-time velocities was considered as the peak velocity. Movement onset was defined as 230 

the first time point at which velocity exceeded 5% of the peak velocity and movement end as 231 

the first time point at which velocity fell below 5% of this same peak velocity (Berret and Jean, 232 

2016). RTs were calculated as the latency separating the auditory go cue and movement onset, 233 

and MTs as the latency separating movement onset and movement end. Trials in which the 234 

cursor was located outside of the presented target at the time of movement end were considered 235 

as missed-target trials and were not included in the analysis (representing 2.35% trials). In the 236 

same vein, trials in which participants initiated their movement before the go cue occurred were 237 

removed from the analysis (representing 1.06% trials). Note that removing those trials did not 238 

affect the number of trials per condition included in the analysis because, as previously 239 

mentioned, any missed target or false start was automatically re-run during the experiment. 240 

3.2.  EEG 241 

All EEG data were processed offline using custom MATLAB codes and functions from 242 

EEGLAB (Delorme and Makeig, 2004) and Fieldtrip (Oostenveld et al., 2011). First, a 243 

bandpass filter between 1 and 80 Hz was applied on raw EEG data, with a 59–61 Hz notch filter 244 

to attenuate electrical noise. The signal was re-referenced to the average scalp potential. The 245 
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data were then segmented into epochs of 4.5 s duration locked around the occurrence of the 246 

auditory go cue (3 s before to 1.5 s after go cue). The period of interest corresponded to the 2 s 247 

delay separating stimuli onset (i.e., target and gauge appearance) and the go cue. Independent 248 

component analysis (ICA) was applied to EEG data using the runica algorithm from the 249 

EEGLAB toolbox, in order to remove artifactual EEG activity associated with eye and head 250 

movements and other sources of noise (Jung et al., 2000). A surface Laplacian transform was 251 

applied on the EEG data with artifactual components removed, using the erplab plugin from 252 

EEGLAB. The EEG signal was then downsampled to 125 Hz to reduce computation time for 253 

time–frequency decomposition. The latter was performed afterward, using Morlet wavelets (4–254 

45 Hz with 1 Hz steps). The wavelet cycles were increased at each frequency in 0.1 steps 255 

(starting from 3 to 10.6 cycles) to ensure a balance between sufficient temporal resolution at 256 

lower frequencies and frequency resolution at higher frequencies. Finally, the data were 257 

normalized for each condition by measuring the absolute change from the average power during 258 

the 500 ms preceding the delay period (0.5 to 1 s of the total epoch). The amplitude of β-ERD 259 

was quantified as the absolute value of average β power recorded during the delay period 260 

separating the stimulus onset and the auditory go cue. 261 

3.3. Action cost modeling 262 

Action costs were computed from the sum of estimated trajectory cost and cost of time 263 

following the method of Berret and Jean (2016). In short, the trajectory cost was based on the 264 

distance to the target, the joint torque and the hand jerk. It thus reflects accuracy, smoothness, 265 

and effort aspects of the reaching movement, and depends on task parameters (e.g., angle and 266 

amplitude of the presented target, anthropometry, starting position of the arm).  In contrast, the 267 

cost of time rests on the quantification of the affine relationship between movement amplitude 268 

and duration that is characteristic of self-paced reaching movements and hence can be inferred 269 
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from experimental data (see Methods section of Berret and Jean, 2016 for details). Therefore, 270 

the model enables the computation of action cost as a function of movement duration. The 271 

“optimal” MT (i.e., the one associated with the lowest action cost) is supposed to predict the 272 

average MT in a context where participants perform self-paced movements, corresponding to 273 

their “preferred” MT. Here, because there was no self-paced reaching condition, the slope of 274 

this relationship was retrieved from the data of Young et al. (2009), who used a similar reaching 275 

task with high temporal constraints. The intercept was adjusted to predict the average MT found 276 

in Med, separately for movements directed to Rt and Lt. In other words, the cost of time was 277 

set based on a movement duration-amplitude relationship that predicted MTs corresponding to 278 

the ones found in Med at the amplitude used in the present experimental task. Average MTs in 279 

Med were selected because analysis of participants’ speed distributions in the task showed that 280 

average speeds that were the most often chosen (thereby the closest estimates of “preferred” 281 

speeds) were not significantly different from average speeds in Med, both for movements 282 

directed to Rt and Lt (see Results). Peak velocities associated with MTs toward each target were 283 

computed from the predicted optimal velocity profiles, which were bell-shaped similarly to 284 

minimum jerk profiles (Flash and Hogan, 1985; Shadmehr et al., 2016). Action costs were 285 

therefore estimated both as a function of MTs and their associated peak velocities, and then 286 

normalized between 0 and 1 across velocity ranges centered on the minimal value of the cost 287 

functions (i.e., estimated preferred/optimal peak velocity), separately for movements directed 288 

to Lt and Rt. These velocity ranges were set to include all measured peak velocity values toward 289 

each target.  290 

3.4.  Experimental design and statistical analyses 291 

An intra-participant design was used, so that all the factors included in the statistical 292 

analyses were within-participant. 2 x 3 repeated-measures ANOVAs were performed using 293 
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Target (Rt, Lt) and Gauge (Low, Med, High) as factors on peak velocities, RTs, MTs, absolute 294 

error (i.e., average distance between movement endpoint and target center), standard deviation 295 

of the absolute error, probability of reaching the speed criterion, as well as β, µ and γ power 296 

and estimated action costs. Additional analyses with ANOVAs including Target, Gauge and 297 

