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MATTHIEU FRADELIZI, NATHAEL GOZLAN, SHAY SADOVSKY, AND SIMON ZUGMEYER

ABsTrACT. We explore alternative functional or transport-entropy formulations of the Blaschke-
Santald inequality and of its conjectured counterpart due to Mahler. In particular, we obtain
new direct and reverse Blaschke-Santal6 inequalities for s-concave functions. We also obtain new
sharp symmetrized transport-entropy inequalities for a large class of spherically invariant probability
measures, including the uniform measure on the unit Euclidean sphere and generalized Cauchy
and Barenblatt distributions. Finally, we show that the Mahler’s conjecture is equivalent to some
reinforced log-Sobolev type inequality on the sphere.
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1. INTRODUCTION

The classical Blaschke-Santalo inequality [Bla23, [San49] states that if K < R™ is a convex body,
then there exists z € R™ such that

(1) |K[|(K —2)°| < |B3%,

where the polar of a set A < R" is defined by A° = {y € R";{(x,y) < 1,Va € A}, and BY denotes the
Euclidean unit ball of R™. Equality holds in () if and only if K is an ellipsoid. Moreover, if one of the
convex bodies K or K° has its barycenter at 0 (which is for instance the case for centrally symmetric
convex bodies), then (Il holds with z = 0.

The inequality ({l) admits a functional version, first proved by Ball [Bal86] in the case of even func-
tions, and then extended to arbitrary functions by Artstein-Avidan, Klartag and Milman [AAKMO04]:
for any function ¢ : R" — R u {+00} there exists z € R” such that

(2) Jef“’ da:fef(“’z)* dx < (27)",

where, o, (2) = p(x+2), z € R™, and the Fenchel-Legendre transform of a function f : R” — Ru{+w}
is defined by

[ (y) = sup {(x,y) — p(x)},  yeR™

zeR™
Lehec [Leh09a] gave another proof of inequality (@) and showed that, if {ze=%®) dz = 0, then (2)
2
holds with z = 0. One sees that (@) gives back () by taking ¢ = %
Recently, a sharp form of Talagrand transport-entropy inequality for the Gaussian standard mea-

sure v on R™ has been deduced from (2)) by Fathi [Fat18]. More precisely, for all probability measures
v1, v on RY with vo centered, it holds

(3) W3 (v1,v2) < 2H (11]7) + 2H (v2]),

where Wy denotes the usual quadratic Wasserstein distance (with respect to the usual Euclidean norm
| - | on R™), defined by

W3(v1,ve) = inf E[| X1 — Xo|?],
where the infimum runs over random vectors satisfying X1 ~ 14 and Xo ~ 1o, and H(-|u) denotes
the relative entropy functional with respect to some measure p on R™, and is defined by

dv
H(vl) = j log 5 .

whenever v is absolutely continuous with respect to p, and +oo if this is not the case. Choosing
vy = v, Inequality (@) immediately gives back the following classical inequality obtained by Talagrand
in [Tal96]: for all probability measures 14 on R™

(4) W3 (v1,7) < 2H(v1]7).

Without centering assumptions on vs, the following inequality can be easily deduced from (@): for all
probability measures v, 9 on R™,

(5) W3 (vi,v2) < AH(v1|y) + 4H (v2]y).
Interestingly, Inequalities (@), (@) and () are all sharp. We refer to [Led01] or [GL10] for applications

of transport-entropy inequalities to the concentration of measure phenomenon.

The first main objective of this paper is to extend the preceding results to other model probability
spaces than the Gaussian space (R™, | - |,y). For that purpose, we will rely on a more general functional
version of the Blaschke-Santalé inequality that we shall now present. The functional inequality (2)) is
actually a particular case of the following result first proved by Ball [Bal86] for even functions, then
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by the first named author and Meyer [FMQ7] for log-concave functions and finally extended by Lehec
[Leh09¢| to arbitrary measurable functions: if f : R™ — R, is integrable, then there exists a point
z € R™ such that for any measurable function g : R™ — R satisfying

f@+2)9(y) < plla,y))2,  Va,ye R such that (z,y) > 0,
it holds

©) [r@as [awav < ([ p<|a:|2>dx)2,

where p : Ry — R, is some weight function such that §p(|z|?)dz < +c0. As first proved by Ball
[Bal&6], if f is even, then z can be chosen to be 0. Inequality (2] corresponds to the weight function
po(t) =e 2, t > 0.

In the spirit of Fathi’s version of Talagrand’s inequality (3]), we show in Theorem B Ilthat the general
functional version of the Blaschke-Santalo inequality (@) implies sharp transport-entropy inequalities
for a class of spherically invariant probability measures that contains the standard Gaussian as a
particular case. More precisely, we prove the following result in Theorem [B.1t

Theorem. If p: Ry — (0,00) is a continuous non-increasing function such that § p(|z|*)dz < +0,
and t — —log p(et) is convex on R, then the probability measure

) = 2l
P 2
§o(lyl”) dy
satisfies the following inequality: for all vi,vs € P(R™) with v1 and ve symmetric,
(7) Toop (1, v2) < H(valpp) + H(va|pyp),
where
7:%(”171/2) = inf E[wp(Xl,Xg)]

1~v1,Xo~v2

is the optimal transport cost associated to the cost function w, defined by

1Og<M) ifz-y=0
wp(z,y) = ol p(lyl?) -7 z,y € R™
+0 otherwise

In the result above, and in all the paper, a probability measure p on R™ will be called symmetric
if it is invariant under the map R” — R" : x — —z.

The proof of this result relies on a classical duality argument due to Bobkov and Gétze [BG99].
Since Inequality () holds only for symmetric probability measures, it can be considered as some
transport-entropy version of Ball’s functional Blaschke-Santal6é inequality for even functions. Lin-
earizing Inequality (7)) around s, gives back a sharp Brascamp-Lieb type inequality recently used by
Cordero-Erausquin and Rotem [CER] in their study of the (B) conjecture and the Gardner-Zvavitch
conjecture for rotationally invariant probability measures. More precisely, we get the following in
Theorem (.1t

Theorem. Let p: Ry — Ry such that t — v,(t) = —logp(e') is convex and increasing. Define the
measure [, in the same way as in the previous theorem. Then, for all f € CP(R™) even and such that

Sfd,up:O,

®) | ran <5 [ 1,008V d,
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where H, is the positive matriz given by

al(y) 1 [(In . y®2y>v:)(t) i y@yvﬁ(t)}
2 Iyl

ly|? yl* *

where, for simplicity, we used the notation t = 2logly|.

Since () admits equality cases, this shows in particular that Inequality (7)) is sharp.

In comparison to Fathi’s inequality (B]), it seems natural to ask if (7)) can be extended to more
general couples of probability measures, as for instance couples of the form (vq,v2) with vy arbitrary
and v, centered with respect to p,. A closely related question is whether, for a given weight function
p, the functional Blaschke-Santalo inequality (@]) is true with z = 0 whenever f has its barycenter at
0, as proved by Lehec |[Leh09a] in the particular case of the weight function pg defined above. As we
will now explain, the answer to these questions actually depends on the weight function p. Consider
the class of weight functions (ps)ser, defined for s # 0 by

1
ps(t) = (1 —st)3, t=0.
The associated probability measures are the following:

e For s > 0, we will denote

1 1/(2s)

(9) s (@) 1= pp, (dw) = = (1= sla?]7 da,

which is a particular case of the so-called Barenblatt profiles. Note that v4 — v as s — 0 (in

the sense of pointwise convergence of densities for instance).

e For 8 > n/2, we will denote
1
= e
Zg(1+|x[7)P

which is a Cauchy type distribution and corresponds to (a dilation of)pu,, with s = —1/(23).

dugs(z)

Let us first present our main contributions in the range s > 0. As we shall see in Theorem [3.2] the
following is true.

Theorem. Let s > 0. Consider the probability vs defined in [@). Then, for any v1, vy with compact
support included in the open Euclidean ball By centered at the origin and of radius 1/+/s, and with vy
centered,

(10) Tk, (v1,v2) < H(lys) + H(va|vs),

where kg : Bg x Bg —> R

1 1—sz-y
ks y =-1 s y Bs.
) = ot (T ) e

This result is analogous to Fathi’s result (3] in the Gaussian case and gives back (@) by sending
s — 0. One can show that (I0) (see Remark B3] for explanations) also implies the following version
of the functional Blaschke-Santalé inequality: for all continuous f : R® — R, and g : R — R, with

supports in B and such that bar(f) := stff((% =0 and

(11) f(@)gly) < ps({z,y))?,  Va,ye€ By,

it holds 2
ff(:v) deg(y) dy < (Jps(|x|2)d$> .
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This generalizes the Blaschke-Santalé inequality under a centering condition obtained by Lehec in
[Leh09a] for the weight po (which corresponds to the limit case s — 0). As we will see with Theorem
2.9 one can go actually a step further:

Theorem. If f: R" — R, is integrable and such that 0 € int(Conv(supp(f))), then it holds

| #aras [ sway < ( [ peta) dx>2 (1 — s(Sany (£4(£), bar(£))"+H+,

where

Lof(y) = inf %

the infimum being taken on {xr € R™; f(x) > 0} and Sans(g) denotes the s-Santald point of g whose
definition is given in Lemma[2.8.

for s #0,

The proof of this theorem relies on the fact that the integral of L£,(f.) with respect to Lebesgue,
where f.(z) = f(z + x), x € R™, can be expressed as the integral of L4(f) under some weighted
measure. The same type of arguments can actually be used at the level of the Blaschke-Santald
inequality for sets. In particular, we show the following in Theorem 2.1}

Theorem. If K is a compact set such that |K| > 0 and 0 € int(Conv(K)), then
[K|IK°| < | B3 [*(1 = (San(K°), bar(K)))" ",
with equality if and only if K is a centered ellipsoid, where San(K°) is defined in Section [2 In

particular, if bar(K) := SK‘% =0 then |K||K°| < |BZ|*.

The above centered inequality seems to be new, even for convex bodies, while the case where
bar(K) = 0 extends a result by Lutwak [Lut91], also reproved differently by Lehec [Leh09a], who
both obtained the same inequality but under the additional assumption that K is starshaped.

Let us now turn to the range s < 0. Applying Inequality (7)) with the weight function ¢ > (1+¢)~#
and § > n/2, yields

(12) B

where the optimal transport cost

(v1,12) < H(vi|pg) + H(va|pg),

is defined with respect to the cost function w given by

Te
Te

— l1tzy T
w(z,y) = 210g(\/1+|T\/1+y|2) ifz-y>0 : z,y € R™.

400 otherwise

The fact that the cost function w can take the value +00 makes inequality (I2]) for Cauchy type
distributions more rigid than its counterpart (I0) for Barenblatt type distributions. Namely, it is not
possible to extend ([[Z) to couples of probability measures (1, ) with 11 arbitrary and vs symmetric.
See Remark 329 for more details. For the particular value 8 = (n+1)/2, it turns out that the canonical
geometric framework for (I2)) is the unit sphere S* = R"*! equipped with the uniform probability
measure, denoted by . In Theorem B.7] we establish the following.

Theorem. Let o : S™ x S™ — R u {+00} be the cost function defined by

B 1og(%) ifu-v>0 n
(13) a(u,v) = { +o0 otherwise ' uvES
and denote by T, the corresponding transport cost on P(S™). Then, for all probability measures vy, vy
on S™ which are invariant under the maps S* — S™ : u+— —u and S™ — S : u— (U1, ..., Up, —Upnt1),
it holds

(14) (n+ 1)Ta(v1,12) < H(n|o) + H(z|o).
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This result is deduced from (I2)) using the fact that the standard Cauchy distribution fi(,41)/2 is
the image of o, the uniform probability measure on the upper half sphere S, under the so-called
gnomonic transformation:

Sﬁ”R”:u»%( e , 42 e, Un )

Un+1 Un+1 Un+1

The cost function « defined above has been introduced by Oliker [Oli07] (see also [Ber16] and [Kol20])
in connection with the so-called Aleksandrov problem in convex geometry. Recently, Kolesnikov
[Kol20] proved the following inequality involving the transport cost T, : for any symmetric probability
measure v on S™ (that is, invariant under the map S® — S" : u — —u), it holds

(15) (n+ 1)7a(v,0) < H(v|o).

Thus (4)) already improves (IH) for a special class of distributions. One can actually improve (5]
further. We show in Theorem B.7, by a direct proof using the Blaschke-Santal6é inequality written
in polar coordinates together with the dual Kantorovich type formula for 75, that (Id]) holds under
the sole assumption that v and vo are symmetric. We refer to the end of Section B3] for additional
comments about the sharpness of this improvement of Kolesnikov inequality (I3]).

The second main objective of this paper is to propose a transport-entropy framework for reverse
Blaschke-Santal6 inequalities. Let us recall that Mahler [Mah39b] conjectured that for any centrally
symmetric convex body K the following lower bound holds:

o 4n
(16) [KIIK® > —,
with equality for example if K is a cube. Mahler established this inequality in dimension 2 [Mah39a,
while the conjecture for centrally symmetric bodies was established by Iriyeh and Shibata in dimen-
sion 3 [IS20] (see also [FHM™*22|). The conjecture was proved for particular families of convex bodies
like unconditional convex bodies [SR81l, [Mey86|, zonoids [Rei86l [(GMRSS|, bodies having symmetries
IBE13| IS22]. Bourgain and Milman [BM8T] (see also [Kup08| Naz12| [Blo14l [GPV14| [Ber22, Ber21])
established an asymptotic form of Mahler conjecture by proving that there exists a constant x > 0
such that

n
IK|K°| > =,
n!

for any centrally symmetric convex body K. Like the classical Blaschke-Santalo inequality, the Mahler
conjecture admits an equivalent functional form introduced by Klartag-Milman [KMO05|] and the first
named author and Meyer [FMO07, [FMO8b]: as shown in [FMO8D], the inequality (I6]) holds for all
n > 1 if and only if the inequality

(17) fe_-f d:vJe_f* dx = 4"

holds for all n > 1 and all even, convex functions f : R® — R u {400} such that e~/ dz > 0 and
§e=/ * dx > 0. Moreover, if (I7) holds for a given n, then (If) also holds for this n. For unconditional
functions, ([IT) holds true for all n > 1. Denote by

¢ = inf | K||K°| and ' = ianeff dxfeif* dz,
where S stands for sets, F' for functions and the infima run respectively over all centrally symmetric
convex bodies K and all even, lower semicontinuous and convex functions f : R — R u {+0o0} such
that §e=/ dz > 0 and Se_f* dx > 0. Then, as explained above, for any n > 1 it always holds

F
Cn
-

\%

S
Cn

while the converse relation between cf” and (¢?,);m>, is more intricate.
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In [Goz22], the second named author obtained an equivalent formulation of the Mahler conjecture
involving transport, entropy and Fisher information in the Gauss space (R™,]| - |,v). More precisely,
according to [Goz22, Theorem 1.3|, for any n > 1, the constant c¢Z is the best constant ¢ > 0 (that is
the greatest) in the inequality

(18) HOnb) + HOml) + 5W30n.02) < 510mb) + 51 + 1og (220 )

where 17, = eV dx,ny = e~V2 dx are arbitrary symmetric log-concave probability measures on R™
with full support and, for ¢ = 1,2, v; is the so-called moment measure of 7; defined by

vi = V(Vi)gni
and I(n;|y) is the relative Fisher information of n; with respect to -y defined by

I(mily) = fIVVi(x) —aPe Vi@ gy,

Moreover, ([I8) holds true with the constant ¢ = 4™ if 1y, 72 are further assumed to be unconditional.
The class of probability measures 7(dx) = e~V dx for which (I8) holds can be slightly extended
to those having an essentially continuous potential V', which means that the convex potential V'
explodes at almost every points of the boundary of the support of 7 (we refer to [Goz22| or [CEK15]|
for a precise definition). When the W5 distance between the moment measures of 71 and 72 is large
enough, inequality (I8) thus improves the classical log-Sobolev inequality for the standard Gaussian
measure 7y due to Gross [Gro75|

(19) Hnl) < 3101h),

which holds for all probability measures n with a sufficiently smooth density. In the unconditional
case, this improvement is sharp in the sense that, one can easily construct sequences of probability
measures 7f, 75 for which the difference between the two sides of ([I8) (with ¢ = 4™) goes to 0 as
k — o0. Note however that each side goes individually to +00. There is, in particular, no equality
case in (I8)) (we refer to [Goz22, Remarks 3.9, 3.10 and 3.11] for this question). The proof of [Goz22]
Theorem 1.3] relies on the following two ingredients:

e The characterization of moment measures given by Cordero-Erausquin and Klartag [CEK15],
according to which a probability measure v is the moment measure of some log-concave
probability measure 7, with an essentially continuous potential if and only if v is centered
and its support is not contained in a hyperplane. The probability 7, is then unique up to
translations.

e The following variational characterization highlighted by Santambrogio in [Sanl6] (see also
[FGJ17]): if v is centered, has a finite moment of order 2 and its support is not contained in
a hyperplane, then the probability measure 7, is up to translations the unique minimizer of
the functional

1
n = Hnly) = 5 Wz (v,n)

over the set of probability measures having a finite moment of order 2.

