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TRANSPORT-ENTROPY FORMS OF DIRECT AND CONVERSE

BLASCHKE-SANTALÓ INEQUALITIES

MATTHIEU FRADELIZI, NATHAEL GOZLAN, SHAY SADOVSKY, AND SIMON ZUGMEYER

Abstract. We explore alternative functional or transport-entropy formulations of the Blaschke-
Santaló inequality and of its conjectured counterpart due to Mahler. In particular, we obtain
new direct and reverse Blaschke-Santaló inequalities for s-concave functions. We also obtain new
sharp symmetrized transport-entropy inequalities for a large class of spherically invariant probability
measures, including the uniform measure on the unit Euclidean sphere and generalized Cauchy
and Barenblatt distributions. Finally, we show that the Mahler’s conjecture is equivalent to some
reinforced log-Sobolev type inequality on the sphere.
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1. Introduction

The classical Blaschke-Santaló inequality [Bla23, San49] states that if K Ă R
n is a convex body,

then there exists z P R
n such that

(1) |K||pK ´ zq˝| ď |Bn2 |2,
where the polar of a set A Ă R

n is defined by A˝ “ ty P R
n; xx, yy ď 1,@x P Au, and Bn2 denotes the

Euclidean unit ball of Rn. Equality holds in (1) if and only if K is an ellipsoid. Moreover, if one of the
convex bodies K or K˝ has its barycenter at 0 (which is for instance the case for centrally symmetric
convex bodies), then (1) holds with z “ 0.

The inequality (1) admits a functional version, first proved by Ball [Bal86] in the case of even func-
tions, and then extended to arbitrary functions by Artstein-Avidan, Klartag and Milman [AAKM04]:
for any function ϕ : Rn Ñ R Y t`8u there exists z P R

n such that

(2)

ż
e´ϕ dx

ż
e´pϕzq˚

dx ď p2πqn,

where, ϕzpxq “ ϕpx`zq, x P R
n, and the Fenchel-Legendre transform of a function f : Rn Ñ RYt`8u

is defined by

f˚pyq “ sup
xPRn

txx, yy ´ ϕpxqu, y P R
n.

Lehec [Leh09a] gave another proof of inequality (2) and showed that, if
ş
xe´ϕpxq dx “ 0, then (2)

holds with z “ 0. One sees that (2) gives back (1) by taking ϕ “ } ¨ }2K
2

.

Recently, a sharp form of Talagrand transport-entropy inequality for the Gaussian standard mea-
sure γ on R

n has been deduced from (2) by Fathi [Fat18]. More precisely, for all probability measures
ν1, ν2 on R

d with ν2 centered, it holds

(3) W 2
2 pν1, ν2q ď 2Hpν1|γq ` 2Hpν2|γq,

where W2 denotes the usual quadratic Wasserstein distance (with respect to the usual Euclidean norm
| ¨ | on R

n), defined by

W 2
2 pν1, ν2q “ inf Er|X1 ´X2|2s,

where the infimum runs over random vectors satisfying X1 „ ν1 and X2 „ ν2, and Hp ¨ |µq denotes
the relative entropy functional with respect to some measure µ on R

n, and is defined by

Hpν|µq “
ż
log

dν

dµ
dµ,

whenever ν is absolutely continuous with respect to µ, and `8 if this is not the case. Choosing
ν2 “ γ, Inequality (3) immediately gives back the following classical inequality obtained by Talagrand
in [Tal96]: for all probability measures ν1 on R

n

(4) W 2
2 pν1, γq ď 2Hpν1|γq.

Without centering assumptions on ν2, the following inequality can be easily deduced from (4): for all
probability measures ν1, ν2 on R

n,

(5) W 2
2 pν1, ν2q ď 4Hpν1|γq ` 4Hpν2|γq.

Interestingly, Inequalities (3), (4) and (5) are all sharp. We refer to [Led01] or [GL10] for applications
of transport-entropy inequalities to the concentration of measure phenomenon.

The first main objective of this paper is to extend the preceding results to other model probability
spaces than the Gaussian space pRn, | ¨ |, γq. For that purpose, we will rely on a more general functional
version of the Blaschke-Santaló inequality that we shall now present. The functional inequality (2) is
actually a particular case of the following result first proved by Ball [Bal86] for even functions, then
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by the first named author and Meyer [FM07] for log-concave functions and finally extended by Lehec
[Leh09c] to arbitrary measurable functions: if f : Rn Ñ R` is integrable, then there exists a point
z P R

n such that for any measurable function g : Rn Ñ R` satisfying

fpx` zqgpyq ď ρpxx, yyq2, @x, y P R
n such that xx, yy ą 0,

it holds

(6)

ż
fpxq dx

ż
gpyq dy ď

ˆż
ρp|x|2q dx

˙2

,

where ρ : R` Ñ R` is some weight function such that
ş
ρp|x|2q dx ă `8. As first proved by Ball

[Bal86], if f is even, then z can be chosen to be 0. Inequality (2) corresponds to the weight function
ρ0ptq “ e´t{2, t ě 0.

In the spirit of Fathi’s version of Talagrand’s inequality (3), we show in Theorem 3.1 that the general
functional version of the Blaschke-Santaló inequality (6) implies sharp transport-entropy inequalities
for a class of spherically invariant probability measures that contains the standard Gaussian as a
particular case. More precisely, we prove the following result in Theorem 3.1:

Theorem. If ρ : R` Ñ p0,8q is a continuous non-increasing function such that
ş
ρp|x|2q dx ă `8,

and t ÞÑ ´ log ρpetq is convex on R, then the probability measure

µρpdxq “ ρp|x|2qş
ρp|y|2q dy

dx

satisfies the following inequality: for all ν1, ν2 P PpRnq with ν1 and ν2 symmetric,

(7) Tωρ
pν1, ν2q ď Hpν1|µρq `Hpν2|µρq,

where

Tωρ
pν1, ν2q “ inf

X1„ν1,X2„ν2
E rωρpX1, X2qs

is the optimal transport cost associated to the cost function ωρ defined by

ωρpx, yq “
#

log
´

ρpx¨yq2
ρp|x|2qρp|y|2q

¯
if x ¨ y ě 0

`8 otherwise
, x, y P R

n.

In the result above, and in all the paper, a probability measure µ on R
n will be called symmetric

if it is invariant under the map R
n Ñ R

n : x ÞÑ ´x.
The proof of this result relies on a classical duality argument due to Bobkov and Götze [BG99].

Since Inequality (7) holds only for symmetric probability measures, it can be considered as some
transport-entropy version of Ball’s functional Blaschke-Santaló inequality for even functions. Lin-
earizing Inequality (7) around µρ gives back a sharp Brascamp-Lieb type inequality recently used by
Cordero-Erausquin and Rotem [CER] in their study of the pBq conjecture and the Gardner-Zvavitch
conjecture for rotationally invariant probability measures. More precisely, we get the following in
Theorem 4.1:

Theorem. Let ρ : R` Ñ R` such that t ÞÑ vρptq “ ´ log ρpetq is convex and increasing. Define the
measure µρ in the same way as in the previous theorem. Then, for all f P C8

c pRnq even and such thatş
f dµρ “ 0,

(8)

ż
f2 dµρ ď 1

2

ż
H´1
ρ ∇f ¨ ∇f dµρ,
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where Hρ is the positive matrix given by

1

2
Hρpyq “ 1

|y|
2

«˜
In ´ y b y

|y|
2

¸
v1
ρptq ` y b y

|y|
2
v2
ρptq

ff

where, for simplicity, we used the notation t “ 2 log|y|.

Since (8) admits equality cases, this shows in particular that Inequality (7) is sharp.

In comparison to Fathi’s inequality (3), it seems natural to ask if (7) can be extended to more
general couples of probability measures, as for instance couples of the form pν1, ν2q with ν1 arbitrary
and ν2 centered with respect to µρ. A closely related question is whether, for a given weight function
ρ, the functional Blaschke-Santaló inequality (6) is true with z “ 0 whenever f has its barycenter at
0, as proved by Lehec [Leh09a] in the particular case of the weight function ρ0 defined above. As we
will now explain, the answer to these questions actually depends on the weight function ρ. Consider
the class of weight functions pρsqsPR, defined for s ‰ 0 by

ρsptq “ p1 ´ stq
1

2s
` , t ě 0.

The associated probability measures are the following:

‚ For s ą 0, we will denote

(9) dγspxq :“ µρspdxq “ 1

Zs

“
1 ´ s|x|2

‰1{p2sq
` dx,

which is a particular case of the so-called Barenblatt profiles. Note that γs Ñ γ as s Ñ 0 (in
the sense of pointwise convergence of densities for instance).

‚ For β ą n{2, we will denote

dµβpxq “ 1

Zβp1 ` |x|
2qβ

dx,

which is a Cauchy type distribution and corresponds to (a dilation of)µρs with s “ ´1{p2βq.

Let us first present our main contributions in the range s ą 0. As we shall see in Theorem 3.2, the
following is true.

Theorem. Let s ą 0. Consider the probability γs defined in (9). Then, for any ν1, ν2 with compact
support included in the open Euclidean ball Bs centered at the origin and of radius 1{?

s, and with ν2
centered,

(10) Tkspν1, ν2q ď Hpν1|γsq `Hpν2|γsq,
where ks : Bs ˆBs Ñ R

kspx, yq “ 1

s
log

ˆ
1 ´ sx ¨ y

p1 ´ s|x|2q1{2p1 ´ s|y|2q1{2

˙
, x, y P Bs.

This result is analogous to Fathi’s result (3) in the Gaussian case and gives back (3) by sending
s Ñ 0. One can show that (10) (see Remark 3.3 for explanations) also implies the following version
of the functional Blaschke-Santaló inequality: for all continuous f : Rn Ñ R` and g : Rn Ñ R` with

supports in Bs and such that barpfq :“
ş
xfpxqdxş
fpyq dy “ 0 and

(11) fpxqgpyq ď ρspxx, yyq2, @x, y P Bs,
it holds ż

fpxq dx
ż
gpyq dy ď

ˆż
ρsp|x|2q dx

˙2

.
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This generalizes the Blaschke-Santaló inequality under a centering condition obtained by Lehec in
[Leh09a] for the weight ρ0 (which corresponds to the limit case s Ñ 0). As we will see with Theorem
2.9, one can go actually a step further:

Theorem. If f : Rn Ñ R` is integrable and such that 0 P intpConvpsupppfqqq, then it holds
ż
fpxq dx

ż
Lsfpyq dy ď

ˆż
ρsp|x|2q dx

˙2

p1 ´ sxSanspLspfqq, barpfqyqn`1` 1

s ,

where

Lsfpyq “ inf
xPRn

p1 ´ sxx, yyq
1

s

`
fpxq , for s ‰ 0,

the infimum being taken on tx P R
n; fpxq ą 0u and Sanspgq denotes the s-Santaló point of g whose

definition is given in Lemma 2.8.