Block (1 and 2) as factors were conducted to assess whether the main results remained 298 

throughout blocks of trials. Action costs were estimated based on average peak velocities across 299 

participants and conditions (Gauge), separately for the two target positions (Target) that were 300 

used because a distinct model was fitted to each of them (see previous section), considering that 301 

maximal and preferred speeds differed across targets (see Results section). T-tests were used 302 

for post-hoc analysis, with a Bonferroni correction applied to p-values for multiple 303 

comparisons. Effect sizes are reported as partial eta squared (η²p) for ANOVAs and Cohen’s d 304 

(d) for t-tests. Cluster-based permutation tests were performed to identify electrodes associated 305 

with significant modulations of β, µ and γ power across experimental conditions using functions 306 

from Fieldtrip (Oostenveld et al., 2011). Monte Carlo permutations (n = 1000) were used to 307 

determine p-values for each cluster. A cluster-level correction was set to control for multiple 308 

comparisons, using the sum of t-values. A cluster was defined as at least two neighboring 309 

electrodes (located less than 4 cm from each other) showing statistically significant t-values. 310 

General linear mixed models (GLMMs) were used to evaluate which of peak velocity or 311 

estimated action cost best explained the variance in β power. Probability density functions of 312 

distributions of peak velocities were estimated using kernel distributions (ksdensity() command 313 

in Matlab), separately for each target and participant. Kernel distributions are non-parametric 314 

representations of probability density distributions, and are thus suited to estimate probability 315 

density distributions from multimodal distributions such as the ones that were expected from 316 

the experimental manipulation of peak velocities in the present task. Average estimated 317 
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preferred peak velocities were computed as the mean of the peak velocities corresponding to 318 

the maximal probability density functions across participants, separately for each target.  319 

All statistical tests were computed using Jamovi v. 1.2.27 (the jamovi project, 2019, 320 

computer software, retrieved from https://www.jamovi.org), a software that implements R 321 

statistical language (R Core Team, 2018, R: a language and environment for statistical 322 

computing, computer software, retrieved from https://www.cran.r-project.org/).  323 

https://www.jamovi.org/
https://www.cran.r-project.org/
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Results 324 

Briefly, the experimental task consisted of presenting a target along with a gauge, indicating 325 

where to reach and at which speed. The visual stimuli appearance was followed by a delay 326 

period before the occurrence of an auditory go cue (Figure 1A). Two different target positions 327 

(Target: Rt, Lt) and three different filling levels of the gauge (Gauge: Low, Med, High) were 328 

used across trials. Critically, each filling level of the gauge was associated with a different speed 329 

criterion based on peak velocity values. These speed criteria were set so that the speed required 330 

for the highest filling of the gauge (High) was close to the maximal speed participants could 331 

reach for movements directed to each target separately (see Figure 1B for a summary of the 332 

experimental conditions and their associated speed criterion and Methods section for details). 333 

This experimental design allowed to test three main hypotheses about the association between 334 

β-ERD and speed: if β-ERD is modulated as a function of absolute speed, then main effects of 335 

both Target and Gauge should be expected considering the distinct speeds reached across 336 

conditions (Figure 1C, left panel). Alternatively, if β-ERD is modulated as a function of speed 337 

relative to its maximum, only a main effect of Gauge should be observed (Figure 1C, middle 338 

panel). Finally, if β-ERD is modulated by action cost instead of speed, only a main effect of 339 

Gauge should be expected and β-ERD should be increased in both Low and High as compared 340 

to Med given that increasing and decreasing speed represents an additional cost (Figure 1C, 341 

right panel, see Methods for details). 342 

1. Movement speed 343 

The first part of the analysis consisted in verifying that movement speed was effectively 344 

modulated in the present task. Peak velocities were indeed strongly influenced both by Target 345 

(F(1,30) = 2264, p < 10-10, η²p = 0.99) and Gauge (F(2,60) = 843, p < 10-10, η²p = 0.97) with a 346 

significant interaction between the two (F(2,60) = 140, p < 10-10, η²p = 0.82). Post-hoc analysis 347 
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showed that peak velocities were significantly increased when comparing MedRt to LowRt 348 

(t(30) = 25.7, p < 10-10, d = 4.62) and HighRt to MedRt (t(30) = 18.0, p < 10-10, d = 3.23), as 349 

well as when comparing MedLt to LowLt (t(30) = 27.0, p < 10-10, d = 4.85) and HighLt to 350 

MedLt (t(30) = 17.8, p < 10-10, d = 3.20). The effect of Target on peak velocities was also strong, 351 

with significant increases found when comparing LowRt to LowLt (t(30) = 34.6, p < 10-10, d = 352 

6.22), MedRt to MedLt (t(30) = 39.1, p < 10-10, d = 7.02) and HighRt to HighLt (t(30) = 51.2, 353 

p < 10-10, d = 9.20). The average peak velocities were as follows: 71.0 ± 8.0 cm/s for LowRt, 354 

97.0 ± 8.1 cm/s for MedRt, 124.4 ± 9.4 cm/s for HighRt, 24.0 ± 8.0 cm/s for LowLt, 42.4 ± 6.3 355 

cm/s for MedLt and 58.4 ± 6.2 cm/s for HighLt (Figures 2A and 2B). 356 

Separating data across blocks (2 levels: Block 1 and Block 2) does not significantly change 357 

this result. Indeed, this additional analysis showed significant effects of Target (F(1,30) = 358 

2264.4, p < 10-15, eta²p = 0.99) and Gauge (F(1,30) = 842.9, p < 10-15, eta²p = 0.97) but not of 359 

Block (F(1,30) = 0.0, p = 0.862, eta²p = 0.00). Significant interactions were found between 360 

Target and Gauge (F(2,60) = 139.9, p < 10-15, eta²p = 0.82) as well as Gauge and Block (F(2,60) 361 