In the present paper, we provide a similar transport-entropy formulation of the (conjectured) reverse
Blaschke-Santalé inequality where the space R™ is replaced by the sphere S”, the standard Gaussian
measure v by the uniform probability measure ¢ on S™, the W5 distance by the transport cost Ty
associated to the cost function « defined in (I3)), and where finally the notion of moment measure is
replaced by the notion of cone measure. If C < R™*! is a centrally symmetric convex body of volume
1, the cone measure of C' is the probability measure v on S™ defined by

ve = Law (Ne (pc(X) X)),
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where X is a random vector uniformly distributed over C, p¢ is the radial function of C' and N¢ :
0C — S™ is the Gauss map. Equivalently, v¢ is also the pushforward of the probability measure n¢
on S™ defined by

(20) dnc (x) = | By o () do(x)

under the map S — S" : © — Ng(xpc(z)), a construction which is reminiscent of the definition
of moment measures. The set of cone measures has been characterized by Boroczky, Lutwak, Yang
and Zhang in [BLYZ13|]. They proved that a symmetric probability measure v on S™ is the cone
measure of some centrally symmetric convex body C' if and only if it satisfies the so-called subspace
concentration condition, which is recalled in Section[5.Jl To associate a set C' to a probability measure
v having good properties, the main step in the method proposed in [BLYZ13] consists in solving a
certain optimization problem over the set of support functions. As noticed by Kolesnikov [Kol20], this
minimization problem can be recasted as follows: given a probability measure v on S™, minimize the
function F), defined by
1
F,(n) = n——HH(n|0) = Talv,n)

over the set of symmetric probability measures on S™. More precisely, if v satisfies the strict subspace
concentration inequality (which is stronger than the subspace concentration condition), then the
functional F,, admits at least one minimizer n* which is of the form n* = n¢ above for some centrally
symmetric convex body C of volume 1, and v is the cone measure of C. A notable difference between
cone and moment measures, is that there is in general no uniqueness of C'. This uniqueness question
is related to the log-Minkowski conjecture, a major open problem in convex geometry introduced in
[BLYZ12], which can be restated as follows: if C' is a centrally symmetric convex body with unit
volume, then n¢ minimizes F, ..

Assuming the log-Minkowski conjecture is true, we obtain in Theorem [5.15] the following result:

Theorem. If the log-Minkowski conjecture is true, then the constant ci_,_l is the best constant ¢ > 0
(that is the greatest) in the inequality

(21)

H(ne,lo) + H(ney|o) + (n+ 1)Ta(vey, ves,)

By P n—i—lf Vs VAP v, n+1f [Vsn V22 v,
- og (14 YoVl i gy L (00 (1 Ve B PN v
og< ¢ T s\t n+1)?)° 7T A m+1z)" %

where C1,Cy < R"™ are arbitrary centrally symmetric convex bodies with unit volume and, for
i=1,2,dne, = |B§+l|pgj1 do = e Vido and vc, is the cone measure of C;.

Since a version of the log-Minkowski conjecture is true in the unconditional case [Sarl5|, we show
in Theorem that (ZI)) is true with the constant ¢ = 4"*!/(n + 1)! when Cj,Cy are assumed
to be unconditional. In this unconditional setting, contrary to what happens in the Gaussian case,
Inequality (2I)) admits equality cases which are given by couples of unconditional convex bodies (C, C*)
minimizing the volume product and properly normalized to be of volume 1. Without assuming the
log-Minkowski conjecture, some weaker statement remains valid, see Theorem Contrary to the
Gaussian case, we do not know whether the underlying log-Sobolev inequality

2
H(e Vdzx|o) < gflog (1 + M) e Vdo
a

holds true for all regular enough potentials V', and some constant a > 0. We refer to Section [l for
additional remarks and open questions about these improved log-Sobolev inequalities on the sphere.
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2. BLASCHKE-SANTALO’S INEQUALITY FOR COMPACT SETS AND $-CONCAVE FUNCTIONS AND
FUNCTIONAL FORMS OF MAHLER'S CONJECTURE

In the first subsection, we extend to arbitrary compact sets the result of Lutwak [Lut91] and Lehec
|[Leh09a] stating that the Blaschke-Santalo inequality holds for starshaped set with barycenter at the
origin. In the second subsection, we generalize this to the Blaschke-Santal6 inequality for s-concave
functions, for s > 0. In fact, for sets as well as for functions, we prove an inequality valid also if
the barycenter is not at the origin. In the third subsection, we establish functional forms of Mahler’s
conjecture for unconditional s-concave functions, s > —1/n. In the case s < 0, the situation is more
involved because the set of s-concave functions is not preserved under L£,-duality.

2.1. Blaschke-Santalé inequality for compact sets. For any set A in R™ we define its polar by
A° = {y e R";{(x,y) < 1,Vz € A}. Then, one has A° = (Conv(4,0))°, thus the set A° is a closed
convex set containing the origin and, from the bipolar theorem, one has (A°)° = Conv(A,0). The
classical Blaschke-Santalo [Bla23| [San49] inequality asserts that, for any convex body K in R™, one
has

: K K* oan2,
minJK(K — 2)°| < By

with equality if and only if K is an ellipsoid. For any convex body K, we define its support function
hi(y) = sup,c{x, y), for y € R™. If moreover K contains the origin, we define its radial function by
pi (u) = sup{t;tu € K}, for ue S" ! and one has pgo(u) = hx(u)~!, for all w € S"~L. For any z in
the interior of a convex body K and any y € R™, one has

hKfAy)=sgg@%*%y>=fwdy)*<my>

Integrating in polar coordinates, we get
(22)

Pl—zye (1) o
e N R O s Ot W e e

This formula shows that the map z — |(K — 2)°| is strictly convex. Moreover, it is not difficult to
see that |(K — 2)°| tends to infinity when z — 0K. It follows that the minimum min, |(K — 2)°| is
reached at a unique point San(K) called the Santalo point of K, which is in the interior of K. It
follows that Blaschke-Santal6 theorem may be reformulated as follows: for any convex body K such
that San(K) = 0 one has |K||K°| < |B}|?, with equality if and only if K is a centered ellipsoid. We
say that a measurable set K with finite and positive volume is centered if its center of mass bar(K)

defined by
xdx
bar(K) = J —
K K|
is at the origin. Since San(K) is the unique critical point of the function z — |(K — 2)°|, we get
that z = San(K) if and only if V|(K — 2)°| = 0. By differentiating ([22]) and integrating in spherical
coordinates, we get

R udo (u)
V== | e
It follows that the Santalé point San(K') of K is also the unique point z such that bar((K — z)°) = 0.
One deduces from this property that San((K — bar(K))°) = 0 and that San(K) = 0 if and only if
bar(K°) = 0. Thus, the following third reformulation of Blaschke-Santalé inequality holds: for any
convex body K such that bar(K) = 0, one has |K||K°| < |B%|?, with equality if and only if K is an
ellipsoid. Lutwak noticed this in [Lut91] and extended it to the case of compact starshaped bodies. A
compact set A is called starshaped with respect to the origin if for any a € A the segment {ta;t € [0, 1]}
is contained in A. In his Theorem 3.15 in [Lut91], Lutwak proved that if A is starshaped with respect

=(n+ 1)J(K_ )Oxdx = (n+ 1)|(K — 2)°| bar((K — 2)°).



10 MATTHIEU FRADELIZI, NATHAEL GOZLAN, SHAY SADOVSKY, AND SIMON ZUGMEYER

to the origin and has barycenter at the origin then |A||A°| < |BY|?, with equality if and only if A is
a centered ellipsoid. This result was also reproved by Lehec [Leh09al who deduced it from a version
of this theorem for log-concave functions. In the following theorem, we extend Lutwak’s theorem to
any compact set with a different proof.

Theorem 2.1. Let K be a compact set such that |[K| > 0 and 0 € int(Conv(K)). Then

(23) K[| K°| < [Bg[*(1 — (San(K°), bar(K)))"*,

with equality if and only if K is a centered ellipsoid. In particular, if bar(K) = 0 then |K||K°| < |B%|?,
with equality if and only if K is a centered ellipsoid.

Remark 2.2. Formula (23]) seems to be new even in the case of convex sets.

Remark 2.3. If K is convex, since bar(K) € K and San(K°) € K°, one has (San(K°),bar(K)) < 1,
but it follows from the proof that actually (San(K°),bar(K)) < 0, see remark 2.6

Remark 2.4. Another formulation of the Blaschke-Santal6 inequality for compact sets follows directly
from the case of convex sets but with a less natural polarity point: given a compact set A, choosing
z = San(Conv(A)) and applying the classical inequality to Conv(A), we get (A—2)° = (Conv(A)—=z)°
and we deduce that

JAJ[(A - 2)°] < | Conv(4)[|(Conv(A) — 2)°| < |By .

Before proving this theorem we first give a lemma which is very classical in projective geometry.

Lemma 2.5. For z # 0, we denote the open halfspace H, = {y;1 + {y,z) > 0} and the map

F.: H, > R" is defined for anyy € H, by

Y

F.ly) = —2—.
S )

Then

(i) The map F, is a bijection from H, onto H_, whose reciprocal is F—, and the Jacobian determinant

of F. is J.(y) := (1 4 (y, z))~ (1),

(i) For any compact set K in R™ such that 0, z € int(Conv(K)), we have (K — 2)° = F_,(K°) and

dz
24 K-z2°=| —% |
(24) 0 =2y = | Gt
Notice that formula ([24)) is classical and can be found for example in Meyer and Werner in [MW98|
Lemma 3] who proved it by using (22)) and a change of variable. We give here another proof which
we shall extend to the functional case in the next section.

Proof. (i) From the definition of F,, it is immediate that F,(H,) ¢ H_, and that F_.(F.(y)) = v,
for all y € H,. It follows that F, is a bijection from H, onto H_, whose reciprocal is F_,. The
computation of the Jacobian matrix of F, is direct and gives

1 yz"
Jac(F.)(y) = 0.0 (I" - m) '

Using the following Sylvester’s identity, det(l, + AB) = det(I; + BA) for any matrix A € M, , and
B e M,,, we conclude that the Jacobian determinant of F), is

= det(Jac - (- w2 = L
Jz(y) - d t(‘] (Fz)(y)) (1 4 <y72>)n (1 1 + <y,z>> (1 + <y,z>)"+1'

(ii) One has
(K —2)°={y; (y,ov—2)<1, Voee K} ={y; {y,v) <1+ (y,2), Vre K}.
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Since 0 € int(Conv(K)), for any y € (K — z)° one has {(y,—z) < 1 hence 1 + (y, z) > 0, thus

o y o o
K—20° =1y (—2 25«1, K'Y ={y F,(y)e K°) = F_,(K°).
(=2 =i (s 0 <1, W e K} = (s Ro) € K°) = P ()
The last equality follows from the fact that K° < H_, which deduces from the hypothesis z €
int(Conv(K)). Formula ([24) follows by using a change of variable and the formula for the Jacobian
from (i). O

Now we give the proof of Theorem 2]

Proof of Theorem [21l Let K be a compact set such that 0 < |K| < +00 and 0 € int(Conv(K)). Then
K° is a convex body to which we apply the classical Blaschke-Santald’s inequality: for z = San(K°)
one has

[K°|I(K° = 2)°| < |B3
with equality if and only if K° is an ellipsoid. Since 0 € int(K°) and z € int(K°) we may apply
formula (24)) to K° and we get

dx

K°—2)°| = _—.
I( 2)°| JKOO (1 =z, x))n+1
Using that K = K°° and applying Jensen’s inequality to the function o(z) = (1 —{z,z))~"*V) which
is convex on K, we deduce that

dx |K|

25 K°—2)° = > .

29) 0" =201 || = asyoet > (T Eomie) el

This concludes the proof of the inequality. If there is equality in this inequality, then, from the
equality case in Blaschke-Santald’s inequality, we deduce that K° is an ellipsoid. Moreover, from the
equality case in Jensen’s inequality, it follows that San(K°) = 0, thus bar(K) = 0. Finally, one has
| K| = |K°°| which implies that | Conv(K)\K| = 0. Since K is compact, it follows that K = K°°. We
thus conclude that K is a centered ellipsoid. O

Remark 2.6. Proof of Remark if K is convex then, using that, in formula (25), one has z =
San(K°), it follows from the definition of the Santalé point that |(K° — 2)°| < |K°°| = |K|. Thus, we
conclude that (San(K°), bar(K)) < 0. Notice that, applied to K°, it gives also (San(K), bar(K°)) < 0.

2.2. Blaschke-Santal6 inequality for the s-concave duality. The following general form of the
functional Blaschke-Santalo inequality was proved by Ball [Bal86] in the even case, by the first named
author and Meyer [FMO07] in the log-concave case and by Lehec [Leh09¢] in the general case.

