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Abstract

This paper investigates the event-triggered control problem for perturbed systems under neural network controllers. We
propose a novel event-triggering mechanism, based on local sector conditions related to the activation functions, to reduce
the computational cost associated with the neural network evaluation. It avoids redundant computations by updating only
a portion of the layers instead of evaluating periodically the whole neural network. Sufficient conditions in terms of matrix
inequalities are established to design the parameters of the event-triggering mechanism and compute an inner-approximation
of the region of attraction for the perturbed feedback system. The theoretical conditions are obtained by using a quadratic
Lyapunov function and an abstraction of the activation functions via quadratic constraints to decide whether the outputs of
the layers should be transmitted through the network or not. Such conditions allow us to reduce the computational activity
on the neural network while preserving the stability and performance level of the perturbed feedback system. To illustrate the
efficacy of our approach, we consider the nonlinear inverted pendulum system stabilized by a trained neural network.
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1 Introduction

Due to the recent advancements in deep learning, there
has been an increasing interest in using neural networks
(NNs) to stabilize dynamic systems. For example, NNs
have been used to replace existing computationally ex-
pensive controllers such as model predictive controllers
(MPCs), which require online solutions to an optimal
control problem. In that way, they allow for an efficient
and inexpensive embedded implementation [13,34,16].
Despite their high performance, NN controllers lack
guarantees, which typically restrict their use in safety-
critical applications such as autonomous driving, robots
for surgical procedures, and medical support systems.
Therefore, it is crucial to develop tools that can provide
useful certificates of stability, safety, and robustness for
NN controlled systems. Motivated by this, several works
have studied the challenging task of verifying such sys-
tems. [7] certifies tight bounds on the Lipschitz constant
of deep NNs, which is a common proxy for robustness.
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[22,20] also enforce accurate Lipschitz bounds, but dur-
ing training. For stability analysis, sufficient conditions
based on linear matrix inequalities (LMIs) are derived
by abstracting the nonlinear activation function in NNs
through Quadratic Constraints (QC) [18] or by linear
difference inclusions (LDIs) [26]. Similar QCs abstrac-
tions are proposed by [33] to analyze perturbed plants
with perturbations described by integral quadratic con-
straints (IQCs). As an extension, [21] analyzes stability
in offset-free setpoint tracking with a piecewise constant
reference. Both approaches provide ellipsoidal inner ap-
proximations of the corresponding regions of attraction.
[15] formulates QCs based on partial gradients to cer-
tify the input-output stability of reinforcement-learning
(RL) controlled systems. Therefore, the use of QCs in
this context has been shown to be effective.

Different from traditional control systems, network
control systems not only need to provide satisfactory
control requirements in terms of stability and safety
but also need to consider the usage of network re-
sources [12]. To reduce communication traffic and save
computational burden on the processors, an alter-
nate control paradigm entitled event-triggered control
(ETC) emerged [25]. In this strategy, the sporadic
execution of control tasks is determined by some well-
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designed event-triggering mechanism (ETM), rather
than the elapse of a scheduled time sequence. As a
consequence, the ETC is capable of reducing the exe-
cution rate of control tasks while guaranteeing suitable
properties for the system. Recently, various mecha-
nisms have been proposed for various systems in the
literature [4,11,32,1]. In the context of neural networks,
the event-triggering technique has been used mostly to
transmit states during the learning process. [23] inves-
tigates the approximation-based ETC for multi-input
multi-output continuous-time unknown affine nonlin-
ear systems, where the controller is approximated via
a linearly parameterized neural network. The event-
triggered manner has also been combined with intelli-
gent algorithms to solve optimal control problems. [28]
proposes an adaptive event-triggering algorithm based
on the actor-critic structure for continuous-time non-
linear systems. A similar approach is developed in [35]
for nonlinear systems with unknown dynamics. Based
on the universal approximator [30], i.e. the three-layer
fully connected feed-forward neural network (FCDNN),
[9] designs a four-layer FCDNN based event-triggering
controller for continuous-time nonlinear systems. The
genetic algorithm (GA) is used to optimize the initial
weights and thresholds, thus reducing the controller er-
ror. However, to the best of the authors knowledge, the
event-triggering scheme has not yet been used to update
the layers outputs in a scenario where the controller is
known, thus saving computational resources.

According to the discussion above, the paper aims at
filling such a gap by providing the following features:
i) the design of an ETM to update only a portion of
the neural network layers directly related to the acti-
vation functions, thus reducing the computational cost
associated with the evaluation of the control law; ii) the
development of sufficient convex-conditions that allow
us to compute the triggering parameters and to char-
acterize an estimate of the region of attraction for the
perturbed feedback system while ensuring its stability
and suitable performance. Different from the triggering
policies commonly investigated in the literature, we em-
ploy local sector conditions satisfied by the activation
functions to decide whether the outputs of the layers
should be transmitted through the network or not. We
use quadratic constraints (QCs) not only to abstract
the nonlinear activation functions but also to model the
event-triggering rule. As usual, Integral Quadratic Con-
straints (IQCs) allow to capture the perturbation’s in-
put/output behavior. Note that the approach proposed
differs from that of [33] in two main aspects: 1) our anal-
ysis with perturbed plants and NN controller is based on
QCs with more general multipliers; 2) we design ETMs
based on the QCs to reduce the computational cost as-
sociated with the control law evaluation. Thanks to the
use of quadratic Lyapunov function, the theoretical con-
ditions are formulated as matrix inequalities, which can
be made linear provided that some parameters are fixed.
An optimization procedure is proposed in order to deal

with the classical trade-off between update saving and
size of the inner approximation of the region of attrac-
tion of the equilibrium point. The current paper can be
viewed as complementary to [3] as summarized as fol-
lows: we consider 1) general activation function instead
of saturation; 2) QC based ETM instead of more clas-
sical error based ETM; 3) perturbed systems instead of
linear ones.