= 7.5, p = 0.001, eta²p = 0.20), but no interaction was found between Target and Block (F(1,30) 362 

= 0.2, p = 0.662, eta²p = 0.01), nor Target, Gauge and Block (F(2,60) = 2.4, p = 0.100, eta²p = 363 

0.07). Post-hoc analysis of the interaction between Gauge and Block revealed that peak velocity 364 

was slightly increased in High in Block 2 as compared to Block 1 (t(30) = 3.2, p = 0.010, d = 365 

0.57) by 1.89 ± 1.21 cm/s (mean ± 95% CI). No significant difference in peak velocity between 366 

Block 1 and Block 2 was found in Med (t(30) = 0.7, p = 1.00, d = 0.12) nor in Low (t(30) = 2.2, 367 

p = 0.117, d = 0.39). Although participants appear to have increased their speed in High in 368 

Block 2 as compared to Block 1, this effect appeared relatively modest considering the speed 369 

difference induced (less than 2 cm/s) in comparison to the speed difference between conditions 370 

(around 10 times greater; mean difference of 22.2 cm/s between Low and Med and 21.7 cm/s 371 

between Med and High). 372 
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The probability of performing the movement within the speed criteria was strongly 373 

impacted by Target (F(1,30) = 68.9, p = 10-9, eta²p = 0.70) and to a lesser extent by Gauge 374 

(F(2,60) = 4.9, p = 0.011, eta²p = 0.14) and there was no significant interaction between the two 375 

(F(2,60) = 2.6, p = 0.085, eta²p = 0.08). Post-hoc analysis revealed that the probability of 376 

reaching the speed criterion was higher for movements directed to Lt than Rt (t(30) = 8.3, p = 377 

10-9, d = 1.49) and for movements performed in High than Low, though with a lower effect size 378 

(t(30) = 2.7, p = 0.030, d = 0.49). No significant difference in the probability of achieving the 379 

speed criteria was found between Low and Med (t(30) = 1.6, p = 0.369, d = 0.29), or between 380 

Med and High (t(30) = 1.8, p = 0.240, d = 0.33). 381 

Participants were first asked to perform their movements at maximal speed to ensure that 382 

their average maximal speeds for movements directed to each target were close to the speed 383 

criteria used in High conditions (see Methods for details). The analysis of these trials confirmed 384 

that maximal peak velocities were significantly greater for movements directed to Rt in 385 

comparison to movements directed to Lt (t(30) = 23.5, p < 10-10, d = 4.23). The average maximal 386 

peak velocity found for movements directed to Lt was not significantly different from the 387 

average peak velocity in HighLt (t(30) = 0.2, p = 1.0, d = 0.04, mean difference = 0.2 cm/s, 388 

BF10 = 0.20 ± 0.03, moderate evidence for H0). However, the average maximal peak velocity 389 

found for movements toward Rt were slightly but significantly lower than the average velocity 390 

in HighRt (t(30) = -3.0, p = 0.010; d = -0.54; mean difference = -8.8 cm/s, BF10 = 7.80 ± 1.42e-391 

6, moderate evidence for H1). This suggests that the velocity criteria used in HighRt and HighLt 392 

were close to the maximal speed participants could reach for movements directed toward those 393 

targets but might have been more challenging for HighRt because its velocity criterion slightly 394 

exceeded the maximal speed expressed by participants. 395 
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As could be expected from these results, overall response time was significantly impacted 396 

by manipulations of peak velocities. Indeed, a significant influence of Target was found on 397 

MTs (F(1,30) = 123.8, p < 10-10, η²p = 0.80) as well as a significant influence of Gauge (F(2,60) 398 

= 164.2, p < 10-10, η²p = 0.85) and an interaction between the two (F(2,60) = 64.3, p < 10-10, 399 

η²p = 0.68). Post-hoc analysis showed similar results as for peak velocities with increased MTs 400 

in LowRt as compared to MedRt (t(30) = 16.9, p < 10-10, d = 3.03) and in MedRt as compared 401 

to HighRt (t(30) = 12.0, p < 10-10, d = 2.16), as well as in LowLt as compared to MedLt (t(30) 402 

= 10.1, p = 10-10, d = 1.81) and in MedLt as compared to HighLt (t(30) = 13.5, p < 10-10, d = 403 

2.43). MTs were also significantly increased in LowLt as compared to LowRt (t(30) = 9.4, p < 404 

10-9, d = 1.69), in MedLt as compared to MedRt (t(30) = 13.1, p < 10-10, d = 2.35) and in HighLt 405 

as compared to HighRt (t(30) = 11.6, p < 10-10, d = 2.08; Figure 2C).  406 

In contrast, RTs were not significantly impacted by Target (F(1,30) = 0.1, p = 0.794, η²p = 407 

0.00) but by Gauge (F(2,60) = 17.0, p = 10-6, η²p = 0.36) with a significant interaction between 408 

the two (F(2,60) = 6.4, p = 0.003, η²p = 0.18). Post-hoc analysis showed that RTs were 409 

significantly increased in Low as compared to High (t(30) = 4.4, p = 10-4, d = 0.79) and Med 410 

(t(30) = 3.1, p = 0.014, d = 0.55), and in Med as compared to High (t(30) = 5.9, p = 10-5, d = 411 

1.06). The interaction effect comes from the fact that the difference in RTs between movements 412 

directed to Rt and Lt tended to change with the filling of the gauge but remained non 413 

significantly different across Gauge levels (LowRt vs LowLt: t(30) = -1.8, p = 0.258, d = -0.32; 414 

MedRt vs MedLt: t(30) = 1.2, p = 0.771, d = 0.21; HighRt vs HighLt: t(30) = 0.3, p = 1.0, d = 415 