Theorem 2.7. Let f : R®" — R, be integrable. Then there exists z € R™ such that whenever
g: R - R, is a measurable function satisfying f(z + 2)g9(y) < p({x,y))? for all z,y € R™ such that
{z,y) > 0 for some weight function p : Ry — Ry such that § p(|z|*) dz < +o0, it holds

ff(:v) d:vfg(y) dy < (Jp(lwIQ) d;v)2 .

Moreover, the point z can be selected in the interior of the convex hull of the support of the measure
with density f. In the case where f is even, then z can be chosen to be 0.

The fact that z can be chosen in the convex hull of the support of v;(dz) = f(z) dz follows from
Lehec’s construction of z as the center of a Yao-Yao partition for vy (see [Leh09c, Theorem 9]) and
from Proposition 5 of [Leh09b] which implies that the center of any such partition must belong to the
convex hull of the support of ;. In the following, we shall denote f, = f(z + ).
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For s e R and g : R®™ — R, non identically zero, we define its s-concave dual function L;g9 : R* —
R, in the following way: for every y € R”

, for s=#0,

where the infimum is taken on {z € R™; g(x) > 0}. For s = 0, we set

’ - e—<@y)
09(y) = aekn glx)

Notice that the s-dual (even of a non s-concave function) is s-concave and that the 0-dual is very much
related to the Legendre transform since for any function ¢ : R" — RU {400} one has Lo(e~?) = e=¢",
where ©* is the Legendre transform of ¢ defined by ¢*(y) = sup, ({z,y) — p(z)).

This class was previously studied by Artstein-Avidan and Milman [AAMOS| where they proved that
L is essentially the only order reversing transformation on s-concave functions. They also show that
this duality is the usual polarity transform on the epigraphs of the functions for s = 1.

1
Applied to the function ps(t) = (1 — st)3°, for s # 0 and po(t) = e */2, Theorem 27 implies that
for any integrable function f :R™ — R, there exists z such that for any s > —1/n,

(26) s [ i< ([ ntatia) =,

Rn

where a direct explicit computation gives that ¢g = (27)" and

2
2 1 n
nf T+ L n r(_sf_)
Cs = (z) (F(—QS)> for s >0and ¢4 = (1> _\2e 2] for ,%<5<0_

s 1+L+12) |s] r (ﬁ)

Inequality (26]) was established earlier in the case where % is an integer and s = 0 by Artstein-Avidan,
Klartag and Milman [AAKMO04]. For s < 0, inequality (28] was proved by Rotem in [Rot14]. In
particular, for s = 0, this gives back the Blaschke-Santal6 inequality for the Legendre transform
established in [AAKMO04| which states that for any function ¢ : R — R U {+0} there exists z € R

such that
Je WJ —(e)* < (2m)™.

This theorem was reproved by Lehec [Leh09a] who also established that if the barycenter of e~%
defined bar(e™ %) = {ze™ ol d:v/Se % is at the origin then one may choose z = 0, that is

J‘e_“’ fe_w* < (2m)"

We extend this theorem to the s-duality for any s > 0. First we define the barycenter of f to be

bar(f) = §zf(z)dz/( f. As in the case of sets we first state a lemma. Recall that F.(y) = St

Lemma 2.8. Let s =0 and f: R™ — R, be a measurable function such that f(0) > 0.
(1) Then for every z,y € R™ one has Ls(f.)(y) = (1 + s<z,y>);%‘r£5f(Fsz(y)), for s > 0 and

Lo(f:)(y) = e Lof(y).
(2) Moreover if f(z) > 0, then {x; Lsf(x) >0} € H_g, = {x;1 — s(z,x) > 0} and, for s > 0,

27) J (=) = J 1-— s<z x> "*H’ &
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(3) If [ is bounded and L[ is integrable then the function S(z) := { Ls(f.) is strictly convex and
admits a unique minimum at a point Sang(f) that we call the s-Santalé point of f and which
is in the interior of Conv(supp(f)).

Proof. (1) For s = 0, the relation is clear. Let us assume that s > 0. From the definition one has

. (1 sCa, )} . (1+ 52, ) — ()

Since the infimum runs on the set {x; f(x) > 0} and since f(0) > 0 one deduces that

(1+ ()}
£S(fZ)(y) < f(O)

Hence L5(f.)(y) = 01if 1 + {z,y) < 0. Moreover, for y € H,,, one has

L£)0) = (o) £uf (s ) = (4 ) Laf (Fon )

+ o |~

2) In the same way, from the definition of L, if f(z) > 0 then for all y, L, < m Thus
( ) Y 9 Y, Yy j(z)

if Ls(f)(y) > 0 then 1 — s{z,y) > 0 which means that y € H_g,. Thus, using the change of variable
y = F_s,(z), for y € Hy, and the fact that (1 + s{(z,y))(1 — s(z,z)) = 1, we get

. Lsf(x)
[eaman= [ e s e - | oo T
(3) The convexity is a direct consequence of formula ([27). The boundedness of f implies that £, f(0) >
0 and so 0 is in the interior of the support of L, f. The existence of a unique minimizer was recently
proved by Ivanov and Werner in [[W21]. They assumed for their proof that f is s-concave but
using that L,L.Lsf, = Lsf., we can actually assume that f is s-concave. Moreover, it is clear that
supp(Ls f.) = (supp(f:))° so if z is not in the interior of Conv(supp(f)) then 0 is not in the interior of
Conv(supp(f.)) and supp(Lsf.) = (supp(f.))° is unbounded, which implies that { L, f, = +o0. O

—sz

Using the preceding lemma, we can now prove the following theorem.

Theorem 2.9. Let s > 0 and f : R" — Ry be integrable such that § f > 0 and 0 € int(Conv(supp(f))).
Then

f fﬁ f < es(1—s{Sans (L S(f)),bar(f)>)"+1+% for s >0 and fffﬁof < (2m) e~ Sano(Lo(£)) bar(f))
In particular, if bar(f) =0 then § f§Lsf < cs

Proof of Theorem[2.9. The proof to this theorem is similar to that of Theorem 2.1l Fix a function f
(without any concavity assumption), such that 0 € int(Conv(supp(f))) and 0 < {,, f < +0o0. Then,
from (26]) applied to L f, one has, for z = San, (L f),

Lof(x)de | Lo((Lsf):)(y)dy < cs.
R™ R™
Since Lsf(z) > 0, applying (2) of Lemma 2.8 we deduce that

| eteniwan- | q _‘C<£f>(f)++ -

Using that L;Lsf(z) = f(x) and Jensen’s inequality, we get

f (@) § f(z)da
J § Ls((Lsf))(y)dy = J 1 s<z,x>)"+1+% dzr > (1— s(Sany(Ls(f)), bar(f )>)n+1+§
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which concludes the proof of the theorem. O

2.3. Duality and Mahler conjecture for s-concave even functions, when s > —1/n. In this
section, we consider the extension of Mahler’s conjecture [Mah39bl Mah39a] to s-concave even func-
tions. For s > 0, the conjecture holds for unconditional functions and follows from theorems of Saint
Raymond [SR&1] and Reisner [Rei87|. In the case s = 0, the inequality was proved in [FMO8b] [FM08al
and the equality case in [FGMRI0|. For s < 0, the situation is more involved because the set of s-
concave functions is not preserved by Ls-duality. For s < 0, we first characterize the class of s-concave
integrable functions which is globally stable under the £s duality. Then, we prove Mahler’s conjecture
for the functions in this class which are unconditional, using the same theorems of Saint Raymond
and Reisner. Recall that a function g : R™ — R is unconditional if g(z1,...,2,) = g(|21], ..., |za]),
for any (z1,...,2,) € R". And a set K is unconditional if 1x is unconditional. Let us first recall the
original Mahler’s conjecture for centrally symmetric convex bodies.

Conjecture 2.10. Let K be a centrally symmetric convex body in R™. Then

471
[K[[K°] > —,
n.

with equality of and only if K is a Hanner polytope.

Hanner polytopes are succession of ¢ or £, sums of segments and include in particular the cube
B2 = [—1,1]" and its polar B} = {z = (z1,...,2,) € R";>" | |z;] < 1}. Saint Raymond [SREI]
established Mahler’s conjecture for unconditional convex bodies. He even prove the following more
general statement, whose equality case is due to Reisner [Rei87].

Theorem 2.11 (Saint Raymond [SR81, Theorem 21| and Reisner [Rei87, Theorem 1 and Remark 2]).
Let K < R™ be an unconditional convex body and let m1,...,m, > 0. Then

J Hmi|xi|mi—1 dxf Hmi|xi|mi—l de > szl (m ) ,
Ki=1 Ko7 L(my+---+m, +1)

with equality if and only if K is a Hanner polytope.

We prove the following version of Mahler conjecture for unconditional s-concave functions, s > 0.

Theorem 2.12. Let s > 0 and g : R" — R be an s-concave unconditional function. Then
P(g) = J f Log> A
= L Sg/(l—f—s)---(l—i—ns)’

with equality if and only if there exists a partition {1,...,n} = I U Iz and two Hanner polytopes
K, ¢ Fy and Ky < Fy, where F; = Span{e;,i € I;}, for j = 1,2 such that for any x1 € Fy and

1
w3 € Iy, for v = 21 + 22, one has g(x) = (1 —|21]x,) 3 1Ky (20, for s > 0 and g(x) = e~ Nzl 15, (20)
for s =0.

First, notice that if s = 0 then Lo(e™%) = e*“’*, as was previously noted. Hence, the result
reduces to the reverse-Blaschke-Santal6 inequality for unconditional log-concave functions, due to
[FMO8b, [FM08a] and the equality case was proved in [FGMR10].

The proof for s > 0 will follow the same methods as in Artstein-Avidan, Klartag and Milman
[AAKMO4].
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Proof for s > 0. Recall that the function g is s-concave if and only if g° is concave on its support.
Let f = g° be concave on its support and denote m = 1/s > 0. Then one has g = f™ and so

(1=s@y)i (.. Q=—s@y) \° R Y™
Lsg(y) = inf TJr = <mlefﬁ§fn W) = (L1(g°) (sy))* = (ﬁlf (E))
Hence
9= s stg [ 7 [
For any function f we define the set K(f) = {(z,s) € R” x R;|s| < f(x)}. The set K(f) is convex in

R™*1 if and only if f is concave and usmg Fubini one has for every m > 0

i) m
() dx = J J mt™ ! dtdx = —J [t|™ ! dtda.
R~ »Jo 2 Tk
Moreover,

K(f)° ={(y,t) e R" x R;{x,y) + {s,ty <1, V(y,t) € R" x R such that |s|] < f(x)}

_ n oy R: (17<$,y>)+ T _
—{(y,t)eR R’Mgif(:v) ,V e{f>0}} K(L1f).

From this formula we deduce that if f is concave on its support and if 0 is in the support of f then
K(LiL1f) = K(L1f)° = (K(f)°)° = K(f) and it follows that £,£;f = f. Moreover we get

m2
Jf’” J(ﬁf)m = |t]™ dtdxf [t|™ ! dtda.
4 Ik K(f)°

Lastly, notice that if f is unconditional then K (f) is unconditional, thus, from Theorem 21Tl of Saint
Raymond and Reisner, we conclude these quantities are minimized among unconditionnal convex sets
if and only if K(f) is a Hanner polytope in R™*!. It is not difficult to see that this happens if and
only if there exists a partition {1,...,n} = I; U I and two Hanner polytopes K1 c F; and Ky < Fy,
where F; = Span{e;,i € I;}, for j = 1,2 such that for any 1 € Fy and z2 € Fy, for x = 21 + x2, one
has f(x) = (1 - Hxll‘Kl)‘Fle(Iz)' O

Case —1/n < s < 0. For s < 0, the function g is s-concave if and only if ¢g° is convex. Let f = ¢® and
m = —1/s. Then one has g = f~™, m > n and

Lsg(y) = inf 7(1 — @) = (zierl]Rf" —(1 — s<x,y>)+1> B = <£71(f71) (g))m.

zeRr g(z) g(z)ls! m

For simplification, we introduce the following notation: for any f : R™ — (0,+400) convex such that
f(tz) — 400 when t — +o0 for any = # 0, one denotes, for y € R™,

1+¢z,y)

Using this notation and a change of variables, we get that

(28) Jng L Ly =" Rn%fﬂﬁ

Variants of this transform have been considered by Rotem [Rotl4] and a reflection of M was also
considered in [AASW23|. Indeed, the latter showed that the image class of M is the set of all functions
who’s epigraph K is a convex set for which AK € K for all A > 1, see [AASW23| Section 3]. This class
of sets is called pseudo-cones, studied in depth by Xu, Li and Leng [XLL23| and Schneider [Sch23].
They define the copolar of a set by

={yeR":Yze K {(z,y) < —1}.
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One may check that for a function f,
epi(Mf) = epi(—f)*.
The following proposition establishes a few basic properties of Mf.

Proposition 2.13. Let f : R™ — (0,400) U {+00} be convex such that lim;_, o f(tz) = 400, for any
x # 0 and f # 4+00. Define, for y e R",

1+{y)
M (y) = sup —2Y2.
o f(2)
Then Mf : R™ — (0,+00) is conver and lower semi-continuous. Moreover, for every y # 0, the

function t — m is non-increasing on (0,+00) and there exists a(y) > 0 and b(y) = 0 such that

lim¢ .00 Mf(ty) — (a(y)t + b(y)) = 0.

Proof. Since f # +oo, there exists xy € R™ such that f(zg) < +00. Hence M f(y) > W > 0.
Since M f is the supremum of affine functions, it is convex and lower semi-continuous. For any y € R™
and ¢ > 0 one has

Mfty) 1+
— = =sup -,
t [
hence the function ¢ — %(ty) is non-increasing on (0, +00). Moreover one has for ¢t =T > 0
¢ 14 (a, 1 ,
sup T MIMY) g @y 1 +sup &Y
o f) t v f(2) T o f(x)

Hence lim;_, 4 o Mj;(ty) = sup, % :=a(y) > 0. Thus for any s > 0 the function ¢ — %W

is non-decreasing on (s, +o0) and converges to a(y) when ¢ — +oo. It follows that

Mf(ty) — Mf(sy)

t—s

< a(y)

which implies that ¢ — M f(ty) — ta(y) is non-increasing. Since M f(ty) = ta(y) we conclude that
there exists b(y) = 0 such that M f(ty) — (ta(y) + b(y)) — 0 when ¢ — +00, which implies that the
function M f has asymptotes in every directions. O

Remark 2.14. The argument above shows that for a convex function f : R™ — (0, +00) U {+0o0} and

any z # 0, the function ¢ — @ is non-increasing on (0, +o0) if and only if there exists a(x) > 0 and
b(x) = 0 such that lim;, ;o f(tz) — (a(z)t + b(z)) = 0.