The paper is organized as follows. Section 2 describes
the complete model under consideration and the way to
abstract the activation function for stability purposes.
Section 3 states the proposed event-triggering strategy
based on quadratic abstraction and formulates the main
theoretical conditions, which allows us to compute the
triggering parameters and an inner-approximation of the
region of attraction for the perturbed feedback system.
Illustrations are provided in Section 4 by considering the
inverted pendulum considered in [33]. Finally, Section 5
points out some concluding remarks and potential future
works.

Notation. N, Rn, Rn×m denote the sets of nonnega-
tive integers, n-dimensional vectors and n × m matri-
ces, respectively. Given two vectors v, w ∈ Rn, v ≤ w
if vi ≤ wi, for all i = 1, . . . , n. Then, [v, w] is the set
of vectors u such that v ≤ u ≤ w. For any matrix A,
A⊤ denotes its transpose. Given two symmetric matri-
ces A,B ∈ Rn×n, A ≤ B (resp. A < B) stands for
B − A being positive semi-definite (resp. positive defi-
nite). For v ∈ Rn, diag(v) denotes the diagonal matrix
whose diagonal elements are given by the coordinates
of v. For v1, v2, diag([v1, v2]) denote the set of diago-
nal matrices D such that diag(v1) ≤ D ≤ diag(v2).
bdiag(A1, . . . , An) is a block diagonal matrix with ma-
trices A1, . . . , An on the diagonal. I and 0 stand respec-
tively for the identity and the null matrix of appropri-
ate dimensions. 1 denotes a vector of ones of appropri-
ate dimension. For a partitioned matrix, the symbol ⋆
stands for symmetric blocks. RL∞ is the set of rational
functions with real coefficients and no poles on the unit
circle. RH∞ ⊂ RL∞ contains functions that are ana-
lytic in the closed exterior of the unit disk in the com-
plex plane. ℓnx2 is the set of sequences x : N → Rnx with
∥x∥2 =

»∑∞
k=0 x(k)

⊤x(k). The shorthand expression
[•]⊤Πx denotes x⊤Πx to save place.

2 Modelling and Problem Statement

2.1 Model Description

Consider the perturbed feedback system illustrated
in Figure 1, which is composed by a perturbed plant
G(G,∆) and an event-triggered neural network con-
troller πETM . The perturbed plant is an interconnection
of a nominal linear plant G and a nonlinear perturba-
tion ∆. To reduce the computational cost associated
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Fig. 1. The perturbed feedback system G(G,∆) and event triggered neural network controller πETM .

with the evaluation of the control law, ETMs are in-
troduced after each layer of the neural network. They
decide whether or not the output of a layer should be
transmitted to subsequent layers of the neural network.
Such a scheme aims at significantly reducing the update
rate of the layers, while preserving the system stability.
Another possibility could be to use an ETM after each
neuron. The approach developed in this work can be
extended to this case with mild modifications.

The nominal plant G is described by the following linear
equations:

x(k + 1) = AGx(k) +BGuu(k) +BGqq(k),

p(k) = CGx(k) +DGuu(k) +DGqq(k),
(1)

where x(k) ∈ RnG is the state vector, u(k) ∈ Rnu is the
control input, and p(k) ∈ Rnp and q(k) ∈ Rnq are the
input and output of the perturbation ∆, respectively.
The interconnection between G and ∆ is set up through
the constraint:

q(·) = ∆(p(·)). (2)
where ∆ is assumed to be a bounded, causal operator,
i.e. ∆ : ℓ

np
2 → ℓ

nq
2 . The precise type of perturbation

∆ that we consider will be formally defined in the next
subsection.

The controller πETM is an ℓ-layer, feedforward
event-triggered neural network (NN) defined, for all
i ∈ {1, . . . , ℓ}, by:

ω̂0(k) = x(k),

νi(k) =W iω̂i−1(k) + bi,

ωi(k) = ϕi(νi(k)),

u(k) =W l+1ω̂ℓ(k) + bℓ+1,

(3)

where νi(k) ∈ Rni is the input to the ith activation
function, and ωi(k) ∈ Rni and ω̂i(k) ∈ Rni are the
current output and the last transmitted output from the
ith layer, respectively. The operations for each layer are
defined by a weight matrix W i ∈ Rni×ni−1 , a bias vector

bi ∈ Rni , and a nonlinear activation function ϕi : Rni →
Rni . The activation function is applied element-wise, i.e.