0.05; Figure 2D). 416 

Finally, the absolute error (i.e., average distance between movement endpoint and target 417 

center) was significantly higher for movements directed to Rt as compared to movements 418 

directed to Lt (main effect: F(1,30) = 33.4, p = 10-6, eta²p = 0.53; post-hoc: t(30) = 5.8, p = 10-419 
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6, d = 1.04) and was increased in High in comparison to both Med and Low (main effect: F(2,60) 420 

= 25.4, p = 10-8, eta²p = 0.46; post-hoc: High vs Low: t(30) = 5.7, p = 10-5, d = 1.03; High vs 421 

Med: t(30) = 6.0, p = 10-5, d = 1.07; Med vs Low: t(30) = 1.7, p = 0.318, d = 0.30) without 422 

significant interaction between Target and Gauge (F(2,60) = 1.5, p = 0.225, eta²p = 0.05). The 423 

standard deviation of the absolute error showed similar trends by monotonically increasing with 424 

speed (Target/main effect: F(1,30) = 40.9, p = 10-7, eta²p = 0.58; Target/post-hoc: Rt vs Lt: 425 

t(30) = 6.4, p = 10-7, d = 1.15; Gauge/main effect: F(2,60) = 28.9, p = 10-9, eta²p = 0.49; 426 

Gauge/post-hoc: High vs Low: t(30) = 8.2, p = 10-8, d = 1.47; High vs Med: t(30) = 3.4, p = 427 

0.006, d = 0.61; Med vs Low: t(30) = 4.1, p = 0.001, d = 0.73; Target*Gauge: F(2,60) = 0.2, p 428 

= 0.853, eta²p = 0.01). Critically, these differences in movement accuracy had little impact on 429 

task performance as the diameter of the target was set relatively large (3 cm) so that participants 430 

failed to end their movements inside of the target in only 2.35 % of trials, which were removed 431 

from the analysis and re-run (see Methods for details). 432 

[Insert Figure 2] 433 

 434 

2. β power 435 

Cluster-based permutation tests comparing the fastest (HighRt) to the slowest (LowLt) 436 

conditions revealed a significant negative cluster (tsum = -4478.5, p = 0.001) 1.4 s to 0 s before 437 

the go cue. As can be seen in Figure 3A, the cluster appeared over the left fronto-central scalp 438 

sites, centered around electrodes C3, C1, FC3 and FC1. Given that motor β-ERD is commonly 439 

quantified around these electrodes (e.g., Fischer et al., 2018; Haddix et al., 2021; Chen and 440 

Kwak, 2022), as they overlay (pre)motor regions (Scrivener et al., 2021), β-ERD was computed 441 

as the mean signal from those four electrodes. The visual depiction of the time course of β 442 



22 
 

power indeed showed distinct modulations across conditions during the delay period preceding 443 

the go cue (Figure 3B). Conducting similar cluster-based permutation tests on mu (µ; 8-12 Hz) 444 

and gamma (γ; 31-49 Hz) power revealed a significant negative cluster for µ power (tsum = -445 

4478.5, p = 0.001) centered around similar electrodes as for β power, though larger in size (CPz, 446 

CP1, CP3, Cz, C1, C3, FCz, FC1, FC3), but no significant cluster was found for γ power (tsum 447 

< 221.5, p > 0.084). 448 

These modulations were first quantified by averaging β-ERD over the entire delay period 449 

(-2 s to 0 s before go cue). The analysis revealed that the amplitude of β-ERD during the delay 450 

period was significantly influenced by Gauge (F(2,60) = 7.7, p = 0.001, η²p = 0.20) but not by 451 

Target (F(1,30) = 0.8, p = 0.368, η²p = 0.03), without any significant interaction between the 452 

two factors (F(2,60) = 1.4, p = 0.265, η²p = 0.04). Post-hoc analysis revealed that the amplitude 453 

of β-ERD was significantly smaller for Med as compared to both Low (t(30) = -3.1, p = 0.014, 454 

d = -0.55) and High (t(30) = -3.4, p = 0.006, d = -0.61) but was not significantly different 455 

between Low and High (t(30) = -1.0, p = 1.0, d = -0.17) (Figure 3C, left panel). Note that β-456 

ERD was computed by simply subtracting the average β power during a pre-cue baseline period 457 

(see Methods for details) to minimize transformation of the EEG signal, but other baseline 458 

corrections, such as percent signal change as proposed by Pfurtscheller and Lopes da Silva 459 

(1999) led to similar results (main effect of Target: F(1,30) = 1.5, p = 0.225, η²p = 0.05; main 460 

effect of Gauge: F(2,60) = 18.6, p = 10-6, η²p = 0.38; interaction effect Target*Gauge: F(2,60) 461 

= 1.3, p = 0.276, η²p = 0.04).  462 

Interestingly, this Gauge effect was specific to modulations of β power as it was not found 463 

for µ power (Target: F(1,30) = 0.1, p = 0.718, eta²p = 0.00; Gauge: F(2,60) = 2.7, p = 0.078, 464 

eta²p = 0.08; Target*Gauge: F(2,60) = 0.5, p = 0.621, eta²p = 0.02), or for γ power (Target: 465 
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F(1,30) = 0.9, p = 0.355, eta²p = 0.03; Gauge: F(2,60) = 1.8, p = 0.181, eta²p = 0.06; 466 

Target*Gauge: F(2,60) = 2.0, p = 0.141, eta²p = 0.06). 467 

As the modulations of β power could have differently evolved across conditions throughout 468 

a trial, a second analysis was run on the amplitude of β-ERD averaged over 500 ms temporal 469 

windows, ranging from 2 to 0 s before go cue, therefore adding a Time factor to the analysis. 470 