The proof of this theorem relies on the fact that the integral of Lspfzq with respect to Lebesgue,
where fzpxq “ fpz ` xq, x P R

n, can be expressed as the integral of Lspfq under some weighted
measure. The same type of arguments can actually be used at the level of the Blaschke-Santaló
inequality for sets. In particular, we show the following in Theorem 2.1:

Theorem. If K is a compact set such that |K| ą 0 and 0 P intpConvpKqq, then

|K||K˝| ď |Bn2 |2p1 ´ xSanpK˝q, barpKqyqn`1,

with equality if and only if K is a centered ellipsoid, where SanpK˝q is defined in Section 2. In

particular, if barpKq :“
ş
K
x dx

|K| “ 0 then |K||K˝| ď |Bn2 |2.

The above centered inequality seems to be new, even for convex bodies, while the case where
barpKq “ 0 extends a result by Lutwak [Lut91], also reproved differently by Lehec [Leh09a], who
both obtained the same inequality but under the additional assumption that K is starshaped.

Let us now turn to the range s ă 0. Applying Inequality (7) with the weight function t ÞÑ p1` tq´β

and β ą n{2, yields

(12) βTωpν1, ν2q ď Hpν1|µβq `Hpν2|µβq,
where the optimal transport cost Tω is defined with respect to the cost function ω given by

ωpx, yq “

$
&
%

´2 log

ˆ
1`x¨y?

1`|x|2
?

1`|y|2

˙
if x ¨ y ą 0

`8 otherwise
, x, y P R

n.

The fact that the cost function ω can take the value `8 makes inequality (12) for Cauchy type
distributions more rigid than its counterpart (10) for Barenblatt type distributions. Namely, it is not
possible to extend (12) to couples of probability measures pν1, ν2q with ν1 arbitrary and ν2 symmetric.
See Remark 3.9 for more details. For the particular value β “ pn`1q{2, it turns out that the canonical
geometric framework for (12) is the unit sphere S

n Ă R
n`1 equipped with the uniform probability

measure, denoted by σ. In Theorem 3.7, we establish the following.

Theorem. Let α : Sn ˆ S
n Ñ R` Y t`8u be the cost function defined by

(13) αpu, vq “
"

log
`

1
u¨v

˘
if u ¨ v ą 0

`8 otherwise
, u, v P S

n

and denote by Tα the corresponding transport cost on PpSnq. Then, for all probability measures ν1, ν2
on S

n which are invariant under the maps Sn Ñ S
n : u ÞÑ ´u and S

n Ñ S
n : u ÞÑ pu1, . . . , un,´un`1q,

it holds

(14) pn` 1qTαpν1, ν2q ď Hpν1|σq `Hpν2|σq.
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This result is deduced from (12) using the fact that the standard Cauchy distribution µpn`1q{2 is
the image of σ`, the uniform probability measure on the upper half sphere S

n
`, under the so-called

gnomonic transformation:

S
n
` Ñ R

n : u ÞÑ
ˆ

u1

un`1

,
u2

un`1

, . . . ,
un

un`1

˙
.

The cost function α defined above has been introduced by Oliker [Oli07] (see also [Ber16] and [Kol20])
in connection with the so-called Aleksandrov problem in convex geometry. Recently, Kolesnikov
[Kol20] proved the following inequality involving the transport cost Tα: for any symmetric probability
measure ν on S

n (that is, invariant under the map S
n Ñ S

n : u ÞÑ ´u), it holds

(15) pn` 1qTαpν, σq ď Hpν|σq.
Thus (14) already improves (15) for a special class of distributions. One can actually improve (15)
further. We show in Theorem 3.7, by a direct proof using the Blaschke-Santaló inequality written
in polar coordinates together with the dual Kantorovich type formula for Tα, that (14) holds under
the sole assumption that ν1 and ν2 are symmetric. We refer to the end of Section 3.3 for additional
comments about the sharpness of this improvement of Kolesnikov inequality (15).

The second main objective of this paper is to propose a transport-entropy framework for reverse
Blaschke-Santaló inequalities. Let us recall that Mahler [Mah39b] conjectured that for any centrally
symmetric convex body K the following lower bound holds:

(16) |K||K˝| ě 4n

n!
,

with equality for example if K is a cube. Mahler established this inequality in dimension 2 [Mah39a],
while the conjecture for centrally symmetric bodies was established by Iriyeh and Shibata in dimen-
sion 3 [IS20] (see also [FHM`22]). The conjecture was proved for particular families of convex bodies
like unconditional convex bodies [SR81, Mey86], zonoids [Rei86, GMR88], bodies having symmetries
[BF13, IS22]. Bourgain and Milman [BM87] (see also [Kup08, Naz12, Blo14, GPV14, Ber22, Ber21])
established an asymptotic form of Mahler conjecture by proving that there exists a constant κ ą 0

such that

|K||K˝| ě κn

n!
,

for any centrally symmetric convex body K. Like the classical Blaschke-Santaló inequality, the Mahler
conjecture admits an equivalent functional form introduced by Klartag-Milman [KM05] and the first
named author and Meyer [FM07, FM08b]: as shown in [FM08b], the inequality (16) holds for all
n ě 1 if and only if the inequality

(17)

ż
e´f dx

ż
e´f˚

dx ě 4n

holds for all n ě 1 and all even, convex functions f : Rn Ñ R Y t`8u such that
ş
e´f dx ą 0 andş

e´f˚

dx ą 0. Moreover, if (17) holds for a given n, then (16) also holds for this n. For unconditional
functions, (17) holds true for all n ě 1. Denote by

cSn “ inf |K||K˝| and cFn “ inf

ż
e´f dx

ż
e´f˚

dx,

where S stands for sets, F for functions and the infima run respectively over all centrally symmetric
convex bodies K and all even, lower semicontinuous and convex functions f : Rn Ñ R Y t`8u such

that
ş
e´f dx ą 0 and

ş
e´f˚

dx ą 0. Then, as explained above, for any n ě 1 it always holds

cSn ě cFn
n!
,

while the converse relation between cFn and pcSmqměn is more intricate.
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In [Goz22], the second named author obtained an equivalent formulation of the Mahler conjecture
involving transport, entropy and Fisher information in the Gauss space pRn, | ¨ |, γq. More precisely,
according to [Goz22, Theorem 1.3], for any n ě 1, the constant cFn is the best constant c ą 0 (that is
the greatest) in the inequality

(18) Hpη1|γq `Hpη2|γq ` 1

2
W 2

2 pν1, ν2q ď 1

2
Ipη1|γq ` 1

2
Ipη2|γq ` log

ˆ p2πqn
c

˙
,

where η1 “ e´V1 dx, η2 “ e´V2 dx are arbitrary symmetric log-concave probability measures on R
n

with full support and, for i “ 1, 2, νi is the so-called moment measure of ηi defined by

νi “ ∇pViq#ηi
and Ipηi|γq is the relative Fisher information of ηi with respect to γ defined by

Ipηi|γq “
ż

|∇Vipxq ´ x|2e´Vipxq dx.

Moreover, (18) holds true with the constant c “ 4n if η1, η2 are further assumed to be unconditional.
The class of probability measures ηpdxq “ e´V dx for which (18) holds can be slightly extended
to those having an essentially continuous potential V , which means that the convex potential V
explodes at almost every points of the boundary of the support of η (we refer to [Goz22] or [CEK15]
for a precise definition). When the W2 distance between the moment measures of η1 and η2 is large
enough, inequality (18) thus improves the classical log-Sobolev inequality for the standard Gaussian
measure γ due to Gross [Gro75]

(19) Hpη|γq ď 1

2
Ipη|γq,

which holds for all probability measures η with a sufficiently smooth density. In the unconditional
case, this improvement is sharp in the sense that, one can easily construct sequences of probability
measures ηk1 , η

k
2 for which the difference between the two sides of (18) (with c “ 4n) goes to 0 as

k Ñ 8. Note however that each side goes individually to `8. There is, in particular, no equality
case in (18) (we refer to [Goz22, Remarks 3.9, 3.10 and 3.11] for this question). The proof of [Goz22,
Theorem 1.3] relies on the following two ingredients:

‚ The characterization of moment measures given by Cordero-Erausquin and Klartag [CEK15],
according to which a probability measure ν is the moment measure of some log-concave
probability measure ηo with an essentially continuous potential if and only if ν is centered
and its support is not contained in a hyperplane. The probability ηo is then unique up to
translations.

‚ The following variational characterization highlighted by Santambrogio in [San16] (see also
[FGJ17]): if ν is centered, has a finite moment of order 2 and its support is not contained in
a hyperplane, then the probability measure ηo is up to translations the unique minimizer of
the functional

η ÞÑ Hpη|γq ´ 1

2
W 2

2 pν, ηq
over the set of probability measures having a finite moment of order 2.

In the present paper, we provide a similar transport-entropy formulation of the (conjectured) reverse
Blaschke-Santaló inequality where the space R

n is replaced by the sphere S
n, the standard Gaussian

measure γ by the uniform probability measure σ on S
n, the W2 distance by the transport cost Tα

associated to the cost function α defined in (13), and where finally the notion of moment measure is
replaced by the notion of cone measure. If C Ă R

n`1 is a centrally symmetric convex body of volume
1, the cone measure of C is the probability measure νC on S

n defined by

νC “ Law pNC pρCpXqXqq ,
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where X is a random vector uniformly distributed over C, ρC is the radial function of C and NC :

BC Ñ S
n is the Gauss map. Equivalently, νC is also the pushforward of the probability measure ηC

on S
n defined by

(20) dηCpxq “ |Bn`1
2 |ρn`1

C pxq dσpxq

under the map S
n Ñ S

n : x ÞÑ NCpxρCpxqq, a construction which is reminiscent of the definition
of moment measures. The set of cone measures has been characterized by Böröczky, Lutwak, Yang
and Zhang in [BLYZ13]. They proved that a symmetric probability measure ν on S

n is the cone
measure of some centrally symmetric convex body C if and only if it satisfies the so-called subspace
concentration condition, which is recalled in Section 5.1. To associate a set C to a probability measure
ν having good properties, the main step in the method proposed in [BLYZ13] consists in solving a
certain optimization problem over the set of support functions. As noticed by Kolesnikov [Kol20], this
minimization problem can be recasted as follows: given a probability measure ν on S

n, minimize the
function Fν defined by

Fνpηq “ 1

n` 1
Hpη|σq ´ Tαpν, ηq

over the set of symmetric probability measures on S
n. More precisely, if ν satisfies the strict subspace

concentration inequality (which is stronger than the subspace concentration condition), then the
functional Fν admits at least one minimizer η˚ which is of the form η˚ “ ηC above for some centrally
symmetric convex body C of volume 1, and ν is the cone measure of C. A notable difference between
cone and moment measures, is that there is in general no uniqueness of C. This uniqueness question
is related to the log-Minkowski conjecture, a major open problem in convex geometry introduced in
[BLYZ12], which can be restated as follows: if C is a centrally symmetric convex body with unit
volume, then ηC minimizes FνC .