To any convex function f : R™ — (0,400) u {+o0} such that lim;_, o f(tx) = +o0, for any = # 0
we attach f: R"*1 — R, U {+00} defined for (z,s) € R™ x R by

~

fla,s) =[s|f(z/ls|) fors#0 and f(z,0)= lim |s|f(z/|s])-

Notice that this limit always exists in R} u {+00} because the convexity of f implies that the func-
tion t — f(tz)/t is quasi-convex on (0, +00). Hence ¢t — f(tx)/t is either non-increasing and non-

~

negative on (0,+00), or it is first non-increasing and then non-decreasing. Notice that f(z,0) =
lims—, o f(t2)/t € (0,+00) U {+00} and this limit is finite if and only if f has an asymptote in the
direction x, in which case it is the slope of this asymptote. Notice also that f is positively homo-

A~ ~

geneous: f(Ax,As) = \f(x,s), for every A > 0. We denote the domain of the convex function f by

A~

dom(f) = {x € R"; f(z) < +o0}. Then dom(f) = {(z,s) € R" x R;z € |s| dom(f)}. Moreover, we also
define

~

C(f) = {(z,s) e R" x R; f(z,s) <1}
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The function f is called the perspective function of f and C(f) is called the perspective body of f.
For further properties of this functional transform, see [AAFM12].

Definition 2.15. We denote by F the set of convex lower semi-continuous functions f : R™ — (0, 4+c0)
such that, for any x # 0, one has lim;_, o f(tx) = 400 and the function ¢ — @ is non-increasing
on (0,+400). Proposition establishes in particular that M(F) < F. Theorem below implies
that for any f € F one has f = MM and thus M(F) = F.

The following theorem gathers the important observations regarding C(f).

Theorem 2.16. Let f : R" — (0,+00) u {+m} be convexr and lower semi-continuous such that
lims—, 1o f(tx) = 400, for any x # 0 and whose domain dom(f) has non empty interior. Let C(f) =
{(x,s) € R™ x R;fA(:zr,s) <1} Let C(f)+ = C(f) n{(z,8) e R* x R;s = 0} and C(f)—- = C(f) n
{(z,s) e R™ x R;s < 0}. Then

(i) C(f)+ is a convez body containing 0 on its boundary, C(f)+ = {(x,s) € R® x (0, +0);sf(x/s) < 1}
and C(f)— is its symmetric image with respect to the hyperplane {s = 0}.

(i1) C(f) is convex if and only if f € F, i.e. t — f(tx)/t is non-increasing on (0, +00), for every x.
(iii) if, moreover, f € F, i.e. if t — f(tx)/t is non-increasing on (0,+0), for every x, then the
function f is a gauge on R™ 1 whose unit ball is the convex body C(f) and f is the restriction of this
gauge to the affine hyperplane {s = 1}: for any x € R, one has f(z) = |(z,1)|c(s)-

(iv) C(f)° = C(M[f) and for any f € F, one has MMf = f.

(v) For any m > 0 one has {, f~(m+") = min Sein |s|™ 1 dsdx.

Proof. (i) Let us prove that £ is convex on R™ xR ;.. Let (x1,81), (2, 82) € R™x (0, +00) and A € [0, 1].
Then,

FUL = Nag + Aza, (1= N)sy + As2) = ((1— N)sy + As2) f <H§—1Ii;”j>
(1 — )\)Sli—ll -+ /\822—2
(1 — )\)51 + Aso

<(1—Ns,f (%) ¥ Asof (i—j)

~ ~

= (1= XN)f(z1,51) + Af(z2, 52).

It follows that f is convex on R™ x (0, +0). Since f is defined on R™ x {0} by taking a limit, it follows
that f is convex on R” x R,. Thus C(f)4 = {(z,s) € R" xRy ; f(z,s) < 1} is convex. Moreover, fis
lower semi-continuous on R™, hence C(f); is closed. Moreover, since f(z,s) € (0, +00) U {+0} and
f is positively homogeneous, one has limy_, 1o f()\x, As) = +oo, for every x € R™ and s > 0. Hence

C(f)+ is bounded. Moreover, since dom(f) has non empty interior and

=((1=X)s1 + Asa)f (

dom(f) = {(z,s) € R" x R;z € |s| dom(f)} > Conv(0, dom(f) x {1}),

~

we deduce that dom(f) has also non empty interior. From Baire’s theorem, there exists M > 0

~

such that K := {(x,s) € R" x Ry; f(x,s) < M} has non empty interior. Thus, by homogeneity,
K/M < C(f)+, which implies that C(f); has non-empty interior. Therefore it is a convex body.
Since f(0,0) = 0, one has (0,0) € C(f)+, thus (0,0) is in the boundary of C(f)+. The fact that
C(f)- is the symmetric image of C(f) with respect to the hyperplane {s = 0} is clear.

(ii) If ¢ — f(tzx)/t is non-increasing on (0, +00), for every z, let (21, 1), (z2,52) € R" xR and A € [0, 1].
Assume first that s1, s2, (1 — A)s1 + Asg € R*. Then, using that |(1 — X)s; + Asa| < (1 — A)|s1]| + Alsz]
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and the fact that ¢t — f(tz)/t is non-increasing on (0, +00), one has

ﬂﬂAﬁ1+mmuAﬁ1+mn=ul»&+A@V<G_Aml+ma)

[(1—X)s1 + Asa|

(1= NlsaliZy + Alsali2
< (1= N)s1| + Als2|) = N)[s1| + Nsq]

<=y () et (135)

~

= (1 — /\) (Il, 81) + /\f(ZZTQ, 82).

For s1 =0 or so =0 or (1 —\)s1 + Asy = 0 the result follows by taking the limit. It follows that C(f)
is convex.

If there exists 2 # 0 such that the function t — f(tz)/t is not non-increasing on (0, +o0), then, by
convex1ty this function is first decreasing then increasing on (0, +00). Thus, for s > 0, the function

s f (:v s) = sf(x/s) is also first decreasing then increasing on (O +00). By convexity, fis continuous
on {(z, s); f(x s) < +oc} thus there exists so > 0 such that f(a: So) = infs=0 f(x,s) i=mgy > 0. It
follows that f (w 0) > f (w s0). Hence, by homogeneity and by symmetry of f, we deduce that
(x/mo, £s0/mo) € C(f), but (z/mg,0) ¢ C(f), which proves that C(f) is not convex.

(iii) If ¢ — f(tx)/t is non-increasing on (0, +0), for every = # 0, then, from (i) and (ii), C(f) is
a convex body which contains the origin and is symmetric with respect to the hyperplane {s = 0}.
Moreover, by homogeneity of f, its gauge | - ey satisfies, for every (z,s) € R x R,

[ (z, S)Hc(f) = inf{\ > 0;(x,s) € A\C(f)} = inf{\ > 0; f(x,s) < A} = f(x,s).

Thus, the function f is a gauge on R"™! whose unit ball is the convex body C(f). Moreover, for
s =1, we get, for any € R™, |[(z,1)|c(p) = f(z,1) = f(z).
(iv) One has

t) e R" x R; (x,y) + st <1,Y(x,s), |s|f (%) < 1}
) eR™ X R; sz, y)+ st < 1,V(z,5), |s|f(2) <1}
t) e R" x R; (z,y)+ [t| < f(2),Vz}
Gy + |t

o<

= {w
{(y
{(y
[0
{ )R x R; [t|su @gl}
(o
c(M

t) e R" x R; sup

f(2)

) ER™ x R; |t|j\/lf(|t|) < 1}

Assume that f € F, then, from (i) and (ii), C(f) is a convex body containing the origin and one has
CMMf)=C(Mf)° = (C(f)°)° = C(f). From (iii), we deduce that MM f(z) = [(z,1)lcrmmys) =
|, Dle = f@).
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(v) Using Fubini, one has

+o0
f |s|™—1 dsdw=2J s H{x e R"; (x,5) € C(f)}| ds
cn 0

8

"
2] sz e R sf(x/s) < 1}|ds

(=)

+o0
QJ s {sz e R"; sf(2) < 1}|ds
0

+oo
=2J "tz e R sf(2) < 1} ds
0

Using the change of variable s = 1/t and Fubini we get

f |s|™ ! dsdx
cn

+o0
2J el e RY £(2) < )] dt
0

2

m+mn R™

()7 M dz.

O

We can now state and prove that unconditional functions in F satisfy a kind of Mahler conjecture.

Theorem 2.17. Let f € F, i.e. let f: R™ — (0,400) such that for any «, the function ¢ — @ is
non-increasing on (0, +00). Assume moreover that f is unconditional. Then for any m > n, one has

. . 4n
Jnf M T ey

with equality if and only if there exists a Hanner polytope K in R"*! such that for every z € R”,

f(@) =z, D] -

Recalling that m = —1/s > n, denote by » = m —n > 0. Then, according to Theorem 216 (v),

one has
f—m _ f f—(T+n) _ mf |S|7‘—1 dsdz,
Rn Rn 2 Joop

and similarly,

M = o J |s|" ! dsdx = n J |s|" ! dsdz.
R" 2 Jewmy) 2 Jowye

Jf*m J(Mf)’m - (%)QLW |s|’“1dsde(f)o Is["1 dsda

and from Theorem 21Tl due to Saint Raymond and Reisner, the right hand side is minimized among
unconditionnal convex sets if and only if C(f) is a Hanner polytope K, which means that f(z) =
[(x,1)] k, for every x € R™. O

Hence,

We can now state the following direct consequences of Theorems and 217 for s-concave
functions, when s < 0. We denote by C* the set of s-concave functions g : R"® — (0, +00), which
are lower semi-continuous and such that, for any = # 0, one has lim;, ;o g(tz) = 0 and the function
t — t~+g(tz) is non-decreasing.
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Corollary 2.18. Let s < 0. Then Ls(C®) = C°. Moreover, for every g € C°, one has LLs(g9) = g
and if g is unconditional then
471
Ps = Es = 3
(9) Jng R g (1+s)---(1+mns)
with equality if and only if there exists a Hanner polytope K in R"*1 such that for every x € R",

F@) = @Dl k-

3. TRANSPORT-ENTROPY FORMS OF BLASCHKE-SANTALO INEQUALITY

Given a measurable cost function ¢ : R” x R” — R U {400}, bounded from below, the optimal
transport cost between two probability measures vy, vo € P(R™) is defined as follows

Te(v1,v2) = inf{fc(x,y) dr(z,y) : me P(R® x R"), m#(R" x ) = 11(-), n(- x R") = VQ(')},

where P(R™) (resp. P(R™ x R™)) denotes the set of all Borel probability measures on R™ (resp.
R™ x R™).
Relative entropy is another classical functional on P(R™) that we shall now recall. Whenever m is

some measure on R™ (not necessarily of mass 1) and dv = fdm € P(R™), the relative entropy of v
with respect to m is defined by

H(vjm) = | f1og f dm.

as soon as the right-hand side makes sense (that is to say flog™ f or flog™ f is m-integrable). In
particular, when m is a probability measure, H(v|m) always makes sense in R, U {+00}.

Comparing optimal transport costs to relative entropy is the purpose of the family of transport-
entropy inequalities introduced by Marton [Mar86, Mar96al Mar96b| and Talagrand [Tal96] in the
nineties. We refer to the survey |[GL10] for a presentation of this class of inequalities and their
applications in the concentration of measure phenomenon. One of the most classical example of such
an inequality is the so-called Talagrand’s transport inequality for the standard Gaussian measure. It
reads as follows:

Wi(v,y) <2H(vly), VYvePR"),
where 7 is the standard Gaussian probability measure on R™, and W# (v, ) is the squared Wasserstein
distance, which is equal to 7.(v,v) for c(x,y) = |x — y|?, ¥,y € R™. This inequality is optimal with
equality obtained when v is a translation of . Using the triangle inequality for W5, it is easily seen
that the following variant involving two probability measures also holds

W2(v1,v2) < 4H (1)) + 4H (12]7), Y1, va € P(R™).

This inequality is still optimal with equality achieved when 1, and v» are two standard Gaussian with
opposite means. Recently, a symmetrized version of this inequality was obtained by Fathi [Fatl§],
namely

(29) W3 (vi,v2) < 2H(n|y) + 2H (12]y),

whenever vy is centered and vs is arbitrary. Fathi derived (29]) from a functional version of Blaschke-
Santalo’s inequality.

The aim of this section is to further explore the relationships between transport-entropy inequalities
and functional forms of Blaschke-Santalo inequality given in Theorem[2.71 We will in particular derive
from the latter some optimal transport-entropy inequalities for spherically invariant probability models
that go beyond the Gaussian case.
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3.1. General costs. Utilizing Theorem [Z7] gives us two different families of transport-entropy in-
equalities for a large class of spherically invariant probability measures.

Theorem 3.1. Let p: Ry — (0,00) be a continuous non-increasing function such that § p(|z|?) dz <
4+, and t — —log p(e') is convex on R. Let u, be the probability measure with density proportional

to p(laf?).
(i) For all v1,vy € P(R™) we have
(30) Ta,(v1,v2) < H(vilpp) + H(valw,),

where the optimal transport cost Tg, is defined with respect to the cost function W, given by

. 2
(:')P(Iay) :1Og<M)a xvyERn'
p

2 2
(l=[)p(lyl")
(#3) For all vi,ve € P(R™) with v1 and vo symmetric, we have
(31) Toop (1, v2) < H(valpp) + H(va|pyp),

where the optimal transport cost Ty, is defined with respect to the cost function w, given by

p(z-y)* ) TIS

wy(z,y) = log (s ) Way>0 . zyeR"
400 otherwise

Furthermore, there is equality in inequalities B0) and BI) when vi = va = p,.

Before turning to the proof of Theorem B.1] let us do some comments. If ([B0) holds for all couples
v1, V2 without restriction, note that the cost @, is not very standard. For instance, if po(t) = e~ t? for
which p1, = 7 is the standard Gaussian, one gets @, (z,y) = (|z|—|y|)?, z,y € R™ instead of the usual
quadratic cost %|:1: — y|?. The cost w, seems better adapted to the geometry of the measure y,, but
the corresponding transport-entropy inequality ([B1)) requires symmetry assumptions on v, v9. Taking
Fathi’s result (29)) in consideration, a natural question is to ask whether these symmetry assumptions
can be relaxed or not. We will see in the next two sections that the answer to this question depends
on the cost function p.

Proof. In this proof we adapt the classical dualization argument by Bobkov and Gétze [BG99] to our
context. Let us first prove (i). Rewriting Theorem [Z7] (even case) with respect to the functions

F(z) =log f(x) —log p(lz|*), G(y) =logg(y) —log p(|y|*),

we get the following: for all bounded measurable functions F, G such that F' is even and

(32) FoG<w,

it holds

(33) J el dupf e“du, <1,
n R

where FOG(z,y) = F(z)+G(y), z,y € R". We now introduce two probability measures vy, vo. Then,
taking the logarithm of inequality [B3]), we find that
(34)

H(u1|m)+H(V2|m)ZJ qulflogf eFd,uprJ Gdygflogf eGd,upZJ qulJrJ G dvs,
R» R"

n n n n
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where the first inequality comes from the duality formula for the relative entropy functional: if
v € P(R") and logdv/dm € L'(v), then

H(v|m) = sup { fdv— logf ef dm} .
feLt(v) LJR" "

Optimizing in (34) with respect to F and G, we thus find that

H(vi|p,) + H(v2|p,) = sup { Fdv +
RTL

Gdl/g}
(F,G)eS

RTL
where the supremum runs over the set S of couples of bounded measurable functions (F,G) with F
even and satisfying (32]).