Consistent with the first analysis, neither a significant effect of Target was detected (F(1,30) = 471 

0.8, p = 0.367, η²p = 0.03), nor interactions between Target and Gauge (F(2,60) = 1.3, p = 0.270, 472 

η²p = 0.04), Target and Time (F(3,90) = 1.0, p = 0.412, η²p = 0.03) and Target, Gauge and Time 473 

(F(6,180) = 1.6, p = 0.141, η²p = 0.05). However, consistent with the first analysis, significant 474 

effects of Gauge (F(2,60) = 7.6, p = 0.001, η²p = 0.20), Time (F(3,90) = 25.6, p < 10-10, η²p = 475 

0.46), and an interaction between Gauge and Time (F(6,180) = 5.9, p = 10-5, η²p = 0.16) were 476 

observed. Bonferroni-corrected t-tests conducted across Gauge and Time factors (12 477 

comparisons) revealed the same pattern as in the first analysis, with significantly lower β-ERD 478 

in Med as compared to Low and High, as early as 1.5 s before the go cue (Figure 3C, right 479 

panel; Table 1). 480 

Finally, β-ERD could also have differently evolved throughout blocks. Additional analysis 481 

including a block factor showed a significant effect of Speed on β-ERD (F(2,60) = 7.7, p = 482 

0.001; eta²p = 0.20) but neither a significant effect of Target (F(1,30) = 0.8, p = 0.367, eta²p = 483 

0.03) nor Block (F(1,30) = 0.2, p = 0.648, eta²p = 0.01). The analysis showed no significant 484 

interaction with any of these factors (F < 1.5, p > 0.234, eta²p <0.05). Therefore, β-ERD does 485 

not appear to have been differentially modulated across blocks. 486 

[Insert Figure 3] 487 

[Insert Table 1] 488 
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 489 

3. Action cost model 490 

Considering the pattern of β-ERD found, we hypothesized that pre-movement modulations 491 

of β power might be best explained by changes in expected overall action cost, including both 492 

trajectory and temporal costs (Figure 1C, right panel; see Methods for details). This hypothesis 493 

assumed that action cost was lower in Med than High and Low conditions. Although at first 494 

glance the speed instructions of the present paradigm prevented participants from moving at the 495 

speed they preferred (i.e., that associated with the lowest cost), peak velocity distributions still 496 

revealed biases in participants’ chosen speeds. Indeed, in spite of the very different average 497 

speeds reached across conditions (see behavioral results), most participants did not show 498 

trimodal distributions of peak velocities as would have been expected from the three non-499 

overlapping peak velocity criteria used for each target. Instead, they oftentimes presented near-500 

normal distributions, suggesting that their movement speeds were biased toward certain values. 501 

Indeed, even though speed instructions led to significantly different average speeds across 502 

conditions (Figure 2B), participants failed to perform their movements in the required criteria 503 

in a large proportion of trials (mean ± SD = 66.5 ± 8.2 %). Speed criteria were voluntarily strict 504 

enough to encourage participants to keep their speeds close to the speed criteria and therefore 505 

maximize speed differences across conditions. Still, we reasoned that inter-trial variability in 506 

movement speed could be exploited to estimate their speed preferences, especially considering 507 

that speed distributions appeared biased toward certain values for most participants. Hence, the 508 

peak velocity corresponding to the maximal value of probability density functions estimated 509 

from these distributions (based on kernel smoothing function for non-parametric distributions, 510 

see Methods for details) was used to estimate participants’ preferred speed. The average 511 

estimated preferred peak velocity of movements toward Rt was 94.8 ± 13.7 cm/s. This value 512 
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was significantly lower than peak velocities found at HighRt (t(30) = -11.0, p < 10-10, d = -1.97) 513 

and higher than peak velocities found at LowRt (t(30) = 11.9, p < 10-10, d = 2.15), but 514 

interestingly was not significantly different from peak velocities at MedRt (t(30) = -1.4, p = 515 

0.178, d = -0.25; Figure 4B, top panel). Likewise, estimated preferred peak velocities toward 516 

Lt were significantly lower than peak velocities found at HighLt (t(30) = -8.0, p = 10-8, d = -517 

1.44) and higher than peak velocities found at LowLt (t(30) = 11.2, p < 10-10, d = 2.01), but not 518 

significantly different from peak velocities at MedLt (t(30) = 0.4, p = 0.688, d = 0.07; Figure 519 

4B, bottom panel). The average estimated preferred peak velocity of movements toward Lt was 520 

43.0 ± 10.0 cm/s. Together, these data indirectly confirm that although participants’ preferred 521 

speed was not formally measured, it would have been close to the medium speed used here. 522 

[Insert Figure 4] 523 

 524 

The cost functions of movements directed toward Rt and Lt were estimated based on a 525 

model of action cost developed and applied to experimental data including reaching movements 526 

in previous work (Berret and Jean, 2016). This action cost model uses the combination of a 527 

trajectory cost which increases with movement speed and can be estimated based on task 528 

biomechanical constraints (e.g., angle and amplitude of the presented target, anthropometry, 529 

starting position of the arm), and a cost of time which decreases with movement speed and is 530 

estimated based on participants’ preferred movement duration for a given amplitude. Because 531 

previous analysis of speed distributions showed that preferred speed estimates were not 532 

significantly different from the average speeds found in Med, average MTs in MedRt and 533 

MedLt were set as preferred movement durations in action cost models of movements directed 534 

to Rt and Lt respectively (see Methods for details and Figure 5A for illustration). Estimation of 535 
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peak velocity from the models appeared to fit the present data as the cost function of movements 536 

directed to Rt predicted optimal peak velocities (i.e., peak velocities corresponding to the 537 

minimum of the cost function; PrefRt) that were not significantly different from the average 538 

peak velocities found in MedRt (t(30) = -1.1, p = 0.269, d = -0.20, mean difference = -1.6 cm/s). 539 