Assuming the log-Minkowski conjecture is true, we obtain in Theorem 5.15 the following result:

Theorem. If the log-Minkowski conjecture is true, then the constant cSn`1 is the best constant c ą 0

(that is the greatest) in the inequality

HpηC1
|σq `HpηC2

|σq ` pn ` 1qTαpνC1
, νC2

q

(21)

ď log

ˆ |Bn`1
2 |2
c

˙
` n` 1

2

ż
log

ˆ
1 ` |∇SnV1|2

pn` 1q2
˙
e´V1 dσ ` n` 1

2

ż
log

ˆ
1 ` |∇SnV2|2

pn ` 1q2
˙
e´V2 dσ,

where C1, C2 Ă R
n`1 are arbitrary centrally symmetric convex bodies with unit volume and, for

i “ 1, 2, dηCi
“ |Bn`1

2 |ρn`1
Ci

dσ :“ e´Vi dσ and νCi
is the cone measure of Ci.

Since a version of the log-Minkowski conjecture is true in the unconditional case [Sar15], we show
in Theorem 5.10 that (21) is true with the constant c “ 4n`1{pn ` 1q! when C1, C2 are assumed
to be unconditional. In this unconditional setting, contrary to what happens in the Gaussian case,
Inequality (21) admits equality cases which are given by couples of unconditional convex bodies pC,C˝q
minimizing the volume product and properly normalized to be of volume 1. Without assuming the
log-Minkowski conjecture, some weaker statement remains valid, see Theorem 5.5. Contrary to the
Gaussian case, we do not know whether the underlying log-Sobolev inequality

Hpe´V dx|σq ď a

2

ż
log

ˆ
1 ` |∇SnV |2

a2

˙
e´V dσ

holds true for all regular enough potentials V , and some constant a ą 0. We refer to Section 5 for
additional remarks and open questions about these improved log-Sobolev inequalities on the sphere.
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2. Blaschke-Santaló’s inequality for compact sets and s-concave functions and

functional forms of Mahler’s conjecture

In the first subsection, we extend to arbitrary compact sets the result of Lutwak [Lut91] and Lehec
[Leh09a] stating that the Blaschke-Santaló inequality holds for starshaped set with barycenter at the
origin. In the second subsection, we generalize this to the Blaschke-Santaló inequality for s-concave
functions, for s ě 0. In fact, for sets as well as for functions, we prove an inequality valid also if
the barycenter is not at the origin. In the third subsection, we establish functional forms of Mahler’s
conjecture for unconditional s-concave functions, s ą ´1{n. In the case s ă 0, the situation is more
involved because the set of s-concave functions is not preserved under Ls-duality.

2.1. Blaschke-Santaló inequality for compact sets. For any set A in R
n we define its polar by

A˝ “ ty P R
n; xx, yy ď 1,@x P Au. Then, one has A˝ “ pConvpA, 0qq˝, thus the set A˝ is a closed

convex set containing the origin and, from the bipolar theorem, one has pA˝q˝ “ ConvpA, 0q. The
classical Blaschke-Santaló [Bla23, San49] inequality asserts that, for any convex body K in R

n, one
has

min
zPintpKq

|K||pK ´ zq˝| ď |Bn2 |2,

with equality if and only if K is an ellipsoid. For any convex body K, we define its support function
hKpyq “ supxPKxx, yy, for y P R

n. If moreover K contains the origin, we define its radial function by
ρKpuq “ suptt; tu P Ku, for u P Sn´1 and one has ρK˝puq “ hKpuq´1, for all u P Sn´1. For any z in
the interior of a convex body K and any y P R

n, one has

hK´zpyq “ sup
xPK

xx´ z, yy “ hKpyq ´ xz, yy.

Integrating in polar coordinates, we get
(22)

|pK´zq˝| “
ż

Sn´1

ż ρpK´zq˝ puq

0

rn´1 drdσpuq “ 1

n

ż

Sn´1

ρpK´zq˝puqndσpuq “ 1

n

ż

Sn´1

dσpuq
phKpuq ´ xz, uyqn .

This formula shows that the map z ÞÑ |pK ´ zq˝| is strictly convex. Moreover, it is not difficult to
see that |pK ´ zq˝| tends to infinity when z Ñ BK. It follows that the minimum minz |pK ´ zq˝| is
reached at a unique point SanpKq called the Santaló point of K, which is in the interior of K. It
follows that Blaschke-Santaló theorem may be reformulated as follows: for any convex body K such
that SanpKq “ 0 one has |K||K˝| ď |Bn2 |2, with equality if and only if K is a centered ellipsoid. We
say that a measurable set K with finite and positive volume is centered if its center of mass barpKq
defined by

barpKq “
ż

K

x dx

|K|
is at the origin. Since SanpKq is the unique critical point of the function z ÞÑ |pK ´ zq˝|, we get
that z “ SanpKq if and only if ∇|pK ´ zq˝| “ 0. By differentiating (22) and integrating in spherical
coordinates, we get

∇|pK ´ zq˝| “
ż

Sn´1

udσpuq
phKpuq ´ xz, uyqn`1

“ pn ` 1q
ż

pK´zq˝

x dx “ pn` 1q|pK ´ zq˝| barppK ´ zq˝q.

It follows that the Santaló point SanpKq of K is also the unique point z such that barppK ´ zq˝q “ 0.
One deduces from this property that SanppK ´ barpKqq˝q “ 0 and that SanpKq “ 0 if and only if
barpK˝q “ 0. Thus, the following third reformulation of Blaschke-Santaló inequality holds: for any
convex body K such that barpKq “ 0, one has |K||K˝| ď |Bn2 |2, with equality if and only if K is an
ellipsoid. Lutwak noticed this in [Lut91] and extended it to the case of compact starshaped bodies. A
compact set A is called starshaped with respect to the origin if for any a P A the segment tta; t P r0, 1su
is contained in A. In his Theorem 3.15 in [Lut91], Lutwak proved that if A is starshaped with respect
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to the origin and has barycenter at the origin then |A||A˝| ď |Bn2 |2, with equality if and only if A is
a centered ellipsoid. This result was also reproved by Lehec [Leh09a] who deduced it from a version
of this theorem for log-concave functions. In the following theorem, we extend Lutwak’s theorem to
any compact set with a different proof.

Theorem 2.1. Let K be a compact set such that |K| ą 0 and 0 P intpConvpKqq. Then

(23) |K||K˝| ď |Bn2 |2p1 ´ xSanpK˝q, barpKqyqn`1,

with equality if and only if K is a centered ellipsoid. In particular, if barpKq “ 0 then |K||K˝| ď |Bn2 |2,
with equality if and only if K is a centered ellipsoid.

Remark 2.2. Formula (23) seems to be new even in the case of convex sets.

Remark 2.3. If K is convex, since barpKq P K and SanpK˝q P K˝, one has xSanpK˝q, barpKqy ď 1,
but it follows from the proof that actually xSanpK˝q, barpKqy ď 0, see remark 2.6.

Remark 2.4. Another formulation of the Blaschke-Santaló inequality for compact sets follows directly
from the case of convex sets but with a less natural polarity point: given a compact set A, choosing
z “ SanpConvpAqq and applying the classical inequality to ConvpAq, we get pA´zq˝ “ pConvpAq´zq˝

and we deduce that

|A||pA ´ zq˝| ď |ConvpAq||pConvpAq ´ zq˝| ď |Bn2 |2.

Before proving this theorem we first give a lemma which is very classical in projective geometry.

Lemma 2.5. For z ‰ 0, we denote the open halfspace Hz “ ty; 1 ` xy, zy ą 0u and the map
Fz : Hz Ñ R

n is defined for any y P Hz by

Fzpyq “ y

1 ` xy, zy .

Then
(i) The map Fz is a bijection from Hz onto H´z whose reciprocal is F´z and the Jacobian determinant

of Fz is Jzpyq :“ p1 ` xy, zyq´pn`1q.
(ii) For any compact set K in R

n such that 0, z P intpConvpKqq, we have pK ´ zq˝ “ F´zpK˝q and

(24) |pK ´ zq˝| “
ż

K˝

dx

p1 ´ xz, xyqn`1
.

Notice that formula (24) is classical and can be found for example in Meyer and Werner in [MW98,
Lemma 3] who proved it by using (22) and a change of variable. We give here another proof which
we shall extend to the functional case in the next section.

Proof. (i) From the definition of Fz , it is immediate that FzpHzq Ă H´z and that F´zpFzpyqq “ y,
for all y P Hz. It follows that Fz is a bijection from Hz onto H´z whose reciprocal is F´z . The
computation of the Jacobian matrix of Fz is direct and gives

JacpFzqpyq “ 1

1 ` xy, zy

ˆ
In ´ yzT

1 ` xy, zy

˙
.

Using the following Sylvester’s identity, detpIp ` ABq “ detpIq ` BAq for any matrix A P Mp,q and
B P Mq,p, we conclude that the Jacobian determinant of Fz is

Jzpyq “ detpJacpFzqpyqq “ 1

p1 ` xy, zyqn
ˆ
1 ´ xy, zy

1 ` xy, zy

˙
“ 1

p1 ` xy, zyqn`1
.

(ii) One has

pK ´ zq˝ “ ty; xy, x´ zy ď 1, @x P Ku “ ty; xy, xy ď 1 ` xy, zy, @x P Ku.
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Since 0 P intpConvpKqq, for any y P pK ´ zq˝ one has xy,´zy ă 1 hence 1 ` xy, zy ą 0, thus

pK ´ zq˝ “
"
y; x y

1 ` xy, zy , xy ď 1, @x P K
*

“ ty; Fzpyq P K˝u “ F´zpK˝q.

The last equality follows from the fact that K˝ Ă H´z which deduces from the hypothesis z P
intpConvpKqq. Formula (24) follows by using a change of variable and the formula for the Jacobian
from (i). �

Now we give the proof of Theorem 2.1.

Proof of Theorem 2.1. Let K be a compact set such that 0 ă |K| ă `8 and 0 P intpConvpKqq. Then
K˝ is a convex body to which we apply the classical Blaschke-Santaló’s inequality: for z “ SanpK˝q
one has

|K˝||pK˝ ´ zq˝| ď |Bn2 |2,
with equality if and only if K˝ is an ellipsoid. Since 0 P intpK˝q and z P intpK˝q we may apply
formula (24) to K˝ and we get

|pK˝ ´ zq˝| “
ż

K˝˝

dx

p1 ´ xz, xyqn`1
.