Now, if (F, G) is a couple of bounded measurable functions satisfying [82) (with F not necessarily
even), then by symmetry of &,, the even function F(z) = max{F(z), F(—x)}, € R", is such that
(F,G) e S, and Sn Fdu, > §gn F dv1, and so we may remove the assumption on evenness of F and
conclude that

sup {J Fdu + G dl/g} = sup { Fdv + G dug}
(F,G)eS n Rn (F,G):FOG<®, LJR» R
=Tz, (V1,12),

where the second equality comes from the Kantorovich duality theorem (see e.g. [Vil09, Theorem
5.10]) which applies since the cost function &, is lower semicontinuous (and even continuous) and
bounded from below thanks to the log-concavity of ¢ — p(e) (it is, in fact, non-negative, a proof of
which can be found in Lemma [3]). This completes the proof of (7).

Let us now prove (i7). Reasoning exactly as before, one concludes that for any vq,v9 € P(R™), it
holds

H(1|pp) + H(valpp) = sup {J Fdu, +J Gdl/g},
(F,G)eS n n

where S is the set of couples of bounded measurable functions (F, G) with F even such that F®G < w,.
Let (F,G) be a couple of bounded measurable functions (with F' non necessary even) such that
F®G < w,. Since, for all z,y € R", w,(z,y) = wy(—z, —y), defining F(z) = 1(F(z) + F(-z)) and
G(y) = 3(G(y) + G(—y)), one gets that (F,G) € S. If v; and v are further assumed to be symmetric,
it holds { F'dvy = { Fdvy and {Gdvs = { G dro. Thus, in this case,

sup {J qulJrJ GdVQ}Z sup {J FdV1+J Gdl/z}:,];,p(l/l,l/g),
(F,.G)eS n n (F,.G): F®G<w, n n

applying Kantorovich duality for the last equation, which completes the proof of (i7).

Finally, note that @, and w, are both non-negative and vanish on the diagonal, so that 7z, (1., f1,) =
T, (1o, i1p) = 0. There is thus equality in Inequalities (30) and ([BI) when vy = vy = p,. O

In the next subsections, we will study the consequences of Theorem B.Ilfor two special costs, related
respectively to Barenblatt-type and Cauchy-type distributions.

3.2. Barenblatt-type distributions. Let s > 0 and denote by B, = {z € R" : |z| < %} the open

Euclidean ball of center 0 and radius % Consider the probability measure

1 s
vya(dz) = — (1= sl22)/® 15, (2) da

S
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which is a particular case of the so-called Barenblatt profiles. Consider the cost function ks : Bsx By —
R defined by
1 1—sz-y
ks ) =-1 9 yYE BS'
0y =g ((1 — sfa?) (1~ s|y|2>1/2) oY
For this particular cost, the conclusion of Theorem [B.1] can be improved, as shown in the following
result.

Theorem 3.2. For all s > 0, the probability measure s satisfies the following transport-entropy
inequality:

T, (v1,v2) < H(vi|vs) + H(v2|vs),

for all probability measures v1,vs, one of which is centered and with supports K1, Ko c Bg.

This result is exactly analogous to Fathi’s result (29)) in the Gaussian case. Moreover, note that as
s — 0, it holds 5 — 7 (the standard Gaussian) and one recovers ([29)).

Proof of Theorem [32. Applying Theorem [ZTto ps(t) = [1 — st]i/(%), t > 0, yields the following: for
any s > 0 and f : R® — R, integrable, it holds

Jf(w)dw inf jcs(fz>(y>dy<(f3 (1~ sfaf?)"/® dw)2=Z§,

ze€conv Sy
s

where Sy denotes the support of the measure v;(dz) = f(x)dz and

Ls(g)(y) = inf [L— sz y)" eR"
s = inf — 2T )
9N z:g(x)>0 g(I) y

Let bs(x,y) = Llog[l — sz -y]+, z,y € R™. It is enough to prove that

S

(35) To, (v1,v2) < H(v1|Leb) + H(v2|Leb) + 2log Zs,

for all probability measures vq1,vs with supports K7, Ko < B and such that vy is centered. Note
that by is bounded and continuous on K3 x Ko. Therefore, applying Kantorovich duality theorem on
K x K yields the following identity

(36) To. (v1,v2) =  sup { p Qs@(ﬂﬁl)dvl(ﬂﬁl)—f

gaer(Kg) K2

p(x2) de(wz)} ;

where Cp(K2) denotes the set of bounded continuous functions on Ko and
stp(xl) = inf {QD((EQ) + bS(xlu‘T?)}a Xy € R™.
r2€Ko
Take ¢ € Cp(K3) and define f : R® —» Ry by f(z2) = e=?(2) if 7o € Ky and 0 otherwise. Note the
following relation :
(37) er%’ = ACs (f)
According to what precedes, it holds

[razden _int [ 20130 dnr < 22

zeconv Ko

Indeed, by construction the support of the measure f(x)dz is K2. Note that the following inequality
holds, for any z € R",

Ls(f) () = (1 +s2-y)+ Lo f(Fs2(v)), Vy e R",
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where, for any a € R"\{0}, the map Fu(y) = 5%, y € Ho = {y € R" : 1 + 2 - a > 0} is a bijection

from H, onto H_, (this is Item (1) of Lemma 2.5} when f(0) = 0 there is equality but this not needed
here). So it holds

Jﬁs(fz)(:zrl)darl > Ju + 5z m0) Lo f(Foe(21)) dy
:f (1+ sz -21) Y3 Lof(Fyz(21)) dy
H,.

1
- r Ls d
JHSZ (1 — sz u)"tits f(u) du

= fersa(u) dm.(u),

where dm, (u) = ——L——+1x __(u) du. Therefore,

T
(1—szu)"T1Fs

—2logZ, < —logf e ?2) dpy —  inf logJeQS“’(”“) dm(x1)

Ko zeconv Ko

and so
—2log Zs + Jstdul — Jgpdyg

< J—g@ dvy — logf e P2 dpy + ngp dvy —  inf logJeQS“’(ml) dm(z1)
Ko

zeconv Ko

< H(w|Leb) +  sup H(vi|m,),

zeconv Ko

where the last inequality follows from the bound
Jd)du—logje*d’ dm < H(v|m), Yv <« m.

Note that if z € By, then B; € H_;, and so in particular v, « m,.
Finally, for all z € By, it holds

d
Hnpm) = | log 5 dn
B

m;

= H(vi|Leb) ,J

dm;
log amz din
B, dx

1
= H(v1|Leb) + (n+ 1+ E)J log (1 — sz -x1) dvi(z1)
Bs

< H(vn|Leb) + (n + 1+ %)log (1 —sz- Jxl dl/l(xl))
= H(v1|Leb),

using the concavity of the logarithm and the fact that v is centered. This completes the proof. [

Remark 3.3. Suppose that f : R" — R is a continuous function such that {zf(z)dz =0 and f =0

outside B;. Denote by Ko = {x € By : f(z) # 0} and ¢ = —log f € Cp(K2). Then, using (B3] and
B8], one gets

Jst dvy — H(v1|Leb) + Jﬂp dvy — H(v2|Leb) < 2log Zs,
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for all vy, v, with compact support in Bs and v, centered. Taking
e?% (x) Lsf(x)
N = 8
§eQ-#W) dy §L:f(y)dy
(thanks to ([B1)) and noting that s is centered, one gets

[1[es= (jps<|x|2>dx)2,

which essentially gives back the conclusion of Theorem in the centered case.

dv(z) = dz and dva(z) = ¢ *(z) dzx = /() dx

3.3. Cauchy-type distributions. In this section, we consider the cost function

1

Pﬂ(t)=m7 t=0

for which = — pﬁ(|:1:|2) is integrable whenever 5 > n/2. For 8 > n/2, we consider the following
Cauchy type distribution

1 T'(B—n/2
dpg(r) = ————=—dx, with Zg = W"/QM.
Zs(1 + |z|*)8 r'(B)
The following result follows immediately from Item (i¢) of Theorem [B.11
Corollary 3.4. For any f > n/2, the Cauchy type probability measure pug satisfies the following
transport-entropy inequality: for all vy, v € P(R™) with v1 and ve symmetric, we have

(38) BTo(v1,ve) < H(vilpg) + H(valps),

where the optimal transport cost T, is defined with respect to the cost function w given by

_ ___1tzy if T -
w(x,Yy) = 1+[z24/14]y[? , z,y € R".
(39) (@) 2log<\/—\/—> ifx-y>0 R

+00 otherwise

Note that a similar transport-entropy inequality holds true with respect to the cost function

~ _ 14|yl O e
w(x,y) = 210g<m\/1ﬂ7), x,y € R", without symmetry restrictions on vy, vs.

Proof. The function ¢t — log(1 + e') being convex on R, the conclusion immediately follows from
Theorem [B.1] (Ttem (4i)). O

It turns out that sharp transport-entropy inequalities for a family of probability measures on the
Euclidean unit sphere can be derived from Corollary 34l To state this result, we need to introduce
additional notation. Let

n+1

S"z{uz(ul,...,un+1):Zu%zl} and SﬁzS”m{ueR"H:unJAzO}
i=1

be respectively the n-dimensional Euclidean unit sphere and upper half unit sphere of R**! and
denote by ¢ the uniform probability measure on S™ and by o4(-) = 20(ST n -) the normalized
restriction of o to S7 (the dimension n is omitted in the notation of o and o). For any 5 > n/2, let

o8,+ € P(S}) (resp. o € P(S™)) be the probability measure with a density proportional to
U — |un+1|26—(n+1)

with respect to o (resp. o). Note that o and o correspond to the parameter § = (n + 1)/2.
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The set of Borel probability measures on S™ (resp. S7) will be denoted by P(S™) (resp. P(S%)).
A probability measure p € P(S™) will be called symmetric if it is invariant under the map S™ — S"™ :
u +— —u. The set of all symmetric probability measures on S™ will be denoted by P4 (S™).

Finally, let o : S™ x S® —» R4 U {+00} be the cost function defined by

alu,v) = {

and 7T, the associated optimal transport cost on P(S™). This cost function has been introduced by
Oliker [Oli07] (see also [Berl6] and [Kol20]) in connection with the so-called Aleksandrov problem in
convex geometry.

1og(u1—'v) ifu-v>0

. u,veS"
+00 otherwise ’ ’

Recall the definition of the geodesic distance ds» on S™:
dgn (u,v) = arccos(u - v), u,v € S".
The cost a can thus also be expressed as

(40) a(u,v) = { —log cos(dgn (u,v)) if dgn (u,v) < /2

= . u,veS".
+00 otherwise ’ ’

Remark 3.5. Characterizing couples (u, v) for which the transport cost 7o (u, v) is finite is a delicate
question (discussed in particular in [Berl6]; see also Remark [5.4] below). Note that, according to
Lemma 3.3 of [Kol20] and Remark 4.9 of [Ber16], if x4, v are symmetric probability measures such that
i has a positive density with respect to o and v is such that v(S™ n L) = 0 for any hyperplane L
passing through the origin, then 7, (i, v) < +0.

Corollary 3.6. Let 5> n/2.

(i) For anyvi,vs € P(SY) which are invariant under the map S, — S} 1 u — (=1, ..., —Un, Uny1),
it holds
2B7a(v1,v2) < H(vilog,4) + H(va|og 1)
(i1) For any vy, ve € Ps(S™) which are also invariant under the map S™ — S™ : w — (U, ..., Up, —Unt1),
it holds

2BTa(v1,v2) < H(vi|og) + H(v|og).

Proof. Let us prove (i), following the proof of [Goz07, Theorem 19]. Denote by p = fi(,,41)/2 the
multivariate Cauchy distribution with density Z (1 + |z|*)~("*1/2_ Consider the map

1

denoting by S7, =S" n {u e R""! : u,4; > 0}. This transformation is bijective with inverse

T:R" —»S8Y, o

—1 . gn n .
T—:8%, - R":uw— (u1,...,up),

Un+1
which is sometimes called gnomonic projection. It is easy to check that T—! pushes forward o, onto
i, or equivalently that T pushes forward p onto o4. For any 8 > n/2, the probability measure pg

has density
o) = — P em
(1 +[a2)P="3"
with respect to p. Therefore, the probability measure Tius has density gs(T~!) with respect to
Typ = o4. A simple calculation shows that

— 2B8—(n n
95T~ (u)) = C'gun[il( +), uweSh,
and so 05,4 = Ty pg.
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Note the following relation between the cost functions w (of Corollary B4) and a:
1
a(u,v) = Ew(Tfl(u), T~ (v)), Vu,ve ST, .

Let v1,1v2 € P(ST) be invariant under the map u — (—u1,..., —Up,Uns1). If H(rn]og,4+) = 400 or
H(vz|o,+) = +o there is nothing to prove. Let assume that H(vi|og ) < +00 and H(vs|og,+) <
+00. In particular, v; and v, do not give mass to S® n {u € R"™! : 4,1 = 0} and can thus be seen
as elements of P(S" ). Define v} := T#ll/l and v} = T#zlug, which are symmetric and so, according
to Corollary B.4] applied to pg, it holds

BTo(v1,va) < H(vylpp) + H(vslpup).

If = is a coupling between 1 and v and m is the push forward of #’ under the map (z,y) —
(T(x) , it holds

H 2.y) dr (2, 9) H T () dre(u, v) =Ha(u,v) dr(u,0) = Ta(1, v2),

since 7 has v1 and 5 as marginals. Therefore, T, (v1,12) < %%(V{, v4). Finally, a simple calculation
shows that

H(vi|pg) = H(Ty ' vil Ty op.+) = H(vilop.+),
which completes the proof of (7).
Let us now prove (i7). Let vi,vo € P(S™) be invariant under the maps u — —u and u —

(U1, ..., Un, —Uny1) with densities fi, fo with respect to og. For i = 1,2, it holds v;(S}) = 1/2.
Define dv; 4 (u) = 2filsn (u) dog(u) = fi(u) dog,+(u). Then it holds

H(vi|og) = ffi log f; dog = 2L filog fidog = in log fidog + = H(v; y|op,+).
+

On the other hand, if (U, V) is a coupling between v ; and v, 4 and € is such that P(e = +1) = 1/2 and
is independent of (U, V), then X = (Uy,...,Up,eUn+1), Y = (V1,...,Vs,eV,41) is a coupling between
v1 and v, and it holds E[a(X,Y)] = E[a(U, V)]. From this follows that T, (v1,v2) < To(v1,4,v2,4)-
Thus (i7) immediately follows from (¢), which completes the proof. O

For the probability measure o (corresponding to 8 = (n + 1)/2), the conclusion of Corollary
can be improved, as shows the following result.

Theorem 3.7. For all symmetric probability measures vy,vo on S™, it holds

(41) (n+ )Ta(v1,10) < H o) + H(vs|o).