ϕi(νi) =
î
φ(νi1) . . . φ(ν

i
ni)
ó⊤
, (4)

where φ : R → R is the (scalar) activation function of
each neuron. For simplicity, they are assumed identical in
all layers. Gather the inputs and outputs of all activation
functions into augmented vectors as:

νϕ=


ν1

...
νℓ

, ωϕ=

ω1

...
ωℓ

, ω̂ϕ=

ω̂1

...
ω̂ℓ

 ∈ Rnϕ , (5)

where nϕ =
∑ℓ
i=1 ni. Then, stack all activation func-

tions to define the combined nonlinearity ϕ : Rnϕ → Rnϕ
as:

ϕ(νϕ) =
î
ϕ1(ν1)⊤ . . . ϕℓ(νℓ)⊤

ó⊤
, (6)

thus
ωϕ(k) = ϕ(νϕ(k)), (7)

where the (scalar) activation function is applied element-
wise to each entry of νϕ. Finally, in the same spirit as
in [33,6] the NN control policy defined in (3) can be
rewritten as:

[
u(k)

νϕ(k)

]
= N


x(k)

ω̂ϕ(k)

1

 , (8)

where

N=



0 0 . . . 0 W ℓ+1 bℓ+1

W 1 0 . . . 0 0 b1

0 W 2 . . . 0 0 b2

...
... . . . ...

...
...

0 0 . . . W ℓ 0 bℓ


=

Nux Nuω Nub

Nνx Nνω Nνb

 .
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Such a decomposition isolates the activation functions
allowing us to describe the closed loop through relations
(1), (2), (7) and (8). The relation between the current
and transmitted outputs ωϕ(k) and ω̂ϕ(k) is described
by an ETM that will be formally introduced in Section 3.
Finally, we assume that (1), (2), (7), (8) admit a steady
state (x∗, u∗, ν∗, ω∗, ω̂∗, p∗, q∗) where ω∗ = ω̂∗, p∗ = 0
and q∗ = 0.

2.2 Perturbation as Integral Quadratic Constraints

The perturbation ∆ is modeled as an operator mapping
inputs to outputs, which can be characterized by an in-
tegral quadratic constraint (IQC), consisting of a “vir-
tual” filter Ψ applied to the input p(·) and output q(·)
of ∆ and a constraint on the output of Ψ. Such a filter
Ψ is defined by the following equations:

ψ(k + 1) = AΨψ(k) +BΨpp(k) +BΨqq(k),

r(k) = CΨψ(k) +DΨpp(k) +DΨqq(k),
(9)

where ψ(k) ∈ Rnψ , with ψ(0) = 0, is the state vector,
r(k) ∈ Rnr is the output signal, andAΨ is a Schur matrix
with appropriate dimensions. In the following we will
use the shorthand expression to define the filter (9):

Ψ =

AΨ BΨp BΨq

CΨ DΨp DΨq

 (10)

IQCs can be expressed in both the frequency and time
domain. Time domain IQCs consist of hard IQCs and
soft IQCs, which are quadratic constraints on r over fi-
nite and infinite horizons, respectively [19,24,29,14]. In
this work, we focus on the analysis with hard IQCs. Note
that the hard IQCs framework allows to deal with dif-
ferent purposes as the fact to handle nonlinearities, time
variations as delay, uncertain parameters or unmodeled
dynamics.

Definition 1 (Hard IQCs) Let the matrices Ψ as de-
fined in (10), Ψ ∈ RHnr×(np+nq)

∞ andM =M⊤ ∈ Rnr be
given. The bounded, causal operator ∆ : ℓ

np
2 → ℓ

nq
2 satis-

fies the hard IQC defined by (Ψ,M) if for all p(·) ∈ ℓ
np
2 ,

q(·) = ∆(p(·)) and for allN ≥ 0, the following inequality
holds

N∑
k=0

r(k)⊤Mr(k) ≥ 0. (11)

Thus, relation (2) can be abstracted by dynamics (9) and
the constraint (11) on r(·). From now on, the notation
∆ ∈ IQC(Ψ,M) is used to indicate that the perturbation
∆ satisfies Definition 1. Moreover, we use ψ∗ to denote
the value of ψ(k) at the equilibrium. Note that since we
assume that p∗ = 0 and q∗ = 0, we have ψ∗ = 0.

2.3 Activation Functions as Quadratic Constraints

In order to develop conditions to design the event-
triggering strategy and to ensure the closed-loop stabil-
ity, we need to provide some abstraction to deal with
the activation functions. Inspired by [27], [33], the way
chosen to embed the nonlinearities is a set of quadratic
constraints (QCs). The most famous one is the classical
sector condition recalled in the definition below.

Definition 2 (Local sector condition [17]) Let α,
β, v, v̄, v∗ ∈ R with α ≤ β and v ≤ v∗ ≤ v̄. The function
φ : R → R satisfies the local sector sec[α, β] around the
point v∗ restricted to the interval [−v̄, v̄] if the following
condition holds for all v ∈ [v, v̄]:

(φ(v)−φ(v∗)−α(v−v∗))(φ(v)−φ(v∗)−β(v−v∗)) ≤ 0.
(12)

As an example, φ(v) = tanh(v) satisfies the local sector
sec[α, β] around the point v∗ = 0 restricted to the inter-
val [−v̄, v̄] with α = tanh(v̄)

v̄ and β = 1. The local sector
constraint comes from applying tighter bounds to the
global sector sec[0, 1], which encompasses many activa-
tion functions, such as tanh, ReLU, and sigmoid.