Likewise, the cost function of movements directed to Lt predicted optimal peak velocities 540 

(PrefLt) that were not significantly different from average peak velocities found in MedLt (t(30) 541 

= -0.3, p = 0.737, d = -0.06, mean difference = -0.4 cm/s).  542 

Critically, action cost predicted by the model followed a pattern close to the one found 543 

for β-ERD across conditions (Figure 5B). Once applied to the individual average peak velocity 544 

values found across conditions, estimated action cost from the model appeared significantly 545 

modulated by Target (F(1,30) = 8.2, p = 0.008, η²p = 0.21), to a smaller extent than by Gauge 546 

(F(2,60) = 38.6, p < 10-10, η²p = 0.56), with a significant interaction between the two factors 547 

(F(2,60) = 15.9, p = 10-6, η²p = 0.35). Post-hoc analysis revealed a significantly lower estimated 548 

action cost in MedRt as compared to LowRt (t(30) = -10.2, p = 10-10, d = -1.83) and to HighRt 549 

(t(30) = -7.2, p = 10-7, d = -1.30), as well as in HighRt as compared to LowRt (t(30) = -4.3, p = 550 

0.001, d = 0.78). Likewise, estimated action cost was significantly lower in MedLt as compared 551 

to LowLt (t(30) = -9.4, p = 10-9, d = -1.69) and HighLt (t(30) = -7.0, p = 10-6, d = -1.26), but 552 

not significantly different between HighLt and LowLt (t(30) = 2.3, p = 0.268, d = 0.41). 553 

Additionally, estimated action cost was significantly lower in HighLt in comparison to HighRt 554 

(t(30) = 3.7, p = 0.007, d = 0.67) but no significant difference was found when comparing 555 

MedLt to MedRt (t(30) = 0.5, p = 1.0, d = 0.09) and LowLt to LowRt (t(30) = 0.3, p = 1.0, d = 556 

0.06). 557 

Finally, a general linear mixed model (GLMM) was performed to test whether peak 558 

velocity and estimated action cost explained a significant proportion of the variance in β-ERD. 559 
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The model showed a significant influence of action cost (F(1,154) = 8.5, p = 0.004) but not of 560 

peak velocity (F(1,153) = 0.1, p = 0.823) on β-ERD (Figure 5C). The results were similar when 561 

including RTs in the model, with a significant influence of action cost on β-ERD (F(1,153) = 562 

8.3, p = 0.004), but not of peak velocity (F(1,154) = 0.2, p = 0.659) or RTs (F(1,179) = 1.5, p 563 

= 0.223). Therefore, modulations of pre-movement β-ERD across conditions appeared overall 564 

better explained by changes in action cost rather than by the speed of movement initiation and 565 

execution. 566 

[Insert Figure 5]  567 
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Discussion 568 

Using a speed-controlled reaching paradigm, the present study aimed to dissociate 569 

movement speed and action cost to determine which of these variables best explains changes 570 

in pre-movement β-ERD. Results showed that β-ERD was non-monotonically modulated by 571 

movement speed as its amplitude was greater both for slow and fast movements in comparison 572 

to movements performed at medium speed, following a u-shaped pattern. This pattern was 573 

observed for both targets despite very different ranges of speeds (~50-60 cm/s difference) and 574 

appeared specific to β power as it was not found when averaging activity in the µ and γ bands. 575 

Additionally, these modulations of β-ERD are unlikely to be explained by changes in movement 576 

accuracy or success in achieving the speed criteria considering that the two monotonically 577 

decreased with movement speed. Interestingly, GLMMs showed that β-ERD amplitude was 578 

better predicted by estimated action cost than by movement peak velocity or RT. As predicted 579 

by the model, the further the instructed speed from the optimal/preferred speed (i.e., speed 580 

associated with the lowest action cost), the greater the β-ERD. These results demonstrate that 581 

β-ERD constitutes a potential non-invasive marker of estimated action cost during motor 582 

planning. 583 

To the best of our knowledge, this is the first report of a u-shaped association between 584 

β-ERD and movement speed. Indeed, β-ERD was attenuated at medium speeds but was 585 

comparatively larger both for slow and fast movements. While this observation appears 586 

somewhat incongruous with the association between β power and movement speed found in 587 

healthy individuals (Pogosyan et al., 2009) and in PD (Jenkinson and Brown, 2011), it is still 588 

consistent with some previous work that has reported no significant difference in β-ERD 589 

between slow and fast movements (Stancák and Pfurtscheller, 1995; Zhang et al., 2020; see 590 

Kilavik et al., 2013 for a review). The notion that beta reflects costs may offer an alternative 591 
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view reconciling the two. Namely, the amplitude of β-ERD might be modulated as a function 592 

of action cost, therefore increasing both with movement time and effort considering that the 593 

two are responsible for the devaluation of action (Berret and Jean, 2016; Shadmehr et al., 2016). 594 

Consequently, greater β-ERD may facilitate the preparation of both slow and fast movements, 595 

improving overall motor flexibility. Evidence for decreased speed when increasing β power 596 

(Pogosyan et al, 2009) and increased speed when decreasing β power (Jenkinson and Brown, 597 