The preceding result is an improvement of a result by Kolesnikov [Kol20] who obtained the following
transport-entropy inequality on S™:

(42) (n+ 1)Ta(v,0) < H(v|o),

for all symmetric probability v € P(S™). The proof by Kolesnikov is based on the Monge-Ampére
equation relating the density of v to the optimal transport map T transporting ¢ on . The de-
terminant of the Jacobian matrix of T is controlled with the help of the classical Blaschke-Santald
inequality for convex bodies (see the proof of [Kol20, Theorem 7.3]). Kolesnikov also establishes links
between minimizers of the functional

vy — H(V1|O') - (’I’L+ 1)7:1(1/171/2)7

with v, 5 symmetric and the log-Minkowski problem; we refer to [Kol20| for further explanations
and references. Remark BIT] below gathers further comments on Il and (22).
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Before turning to the proof of (&Il), let us comment the role of the symmetry assumption. It turns
out that for any constant C' > 0, the inequality
CTo(v,0) < H(v|o),
can not be true for all v € P(S™). This follows immediately from the following lemma:

Lemma 3.8. There exists v € P(S"™) such that To(v,0) = 400 and H(v|o) < +00.

In particular, contrary to Fathi’s Inequality ([29) for the standard Gaussian measure, [Il) is not
true if only one of the probability measures v1, v, is assumed to be symmetric.

Proof of LemmalZ.8. Let A = S™ be some spherical cap and define dv = % do. Then H(v|o) =
—logo(A) < 400. On the other hand, if (X,Y) is a coupling between o and v, then denoting by

Az ={yeS":Jxe As.t. dsn(x,y) <7/2},
it holds -
]P)(d(Xv Y) < 5) < P(Y € ATr/Z) = U(ATF/2)'

If A is small enough, then o(A,/;) < 1 and so P(d(X,Y) = %) > 0. Therefore, by definition of «,
E[a(X,Y)] = +00. The coupling being arbitrary, one concludes that 7, (v,0) = 400. O

Remark 3.9. Note that the preceding construction can be easily adapted to show that, for any 5 > n/2,
B8) can be false if only one of the measures v4, vz is assumed to be symmetric.

Our proof of Theorem 37 is based on the following Kantorovich type duality for the cost function
a. To state this result, let us introduce additional notation. Recall that if C < R™*! is a convex
body, the support function of C' is the function denoted by h¢ defined by

he(y) =supz -y,  VyeR"M!
xzeC

and when C' contains 0 in its interior, the radial function of C' is the function denoted by pc defined
by
po(x) =sup{r = 0:rxeC}, Vo e R

Lemma 3.10. For all probability measures v1,vs on S™, it holds

Ta(v1,10) = supfflnhc dvi + Jlnpc dvs,
C

where the supremum runs over the set of all convex bodies C' containing 0 in their interiors. Moreover,
when v1 and vy are symmetric, the supremum can be restricted to centrally symmetric convezr bodies

C.

This duality relation has been first established by Oliker in [Oli07] in his transport approach to the
Alexandrov’s problem on the Gauss curvature prescription of Euclidean convex sets (see also [Berl6]
in particular for the question of dual attainment). For the sake of completeness, we briefly sketch the
proof of Lemma

Proof. For any v1, vo probability measures on S”, Kantorovich duality [Vil09, Theorem 5.10 (i)] yields
to

(43) Ta(vi,v2) = supf¢dul + fwdug,
.9

where the supremum runs over the set of couples (¢, 1) of bounded continuous functions on §™ such
that

(44) ¢(x) +9(y) < alz,y),  Vo,yeS.
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Whenever vi, v, are symmetric, and (¢, 1) satisfies (@), then defining ¢(z) = 1(¢(z) + ¢(—x)) and
U(y) = 5(¥(y) +¥(~y)), z,y € S", the couple (¢, ) satisfies (@) (because a(—z, —y) = a(z,y)) and

is such that
J(Jgdyl + Jd_}dyg = Jgf)dul + JU)dVQ.

Therefore, in this symmetric case, the supremum in [@3)) can be further restricted to couples of even
functions (¢, ). Let us now consider the a-transform f* of a function f : S™ — R defined by

Fo) = nf fale,y) — f)), yesT

It is not difficult to check that whenever f is bounded on S™, then f® is bounded continuous on S™,
and if f is even then f¢ is also even. Using the well known double a-concavification trick, the duality
formula ([@3]) can be further restricted to couples (¢, ) of a-conjugate functions, that is to say such
that ¢® = ¢ and ¥* = ¢ (see [Vil09, Theorem 5.10 (i)]). Moreover, in the case where vy, are
symmetric, @3] can be restricted to couples (¢, 1)) of even a-conjugate functions. With the change
of functions h = e=® and p = e?¥, we see that (¢,7)) is a couple of continuous (even) a-conjugate
functions, if and only if (h, p) is a couple of continuous (even) positive functions such that
1

h(z) = sup p(y)r -y, VeeS" and —— = sup zy

, YyeS".
yesn p(y)  zesn h(z)

It is well known that to any such couple (A, p) uniquely corresponds a convex body C containing 0 in
its interior such that h = he and p = pe; we refer to [Oli07, Theorem 2] for details. In the case, h
and p are both even, then C' is centrally symmetric, which completes the proof. O

Proof of Theorem[371. Let C be a centrally symmetric convex body in R"*1. According to the clas-
sical Blaschke-Santal6 inequality, it holds

CllC?] < 1By
Calculating the volume of C in polar coordinates yields to

c1= o+ nim | (]
Sn R

where pc denotes the radial function of C. Similarly,

te(rur® dr) dotu) = 1857 [ pe( dofu),

+ Sn

1

————d
oo oGyt 47

c°| = 'BSH'L pee ()" do(u) = | By

using the well known (and easy to check) relation pce = 1/h¢, where he is the support function of
C. So, for every symmetric convex C body in R"*!, it holds

1
45 J u""'ldauf ———do(u) < 1.
( ) . PC( ) ( ) o hc(u)"+1 ( )
On the other hand, if 11, v, are two symmetric probability measures on S™, Lemma .10 yields
(n+ 1)Ta(v1,v2) = supJ— In (h’éﬂ) dvy + fln (pgﬂ) dvs,
c

where the supremum runs over the set of all centrally symmetric convex bodies C' containing 0 in
their interiors. Reasoning exactly as in the proof of Theorem Bl one sees that (45]) implies (and is
in fact equivalent to)

(n+ 1)Ta(v1,v2) < H(v1|o) + H(vz|o),

for all v1, 5 symmetric. This completes the proof. O
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In order to discuss Inequalities @Il and ([@2), let us recall that the uniform probability measure o
on S satisfies the following Poincaré inequality: for any smooth function f : S" — R,

(46) M (S")Var, (f) < f Vsn P dor,

with the sharp constant A;(S™) = n (corresponding to the spectral gap of the Laplace operator on
S™). Equality in (40]) is reached for every linear forms. Under symmetry assumptions, the constant in
#8) can be improved. More precisely, for all smooth functions f : S™ — R such that f(—u) = f(u),
for all u € S™, it holds

(47) Ao(S"Var, (f) < f Vsn P dor

where \o(S™) = 2(n + 1) is the second non-zero eigenvalue of the Laplace operator on S™. Moreover,
Equality in (@7 is reached whenever f is the restriction to S™ of an homogeneous polynomial of degree
2. For the sake of completeness we recall the classical argument leading to (@7]).

Proof of @T). For all d = 0,1,2... denote by Hy < L?*(c) the space of degree d homogeneous
harmonic polynomials (restricted to S™). It is well known that

+00
L*(0) = P Hy
d=0

and that for all f € Hg, it holds Agaf = —d(d+n—1)f. If f:S™ - R is a smooth even function
then it can be written as f = ZZ;'OO for, with for, € Hoy, for all k£ = 0. Therefore, by integration by
part:

+00 to
f|VS"f|2dU = —Jf.ASnfda =] 2k(2k+n—1)ff,f do>2(n+1) )] ff,f do = 2(n+1)Var,(f),
k=0 k=1

which proves [@T)). Whenever f € Hy® Ha, equality obviously holds. This is in particular the case if f
is the restriction to the sphere of a degree 2 homogeneous polynomial. Indeed, suppose that f = Pgn,
where P : R""! — R is some degree 2 homogeneous polynomial. Then there is some constant ¢ such
that Agn+1P = c. The polynomial @ defined by Q(z) = P(2) — 555y |2/*, € R, is homogeneous
of degree 2 and harmonic. Moreover, it holds f = Qs» + 2(n—c+l) and so f e Hy® Ho. O

Recall the expression ([@0) which will be used in the following remark on optimality of (Tl).
Remark 3.11.

e First let us relate Kolesnikov’s Inequality ([@2) to existing transport-entropy inequalities on
S™. A simple calculation shows that —logcosu > “72 for all u € [0,7/2]. Therefore, ([@2)
implies that for all symmetric probability measures v on S”, it holds

n+1
(48) LW (0) < H(vo),

with W5 being the usual Wasserstein distance on S™ (with respect to the geodesic distance
dsn). The inequality (@8) is an improvement of the following classical transport-entropy
inequality:

(49) gwg(y, o) < H(v|o),
that holds for all v € P(S™). Inequality ([@9) can for instance be deduced from the log-Sobolev
inequality on S™ that holds with the optimal constant 2/n using the Otto-Villani theorem

[OV00]. The constant n/2 in ({@3) is optimal. Indeed, according to a well known general
linearization argument of [OV00], @9) implies the sharp Poincaré inequality ([@6]). Using the
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fact that the function u — — log cos y/u is convex and increasing on [0, (7/2)?], it follows from
Jensen inequality that ([@2) implies the following transport-entropy inequality:

(50) —(n+1)logcos Wa(v,0) < H(v|o)

for all symmetric v € P(S™). Inequality (B0) improves the conclusion of [EKS15, Corollary
3.29] in the case of symmetric probability measures on S". See Remark 7.4 of [Kol20] for
other transport-entropy inequalities derived from (@2).

e Now let us discuss the sharpness of Inequality [@I). Reasoning as above, we see that (&I
implies the following variant of (@S)):

n+1
2

for all symmetric probability measure vq,15 on S™. Adapting the linearization argument of
[OV00Q] (see below for a sketch of proof), one can see that (&Il implies the Poincaré inequality
[ @7) for smooth even functions f : S” — R. In comparison, for the same class of functions
f, @) only yields to Poincaré inequality with the sub-optimal constant A\ = n + 1, so that
T is a strict improvement of ([@2). As explained above, the constant 2(n + 1) is sharp, with
equality obtained for instance for f(u) = u?, u e S".

W22(V1,I/2) < H(Vlld) + H(V2|O'),

For the sake of completeness, let us recall how to deduce the Poincaré inequality {@T) from (GIJ).

Proof of BI) = {T). Let f : S* — R be a smooth and even function. Without loss of generality,
one can also assume that § f do = 0. Bounding the second order derivatives, one sees there is some
constant C' > 0 such that

f) < f(u) + |Ven fl(w)dgn (u, v) + Cdzn (u,v), Yu,v e S™.

For all t > 0, consider v1; = (1 —tf)o and vo, = (1 + ¢tf)o. For all ¢ small enough, v ; and v, are
symmetric probability measures on S”. If 7 is an coupling between v; ; and vy, for Ws, it holds

[£2an = [ra(*2eme) < 5 [ 1) - sy antun

% J |Vsn f|(u)dsn (u,v) + Cdé. (u,v) dm(u,v)

N

A

1 12 C
% (J |Vgnf|2 da) Wg(l/Lt, 1/27,5) + EWS(VL“ 1/27,5).

According to (BI)), it holds

t—Qsz(Vl,ta vat) <

2 (H(Vl,tW) N H(Vz,t|u)>7

n+1 t2 t2

and a simple calculation shows that M — 1§ f?do. Therefore,

. 1 2 2 2
lim sup t_2W2 (V1,4,v24) < nrl Jf do.

t—

So passing to the limit above yields to

ff2 do < % (f|vsnf|2 da) 1/2 (niﬂj‘f%w)lm’

which amounts to (7). O
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In the following, we derive some simple consequences of Inequality (1)) in terms of measure con-
centration for symmetric sets of the sphere. Whenever A, B < S”, we will set

dsn(A,B) = inf Bdgn (z,9)

TEA,YE

to denote the distance between A and B.

Corollary 3.12. Suppose that A, B < S™ are two symmetric subsets of S™, then dgn(A, B) < 7/2
and it holds

(52) o(A)o(B) < cos™ (dgn (A, B)).

Proof. The fact that dgn (A, B) < /2 is obvious. Inequality (B2)) is then immediately derived from
the transport entropy inequality (@) using a general argument by Marton which is detailed in e.g
[Goz07, Theorem 10]. O

Remark 3.13. Inequality (B2) is not always true for general sets A, B such that ds»(A, B) < 7/2.
Indeed, if A and B are two (small enough) spherical caps such that dg» (A, B) = /2, then Inequality
(E2) would imply that o(A)o(B) = 0 which is obviously false.

In particular, if A is some symmetric set of S™ such that ¢(4) > 1/2 and B = S™\A4,, where
0<r<wm/2and A, = {yeS":dsn(y,A) <r} is the r-enlargement of A, it holds

(53) o(S™\A,) < 2cos" T (r), YO <r <m7/2.

In comparison, for a general set A — S™ such that o(A) = 1/2, the classical Talagrand inequality (@3]
yields to

nr

2
(54) o(SM\A,) < 2e” 1, VO<r<m/2
and, if A is supposed symmetric, Inequality (&) gives

_(nt1)r?
2

(55) o(SMA,) <2z | Y0 < r < 7/2.

Since cos(r) < e "/2 for r < 0 < 7/2, the bound (53) is clearly better than bounds (54) and (55).
On the other hand, the classical isoperimetric inequality on S™ implies that if a general set A = S™ is
such that o(A) = 1/2, then

/2
(56) F(S™\A,) < () = QL cos"N(u)du,  ¥r >0,
Sn Jr

with s, = 3/2 cos" 1 (u) du (see e.g [Led01]), with equality if A is a spherical cap of measure 1/2. It
is not difficult to see that

n /2 1 n
cos™(r) < J cos" (u) du < — e (T), VO <r<m/2
n - sin(r) n
and s, ~ /5, so that for any 0 <a <b < 3,
n+1 / n+1
M < wn(r) < ¢ COS (T) Vr e [a,b],

n sin(a)cos(b) /n

where ¢, ¢ are constants independent of a, b and n. Thus for r € [a, b] the bound (E3) is off only by a
factor of order 1/4/n from the optimal bound (G6l).
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4. LINEARIZATION OF TRANSPORT-ENTROPY INEQUALITIES

In this section, we show that the transport-entropy inequality [BI]) gives back the following sharp
Brascamp-Lieb type inequality due to Cordero-Erausquin and Rotem [CER].

Theorem 4.1. Assume that t — v,(t) = —logp(e') is convex and increasing. Then, for all f €
CP(R™) even and such that § f dp, =0,

(57) | Py <5 | 1,199 5 du,,

where the positive matriz H, is given by

1 1 ® / ® "
§Hp(y) = —2l<In _Y Qy)vp(s) + Y 2y’l)p(8)]
vl vl vl

where we set s = 2loglyl.