Local sectors can also be defined for the combined non-
linearity ϕ : Rnϕ → Rnϕ , given by (6), around the equi-
librium value ν∗. For αϕ, βϕ, ν, ν̄, with αϕ ≤ βϕ and
ν ≤ ν∗ ≤ ν̄, we say that ϕ satisfies the local sector
sec[αϕ, βϕ] around the point ν∗ restricted to the inter-
val [ν, ν̄] if each function ωϕ,i = φ(νϕ,i) satisfies the lo-
cal sector sec[αi, βi] around the point ν∗,i restricted to
νϕ,i ∈ [νi, ν̄i].

Remark 1 To choose interval bounds ν, ν̄ ∈ Rnϕ that
are consistent with our neural network, we proceed as fol-
lows. Consider the equilibrium value at the first layer ν1∗
and select ν1, ν̄1 ∈ Rn1 such that ν1 ≤ ν1∗ ≤ ν̄1. Then,
compute the bounds of the output ω1, i.e. ω1, ω̄1 ∈ Rn1 ,
from the equality ω1 = ϕ1(ν1). The latter, in turn, allows
us to compute the bounds of the next activation input ν2,
i.e. ν2, ν̄2 ∈ Rn2 , from the weight matrix W 1. By prop-
agating this process through all layers of the neural net-
work, we are then able to obtain a suitable interval [ν, ν̄]
for the activation input νϕ (see [33] for more details). ◦

The local sector condition for nonlinearity ϕ can be
rewritten in compact form as shown in the following
lemma.

Lemma 1 ([33]) Let αϕ, βϕ, ν, ν̄ ∈ Rnϕ be given with
αϕ ≤ βϕ and ν ≤ ν∗ ≤ ν̄, let ω∗ = ϕ(ν∗). Assume
ϕ satisfies the local sector sec[αϕ, βϕ] around the point
ν∗ restricted to the interval [ν, ν̄]. Then, for any diag-
onal positive semi-definite matrix T ∈ Rnϕ×nϕ and for
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all νϕ ∈ [ν, ν̄]î
•
ó⊤[−2diag(αϕ)diag(βϕ)T ⋆

diag(αϕ + βϕ)T −2T

]
︸ ︷︷ ︸

Πds

[
νϕ − ν∗

ϕ(νϕ)− ω∗

]
≥ 0.

(13)

The matrix Πds in (13) is the so-called diagonally struc-
tured multiplier. Such a multiplier has been often used
in the literature, but it may cause unnecessary conser-
vatism when not associated with others [8]. Note how-
ever that such a multiplier actually belongs to a more
general class, the polytopic bounding multipliers. The
following lemma, directly adapted from [5], provides a
local sector condition based on the polytopic bounding
multipliers.

Lemma 2 Let αϕ, βϕ, ν, ν̄ ∈ Rnϕ be given with αϕ ≤ βϕ
and ν ≤ ν∗ ≤ ν̄, let ω∗ = ϕ(ν∗). Assume ϕ satisfies the
local sector sec[αϕ, βϕ] around the point ν∗ restricted to
the interval [ν, ν̄]. Let us define the set of matrices

Πpol[αϕ, βϕ] := {Π = Π⊤ ∈ R2nϕ×2nϕ :

[ IΛ ]
⊤
Π[ IΛ ] ≥ 0, ∀Λ ∈ diag([αϕ, βϕ])}. (14)

Then, for any Π ∈ Πpol[αϕ, βϕ] and for all νϕ ∈ [ν, ν̄]î
•
ó⊤
Π

[
νϕ − ν∗

ϕ(νϕ)− ω∗

]
≥ 0. (15)

Let us remark that Πds, defined in Lemma 1, belongs to
Πpol[αϕ, βϕ]. Without loss of generality, an element of
Πpol[αϕ, βϕ] can be written under the form

Π=

[
X Y

⋆ Z

]
(16)

where X,Y, Z ∈ Rnϕ×nϕ . As stated in [5], it is hard to
check whether Π ∈ Πpol[αϕ, βϕ] holds, since Πpol[αϕ, βϕ]
is characterized by infinitely many constraints. However,
if we constrain the diagonal elements of Z to be nonpos-
itive, it is sufficient to check the condition in (14) for all
matrices Λ corresponding to the finitely many vertices
of the matrix interval diag([αϕ, βϕ]).

Moreover, to account for the structure of the neural net-
work, we constrain the matrices X, Y and Z to be block
diagonal:

X = bdiag(X1, . . . , Xℓ), Y = bdiag(Y1, . . . , Yℓ),

Z = bdiag(Z1, . . . , Zℓ), (17)

where Xi, Yi, Zi ∈ Rni×ni , i = 1, . . . , ℓ. Due to this par-
ticular structure, it follows thatî

•
ó⊤
Π

[
νϕ − ν∗

ϕ(νϕ)− ω∗

]
=

ℓ∑
i=1

î
•
ó⊤
Πi

[
νi − νi∗

ϕi(νi)− ωi∗

]
(18)

where for i = 1, . . . , ℓ,

Πi =

[
Xi Yi

⋆ Zi

]
.