Using that K Ă K˝˝ and applying Jensen’s inequality to the function ϕpxq “ p1´xz, xyq´pn`1q, which
is convex on K, we deduce that

(25) |pK˝ ´ zq˝| ě
ż

K

dx

p1 ´ xz, xyqn`1
ě |K|

p1 ´ xSanpK˝q, barpKqyqn`1
.

This concludes the proof of the inequality. If there is equality in this inequality, then, from the
equality case in Blaschke-Santaló’s inequality, we deduce that K˝ is an ellipsoid. Moreover, from the
equality case in Jensen’s inequality, it follows that SanpK˝q “ 0, thus barpKq “ 0. Finally, one has
|K| “ |K˝˝| which implies that |ConvpKqzK| “ 0. Since K is compact, it follows that K “ K˝˝. We
thus conclude that K is a centered ellipsoid. �

Remark 2.6. Proof of Remark 2.3: if K is convex then, using that, in formula (25), one has z “
SanpK˝q, it follows from the definition of the Santaló point that |pK˝ ´ zq˝| ď |K˝˝| “ |K|. Thus, we
conclude that xSanpK˝q, barpKqy ď 0. Notice that, applied toK˝, it gives also xSanpKq, barpK˝qy ď 0.

2.2. Blaschke-Santaló inequality for the s-concave duality. The following general form of the
functional Blaschke-Santaló inequality was proved by Ball [Bal86] in the even case, by the first named
author and Meyer [FM07] in the log-concave case and by Lehec [Leh09c] in the general case.

Theorem 2.7. Let f : R
n Ñ R` be integrable. Then there exists z P R

n such that whenever
g : Rn Ñ R` is a measurable function satisfying fpx` zqgpyq ď ρpxx, yyq2 for all x, y P R

n such that
xx, yy ą 0 for some weight function ρ : R` Ñ R` such that

ş
ρp|x|2q dx ă `8, it holds

ż
fpxq dx

ż
gpyq dy ď

ˆż
ρp|x|2q dx

˙2

.

Moreover, the point z can be selected in the interior of the convex hull of the support of the measure
with density f . In the case where f is even, then z can be chosen to be 0.

The fact that z can be chosen in the convex hull of the support of νf pdxq “ fpxq dx follows from
Lehec’s construction of z as the center of a Yao-Yao partition for νf (see [Leh09c, Theorem 9]) and
from Proposition 5 of [Leh09b] which implies that the center of any such partition must belong to the
convex hull of the support of νf . In the following, we shall denote fz “ fpz ` ¨q.
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For s P R and g : Rn Ñ R` non identically zero, we define its s-concave dual function Lsg : Rn Ñ
R` in the following way: for every y P R

n

Lsgpyq “ inf
xPRn

p1 ´ sxx, yyq
1

s
`

gpxq , for s ‰ 0,

where the infimum is taken on tx P R
n; gpxq ą 0u. For s “ 0, we set

L0gpyq “ inf
xPRn

e´xx,yy

gpxq .

Notice that the s-dual (even of a non s-concave function) is s-concave and that the 0-dual is very much

related to the Legendre transform since for any function ϕ : Rn Ñ RYt`8u one has L0pe´ϕq “ e´ϕ˚

,
where ϕ˚ is the Legendre transform of ϕ defined by ϕ˚pyq “ supxpxx, yy ´ ϕpxqq.

This class was previously studied by Artstein-Avidan and Milman [AAM08] where they proved that
Ls is essentially the only order reversing transformation on s-concave functions. They also show that
this duality is the usual polarity transform on the epigraphs of the functions for s “ 1.

Applied to the function ρsptq “ p1 ´ stq
1

2s
` , for s ‰ 0 and ρ0ptq “ e´t{2, Theorem 2.7 implies that

for any integrable function f : Rn Ñ R`, there exists z such that for any s ą ´1{n,

(26)

ż

Rn

fpxq dx
ż

Rn

Lspfzqpyq dy ď
ˆż

Rn

ρsp|x|2q dx
˙2

:“ cs,

where a direct explicit computation gives that c0 “ p2πqn and

cs “
´π
s

¯n
˜

Γ
`
1 ` 1

2s

˘

Γ
`
1 ` 1

2s
` n

2

˘
¸2

for s ą 0 and cs “
ˆ
π

|s|

˙n

¨
˝
Γ

´
1

2|s| ´ n
2

¯

Γ
´

1
2|s|

¯

˛
‚
2

for ´ 1
n

ă s ă 0.

Inequality (26) was established earlier in the case where 1
s

is an integer and s “ 0 by Artstein-Avidan,
Klartag and Milman [AAKM04]. For s ă 0, inequality (26) was proved by Rotem in [Rot14]. In
particular, for s “ 0, this gives back the Blaschke-Santaló inequality for the Legendre transform
established in [AAKM04] which states that for any function ϕ : Rn Ñ R Y t`8u there exists z P R

n

such that ż
e´ϕ

ż
e´pϕzq˚ ď p2πqn.

This theorem was reproved by Lehec [Leh09a] who also established that if the barycenter of e´ϕ

defined barpe´ϕq “
ş
xe´ϕpxq dx{

ş
e´ϕ is at the origin then one may choose z “ 0, that is

ż
e´ϕ

ż
e´ϕ˚ ď p2πqn.

We extend this theorem to the s-duality for any s ě 0. First we define the barycenter of f to be
barpfq “

ş
xfpxq dx{

ş
f . As in the case of sets we first state a lemma. Recall that Fzpyq “ y

1`xy,zy .

Lemma 2.8. Let s ě 0 and f : Rn Ñ R` be a measurable function such that fp0q ą 0.

(1) Then for every z, y P R
n one has Lspfzqpyq “ p1 ` sxz, yyq

1

s

`LsfpFszpyqq, for s ą 0 and

L0pfzqpyq “ exz,yyL0fpyq.
(2) Moreover if fpzq ą 0, then tx;Lsfpxq ą 0u Ă H´sz “ tx; 1 ´ sxz, xy ą 0u and, for s ą 0,

(27)

ż
Lspfzq “

ż
Lsfpxq

p1 ´ sxz, xyqn`1` 1

s

dx.
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(3) If f is bounded and Lsf is integrable then the function Spzq :“
ş
Lspfzq is strictly convex and

admits a unique minimum at a point Sanspfq that we call the s-Santaló point of f and which
is in the interior of Convpsupppfqq.

Proof. (1) For s “ 0, the relation is clear. Let us assume that s ą 0. From the definition one has

Lspfzqpyq “ inf
x

p1 ´ sxx, yyq
1

s

`
fpx` zq “ inf

x

p1 ` sxz, yy ´ sxx, yyq
1

s

`
fpxq .

Since the infimum runs on the set tx; fpxq ą 0u and since fp0q ą 0 one deduces that

Lspfzqpyq ď p1 ` sxz, yyq
1

s

`
fp0q .

Hence Lspfzqpyq “ 0 if 1 ` sxz, yy ď 0. Moreover, for y P Hsz, one has

Lspfzqpyq “ p1 ` sxz, yyq 1

sLsf

ˆ
y

1 ` sxz, yy

˙
“ p1 ` sxz, yyq 1

sLsfpFszpyqq.

(2) In the same way, from the definition of Ls, if fpzq ą 0 then for all y, Lspfqpyq ď p1´sxz,yyq
1

s
`

fpzq . Thus

if Lspfqpyq ą 0 then 1 ´ sxz, yy ą 0 which means that y P H´sz . Thus, using the change of variable
y “ F´szpxq, for y P Hsz and the fact that p1 ` sxz, yyqp1 ´ sxz, xyq “ 1, we get

ż
Lspfzqpyq dy “

ż

Hsz

p1 ` sxz, yyq 1

sLsfpFszpyqq dy “
ż

H´sz

Lsfpxq
p1 ´ sxz, xyqn`1` 1

s

dx.

(3) The convexity is a direct consequence of formula (27). The boundedness of f implies that Lsfp0q ą
0 and so 0 is in the interior of the support of Lsf . The existence of a unique minimizer was recently
proved by Ivanov and Werner in [IW21]. They assumed for their proof that f is s-concave but
using that LsLsLsfz “ Lsfz, we can actually assume that f is s-concave. Moreover, it is clear that
supppLsfzq “ psupppfzqq˝ so if z is not in the interior of Convpsupppfqq then 0 is not in the interior of
Convpsupppfzqq and supppLsfzq “ psupppfzqq˝ is unbounded, which implies that

ş
Lsfz “ `8. �

Using the preceding lemma, we can now prove the following theorem.

Theorem 2.9. Let s ě 0 and f : Rn Ñ R` be integrable such that
ş
f ą 0 and 0 P intpConvpsupppfqqq.

Thenż
f

ż
Lsf ď csp1´sxSanspLspfqq, barpfqyqn`1` 1

s for s ą 0 and

ż
f

ż
L0f ď p2πqne´xSan0pL0pfqq,barpfqy

In particular, if barpfq “ 0 then
ş
f

ş
Lsf ď cs.

Proof of Theorem 2.9. The proof to this theorem is similar to that of Theorem 2.1. Fix a function f
(without any concavity assumption), such that 0 P intpConvpsupppfqqq and 0 ă

ş
Rn f ă `8. Then,

from (26) applied to Lsf , one has, for z “ SanspLsfq,
ż

Rn

Lsfpxq dx
ż

Rn

LsppLsfqzqpyq dy ď cs.

Since Lsfpzq ą 0, applying (2) of Lemma 2.8, we deduce that
ż

Rn

LsppLsfqzqpyq dy “
ż

LsLsfpxq
p1 ´ sxz, xyqn`1` 1

s

dx.

Using that LsLsfpxq ě fpxq and Jensen’s inequality, we get
ż

Rn

LsppLsfqzqpyq dy ě
ż

fpxq
p1 ´ sxz, xyqn`1` 1

s

dx ě
ş
fpxq dx

p1 ´ sxSanspLspfqq, barpfqyqn`1` 1

s
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which concludes the proof of the theorem. �

2.3. Duality and Mahler conjecture for s-concave even functions, when s ą ´1{n. In this
section, we consider the extension of Mahler’s conjecture [Mah39b, Mah39a] to s-concave even func-
tions. For s ą 0, the conjecture holds for unconditional functions and follows from theorems of Saint
Raymond [SR81] and Reisner [Rei87]. In the case s “ 0, the inequality was proved in [FM08b, FM08a]
and the equality case in [FGMR10]. For s ă 0, the situation is more involved because the set of s-
concave functions is not preserved by Ls-duality. For s ă 0, we first characterize the class of s-concave
integrable functions which is globally stable under the Ls duality. Then, we prove Mahler’s conjecture
for the functions in this class which are unconditional, using the same theorems of Saint Raymond
and Reisner. Recall that a function g : Rn Ñ R is unconditional if gpx1, . . . , xnq “ gp|x1|, . . . , |xn|q,
for any px1, . . . , xnq P R

n. And a set K is unconditional if 1K is unconditional. Let us first recall the
original Mahler’s conjecture for centrally symmetric convex bodies.