Remark 4.2. This result is exactly the one obtained in [CER), Theorem 3| for the probability s,.
Namely, using the same notation as in [CER], if v,(s) = w(e®?), we find

! ® Y
2Hp<y>=w('y')(2zn y y)+y|y|fw (o).

Iy ly|?

which is easily seen to be the same matrix as the one appearing in [CER), Theorem 3]. As observed
in [CER], the Poincaré inequality (57)) admits non-trivial equality cases, and is therefore sharp. Note
however that [CER| Theorem 3| is much stronger than Theorem F1] above since it shows that the
weighted Poincaré inequality (57)) is satisfied not only by the model probability measure 11, but also by
any log-concave perturbation of 1,. This raises the question to know if (BI)) is also true for log-concave
perturbations of fi,,.

Our proof, adapted from [CEI7|, relies on a well known linearization technique involving the
following Hopf-Lax operator

(59) RF(y) = inf {F(x) +w,(e.y)},  yeR"
where we recall that the cost function w, is defined by
p(z-y)? e
(59) wpl@,y) = k’g(p(\w\z)p(\y\z)) ifz-y>0
400 otherwise

The following result collects some properties of the cost function w, and in particular relates the
matrix H, to the behaviour of w, near the diagonal.

Lemma 4.3. Assume p : R¥ — R* is nonincreasing, and that t — p(et) is log-concave. The cost
function w, defined in (BI) then satisfies the following:

(1) w, = 0.
If t — p(et) is furthermore assumed to be strictly log-concave, then

(2) if p is of class C3, then for every y # 0, there exists a symmetric definite positive matriz H,
such that

1
oy + hyy) = SHoh it of|BP?)
when h — 0;
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(3) for every compact subset K and p > 0, there exists a constant 1 > 0 such that for all
re K,yeR"
|z =yl > = wplz,y) =7

Remark 4.4. The log-concavity of ¢ — p(e') is, in fact, equivalent to the nonnegativity of w), if p is

assumed nonincreasing.

Proof. First, note that by monotonicity, for any =,y € R™,

®.9) > g<p<|x|2>p<|y|2>

To prove point (1), it suffices to show that, for any s,t > 0,
/2 /22
p(e®)p(e’)
Rewriting this inequality in terms of v,(t) = —log(p(e")), we find that it is equivalent to

s+t 1 1
”p( 5 ) < 5%(5) + 5%@),

which in turn is equivalent to the convexity of v,.

Item (2) is a direct consequence of the computation of the second derivative of ¢(h) = w,(y,y +h)
or, in terms of the function v,, ¢(h) = —2v,(log(y - (y + h))) + v,(log(|y*)) + v,(og(ly + h|*)). We

find that
2 ® ®
Ve(0) =0, V3p(0) = — [ <fn - y—f)v;<s> +2 va;%s)} = H,,

[yl [yl [yl
where we wrote |y|2 = ¢° for brievety. Strict convexity implies monotonicity of v,, so both matrices
appearing in the Hessian are nonnegative. Moreover, the second matrix is positive on the line spanned
by y, and the first matrix is positive on its orthogonal, thus their sum must be positive. For future
reference, we may rewrite H, in terms of p rather than v,:

1 p'(s) (p’Q(S) p”(S))
—H,=— I, + - YRYy).

e = o T\ Ry e JUEY)
A Taylor expansion yields the formula of item (2).

The last point is an immediate (but useful enough to be stated) consequence of the strict convexity
of v,. Notice that w,(z,y) > 0 whenever « # y. This is true because the monotonicity and the
convexity of p are strict. The stated result is then simply the consequence of continuity, if = and y are
taken in some compact sets. However, we want a uniform estimate when y is any point in R™, which
is a bit more than we can say with just continuity. Fix R > 0. So far, we proved that the property is
true for all z,y such that |z| < R and |y| < 2R. If |y| = 2R, then

wr(eg) 5 Io p<|w||y|>2>
e g<p<|:c|2>p<|y|2>

_ gvp<5 : t) +0,(5) + v, (1)

’
P

if we once again write |z|> = e® and |y|* = e’. Since v, is convex, v}, is nondecreasing, and we find
that

log(R?) + log(4R?

wpl,y) > 2vp( o8 ”2 o8 )) + v, (log(R%)) + v, (log(4R%)) > 0.

Combining this estimate at infinity with the local one we had due to continuity, we may conclude. [
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The next result establishes some Hamilton-Jacobi type (in)equation for R(ef) as € — 0.

Lemma 4.5. Let f € C*(R"), and assume that p is strictly decreasing, and that t — p(et) is log-
concave. Then

1
(60) R(ef) 2 ef = 5e*H'Vf -V +o(e?),
when € goes to 0, with

1) Lo ), <p’2<s> §'(s)

277 pls) ™"

2)  pls)

Proof. As is usual when linearizing such semigroups, the key is to localize the infimum. Namely,
recalling (B8],

)(y®y), s = 2log|yl.

R(=f)(y) = inf {=f(z) + w0y, 1)},
if . is a minimizer of this expression, we want to prove that |z. — y| goes to 0 uniformly in y as €

goes to 0. Of course, we must also prove that such a z. exists.

We would like the result to be independent from the variable y. To that end, notice that since
f has compact support, we may restrict the study to y in a compact subset of R™. Indeed, notice
that, in general R(cf)(y) < ef(y). Assume more specificaly now that y € supp(f)°. In that case,
R(ef)(y) < 0. Since w, > 0, the infimum in the Hopf-Lax semigroup can only be reached for z =y,
or for x € supp(f). In other words, whenever y € supp(f)¢,

REN() = inf {e(x) +w,(e.)} = min©, _inf (/@) + wp(a,0)})

Furthermore, according to the point 4. of Lemma [£3] there exist ¥ > 0 such that x € supp(f)
and |z —y| > 1 implies that w,(z,y) > 1. As such, if € < n/| f||,, d(y,supp(f)) > ¢ implies that

R(ef)(y) = 0.

We now restrict our study to some ball B that contains supp(f) + B(0,1). Assume that y € B. To
make the calculations a little bit clearer, we rewrite (B3] as

Ref)(y) = Inf {ef(y +h) +w,(y +h,y)},

The immediate estimate R(cf) < ¢l f||,, means that to find the infimum, we may restrict 2 to be in
the set
{heR™ef(y+h) +wp(y+hy) <elfllo} = {heR" wply + h,y) < 2] fll.}

Now, recall that for any y € B,
1
wP(y + hvy) = §HPh ~h+ 0(|h’|2)5
where H, is a continuous (positive definite) function of y, and the remainder term is uniform in y.
This implies that there exists r,§ > 0 such that |h| < r implies
2

wp(y + h,y) = 6|h[".

Owing to point (3) of Lemma 3] there also exists ' > 0 such that if |h| > r, then
wp(y +hyy) =1

If 2¢(| f]|, <, then w,(y + h,y) < 2¢||f||,, implies that |h| < r, and thus

R(ef)y) = @?fr{gf(y +h) +wply + h,y)},
The fact that B(0,r) is compact implies the existence of a minimizer h.,

R(ef)(y) = ef(y+ he) + wp(y + he,y).
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Since w,(y + h,y) = nlh|?, we can already state that |h.| < C/e for some constant C' independent
from y, but we can do better. The functionf is Lipschitz for some constant L > 0. Then,

ef(y) — eL|he| + dlhe|® < R(f)(y) < ef(y),

and thus |h.| < C’e for ¢’ = L/§ > 0, which we emphasize is independent from .

Now that the minimizer h. is localized, the rest follows naturally.

R(Ef)(y) = Ef(y + ha) + Wp(y + he, y)

—ef(y) + eV () - he + %ths e + 0(e2)

()~ 5H, V() V() + ole?),

Vv

since H,z -z > 0, where z = he + eH, 'V f(y). a

We are now in position to prove Theorem [l Let us underline that in order to retrieve the sharp
constant in the final inequality, one needs to consider a two sided linearization involving 7, ((1 —

ef)ip, (1 4 €f)pp), rather than 7o, (1 + € f)pp, thp)-

Proof of Theorem [{.1] Choose f € CX(R™) such that its integral against u, is 0, and consider, for
e>0,1n = (1+ef)u, and vo = (1 —ef)u,. Linearizing the entropy is straightforward: since
(14 ¢)In(l +¢) = €2/2 + o(£?), the right-hand side of inequality (3 is equal to

H(U+2Dnals) + U = Dol = 2 [ 12 di + 0fe?).
For the left hand side, note that since R(ef)(y) — ef(z) < wy(z,y),
o, (1,02) > JR(af)dul _ fsfduQ
= [Bent+erydn, - a0 -<f)dn,

Lemma .5 applies, and assuming that ¢ is sufficiently small, the remainder term is uniform and zero
outside of a compact. We may integrate it to find

52
Tt > [ (e = SHOL-VF) 0k edu, [0 ef) duy + o)
— 52(—% JH;lef -V fdu,+ 2ff2dup + 0(1)>

Combine these two observations to find that, after dividing by €2, letting it go to 0 leads to the
claimed Poincaré inequality. O

5. TRANSPORT-ENTROPY FORM OF REVERSE BLASCHKE-SANTALO INEQUALITY ON THE SPHERE

The aim of this section is to draw connections between inverse Blaschke-Santalé inequalities and
cone measures, in the spirit of [Goz22, [FGZ23].
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5.1. A short reminder about cone measures. Let us first recall the definition of a cone measure.

Definition 5.1 (Cone measures). Let C' = R"*! be a centrally symmetric convex body of volume
1. The cone measure v¢ of C' is the pushforward of the uniform probability measure on C' under the
map

C—S":x— N¢(pe(x)x),

with Ng : 0C — S™ the Gauss map and p¢ the radial function of C.

A characterization of cones measures has been obtained by Boroczky, Lutwak, Yang and Zhang in
IBLYZ13|. It is shown there that a symmetric probability measure v on S™ is the cone measure of
some centrally symmetric convex body if and only if it satisfies the so-called subspace concentration
condition, which reads as follows: for every subspace F < R"*! of dimension 1 < k < n, it holds

k

(62) v(S" A F) < —

and moreover, if there is equality in ([62)) for some subspace F', then there is another subspace G such
that F n G = {0} and dim(G) =n + 1 — k such that
n+1—k
S"NnG) = ———
v(S" N G) n+1

(and so, in particular, ¥(S™ n (F U G) = 1)). Note in particular, that any probability measure such
that v(S™ N F') = 0 for any hyperplan F satisfies the subspace concentration condition and is therefore
the cone measure of some centrally symmetric convex body.

Denote by Convs(R"*!) the set of all centrally symmetric convex bodies of R"*1. In order to
construct a convex body C such that v = v¢, the strategy of proof of [BLYZ13] relies on minimizing
the following functional:

o,(C) = Jlog he dv

over {C € Convs(R"*!) : |C| = 1}. According to Theorem 6.3 of [BLYZ13], if v satisfies the strict
subspace concentration inequality, that is if for all subspace F' of dimension 1 < k < n the inequality
in (62) is strict, then there is some C, € Conv,(R"*!), with |C,| = 1 such that

i f (I)y O = (I)u C(o
CEConvS(lllg"*lHC\:l ( ) ( )

and moreover v = v¢,.

Recall that P,(S™) denotes the set of symmetric probability measures on the n-dimensional sphere
S™ = R**1. In what follows, for all v € P,(S"), we will set

K(v) = inf ®,(0)}.
(v) CECOJVDS(RM){ (C)}

It turns out that the functional K can be related to those considered in Section[8l For any v € P4(S™),
consider the functional F, defined by

F,(n)

— —H (o) - Talvsn),

where 7T, is the transport cost introduced in Section The quantity F, (n) always makes sense in
R U {—o0} whenever 7 belongs to

PEES™) :={ne Ps(S") : H(nlo) < +o0}.
Lemma 5.2. Let v e Py(S");
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(a) It holds

1 Bn+l
Kw)= inf F,®n) - log |By™ |
nePX(sn) n+1

)

where | By Y| denotes the Lebesque measure of the unit ball By < R,
(b) Moreover, if K(v) is finite and ®, attains its infimum at some C, € Convg(R"*1), with
|Cy| = 1, then v is the cone measure of C, (v = ve,) and F, attains its infimum at

dnc, = |B3 " |pgt ! do.
A proof of this lemma can be found in [Kol20], but we include a proof for the sake of completeness.

Proof. (a) Note that

n+1 n+1

_ log {pittdo)  log|By™Y|
CeConvg (R?+1) '

(63) K(v) = inf ” log he dv —

This follows from the fact that if C'€ Convgs(R"*1), then
n+1 _ |C|
Joi o = g

and from the identity hyxc = Ahe. According to a classical duality formula relating Log-Laplace and
relative entropy functionals, for any bounded measurable f : S” — R,

logfefdaz sup {JefdnH(nhj)},
)

nePs(Sn

with, as a convention H (n|o) = +oo whenever 7 is not absolutely continuous with respect to o. Thus,

applying this formula to f = log pgﬂ’ one gets
i i H(n|o)
K(v) = i f log he dv — | log pe dn + 217
®) Cecorgls(Rnﬂ)ngl;I:(Sn) {J og e av J og pc dn + T
i i H(nlo)
= _inf f log ho dv — | log pe dny + ——1=2
ne%?(sn)cEconl\I,ls(RnH) {J og hc av J og pc an + "

i f o - Jal\l, 9
YR ER

where the last equality comes from Lemma [3.10]
(b) Now let us examine equality cases. Suppose that K(v) is finite and ®, attains its minimal
value at C, € Convg(R"*1), with |C,| = 1. The fact that v is the cone measure of C, is given by

Lemma 4.1 of [BLYZ13|. Define n¢, as in the statement; since C,, is of volume 1, n¢, is a probability
measure. Applying Lemma 310, one gets

log § pt ' do log | By
KWw) = |loghe dv— o — 2
() Jog Co AV n+1 n+1
H(nc,|lo) log|By™!|
=—|—|loghe d 1 d %)
[ Jog C, VJFJOcho 7700]+ ol ol
log |BR+!
>Fl,(nco)—7g| 2 |>K(1/),

n+1

and, so all inequalities above are equalities. g
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5.2. From reverse Blaschke-Santalé inequalities to log-Sobolev type inequalities on the
sphere. Theorem [3.7] which is a direct consequence of Blaschke-Santalé inequality, can obviously be
restated in terms of a lower bound for the functional K: for all v € Py (S™),

1 1 Bn+1
H(v]o) — log |By™ |
n+1 n+1

This shows in particular that, if v € P*(S™), the functional F, takes finite values. The aim of what

follows is now to derive upper bounds on K from inverse Blaschke-Santal6 inequalities. For all k > 1,
recall the notation

Kv) = -

¢ = inf |C||C°|,
Conv, (RF)

given in the Introduction. A celebrated conjecture due to Mahler [Mah39bl [Mah39a], states that the
infimum above is attained for C' = [—1,1]* or equivalently that ¢§ = 4%/(k!). According to a result
by Bourgain and Milman [BMS8T7], this conjecture is known to be true up to a geometric sequence.
More precisely, there exists some a > 0 such that, for all £ > 1, cf > a¥/(k!). The following result
connects the constant ¢j and the functional K introduced above.