Moreover, it follows from Lemma 2, that for all νi ∈
[νi, ν̄i] î

•
ó⊤
Πi

[
νi − νi∗

ϕi(νi)− ωi∗

]
≥ 0. (19)

3 Event-Triggering Mechanism

3.1 Definition of the ETM

Since the evaluation of a function defined by a neural net-
work can be costly, we propose event-triggering mech-
anisms (ETMs) enabling to compute the output of the
neural network by updating only a portion of its layers
instead of providing periodic sampling of all of them. In
such a way, we can reduce the computational cost asso-
ciated with the neural network evaluation while preserv-
ing the stability of the feedback system. In this work,
differently from the standard error-based functions of-
ten used in the literature [2,10,31], we propose a new
event-triggering policy, which is based on the QCs pre-
sented in Section 2.3, to decide whether or not the cur-
rent outputs ωi(k) should be transmitted through the
neural network.

Let ϕ satisfies the local sector sec[αϕ, βϕ] around the
point ν∗ restricted to the interval [ν, ν̄] and let Π ∈
Πpol[αϕ, βϕ] be of the form (16), (17). The ETM is given
by the following rule

ω̂i(k) :=


ω̂i(k − 1), if [•]⊤Πi

[
νi(k)− νi∗

ω̂i(k − 1)− ωi∗

]
≥ 0.

ωi(k), otherwise.
(20)

for all i = 1, . . . , ℓ.

Lemma 3 Let us assume that ν1(k) ∈ [ν1, ν̄1] for all
k ∈ N. Then, the following condition is always satisfied,
for all k ∈ N, î

•
ó⊤
Π

[
νϕ(k)− ν∗

ω̂ϕ(k)− ω∗

]
≥ 0. (21)
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Proof. First, let us remark that it follows from Remark 1
that if ν1(k) ∈ [ν1, ν̄1], then νϕ(k) ∈ [ν, ν̄]. For i =
1, . . . , ℓ, let us analyze the two possible cases allowed
from (20) and show thatî

•
ó⊤
Πi

[
νi(k)− νi∗

ω̂i(k)− ωi∗

]
≥ 0. (22)

First, if the QC in (20) is satisfied, then ω̂i(k) can keep
its latest value, i.e. ω̂i(k) = ω̂i(k − 1), ensuring the va-
lidity of (22). On the other hand, if the QC in (20) is
not satisfied, then ω̂i(k) will receive the current output
ωi(k), i.e. ω̂i(k) = ωi(k), so that (22) will also be verified
by (7) and (19). The proof is completed by remarking
that due to the particular structure of Π given by (16)
and (17) we have similarly to (18) thatî

•
ó⊤
Π

[
νϕ(k)− ν∗

ω̂ϕ(k)− ω∗

]
=

ℓ∑
i=1

î
•
ó⊤
Πi

[
νi(k)− νi∗

ω̂i(k)− ωi∗.

]

This gives us (21). 2

Remark 2 For the proposed ETM (20), it interesting
to check that if at a given instant k, the layer i is not
triggered, i.e. ω̂i(k) = ω̂i(k − 1), then (3) gives that
νi+1(k) = νi+1(k − 1). Further, since (22) holds at time
k − 1 for layer i+ 1, we get from (20) that the update of
layer i + 1 will not be triggered at time k, and the same
holds for all layers i + 2, . . . , ℓ. This means that when-
ever the update of a layer is not triggered, the ETM of
the subsequent layers does not need to be evaluated, thus
saving additional computations. ◦

In the remaining of the paper, the problem we intend to
solve can be summarized as follows.

Problem 1 Consider the NN controller πETM (7)-(8)
that stabilizes the perturbed plant G(G,∆) (1)-(9)-(11).
Design ETMs, according to (20), i.e. design the multi-
plier Π ∈ Πpol[αϕ, βϕ], to reduce the computational cost
associated with the evaluation of the neural network while
preserving the stability of the perturbed feedback system.

An implicit objective in solving Problem 1 is to char-
acterize the “robust” region of attraction for the per-
turbed feedback system. Such a region of attraction cor-
responds to the set of all initial conditions x(0) = x0
for which x(k) converges to the equilibrium point x∗ as-
suming that ∆ ∈ IQC(Ψ,M), i.e. limk→∞ x(k) = x∗,
for all ∆ ∈ IQC(Ψ,M). As its characterization is not an
easy task [27], we determine inner-approximations with
a well-defined representation, such as ellipsoidal sets.

3.2 Design of the ETM Matrix

This section presents a solution to Problem 1. The
proposed conditions are based on a multiplier Π ∈

Πpol[αϕ, βϕ] with structure given by (16), (17), as stud-
ied in Section 2.3.

First of all, let us define the augmented state vector

ξ(k) =
î
x(k)⊤ ψ(k)⊤

ó⊤
∈ Rnξ , (23)

with nξ = nG+nψ. Thus, the dynamics of the perturbed
system can be represented by the model:

ξ(k + 1) = Aξ(k) + Buu(k) + Bqq(k),
r(k) = Cξ(k) + Duu(k) + Dqq(k),

(24)

where

A =

[
AG 0

BΨpCG AΨ

]
, Bu =

[
BGu

BΨpDGu

]
,

Bq =

[
BGq

BΨpDGq +BΨq

]
, C =

î
DΨpCG CΨ

ó
,

Du = DΨpDGu, Dq = DΨpDGq +DΨq.