Conjecture 2.10. Let K be a centrally symmetric convex body in R
n. Then

|K||K˝| ě 4n

n!
,

with equality of and only if K is a Hanner polytope.

Hanner polytopes are succession of ℓ1 or ℓ8 sums of segments and include in particular the cube
Bn8 “ r´1, 1sn and its polar Bn1 “ tx “ px1, . . . , xnq P R

n;
řn
i“1 |xi| ď 1u. Saint Raymond [SR81]

established Mahler’s conjecture for unconditional convex bodies. He even prove the following more
general statement, whose equality case is due to Reisner [Rei87].

Theorem 2.11 (Saint Raymond [SR81, Theorem 21] and Reisner [Rei87, Theorem 1 and Remark 2]).
Let K Ă R

n be an unconditional convex body and let m1, . . . ,mn ą 0. Then

ż

K

nź

i“1

mi|xi|mi´1 dx

ż

K˝

nź

i“1

mi|xi|mi´1 dx ě 4n
śn
i“1 Γpmi ` 1q

Γpm1 ` ¨ ¨ ¨ `mn ` 1q ,

with equality if and only if K is a Hanner polytope.

We prove the following version of Mahler conjecture for unconditional s-concave functions, s ě 0.

Theorem 2.12. Let s ě 0 and g : Rn Ñ R` be an s-concave unconditional function. Then

Pspgq “
ż

Rn

g

ż

Rn

Lsg ě 4n

p1 ` sq ¨ ¨ ¨ p1 ` nsq ,

with equality if and only if there exists a partition t1, . . . , nu “ I1 Y I2 and two Hanner polytopes
K1 Ă F1 and K2 Ă F2, where Fj “ Spantei, i P Iju, for j “ 1, 2 such that for any x1 P F1 and

x2 P F2, for x “ x1 `x2, one has gpxq “ p1´ }x1}K1
q

1

s

`1K2px2q, for s ą 0 and gpxq “ e´}x1}K11K2px2q,
for s “ 0.

First, notice that if s “ 0 then L0pe´ϕq “ e´ϕ˚

, as was previously noted. Hence, the result
reduces to the reverse-Blaschke-Santaló inequality for unconditional log-concave functions, due to
[FM08b, FM08a] and the equality case was proved in [FGMR10].

The proof for s ą 0 will follow the same methods as in Artstein-Avidan, Klartag and Milman
[AAKM04].
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Proof for s ą 0. Recall that the function g is s-concave if and only if gs is concave on its support.
Let f “ gs be concave on its support and denote m “ 1{s ą 0. Then one has g “ fm and so

Lsgpyq “ inf
xPRn

p1 ´ sxx, yyq
1

s

`
gpxq “

ˆ
inf
xPRn

p1 ´ sxx, yyq`
gspxq

˙ 1

s

“ pL1 pgsq psyqq
1

s “
´
L1f

´ y

m

¯¯m
.

Hence

Pspgq “
ż
g

ż
Lsg “ mn

ż
fm

ż
pL1fqm.

For any function f we define the set Kpfq “ tpx, sq P R
n ˆ R; |s| ď fpxqu. The set Kpfq is convex in

R
n`1 if and only if f is concave and using Fubini one has for every m ą 0

ż

Rn

fmpxq dx “
ż

Rn

ż fpxq

0

mtm´1 dtdx “ m

2

ż

Kpfq
|t|m´1 dtdx.

Moreover,

Kpfq˝ “ tpy, tq P R
n ˆ R; xx, yy ` xs, ty ď 1, @py, tq P R

n ˆ R such that |s| ď fpxqu

“
"

py, tq P R
n ˆ R; |t| ď p1 ´ xx, yyq`

fpxq ,@x P tf ą 0u
*

“ KpL1fq.

From this formula we deduce that if f is concave on its support and if 0 is in the support of f then
KpL1L1fq “ KpL1fq˝ “ pKpfq˝q˝ “ Kpfq and it follows that L1L1f “ f . Moreover we get

ż
fm

ż
pLfqm “ m2

4

ż

Kpfq
|t|m´1 dtdx

ż

Kpfq˝

|t|m´1 dtdx.

Lastly, notice that if f is unconditional then Kpfq is unconditional, thus, from Theorem 2.11 of Saint
Raymond and Reisner, we conclude these quantities are minimized among unconditionnal convex sets
if and only if Kpfq is a Hanner polytope in R

n`1. It is not difficult to see that this happens if and
only if there exists a partition t1, . . . , nu “ I1 Y I2 and two Hanner polytopes K1 Ă F1 and K2 Ă F2,
where Fj “ Spantei, i P Iju, for j “ 1, 2 such that for any x1 P F1 and x2 P F2, for x “ x1 ` x2, one
has fpxq “ p1 ´ }x1}K1

q`1K2px2q. �

Case ´1{n ă s ă 0. For s ă 0, the function g is s-concave if and only if gs is convex. Let f “ gs and
m “ ´1{s. Then one has g “ f´m, m ą n and

Lsgpyq “ inf
xPRn

p1 ´ sxx, yyq
1

s
`

gpxq “
˜

inf
xPRn

p1 ´ sxx, yyq´1
`

gpxq|s|

¸ 1

|s|

“
´
L´1pf´1q

´ y

m

¯¯m
.

For simplification, we introduce the following notation: for any f : Rn Ñ p0,`8q convex such that
fptxq Ñ `8 when t Ñ `8 for any x ‰ 0, one denotes, for y P R

n,

Mfpyq “ pL´1pf´1qpyqq´1 “ sup
x

1 ` xx, yy
fpxq .

Using this notation and a change of variables, we get that

(28)

ż

Rn

g

ż

Rn

Lsg “ mn

ż

Rn

1

fm

ż

Rn

1

pMfqm .

Variants of this transform have been considered by Rotem [Rot14] and a reflection of M was also
considered in [AASW23]. Indeed, the latter showed that the image class of M is the set of all functions
who’s epigraph K is a convex set for which λK Ď K for all λ ě 1, see [AASW23, Section 3]. This class
of sets is called pseudo-cones, studied in depth by Xu, Li and Leng [XLL23] and Schneider [Sch23].
They define the copolar of a set by

K˚ “ ty P R
n : @x P K xx, yy ď ´1u.
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One may check that for a function f ,

epipMfq “ epip´fq˚.

The following proposition establishes a few basic properties of Mf .

Proposition 2.13. Let f : Rn Ñ p0,`8q Y t`8u be convex such that limtÑ`8 fptxq “ `8, for any
x ‰ 0 and f ı `8. Define, for y P R

n,

Mfpyq “ sup
x

1 ` xx, yy
fpxq .

Then Mf : Rn Ñ p0,`8q is convex and lower semi-continuous. Moreover, for every y ‰ 0, the

function t ÞÑ Mfptyq
t

is non-increasing on p0,`8q and there exists apyq ą 0 and bpyq ě 0 such that
limtÑ`8 Mfptyq ´ papyqt ` bpyqq “ 0.

Proof. Since f ı `8, there exists x0 P R
n such that fpx0q ă `8. Hence Mfpyq ě 1`xx0,yy

fpx0q ą 0.

Since Mf is the supremum of affine functions, it is convex and lower semi-continuous. For any y P R
n

and t ą 0 one has
Mfptyq

t
“ sup

x

1
t

` xx, yy
fpxq ,

hence the function t ÞÑ Mfptyq
t

is non-increasing on p0,`8q. Moreover one has for t ě T ą 0

sup
x

xx, yy
fpxq ď Mfptyq

t
“ sup

x

1
t

` xx, yy
fpxq ď 1

T
` sup

x

xx, yy
fpxq .

Hence limtÑ`8
Mfptyq

t
“ supx

xx,yy
fpxq :“ apyq ą 0. Thus for any s ą 0 the function t ÞÑ Mfptyq´Mfpsyq

t´s
is non-decreasing on ps,`8q and converges to apyq when t Ñ `8. It follows that

Mfptyq ´ Mfpsyq
t´ s

ď apyq

which implies that t ÞÑ Mfptyq ´ tapyq is non-increasing. Since Mfptyq ě tapyq we conclude that
there exists bpyq ě 0 such that Mfptyq ´ ptapyq ` bpyqq Ñ 0 when t Ñ `8, which implies that the
function Mf has asymptotes in every directions. �

Remark 2.14. The argument above shows that for a convex function f : Rn Ñ p0,`8q Y t`8u and

any x ‰ 0, the function t ÞÑ fptxq
t

is non-increasing on p0,`8q if and only if there exists apxq ą 0 and
bpxq ě 0 such that limtÑ`8 fptxq ´ papxqt ` bpxqq “ 0.

To any convex function f : Rn Ñ p0,`8q Y t`8u such that limtÑ`8 fptxq “ `8, for any x ‰ 0

we attach pf : Rn`1 Ñ R` Y t`8u defined for px, sq P R
n ˆ R by

pfpx, sq “ |s|fpx{|s|q for s ‰ 0 and pfpx, 0q “ lim
sÑ0

|s|fpx{|s|q.

Notice that this limit always exists in R` Y t`8u because the convexity of f implies that the func-
tion t ÞÑ fptxq{t is quasi-convex on p0,`8q. Hence t ÞÑ fptxq{t is either non-increasing and non-

negative on p0,`8q, or it is first non-increasing and then non-decreasing. Notice that pfpx, 0q “
limtÑ`8 fptxq{t P p0,`8q Y t`8u and this limit is finite if and only if f has an asymptote in the

direction x, in which case it is the slope of this asymptote. Notice also that pf is positively homo-

geneous: pfpλx, λsq “ λ pfpx, sq, for every λ ě 0. We denote the domain of the convex function f by

dompfq “ tx P R
n; fpxq ă `8u. Then domp pfq “ tpx, sq P R

n ˆR;x P |s| dompfqu. Moreover, we also
define

Cpfq “ tpx, sq P R
n ˆ R; pfpx, sq ď 1u.
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The function pf is called the perspective function of f and Cpfq is called the perspective body of f .
For further properties of this functional transform, see [AAFM12].