2011) in the context of movements performed at maximal speed supports this hypothesis, but 598 

facilitation of slow (i.e., slower than self-paced) movements does not appear to have been tested 599 

yet. Furthermore, this assumption is consistent with the influential hypothesis that β power 600 

favors the maintenance of the pre-existing neural state (Engel and Fries, 2010) as well as with 601 

force production tasks, which typically reveal non-linear modulations of β power as a function 602 

of exerted force (Tan et al., 2015; Fischer et al., 2019; Haddix et al., 2021). It also links the 603 

attenuated β-ERD (Heinrichs-Graham et al., 2014) to the restricted motor repertoire observed 604 

in PD (Baraduc et al., 2013; Sorrentino et al., 2021). From a neural perspective, this hypothesis 605 

is supported by the known influence of β power on the flexibility of neuronal activity, β power 606 

being considered as a marker of the excitation/inhibition balance in the primary motor cortex 607 

(M1) (McAllister et al., 2013; Rossiter et al., 2014). Furthermore, the motor symptoms observed 608 

in PD have been related to reduced plasticity in M1 (Bologna et al., 2018). This alteration of 609 

motor flexibility and its associated β power increase might be linked to dopamine depletion 610 

(Jenkinson and Brown, 2011), the action of dopamine being considered central in ensuring 611 

behavioral flexibility (Jahanshahi et al., 2015; Cools, 2019).  612 

The phasic dopaminergic activation preceding movement is modulated according to 613 

expected action value in order to assess how much neural resources are worth allocating for an 614 

upcoming movement (Hamid et al., 2016; Berke, 2018). Dopamine is thought to attenuate 615 

signal-dependent noise, thereby allowing the formation of a more precise motor representation 616 
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(Manohar et al., 2015). This noise reduction process arguably requires additional neural 617 

computational power, which could be achieved through neuronal desynchronization. Indeed, β-618 

ERD has been proposed as a mechanism allowing to increase the entropy of neuronal firing 619 

rates, resulting in an increase in their information coding capacity (Hanslmayr et al., 2012; 620 

Brittain and Brown, 2014). Beyond explaining the present results, the proposition of β-ERD as 621 

a marker of the allocation of neural resources unifies several lines of evidence. First, reward 622 

expectation is accompanied by an increase in β-ERD (Meyniel and Pessiglione, 2014; Savoie 623 

et al., 2019; Chen and Kwak, 2022). Given that reward is known to shift the speed-accuracy 624 

tradeoff of movements by increasing speed without penalizing accuracy (Manohar et al., 2015; 625 

Summerside et al., 2018), the greater β-ERD might reflect the allocation of additional neural 626 

resources to support the increase in speed. In this framework, the attenuation of beta-ERD 627 

observed in PD might be linked to a deficit in action valuation. This is supported by evidence 628 

of an alteration of effort-based decision-making and apathy in PD (Le Bouc et al, 2016). 629 

Second, motor learning has been associated with reduced sensorimotor activation over the 630 

course of practice, interpreted as a decrease in the mobilization of neural resources due to 631 

increased neural efficiency in the network (Karni et al., 1995; Kelly and Garavan, 2005). The 632 

amplitude of β-ERD has been shown to decrease with practice accordingly (Pollok et al., 2014; 633 

Gehringer et al., 2018). Third, this hypothesis also fits with the mounting evidence of β activity 634 

being modulated as a function of existing priors about stimuli and actions (Betti et al., 2021) 635 

because it may reflect the endogenous reactivation of these priors (Spitzer and Haegens, 2017). 636 

β-ERD might be attenuated when preparing movements at habitual speeds because of a stronger 637 

prior, which echoes the decrease in the amplitude of β-ERD found with learning. 638 

The present results also offer a potential explanation for the cost of time implemented 639 

in models of action cost. Indeed, while the cost associated with fast movements can easily be 640 

justified by an increase of the net metabolic rate of movements with speed (Shadmehr et al., 641 
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2016), what makes slow movements effortful is less clear (Berret and Jean, 2016). Nonetheless, 642 

action selection can hardly be predicted from an energy minimization principle alone: 643 

behavioral work has shown that movement duration impacts action choices independently from 644 

changes in energy expenditure (Morel et al., 2017; Berret and Baud-Bovy, 2022). This influence 645 

of movement duration on action selection has mostly been interpreted as the temporal 646 

discounting of the rewarding value associated with the motor goal (Shadmehr et al., 2010; Choi 647 

et al., 2014). Still, a temporal discounting of reward appears unlikely in the present task, given 648 

that the reward consisted in reaching the speed criterion and was therefore intrinsically 649 

associated with the slowing of movements. Furthermore, the positive correlation often reported 650 

between the amplitude of β-ERD and expected reward (Meyniel and Pessiglione, 2014; Savoie 651 

et al., 2019; Chen and Kwak, 2022) is inconsistent with a reduction of expected reward with 652 

movement slowing in the present results. β-ERD amplitude at low speed was indeed 653 

significantly greater than for medium speed, but not significantly different than for high speed. 654 

Alternatively, in relation to the previous paragraph, this cost of time could be due to increased 655 

neurocomputational demands or “neural effort” to perform slow movements. Indeed, slowing 656 

down movements has been associated with an accumulation of constant noise (van Beers, 657 

2008). Conversely, slow movements could be more costly simply because they are less often 658 

performed. Movements at preferred speeds could be seen as a habitual form of control, which 659 

is associated with lower computational cost due to an increased contribution of lower-order 660 

brain regions (Schneider and Chein, 2003; Jahanshahi et al., 2015). In support, the motor cortex 661 

has been shown to be less involved in habitual actions due to a preponderant role of the basal 662 

ganglia (Kawai et al., 2015; Dhawale et al., 2021). Therefore, the magnitude of β-ERD could 663 

be attenuated when preparing movements at preferred speeds because they require less 664 

neocortical resources to be produced. This is consistent with evidence of spontaneous choices 665 

of muscle coordination patterns favoring habits or less information encoding at the expense of 666 
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muscular effort or movement accuracy (de Rugy et al., 2012; Dounskaia and Shimansky, 2016). 667 