(25)

We also denote the equilibrium ξ∗ =
î
x⊤∗ ψ⊤

∗

ó⊤
. Let us

define the following useful matrices:

Nuξ=
î
Nux 0nu×nψ

ó
, Rsξ=


Inξ 0nξ×nϕ 0nξ×nq

Nuξ Nuω 0nu×nq

0nq×nξ 0nq×nϕ Inq

,
Nνξ=

î
Nνx 0nϕ×nψ

ó
, Rϕξ=

[
Nνξ Nνω 0nϕ×nq

0nϕ×nG Inϕ 0nϕ×nq

]
,

W1
i =
î
W 1
i 01×nψ

ó
,

where W 1
i is the ith row of W 1.

Theorem 1 Consider the perturbed feedback system
consisting of G(G,∆) in (1)-(9)-(11) and πETM in (7)-
(8)-(20). Let ν̄1 ∈ Rn1 , ν1 = 2ν1∗ − ν̄1 and let ν, ν̄ ∈ Rnϕ
be obtained from ν1, ν̄1 as described in Remark 1.
Let αϕ, βϕ ∈ Rnϕ such that ϕ satisfies the local sector
sec[αϕ, βϕ] around the point ν∗ restricted to the inter-
val [ν, ν̄]. Assume that ∆ ∈ IQC(Ψ,M) with Ψ and M
known. If there exist a symmetric definite positive ma-
trix Pξ ∈ Rnψ×nψ , and a multiplier Π = Π⊤ ∈ R2nϕ×2nϕ

as in (16)-(17) such that the inequalities (26) and[
(ν̄1i − ν1∗,i)

2 W1
i

⋆ Pξ

]
≥ 0, i ∈ {1, . . . , n1}, (27)

[
Inϕ

Λ

]⊤

Π

[
Inϕ

Λ

]
≥ 0, ∀Λ ∈ diag([αϕ, βϕ]), (28)
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Hξ := R⊤
sξ

Ü 
A⊤PξA− Pξ A⊤PξBu A⊤PξBq

⋆ B⊤
u PξBu B⊤

u PξBq
⋆ ⋆ B⊤

q PξBq

+
î
C Du Dq

ó⊤
M
î
C Du Dq

ó ê
Rsξ +R⊤

ϕξΠRϕξ < 0, (26)

hold then: i) the closed-loop system is locally asymptot-
ically stable around ξ∗ for any ∆ ∈ IQC(Ψ,M), and ii)
the set E(Pξ, ξ∗) = {ξ ∈ Rnξ : (ξ − ξ∗)

⊤Pξ(ξ − ξ∗) ≤ 1}
is an estimate of its region of attraction.

Proof. First, suppose that (28) is feasible, then it follows
that Π ∈ Πpol[αϕ, βϕ] and therefore Lemma 2 applies.
Secondly, (27) guarantees that ν1(k) ∈ [ν1, ν̄1] and thus
the conclusion of Lemma 3 holds. From this point, the
proof leverages that one of Theorem 2 in [33] where ωϕ
and Ψ⊤

ϕMϕ(λ)Ψϕ are replaced by ω̂ϕ and Π, respectively.
Furthermore, since [33] defines the augmented system
(24) in a more compact form, it is necessary to consider
the partitioning of the blocks indicated by the gray lines
in (26) to make the correspondences between both ap-
proaches. 2

Remark 3 For a particular perturbation ∆, there exists
a class of valid time-domain IQCs defined by a fixed fil-
ter Ψ and a matrix M taken from a constraint set M
[29, Class 12]. Consequently, the matrix M ∈ M can be
treated as an additional variable to reduce conservatism.

Remark 4 By considering in the top left block of (26),
A⊤PξA − λPξ, with λ ∈ (0, 1) a new decision variable,
instead of A⊤PξA−Pξ, the exponential convergence with
rate λ is obtained.

Theorem 1 can be simplified to handle unperturbed sys-
tems, that is, system (1) defined by:

x(k + 1) = AGx(k) +BGu(k). (29)

Corollary 1 Consider the feedback system consisting of
G in (29) and πETM in (7)-(8)-(20). Let ν̄1 ∈ Rn1 ,
ν1 = 2ν1∗ − ν̄1 and let ν, ν̄ ∈ Rnϕ be obtained from ν1, ν̄1
as described in Remark 1. Let αϕ, βϕ ∈ Rnϕ such that ϕ
satisfies the local sector sec[αϕ, βϕ] around the point ν∗
restricted to the interval [ν, ν̄]. If there exist a symmetric
definite positive matrix P ∈ RnG×nG , and a multiplier
Π = Π⊤ ∈ R2nϕ×2nϕ as in (16)-(17) such that the fol-
lowing inequalities hold

H := R⊤
s

[
A⊤
GPAG − P A⊤

GPBG

⋆ B⊤
GPBG

]
Rs +R⊤

ϕΠRϕ < 0,

(30)[
(ν̄1i − ν1∗,i)

2 W 1
i

⋆ P

]
≥ 0, i ∈ {1, . . . , n1}, (31)

[
Inϕ

Λ

]⊤

Π

[
Inϕ

Λ

]
> 0, ∀Λ ∈ diag([αϕ, βϕ]), (32)

where

Rs =

[
InG 0nG×nϕ

Nux Nuω

]
, Rϕ =

[
Nνx Nνω

0nϕ×nG Inϕ

]

then: i) the closed-loop system is locally asymptotically
stable around x∗, and ii) the set E(P, x∗) = {x ∈ RnG :
(x− x∗)

⊤P (x− x∗) ≤ 1} is an estimate of the region of
attraction for the feedback system.