Definition 2.15. We denote by F the set of convex lower semi-continuous functions f : Rn Ñ p0,`8q
such that, for any x ‰ 0, one has limtÑ`8 fptxq “ `8 and the function t ÞÑ fptxq

t
is non-increasing

on p0,`8q. Proposition 2.13 establishes in particular that MpFq Ă F . Theorem 2.16 below implies
that for any f P F one has f “ MMf and thus MpFq “ F .

The following theorem gathers the important observations regarding Cpfq.

Theorem 2.16. Let f : R
n Ñ p0,`8q Y t`8u be convex and lower semi-continuous such that

limtÑ`8 fptxq “ `8, for any x ‰ 0 and whose domain dompfq has non empty interior. Let Cpfq “
tpx, sq P R

n ˆ R; pfpx, sq ď 1u. Let Cpfq` “ Cpfq X tpx, sq P R
n ˆ R; s ě 0u and Cpfq´ “ Cpfq X

tpx, sq P R
n ˆ R; s ď 0u. Then

(i) Cpfq` is a convex body containing 0 on its boundary, Cpfq` “ tpx, sq P Rn ˆ p0,`8q; sfpx{sq ď 1u
and Cpfq´ is its symmetric image with respect to the hyperplane ts “ 0u.
(ii) Cpfq is convex if and only if f P F , i.e. t ÞÑ fptxq{t is non-increasing on p0,`8q, for every x.
(iii) if, moreover, f P F , i.e. if t ÞÑ fptxq{t is non-increasing on p0,`8q, for every x, then the

function pf is a gauge on R
n`1 whose unit ball is the convex body Cpfq and f is the restriction of this

gauge to the affine hyperplane ts “ 1u: for any x P R
n, one has fpxq “ }px, 1q}Cpfq.

(iv) Cpfq˝ “ CpMfq and for any f P F , one has MMf “ f .
(v) For any m ą 0 one has

ş
Rn f

´pm`nq “ m`n
2

ş
Cpfq |s|m´1 dsdx.

Proof. (i) Let us prove that pf is convex on R
nˆR`. Let px1, s1q, px2, s2q P R

nˆp0,`8q and λ P r0, 1s.
Then,

pfpp1 ´ λqx1 ` λx2, p1 ´ λqs1 ` λs2q “ pp1 ´ λqs1 ` λs2qf
ˆ p1 ´ λqx1 ` λx2

p1 ´ λqs1 ` λs2

˙

“ pp1 ´ λqs1 ` λs2qf
˜

p1 ´ λqs1 x1

s1
` λs2

x2

s2

p1 ´ λqs1 ` λs2

¸

ď p1 ´ λqs1f
ˆ
x1

s1

˙
` λs2f

ˆ
x2

s2

˙

“ p1 ´ λq pfpx1, s1q ` λ pfpx2, s2q.

It follows that pf is convex on R
nˆ p0,`8q. Since pf is defined on R

nˆ t0u by taking a limit, it follows

that pf is convex on R
n ˆR`. Thus Cpfq` “ tpx, sq P R

n ˆR`; pfpx, sq ď 1u is convex. Moreover, pf is

lower semi-continuous on R
n, hence Cpfq` is closed. Moreover, since pfpx, sq P p0,`8q Y t`8u and

pf is positively homogeneous, one has limλÑ`8 pfpλx, λsq “ `8, for every x P R
n and s ě 0. Hence

Cpfq` is bounded. Moreover, since dompfq has non empty interior and

domp pfq “ tpx, sq P R
n ˆ R;x P |s| dompfqu Ą Convp0, dompfq ˆ t1uq,

we deduce that domp pfq has also non empty interior. From Baire’s theorem, there exists M ą 0

such that K :“ tpx, sq P R
n ˆ R`; pfpx, sq ď Mu has non empty interior. Thus, by homogeneity,

K{M Ă Cpfq`, which implies that Cpfq` has non-empty interior. Therefore it is a convex body.

Since pfp0, 0q “ 0, one has p0, 0q P Cpfq`, thus p0, 0q is in the boundary of Cpfq`. The fact that
Cpfq´ is the symmetric image of Cpfq` with respect to the hyperplane ts “ 0u is clear.
(ii) If t ÞÑ fptxq{t is non-increasing on p0,`8q, for every x, let px1, s1q, px2, s2q P R

nˆR and λ P r0, 1s.
Assume first that s1, s2, p1´ λqs1 `λs2 P R

˚. Then, using that |p1 ´λqs1 ` λs2| ď p1´ λq|s1| ` λ|s2|
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and the fact that t ÞÑ fptxq{t is non-increasing on p0,`8q, one has

pfpp1 ´ λqx1 ` λx2, p1 ´ λqs1 ` λs2q “ |p1 ´ λqs1 ` λs2|f
ˆ p1 ´ λqx1 ` λx2

|p1 ´ λqs1 ` λs2|

˙

ď pp1 ´ λq|s1| ` λ|s2|qf
˜

p1 ´ λq|s1| x1

|s1| ` λ|s2| x2

|s2|
p1 ´ λq|s1| ` λ|s2|

¸

ď p1 ´ λq|s1|f
ˆ
x1

|s1|

˙
` λ|s2|f

ˆ
x2

|s2|

˙

“ p1 ´ λq pfpx1, s1q ` λ pfpx2, s2q.

For s1 “ 0 or s2 “ 0 or p1´λqs1 `λs2 “ 0 the result follows by taking the limit. It follows that Cpfq
is convex.
If there exists x ‰ 0 such that the function t ÞÑ fptxq{t is not non-increasing on p0,`8q, then, by
convexity this function is first decreasing then increasing on p0,`8q. Thus, for s ą 0, the function

s ÞÑ pfpx, sq “ sfpx{sq is also first decreasing then increasing on p0,`8q. By convexity, pf is continuous

on tpx, sq; pfpx, sq ă `8u, thus there exists s0 ą 0 such that pfpx, s0q “ infsą0
pfpx, sq :“ m0 ą 0. It

follows that pfpx, 0q ą pfpx, s0q. Hence, by homogeneity and by symmetry of pf , we deduce that
px{m0,˘s0{m0q P Cpfq, but px{m0, 0q R Cpfq, which proves that Cpfq is not convex.
(iii) If t ÞÑ fptxq{t is non-increasing on p0,`8q, for every x ‰ 0, then, from (i) and (ii), Cpfq is
a convex body which contains the origin and is symmetric with respect to the hyperplane ts “ 0u.
Moreover, by homogeneity of pf , its gauge } ¨ }Cpfq satisfies, for every px, sq P R

n ˆ R,

}px, sq}Cpfq “ inftλ ą 0; px, sq P λCpfqu “ inftλ ą 0; fpx, sq ď λu “ fpx, sq.

Thus, the function pf is a gauge on R
n`1 whose unit ball is the convex body Cpfq. Moreover, for

s “ 1, we get, for any x P R
n, }px, 1q}Cpfq “ pfpx, 1q “ fpxq.

(iv) One has

pCpfqq˝ “
"

py, tq P R
n ˆ R; xx, yy ` st ď 1,@px, sq, |s|f

ˆ
x

|s|

˙
ď 1

*

“ tpy, tq P R
n ˆ R; |s|xz, yy ` st ď 1,@pz, sq, |s|fpzq ď 1u

“ tpy, tq P R
n ˆ R; xz, yy ` |t| ď fpzq,@zu

“
"

py, tq P R
n ˆ R; sup

z

xz, yy ` |t|
fpzq ď 1

*

“
#

py, tq P Rn ˆ R; |t| sup
z

xz, y|t| y ` 1

fpzq ď 1

+

“
"

py, tq P Rn ˆ R; |t|Mf

ˆ
y

|t|

˙
ď 1

*

“ CpMfq

Assume that f P F , then, from (i) and (ii), Cpfq is a convex body containing the origin and one has
CpMMfq “ CpMfq˝ “ pCpfq˝q˝ “ Cpfq. From (iii), we deduce that MMfpxq “ }px, 1q}CpMMfq “
}px, 1q}Cpfq “ fpxq.
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(v) Using Fubini, one has
ż

Cpfq
|s|m´1 dsdx “ 2

ż `8

0

sm´1|tx P R
n; px, sq P Cpfqu| ds

“ 2

ż `8

0

sm´1|tx P R
n; sfpx{sq ď 1u| ds

“ 2

ż `8

0

sm´1|tsz P R
n; sfpzq ď 1u| ds

“ 2

ż `8

0

sn`m´1|tz P R
n; sfpzq ď 1u| ds

Using the change of variable s “ 1{t and Fubini we get
ż

Cpfq
|s|m´1 dsdx “ 2

ż `8

0

t´n´m´1|tz P R
n; fpzq ď tu| dt

“ 2

m` n

ż

Rn

fpzq´n´m dz.

�

We can now state and prove that unconditional functions in F satisfy a kind of Mahler conjecture.

Theorem 2.17. Let f P F , i.e. let f : Rn Ñ p0,`8q such that for any x, the function t ÞÑ fptxq
t

is
non-increasing on p0,`8q. Assume moreover that f is unconditional. Then for any m ą n, one has

ż

Rn

f´m
ż

Rn

pMfq´m ě 4n

pm ´ 1q ¨ ¨ ¨ pm ´ nq ,

with equality if and only if there exists a Hanner polytope K in R
n`1 such that for every x P R

n,
fpxq “ }px, 1q}K .

Recalling that m “ ´1{s ą n, denote by r “ m ´ n ą 0. Then, according to Theorem 2.16 (v),
one has ż

Rn

f´m “
ż

Rn

f´pr`nq “ m

2

ż

Cpfq
|s|r´1 dsdx,

and similarly, ż

Rn

Mf´m “ m

2

ż

CpMfq
|s|r´1 dsdx “ m

2

ż

Cpfq˝

|s|r´1 dsdx.

Hence, ż
f´m

ż
pMfq´m “

´m
2

¯2
ż

Cpfq
|s|r´1 dsdx

ż

Cpfq˝

|s|r´1 dsdx

and from Theorem 2.11 due to Saint Raymond and Reisner, the right hand side is minimized among
unconditionnal convex sets if and only if Cpfq is a Hanner polytope K, which means that fpxq “
}px, 1q}K , for every x P R

n. �

We can now state the following direct consequences of Theorems 2.16 and 2.17 for s-concave
functions, when s ă 0. We denote by Cs the set of s-concave functions g : Rn Ñ p0,`8q, which
are lower semi-continuous and such that, for any x ‰ 0, one has limtÑ`8 gptxq “ 0 and the function

t ÞÑ t´
1

s gptxq is non-decreasing.
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Corollary 2.18. Let s ă 0. Then LspCsq “ Cs. Moreover, for every g P Cs, one has LsLspgq “ g

and if g is unconditional then

Pspgq “
ż

Rn

g

ż

Rn

Lsg ě 4n

p1 ` sq ¨ ¨ ¨ p1 ` nsq ,

with equality if and only if there exists a Hanner polytope K in R
n`1 such that for every x P R

n,

fpxq “ }px, 1q}
1

s

K .