However, preferred speeds were only approximated from distributions of speed values in the 668 

present experiment because specific speed instructions were used in order to dissociate 669 

movement speed from action cost. Additional studies measuring individualized preferred 670 

speeds in a context of self-paced movements will be needed to confirm the existence of specific 671 

modulation of β-ERD as a function of action cost. 672 

In summary, the present results reconcile discrepancies concerning the relationship 673 

between β-ERD and movement speed, and suggest that reducing β power facilitates the 674 

preparation and execution of both fast and slow movements, by enhancing motor flexibility 675 

through the allocation of additional neural resources. This encourages to explore the impact of 676 

β power reduction in PD not only on movement speed, but also on action selection.  677 

  678 
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Figure 1. Methods. A: Schematic representation of a trial timeline. The content of each dark 842 

grey rectangle illustrates stimuli that were displayed on the screen in front of participants. The 843 

trial started with the appearance of a white fixation cross at the center of the screen and the 844 

starting base (light grey circle; bottom rectangle). Once participants had kept the cursor (white 845 

circle) inside of the starting base for 2 s, the target (blue circle) and the gauge appeared on the 846 

screen. Participants were asked to reach the target once they heard the go cue, which occurred 847 

2 s after the appearance of the gauge and the target on the screen. Once the target was hit, it 848 

turned green. Written feedback was then given to participants about whether their movement 849 

reached the speed criterion. B: Summary of the speed criteria across conditions. The table 850 

indicates the intervals of peak velocities (PV) that participants were asked to reach according 851 

to the position of the presented target (columns) and the filling level of the gauge (rows). C: 852 

Working hypotheses of what patterns of β-ERD across conditions could be expected from 853 

modulations of movement speed. Conditions including movements directed to Rt are 854 

represented in red and conditions including movements toward Lt are in blue.  855 
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Figure 2. Behavioral results. Red and blue lines/dots refer to Rt and Lt respectively. A: 

Average normalized velocity profiles across conditions. Solid lines refer to High, large dotted 

lines to Med and small dotted lines to Low conditions. B, C, D: Average peak velocities, MTs 

and RTs across conditions. Error bars indicate 95% confidence intervals around the mean. 

*** p < 0.001 
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Figure 3. Modulations of β power across conditions. A: Illustration of the results from 856 

cluster-based permutation tests. Each topographical plot represents the average difference in β 857 

power between conditions requiring the slowest (LowLt) and the fastest (HighRt) movements 858 

in 500-ms windows, time-locked to the occurrence of the go cue. Hot colors indicate an increase 859 

and cold colors a decrease in β power. White dots indicate electrodes belonging to a significant 860 

cluster. B: Time course of average β power change from baseline throughout a trial. C: Average 861 

β-ERD amplitude during the delay period (2 s preceding go cue). Red and blue lines/dots 862 

indicate results from movements directed to Rt and Lt respectively. D: Similar representations 863 

to C, with β power averaged in 500-ms windows encompassing the delay period. Error bars 864 

indicate 95% confidence intervals around the mean. ** p < 0.01, * p < 0.05 865 

  



44 
 

 

Figure 4. Peak velocity distributions and probability density functions across participants. 866 

A: Peak velocity distributions. Red histograms represent peak velocities of movements toward 867 

Rt, and blue histograms peak velocities of movements toward Lt. Each histogram represents 868 

data from one participant. Y-axis indicates the normalized proportion of trials (from 0 to 1) and 869 

x-axis the peak velocities. The solid black curve represents an estimate of the probability 870 

density function of each distribution. B: Comparison of the average estimated preferred peak 871 

velocity (PrefRt and PrefLt; determined using the maximum of probability density functions 872 

illustrated in A) to the average peak velocities of the different experimental conditions. Red and 873 

blue dots refer to Rt and Lt respectively. Error bars indicate 95 % confidence intervals around 874 

the mean. *** p < 0.001 875 
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Figure 5. Results from the modeling of action cost. A: Representations of the estimated cost 876 

computed by the model as a function of peak velocities (top panels) and MT (bottom panels). 877 

The cost of movements directed to Rt is illustrated with red curves (left panels) and the cost of 878 

movements directed to Lt with blue curves (right panels). B: Estimated costs of movements 879 

directed to Rt (red) and Lt (blue) across speed conditions. C: Representation of the correlation 880 

between β-ERD amplitude and normalized estimated cost (left panel) and peak velocity (right 881 

panel) based on the estimated marginal means computed by the GLMM. Error bars (B) or 882 

shaded areas (C) indicate 95 % confidence intervals. ** p < 0.01, *** p < 0.001 883 
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Time window 

(relative to go 

cue) 

Contrast T-statistic 

P-value 

(Bonferroni-

corrected) 

Effect size 

(Cohen’s d) 

[-2 to -1.5 s] 

Low vs Med 2.2 0.462 0.39 

Low vs High 0.8 1.0 0.14 

Med vs High -1.9 0.798 -0.34 

[-1.5 to -1 s] 

Low vs Med 3.8 0.007 0.69 

Low vs High -1.6 1.0 -0.29 

Med vs High -3.5 0.017 -0.63 

[-1 to -0.5 s] 

Low vs Med 2.9 0.092 0.51 

Low vs High -1.2 1.0 -0.22 

Med vs High -3.7 0.01 -0.67 

[-0.5 to 0 s] 

Low vs Med 2.8 0.119 0.49 

Low vs High 1.0 1.0 0.18 

Med vs High -3.3 0.031 -0.59 

 

Table 1. Results from post-hoc analysis on β power across speed conditions and time 884 

bins. P-values inferior to 0.05 are in bold. 885 

 