Proof. First, suppose that (32) is feasible, then Lemma 2
applies. Secondly, (31) guarantees that ν1(k) ∈ [ν1, ν̄1]
and thus the conclusion of Lemma 3 holds. From this
point, the proof is similar to that of Theorem 1 in [33]
where ωϕ and Ψ⊤

ϕMϕ(λ)Ψϕ are replaced by ω̂ϕ and Π,
respectively. 2

Remark 5 Conditions of Theorem 1 and Corollary 1
involve an infinite number of LMIs in (28) and (32).
However, as already mentioned in Section 2.3, they can
be reduced to a finite number of LMIs by constraining
block Z in the Π matrix to have nonpositive diagonal el-
ements. In that case [33], the conditions (28) and (32)
need only to be checked at the vertices of the matrix in-
terval diag([αϕ, βϕ]).

Based on (20), the greater is the local sector sec [αϕ, βϕ],
the lower is the evaluation activity in the neural net-
work. Therefore, we are interested in finding the largest
sector that results in feasible conditions. Furthermore,
as it is well-known that there is a trade-off between the
update saving and the size of the estimate of the region
of attraction (see, e.g., [2]), it seems reasonable to pro-
pose an optimization function that can help to enlarge
such an estimate, while reducing the amount of compu-
tation. Given the sector bounds αϕ and βϕ, the following
optimization is considered:

O :

min ρ,
s.t. (26), (27), (28),Hξ ≥ −ρInξ+2nϕ+nq

(33)

From (26), we want the matrix Hξ to be as close as pos-
sible to zero. Thus, for a given local sector sec [αϕ, βϕ],
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we are indirectly 1) minimizing Pξ, consequently max-
imizing the estimate of the region of attraction, and 2)
approaching the infeasibility of the stability condition
related to the values αϕ and βϕ. In the case of Corollary
1, the constraints of the optimization problem (33) are
changed by (30), (31), (32) and H ≥ −ρInG+2nϕ .

4 Simulations

Consider the nonlinear inverted pendulum system with
mass m = 0.15 kg, length l = 0.5 m, and friction coef-
ficient µ = 0.5 Nms/rad. Its dynamics is described by
the following model

ẋ(t) =

0 1
g

l
− µ

ml2

x(t) +
 0

1

ml2

u(t) +
 0

−g
l

 q(t),
(34)

where the plant state is x(t)=
î
θ(t) θ̇(t)

ó⊤
with θ(t) the

angular position (rad), the control input is u(t), and the
static non-linearity is q(t) = θ(t)−sin(θ(t)). The system
is discretized with a sampling time dt = 0.02 seconds.
To stabilize it, we have designed a controller in the same
way as in [33]. Such a controller is parameterized by a
2-layer feedforward neural network with n1 = n2 = 32,
tanh is the activation function for both layers and bi = 0,
i ∈ {1, 2, 3}, ensuring that the equilibrium point is at the
origin, i.e. (x∗, u∗, ν∗, ω∗, p∗, q∗) = 0. Also, 0 = ∆(0) for
all ∆ ∈ IQC(Ψ,M). Consequently, the perturbation’s
internal state also has zero initial condition.

With respect to the perturbation, we assume that ∆ ∈
IQC(Ψ,M). Then according to Definition 1 and defini-
tion of Ψ in (10), one considers:

Ψ =


0 −Ls I

I Ls −I

0 −ms I

 and M =

[
0 M12

⋆ 0

]
, (35)

where Ls = (θ̄−sin(θ̄))/θ̄, θ̄ = 0.73, ms = 0, and M12 ≥
0 is a matrix to be designed.

To illustrate the efficiency of the proposal, let us first
consider Π = Πds. Our first goal is to evaluate the influ-
ence of the size of the local sector sec[αϕ, βϕ] on the trans-
mission activity in the neural network. To do this, we
solve the optimization procedure (33) for some increas-
ing αϕ and βϕ bounds. To compute the lower bounds
αϕ, we impose different constraints on ν1 ∈ [ν1, ν̄1],
ν̄1 = −ν1 = δα × 132×1. The notation αϕ|δα will be
used to indicate the values of αϕ calculated from δα. The
upper bounds are directly selected from the unity, i.e.
βϕ = δβ×164×1. For each case, we simulate the feedback
system response for 100 initial conditions belonging to
the domain of attraction. By defining the update rate ri

of the ith layer as the ratio between its number of events
and the number of samplings, Table 1 shows r1 and r2
for different local sectors sec[αϕ, βϕ]. Also, in the fourth
column of both tables, we put a measure of the income
of the ETMs. As we can see, in general, the bigger is the
local sector sec[αϕ, βϕ], the lower is the update rate of
the layers. Such a reduction become more pronounced
when we enlarge βϕ.