3. Transport-entropy forms of Blaschke-Santaló inequality

Given a measurable cost function c : Rn ˆ R
n Ñ R Y t`8u, bounded from below, the optimal

transport cost between two probability measures ν1, ν2 P PpRnq is defined as follows

Tcpν1, ν2q “ inf

"ż
cpx, yq dπpx, yq : π P PpRn ˆ R

nq, πpRn ˆ ¨q “ ν1p¨q, πp¨ ˆ R
nq “ ν2p¨q

*
,

where PpRnq (resp. PpRn ˆ R
nq) denotes the set of all Borel probability measures on R

n (resp.
R
n ˆ R

n).

Relative entropy is another classical functional on PpRnq that we shall now recall. Whenever m is
some measure on R

n (not necessarily of mass 1) and dν “ fdm P PpRnq, the relative entropy of ν
with respect to m is defined by

Hpν|mq “
ż
f log f dm,

as soon as the right-hand side makes sense (that is to say f log` f or f log´ f is m-integrable). In
particular, when m is a probability measure, Hpν|mq always makes sense in R` Y t`8u.

Comparing optimal transport costs to relative entropy is the purpose of the family of transport-
entropy inequalities introduced by Marton [Mar86, Mar96a, Mar96b] and Talagrand [Tal96] in the
nineties. We refer to the survey [GL10] for a presentation of this class of inequalities and their
applications in the concentration of measure phenomenon. One of the most classical example of such
an inequality is the so-called Talagrand’s transport inequality for the standard Gaussian measure. It
reads as follows:

W 2
2 pν, γq ď 2Hpν|γq, @ν P PpRnq,

where γ is the standard Gaussian probability measure on R
n, and W 2

2 pν, γq is the squared Wasserstein
distance, which is equal to Tcpν, γq for cpx, yq “ |x ´ y|2, x, y P R

n. This inequality is optimal with
equality obtained when ν is a translation of γ. Using the triangle inequality for W2, it is easily seen
that the following variant involving two probability measures also holds

W 2
2 pν1, ν2q ď 4Hpν1|γq ` 4Hpν2|γq, @ν1, ν2 P PpRnq.

This inequality is still optimal with equality achieved when ν1 and ν2 are two standard Gaussian with
opposite means. Recently, a symmetrized version of this inequality was obtained by Fathi [Fat18],
namely

(29) W 2
2 pν1, ν2q ď 2Hpν1|γq ` 2Hpν2|γq,

whenever ν1 is centered and ν2 is arbitrary. Fathi derived (29) from a functional version of Blaschke-
Santaló’s inequality.

The aim of this section is to further explore the relationships between transport-entropy inequalities
and functional forms of Blaschke-Santaló inequality given in Theorem 2.7. We will in particular derive
from the latter some optimal transport-entropy inequalities for spherically invariant probability models
that go beyond the Gaussian case.
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3.1. General costs. Utilizing Theorem 2.7 gives us two different families of transport-entropy in-
equalities for a large class of spherically invariant probability measures.

Theorem 3.1. Let ρ : R` Ñ p0,8q be a continuous non-increasing function such that
ş
ρp|x|2q dx ă

`8, and t ÞÑ ´ log ρpetq is convex on R. Let µρ be the probability measure with density proportional

to ρp|x|2q.

piq For all ν1, ν2 P PpRnq we have

(30) Tω̃ρ
pν1, ν2q ď Hpν1|µρq `Hpν2|µρq,

where the optimal transport cost Tω̃ρ
is defined with respect to the cost function ω̃ρ given by

ω̃ρpx, yq “ log

˜
ρp|x ¨ y|q2

ρp|x|2qρp|y|2q

¸
, x, y P R

n.

piiq For all ν1, ν2 P PpRnq with ν1 and ν2 symmetric, we have

(31) Tωρ
pν1, ν2q ď Hpν1|µρq `Hpν2|µρq,

where the optimal transport cost Tωρ
is defined with respect to the cost function ωρ given by

ωρpx, yq “
#

log
´

ρpx¨yq2
ρp|x|2qρp|y|2q

¯
if x ¨ y ě 0

`8 otherwise
, x, y P R

n.

Furthermore, there is equality in inequalities (30) and (31) when ν1 “ ν2 “ µρ.

Before turning to the proof of Theorem 3.1, let us do some comments. If (30) holds for all couples
ν1, ν2 without restriction, note that the cost ω̃ρ is not very standard. For instance, if ρ0ptq “ e´t{2 for
which µρ “ γ is the standard Gaussian, one gets ω̃ρ0px, yq “ 1

2
p|x|´|y|q2, x, y P R

n instead of the usual

quadratic cost 1
2

|x´ y|2. The cost ωρ seems better adapted to the geometry of the measure µρ, but
the corresponding transport-entropy inequality (31) requires symmetry assumptions on ν1, ν2. Taking
Fathi’s result (29) in consideration, a natural question is to ask whether these symmetry assumptions
can be relaxed or not. We will see in the next two sections that the answer to this question depends
on the cost function ρ.

Proof. In this proof we adapt the classical dualization argument by Bobkov and Götze [BG99] to our
context. Let us first prove piq. Rewriting Theorem 2.7 (even case) with respect to the functions

F pxq “ log fpxq ´ log ρp|x|2q, Gpyq “ log gpyq ´ log ρp|y|2q,

we get the following: for all bounded measurable functions F,G such that F is even and

(32) F ‘G ď ω̃ρ

it holds

(33)

ż

Rn

eF dµρ

ż

Rn

eG dµρ ď 1,

where F ‘Gpx, yq “ F pxq`Gpyq, x, y P R
n. We now introduce two probability measures ν1, ν2. Then,

taking the logarithm of inequality (33), we find that
(34)

Hpν1|mq`Hpν2|mq ě
ż

Rn

F dν1 ´ log

ż

Rn

eF dµρ`
ż

Rn

Gdν2´ log

ż

Rn

eG dµρ ě
ż

Rn

F dν1 `
ż

Rn

Gdν2,
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where the first inequality comes from the duality formula for the relative entropy functional: if
ν P PpRnq and log dν{dm P L1pνq, then

Hpν|mq “ sup
fPL1pνq

"ż

Rn

f dν ´ log

ż

Rn

ef dm

*
.

Optimizing in (34) with respect to F and G, we thus find that

Hpν1|µρq `Hpν2|µρq ě sup
pF,GqPS

"ż

Rn

F dν1 `
ż

Rn

Gdν2

*

where the supremum runs over the set S of couples of bounded measurable functions pF,Gq with F

even and satisfying (32).

Now, if pF,Gq is a couple of bounded measurable functions satisfying (32) (with F not necessarily

even), then by symmetry of ω̃ρ, the even function F̃ pxq “ maxtF pxq, F p´xqu, x P R
n, is such that

pF̃ , Gq P S, and
ş
Rn F̃ dν1 ě

ş
Rn F dν1, and so we may remove the assumption on evenness of F and

conclude that

sup
pF,GqPS

"ż

Rn

F dν1 `
ż

Rn

Gdν2

*
“ sup

pF,Gq:F‘Gďω̃ρ

"ż

Rn

F dν1 `
ż

Rn

Gdν2

*

“ Tω̃ρ
pν1, ν2q,

where the second equality comes from the Kantorovich duality theorem (see e.g. [Vil09, Theorem
5.10]) which applies since the cost function ω̃ρ is lower semicontinuous (and even continuous) and
bounded from below thanks to the log-concavity of t ÞÑ ρpetq (it is, in fact, non-negative, a proof of
which can be found in Lemma 4.3). This completes the proof of piq.

Let us now prove piiq. Reasoning exactly as before, one concludes that for any ν1, ν2 P PpRnq, it
holds

Hpν1|µρq `Hpν2|µρq ě sup
pF,GqPS̄

"ż

Rn

F dν1 `
ż

Rn

Gdν2

*
,

where S̄ is the set of couples of bounded measurable functions pF,Gq with F even such that F‘G ď ωρ.
Let pF,Gq be a couple of bounded measurable functions (with F non necessary even) such that
F ‘ G ď ωρ. Since, for all x, y P R

n, ωρpx, yq “ ωρp´x,´yq, defining F̄ pxq “ 1
2

pF pxq ` F p´xqq and

Ḡpyq “ 1
2

pGpyq`Gp´yqq, one gets that pF̄ , Ḡq P S̄. If ν1 and ν2 are further assumed to be symmetric,

it holds
ş
F̄ dν1 “

ş
F dν1 and

ş
Ḡ dν2 “

ş
Gdν2. Thus, in this case,

sup
pF,GqPS̄

"ż

Rn

F dν1 `
ż

Rn

Gdν2

*
“ sup

pF,Gq:F‘Gďωρ

"ż

Rn

F dν1 `
ż

Rn

Gdν2

*
“ Tωρ

pν1, ν2q,

applying Kantorovich duality for the last equation, which completes the proof of piiq.
Finally, note that ω̃ρ and ωρ are both non-negative and vanish on the diagonal, so that Tω̃ρ

pµρ, µρq “
Tωρ

pµρ, µρq “ 0. There is thus equality in Inequalities (30) and (31) when ν1 “ ν2 “ µρ. �

In the next subsections, we will study the consequences of Theorem 3.1 for two special costs, related
respectively to Barenblatt-type and Cauchy-type distributions.

3.2. Barenblatt-type distributions. Let s ą 0 and denote by Bs “ tx P R
n : |x| ă 1?

s
u the open

Euclidean ball of center 0 and radius 1?
s
. Consider the probability measure

γspdxq “ 1

Zs

`
1 ´ s|x|2

˘1{p2sq
1Bs

pxq dx
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which is a particular case of the so-called Barenblatt profiles. Consider the cost function ks : BsˆBs Ñ
R defined by

kspx, yq “ 1

s
log

ˆ
1 ´ sx ¨ y

p1 ´ s|x|2q1{2p1 ´ s|y|2q1{2

˙
, x, y P Bs.

For this particular cost, the conclusion of Theorem 3.1 can be improved, as shown in the following
result.

Theorem 3.2. For all s ą 0, the probability measure γs satisfies the following transport-entropy
inequality:

Tkspν1, ν2q ď Hpν1|γsq `Hpν2|γsq,
for all probability measures ν1, ν2, one of which is centered and with supports K1,K2 Ă Bs.

This result is exactly analogous to Fathi’s result (29) in the Gaussian case. Moreover, note that as
s Ñ 0, it holds γs Ñ γ (the standard Gaussian) and one recovers (29).