Proposition 5.3. For any v1,vs € Ps(S"), it holds

_log (cns1)

(64) K1)+ K(1n) < o

77‘0((1/17]/2)

Remark 5.4. Note that this inequality compares two quantities in Ru{—oo}. It entails in particular the
following non obvious fact: if 11 and v5 satisfy the strict subspace concentration inequality introduced
above, then, according to [BLYZ13| Theorem 6.3], K (v1) > —oo and K (v3) > —o0, and so 7o (v1,12) <
+00.

Proof. Using polar coordinates (as in the proof of Theorem [B.7)), one sees that

€= 18571 | o ot
and
€1 = B3+ [ ) dort)
hold for all C' € Conv,(R"*1). Plugging these expressions in
ClIC?| = en i
yields

2log [By ™| _ log (cniy)
n+l n+l

n 1 n
S loan Pt (u) do(u) — — log Ln Pt (u) do(u)

So, if v1,v9 € Ps(S™), one gets thanks to (63)

it log | B3|
K(V1)+K(V2)<J10ghc(u)d1/1(u)—n+llogjpc (u) do(u) — P

1 1 Bn+1

+ f log hce (u) dva(u) — —— log j st () doru) — 2212 = |

_log (cn+1)

1 + Jlog he(u) dv (u) — Jlog po(u) dva(u).

Optimizing over C' € Conv,(R"*!) and using Lemma 310 completes the proof. O

The following log-Sobolev type inequality can be deduced from Proposition
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Theorem 5.5. Let vi,vs € Py(S™) satisfy the strict subspace concentration inequality; if m =
e Vio,me = e V20 are minimizers of F,, and F,,,, then it holds

H(mlo) +H(772|U (n+1)Ta(v1,v2)
T gy 1 Vo Va2 v,
(65) < dpt1 + f ( — 1) e "1do + 5 log {1+ CESIE e~ "% do,

with dy4+1 = log (w)

Cn+1

Remark 5.6.

e With the notation of Lemma (2] there exist C1,Cy € Convg(R"*1) with unit volume such
that, for i = 1,2, ; = nc, and V; = —(n + 1) log pc, — log | By |. In particular, the functions
V; are differentiable almost everywhere on S™.

o It is well known that the uniform probability measure o on S™ satisfies the following log-
Sobolev inequality: for all dn = e~" do with a smooth potential V : S — R,

1
(66) H(nlo) < o J |Ven V[2e™V do.

The constant n in (66 is sharp (and corresponds to the spectral gap of the Laplace operator).
In particular, if 71,72 € P(S") have smooth densities of the form e="%, i = 1,2, then

(67) H(m|o) + H(nzlo) < J|VSnV1|2 Vlda+—J|VgnV2|2 V2 dg.

Using the inequality log(1 + :v) x, x > —1, one immediately sees that (68) improves (67) in
the case where 71,72 are minimizers of F,,, F,, with (n + 1)74(v1,v2) = dpt1.
e We do not know if the inequality

n+1 |V§nV|2 _
H(n|0)<TJ10g<1+m e VdO'

is true for say symmetric probability measures dn = e~V do with a smooth potential V : S* —
R (and constant n instead of n + 1 without the evenness assumption). Since S™ satisfies the
curvature-dimension criterion CD(n — 1,n), the inequality

n 1 2,—V

holds true for all probability measures n (see [BGL14]). In [DEKLI14, Theoreml.1], one can
also find the following variant of (GS])

4 *
H(nlo) < — log (1 0 J |Ven V[2e™V do)
N 8n

with 7§ = e Note that, contrary to (68)), this inequality gives back (66) with the sharp

constant 2n.

nJrl)2

We will need the following elementary result.

Lemma 5.7. Suppose C is a centrally symmetric convex body of volume 1 containing 0 and let
ve be its cone measure. Then the map T : S* — S™ : u — Ng(pe(u)u) transports dne(z) =
| Byt pit (z) do(x) onto ve and is optimal for T,. Moreover

Ta(nc,ve) = fn log (W) dne (u).
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Proof. By definition of v¢, for any f bounded measurable function f on S™, using polar coordinates
yields

+o0
y) dve(y J f(T(x))dx = |Bg+1|f J J(T ()l r<pouyy(n + 1)r™ drdo(u)

= || £ @) dne (),

and so v¢ is the pushforward of o under the map T'. Let us show that T is optimal for the transport
cost T,. Indeed, using the inequality

(69) —logz -y > log pc(x) —log he(y), v,y e S",
one gets
a(nc,ve) flogpc ) dnc(z) — floghc( ) dve(y)
)
Jl :Cpc( 0 dne (z)
= Ta(ne, Vc)

where we used that for any v € N¢ z)
he(u) = z - u, Vz e oC

and that for no almost all 2, No(zpc(x)) contains a single point. Therefore,

M) Talie.ve) = [ aleT@)dnc(s) = [1ogpota) dno(z) ~ [oghoty) due(y).
For n¢ almost all x € S™, it thus holds
he(T(x)) = po(x)z - T'(x)
and so, using that hal = pco and pgl = hco, one gets
hoe(w) = 2+ pos (T(2))T(@).

So, for ne almost all x, the vector poo (T'(2))T'(2) is a subgradient of hgo at x. The set where heo is
differentiable being of nc measure 1, one gets that

Vini1hee(z) = poo (T(I))T(I),

for no almost all z € S™. Since |T(z)| = 1, one gets poo (T'(z)) = |Vgn+1heeo(z)| and so z - T'(z) =
|vR:ﬁ°fsz< oy Using again that heo = 1/pc, one gets finally x - T( ) = %ﬁ%, which completes

the proof. O
We are now ready to prove Theorem

Proof of Theorem [5.8 Let v1,v5 € Ps(S™) satisfy the strict subspace concentration inequality, and
let 11,72 be minimizers of F,,, F,,, which exist according to Theorem 6.3 of [BLYZ13|. According to
Proposition [5.3] it holds

H(mlo)+ H(nzlo) + (n+ 1)Ta(v1,v2) < dpi1 + (n+ DTa(m, 1) + (n+ 1)Ta(n2, va).

Now, according to Lemma 5.7, one gets

(n+ 1)Ta(ni,v;) = (n+1) Jn log (W) dn; (u),
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where 7; = |Byt|pit ! do and p; is the radial function of some unit volume C; € Convg(R"1).
Letting V; = —log|By*| — (n 4 1)log p;, we see that, for all z € S” at which p; is differentiable,
W(z) = — 25 Vs Vi(z), and by projection on 2+
———(z) = ———=VsV;
Pi @) nt1° (@).

Since p; is —1 homogeneous, one gets

Vint1pi(x) = Venpi(z) + (Vpi(z) - 2) 2 = Vnpi(z) — pi(z)x

|V]R"+1p1 |VSan Tl |Vsn Vil (2) 1,
(n+1)2

at all point x € S™ Where pi i d1fferent1able. ThlS set of points being of full measure, this completes
the proof. O

and so

5.3. Remarks on the log-Minkowski conjecture. The following log-Minkowski inequality has
been conjectured in [BLYZ12| (in relation to an equivalent log-Brunn-Minkowski inequality).

Conjecture 5.8 (log-Minkowski inequality). For all C, D € Convs(R™1) with unit volume, it holds

Jlog (Zc) dve =0,

This conjectured inequality is known to be true in dimension 2 [BLYZ12|, or when C' and D have
a lot of symmetries [Sarl5l [BK22].

where vo is the cone measure of C.

Note that Conjecture is equivalent to the following property: if C' € Convs(R"*1) has unit
volume, then C' minimizes ®,,, or equivalently (using Lemma [2), nc(dz) = |By ™ |pit! (z) o(dx)
minimizes F,,. This remark, immediately leads to the following version of Theorem (.5

Theorem 5.9. If Conjecture [5.8 holds true in R+ then for all Cy,Cq € Convs(R™ 1) with unit
volume, it holds

H(7701 |U) + H(ncz |U) + (n + 1)7:1(V01 ) I/Cz)

n+1 Vs Vi 2 _ n+1 Vsn V5 2 _
(71) <dn+1+TJ10g (1+|(n_’_711)|2>6 VldU+TJ10g <1+ﬁ (& V2d0',

L _pntlntl gV \B"“\z
where, fori=1,2, dnc, = |By" *|p¢l " do = e”Vido and dpy1 = log .

1
Proof. Tt suffices to apply Theorem BB to 11 = v, and 1o = v, and to use the fact, explained above,
that nc,,ne, are minimizers of F,, and F,. O
One can take advantage of the fact that both Mahler and log-Minkowski conjectures (58)) hold
true when C, D are unconditional to get the following result.

Theorem 5.10. For all unconditional convex bodies C1,Co < R™ 1 with unit volume, it holds

(72) H(T/01|U) +H(7702|0) + (7’L+ 1)7:1(1/0171/02)

n+1 |VSnV1|2 v n+1 J |V§nV2|2 v
<en - |log (14 =2 tdo + —— |log [ 1+ 22220 2 do,
ent+1 + 5 Jog( + (n+1)2 e o+ 5 og + (n+1)2 e o

n+1
where, fori=1,2, dne, = |B”+1|p7le1 do = e Vido and eprq = log (w)

AnTi
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Remark 5.11. Using that |B| = (kiﬂ) one sees that e 1 ~ (n+ 1)log (%), as n — . The

sharpness of the Log-Sobolev type inequality of Theorem [5.10]is discussed in Remark [5.14] below.

Proof. For any v € P4(S™), define
f((y) = inf{®,(C)},
where the infimum runs over the set of unconditional convex bodies C' = R™*! of volume 1. Since the

inequality
4n+1

(n+1)!

holds true for all unconditional convex body C' < R™*!, repeating the proof of Proposition [5.3] leads
to

(73) (n + 1)K(V1) + (n + 1)K(V2) < €n4+1 — (n + 1)7:1(V1, VQ),

for all v1, v, € Ps(S"). According to [Sarl5, Corollary 1.3], Conjecture 5.8 holds true whenever C, D
are unconditional. Therefore, for any unconditional convex body C' = R"*1 it holds K(v¢) = @, (C).

IClIC°] =

Moreover,
H(nolo)  log|Byt!|
D, =—|—|loghcd I d —
< (C) [ JOch+JOgPC ﬁc]+ ot 1 ot 1
B H(nolo)  log|ByH!|
= ~Talve,ne) + = 7 n+1

Applying ([T3) with, for i = 1,2, v; = v, and C; unconditional of volume 1 yields
H(T]01|0) + H(T]02|U) + (n + 1)7:1(V017V02) Seény1t (n + 1)7:1(VC177701) + (n + 1)7:1(1/0277702)'
The proof is then completed exactly as the one of Theorem O

Remark 5.12. The equality K(v) = K(v) for all unconditional probability measure v would have
enabled us to shorten the preceding proof, but we do not know how to prove it.

It turns out that the log-Sobolev type inequalities obtained in Theorems [5.9] and 510 imply back
a reverse Blaschke-Santal6 inequality.

Theorem 5.13.
(a) If, for some constant d > 0, the inequality

(7701|U) + H 7702|U) (TL + 1)T (VCI’VC2)

4 <d+ —— td — |1 1+ —7= 2d
(74) + = J ( 17 e o+ — og |1+ CFSE e o,

holds true for all C1,Cs € ConvS (R™1) with unit volume, then the following inequality holds
true: for all C € Convg(R"H1),

(75) |C||C°| = cexp ((n + DTa(vey,ve,) + flog hgirl dve, — fIngnJrlchg) ,

where ¢ = e~ By % and vo, and ve, are the cone probability measures of Cy = \CW%C

1
and Cb =:H§FFRZ¢TT(70.

(b) If C € Convs(R"*1) is unconditional, then (T5) holds without restriction with the constant
gqn+1

C = ?EITﬁ'
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Proof. Inequality (4) reads,

(n + 1)7:1(77017V01) - H(T/01|U) + (n + 1)7:1(770271/02) - H(T/02|0) = E(VCI,VCQ) - d,

1
e ¢ and

= WOO, where C' is some centrally symmetric convex body. Using (70), one gets that

for all Cy,Cy € Convg(R™*!) with unit volume. Let us apply this inequality to C; =
Cs

(n + 1)Talne,sve,) — H(ne,lo) = - Jlog he;™t dv +1og |C| —log | B3 Y|

and

(n+1)Ta(nc,,ve,) — H(ne,|o) = — Jlog heEt dv +log |C°| —log [ BE .

Since —d = logc — 2log| By ™|, the proof of (a) is complete.

According to Theorem [5.10, in the unconditional case, ([74) is true with the constant d = e, 11 =

n+1,2
log (%). Thus repeating the preceding arguments, we see that (73 holds for all uncondi-

tional bodies C with the constant ¢ = %, which proves (b). |

Remark 5.14.

e Assuming the Log-Minkowski conjecture holds true in R**1, it follows from Theorems[5.9and
(Item (a)) that (75) holds with the constant ¢ = ¢ ;. According to Lemma B0, the
exponential factor in the right-hand side of ([73]) is greater than or equal to 1. Note that this
term can be strictly greater than 1, because there is no reason in general that the function
—log hc, is a dual optimizer for the transport between v, and ve,.

e IfC; = ;B and Cy = C2.BIL+1 where c1, co are positive constants ensuring the bodies have
volume 1, then there is equality in (73). Indeed, C' = B%*! is such that |B% Y |(B%L1)°| =

(;{LTT)! and so Inequality (78] (with ¢ = (inTT)') implies that
(76) Ta(ve,,ve,) + J log ht:T dve, — J log p¢itdve, = 0.

Plugging this relation in the proof above, one gets equality in (73). This shows that the
conclusion of Theorem [5.10] cannot be improved in general.

e A similar reasoning shows that more generally all couples (Cq,Cs) with C; = Wl(nﬁ;(}',
Cy = W%CO with C being a Hanner polytope are such that (76) holds (and are equality

cases in ([[3)). Characterizing the class of convex bodies (C1,Cs) for which (7)) holds is a
challenging question that will be considered elsewhere.

Putting together the conclusions of Theorems and (Item (a)) finally yields the following
result.

Theorem 5.15. If Conjecture [5.8 holds true in R™*1, then the constant ¢, is the best constant
¢ > 0 (that is the greatest) in the inequality

H(ne,lo) + H(ney|o) + (n+ 1)Ta(vey, ves,)

B3+ n+1f Ve Vil v n+1j [Ver Vo v
<1 log (1+ 22210 ¢ =Vig log (1 2 do,
og< c 3 s\t m+1)? )¢ 7T A m+12)" Y

where C1,Cy < R are arbitrary centrally symmetric convex bodies with unit volume and, for
i=12,dnc, = |B§+l|pgj1 do = e Vido and vc, is the cone measure of C;.
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