Local sector Update rate (%)
Area

bounds r1 r2
r1+r2

2

αϕ|δα=0.2, βϕ=164×1 99.68 99.25 99.46 0.92
αϕ|δα=0.3, βϕ=164×1 99.46 98.91 99.19 2.29
αϕ|δα=0.4, βϕ=164×1 99.30 98.56 98.93 4.54

αϕ|δα=0.2, βϕ=1.025×164×1 45.37 38.88 42.12 0.89
αϕ|δα=0.3, βϕ=1.025×164×1 39.46 38.98 39.22 2.22
αϕ|δα=0.4, βϕ=1.025×164×1 39.36 38.52 38.94 4.39
αϕ|δα=0.2, βϕ=1.05×164×1 49.00 22.14 35.57 0.86
αϕ|δα=0.3, βϕ=1.05×164×1 37.66 21.92 29.79 2.14
αϕ|δα=0.4, βϕ=1.05×164×1 32.28 21.88 27.08 4.25

Table 1
Comparison of updates rate for different local sectors.

In addition, we investigate the influence of the size of
the local sector sec[αϕ, βϕ] on the size of the estimate
of the region of attraction. In this case, we compute the
area of the ellipses resulting from the projection of the
ellipsoid E(Pξ, ξ∗) with the plane formed by the plant
states (x1×x2) for each local sector considered in the last
case. The results are shown in the last column of Table 1.
Note that the ellipses increase when αϕ bounds increase,
which is reasonable, since we have larger ν1 bounds. On
the other hand, the ellipses slightly decreases when βϕ
bounds increase, which can be related to the trade-off
mentioned earlier. This can also be verified in Figure 2.

Fig. 2. Projection of E(Pξ, ξ∗) on the plane x1 × x2 for local
sectors given by αϕ|δα and βϕ = δβ × 164×1.

By considering the largest local sector (last line in Ta-
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ble 1), we plot the closed-loop system temporal response
for an initial condition belonging to the domain of at-
traction. Figure 3 shows the plant states (top) and the
control input (bottom), where we can verify the conver-
gence of the trajectories to the origin in both cases. The
intervals between events of the layers ω1 (magenta solid
lines) and ω2 (cyan dashed point lines) are presented in
Figure 4. In this case, we have found update rates of
33.80% and 21.60% for ω1 and ω2, respectively. There-
fore, by introducing ETMs on the output of the layers,
we were able to reduce 72.30% of the transmission activ-
ity on the neural network. This have a direct impact on
the computational cost associated with the evaluation
of the control law.

Fig. 3. The closed-loop system response for
x(0) =

î
0.3758 −1.4850

ó⊤
.

Fig. 4. Inter-events of the layers ω1 and ω2.

Furthermore, to verify the reduction of the evaluation
activity for a neural network with more layers/neurons,
we designed two other controllers, one with 3 layers
n1 = n2 = n3 = 32 and another with 4 layers n1 =
n2 = n4 = 32 and n3 = 16. For the first one we solved
the optimization procedure (33) with αϕ|δα=0.15 and
βϕ = 1.05×196×1, and for the second one, we considered
αϕ|δα=0.04 and βϕ = 1.05× 1112×1. The update rate ob-
tained for each layer of each controller is shown in Table
2. Note that for both controllers, the evaluation activity
has been approximately halved.

Now we consider Π given by (16)-(17). By repeating the
same simulations as before, we have found the update
rates shown in Table 3. For the 2-layers controller, we
used αϕ|δα=0.4 and βϕ = 1.05×164×1, and for the others,
the same values indicated in the previous paragraph.
Note that, with this general multiplier, we have further

ℓ
Update rate (%)

Area
r1 r2 r3 r4

∑ℓ
i=1 ri
ℓ

3 51.18 50.99 50.48 - 50.88 5.33
4 50.51 48.18 48.02 47.95 48.67 0.14

Table 2
The update rates for the NN controllers with 3 and 4 layers.

reduced the transmission activity on the neural network
for the 2 and 3-layers controllers. On the other hand, for
the 4-layers controller, the percentage of transmission
remained almost the same. In addition, we have put in
the last column of Table 3, the area of the projection of
E(Pξ, ξ∗) on the plane (x1 × x2) obtained. Comparing
with the results of tables 1 and 2, we can see that bigger
regions are estimated using Π.

ℓ
Update rate (%)

Area
r1 r2 r3 r4

∑ℓ
i=1 ri
ℓ

2 27.33 21.75 - - 24.54 7.87
3 38.45 16.28 15.29 - 23.34 5.58
4 48.65 48.33 48.33 48.26 48.39 0.34

Table 3
Percentage of updates for NNs with 3 and 4 layers.

5 Conclusion

This paper proposed a novel event-triggering strategy,
based on (local) sectors conditions related to the ac-
tivation functions in order to decide whether the out-
puts of the layers should be transmitted through the
network or not. Theoretical conditions allowed to de-
sign the event-triggering mechanism and to estimate the
region of attraction, while preserving the stability and
suitable performance of the closed-loop system. Simu-
lations have illustrated the effectiveness of the event-
triggering scheme, showing a significant reduction of the
transmission activity in the neural network even if the
number of layer increase. The results open the doors for
future works as studying other event-triggering struc-
tures and different abstractions in order to reduce the
conservatism of the conditions.
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