Proof of Theorem 3.2. Applying Theorem 2.7 to ρsptq “ r1 ´ sts1{p2sq
` , t ě 0, yields the following: for

any s ą 0 and f : Rn Ñ R` integrable, it holds

ż
fpxq dx inf

zPconv Sf

ż
Lspfzqpyq dy ď

ˆż

Bs

`
1 ´ s|x|2

˘1{p2sq
dx

˙2

“ Z2
s ,

where Sf denotes the support of the measure νf pdxq “ fpxq dx and

Lspgqpyq “ inf
x:gpxqą0

r1 ´ sx ¨ ys1{s
`

gpxq , y P R
n.

Let bspx, yq “ 1
s
logr1 ´ sx ¨ ys`, x, y P R

n. It is enough to prove that

(35) Tbspν1, ν2q ď Hpν1|Lebq `Hpν2|Lebq ` 2 logZs,

for all probability measures ν1, ν2 with supports K1,K2 Ă Bs and such that ν1 is centered. Note
that bs is bounded and continuous on K1 ˆK2. Therefore, applying Kantorovich duality theorem on
K1 ˆK2 yields the following identity

(36) Tbspν1, ν2q “ sup
ϕPCbpK2q

"ż

K1

Qsϕpx1q dν1px1q ´
ż

K2

ϕpx2q dν2px2q
*
,

where CbpK2q denotes the set of bounded continuous functions on K2 and

Qsϕpx1q “ inf
x2PK2

tϕpx2q ` bspx1, x2qu, x1 P R
n.

Take ϕ P CbpK2q and define f : Rn Ñ R` by fpx2q “ e´ϕpx2q if x2 P K2 and 0 otherwise. Note the
following relation :

(37) eQsϕ “ Lspfq.
According to what precedes, it holds

ż
fpx2q dx2 inf

zPconvK2

ż
Lspfzqpx1q dx1 ď Z2

s .

Indeed, by construction the support of the measure fpxq dx is K2. Note that the following inequality
holds, for any z P R

n,

Lspfzqpyq ě p1 ` sz ¨ yq`LsfpFszpyqq, @y P R
n,
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where, for any a P R
nzt0u, the map Fapyq “ y

1`z¨a , y P Ha “ ty P R
n : 1 ` z ¨ a ą 0u is a bijection

from Ha onto H´a (this is Item (1) of Lemma 2.5; when fp0q “ 0 there is equality but this not needed
here). So it holds

ż
Lspfzqpx1q dx1 ě

ż
p1 ` sz ¨ x1q1{s

` LsfpFszpx1qq dx1

“
ż

Hsz

p1 ` sz ¨ x1q1{sLsfpFszpx1qq dx1

“
ż

H´sz

1

p1 ´ sz ¨ uqn`1` 1

s

Lsfpuq du

“
ż
eQsϕpuq dmzpuq,

where dmzpuq “ 1

p1´sz¨uqn`1` 1

s

1H´sz
puq du. Therefore,

´2 logZs ď ´ log

ż

K2

e´ϕpx2q dx2 ´ inf
zPconvK2

log

ż
eQsϕpx1q dmzpx1q

and so

´ 2 logZs `
ż
Qsϕdν1 ´

ż
ϕdν2

ď
ż

´ϕdν2 ´ log

ż

K2

e´ϕpx2q dx2 `
ż
Qsϕdν1 ´ inf

zPconvK2

log

ż
eQsϕpx1q dmzpx1q

ď Hpν2|Lebq ` sup
zPconvK2

Hpν1|mzq,

where the last inequality follows from the bound
ż
ψ dν ´ log

ż
e´ψ dm ď Hpν|mq, @ν ! m.

Note that if z P Bs, then Bs Ă H´sz and so in particular ν1 ! mz.

Finally, for all z P Bs, it holds

Hpν1|mzq “
ż

Bs

log
dν1

dmz

dν1

“ Hpν1|Lebq ´
ż

Bs

log
dmz

dx
dν1

“ Hpν1|Lebq ` pn ` 1 ` 1

s
q

ż

Bs

log p1 ´ sz ¨ x1q dν1px1q

ď Hpν1|Lebq ` pn ` 1 ` 1

s
q log

ˆ
1 ´ sz ¨

ż
x1 dν1px1q

˙

“ Hpν1|Lebq,

using the concavity of the logarithm and the fact that ν1 is centered. This completes the proof. �

Remark 3.3. Suppose that f : Rn Ñ R
` is a continuous function such that

ş
xfpxq dx “ 0 and f “ 0

outside Bs. Denote by K2 “ tx P Bs : fpxq ‰ 0u and ϕ “ ´ log f P CbpK2q. Then, using (35) and
(36), one gets ż

Qsϕdν1 ´Hpν1|Lebq `
ż

´ϕdν2 ´Hpν2|Lebq ď 2 logZs,
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for all ν1, ν2 with compact support in Bs and ν2 centered. Taking

dν1pxq “ eQsϕpxqş
eQsϕpyq dy

dx “ Lsfpxqş
Lsfpyq dy dx and dν2pxq “ e´ϕpxqş

e´ϕpyq dy
dx “ fpxqş

fpyq dy dx

(thanks to (37)) and noting that ν2 is centered, one gets
ż
f

ż
Lsf ď

ˆż
ρsp|x|2q dx

˙2

,

which essentially gives back the conclusion of Theorem 2.9 in the centered case.

3.3. Cauchy-type distributions. In this section, we consider the cost function

ρβptq “ 1

p1 ` tqβ , t ě 0

for which x ÞÑ ρβp|x|2q is integrable whenever β ą n{2. For β ą n{2, we consider the following
Cauchy type distribution

dµβpxq “ 1

Zβp1 ` |x|
2qβ

dx, with Zβ “ πn{2Γpβ ´ n{2q
Γpβq .

The following result follows immediately from Item piiq of Theorem 3.1.

Corollary 3.4. For any β ą n{2, the Cauchy type probability measure µβ satisfies the following
transport-entropy inequality: for all ν1, ν2 P PpRnq with ν1 and ν2 symmetric, we have

(38) βTωpν1, ν2q ď Hpν1|µβq `Hpν2|µβq,
where the optimal transport cost Tω is defined with respect to the cost function ω given by

(39) ωpx, yq “

$
&
%

´2 log

ˆ
1`x¨y?

1`|x|2
?

1`|y|2

˙
if x ¨ y ą 0

`8 otherwise
, x, y P R

n.

Note that a similar transport-entropy inequality holds true with respect to the cost function

ω̃px, yq “ ´2 log

ˆ
1`|x¨y|?

1`|x|2
?

1`|y|2

˙
, x, y P R

n, without symmetry restrictions on ν1, ν2.

Proof. The function t ÞÑ logp1 ` etq being convex on R, the conclusion immediately follows from
Theorem 3.1 (Item piiq). �

It turns out that sharp transport-entropy inequalities for a family of probability measures on the
Euclidean unit sphere can be derived from Corollary 3.4. To state this result, we need to introduce
additional notation. Let

S
n “

#
u “ pu1, . . . , un`1q :

n`1ÿ

i“1

u2i “ 1

+
and S

n
` “ S

n X tu P R
n`1 : un`1 ě 0u

be respectively the n-dimensional Euclidean unit sphere and upper half unit sphere of R
n`1 and

denote by σ the uniform probability measure on S
n and by σ`p ¨ q “ 2σpSn` X ¨ q the normalized

restriction of σ to S
n
` (the dimension n is omitted in the notation of σ and σ`). For any β ą n{2, let

σβ,` P PpSn`q (resp. σβ P PpSnqq be the probability measure with a density proportional to

u ÞÑ |un`1|2β´pn`1q

with respect to σ` (resp. σ). Note that σ and σ` correspond to the parameter β “ pn` 1q{2.
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The set of Borel probability measures on S
n (resp. S

n
`) will be denoted by PpSnq (resp. PpSn`q).

A probability measure µ P PpSnq will be called symmetric if it is invariant under the map S
n Ñ S

n :

u ÞÑ ´u. The set of all symmetric probability measures on S
n will be denoted by PspSnq.

Finally, let α : Sn ˆ S
n Ñ R` Y t`8u be the cost function defined by

αpu, vq “
"

log
`

1
u¨v

˘
if u ¨ v ą 0

`8 otherwise
, u, v P S

n

and Tα the associated optimal transport cost on PpSnq. This cost function has been introduced by
Oliker [Oli07] (see also [Ber16] and [Kol20]) in connection with the so-called Aleksandrov problem in
convex geometry.

Recall the definition of the geodesic distance dSn on S
n:

dSnpu, vq “ arccospu ¨ vq, u, v P S
n.

The cost α can thus also be expressed as

(40) αpu, vq “
"

´ log cospdSnpu, vqq if dSnpu, vq ă π{2
`8 otherwise

, u, v P S
n.

Remark 3.5. Characterizing couples pµ, νq for which the transport cost Tαpµ, νq is finite is a delicate
question (discussed in particular in [Ber16]; see also Remark 5.4 below). Note that, according to
Lemma 3.3 of [Kol20] and Remark 4.9 of [Ber16], if µ, ν are symmetric probability measures such that
µ has a positive density with respect to σ and ν is such that νpSn X Lq “ 0 for any hyperplane L
passing through the origin, then Tαpµ, νq ă `8.

Corollary 3.6. Let β ą n{2.

piq For any ν1, ν2 P PpSn`q which are invariant under the map S
n
` Ñ S

n
` : u ÞÑ p´u1, . . . ,´un, un`1q,

it holds
2βTαpν1, ν2q ď Hpν1|σβ,`q `Hpν2|σβ,`q.

piiq For any ν1, ν2 P PspSnq which are also invariant under the map S
n Ñ S

n : u ÞÑ pu1, . . . , un,´un`1q,
it holds

2βTαpν1, ν2q ď Hpν1|σβq `Hpν2|σβq.

Proof. Let us prove piq, following the proof of [Goz07, Theorem 19]. Denote by µ “ µpn`1q{2 the

multivariate Cauchy distribution with density Z´1p1 ` |x|
2q´pn`1q{2. Consider the map

T : Rn Ñ S
n
`` : x ÞÑ 1

p1 ` |x|2q1{2 px, 1q,

denoting by S
n
`` “ S

n X tu P R
n`1 : un`1 ą 0u. This transformation is bijective with inverse

T´1 : Sn`` Ñ R
n : u ÞÑ 1

un`1

pu1, . . . , unq,

which is sometimes called gnomonic projection. It is easy to check that T´1 pushes forward σ` onto
µ, or equivalently that T pushes forward µ onto σ`. For any β ą n{2, the probability measure µβ
has density

gβpxq “ Cβ

p1 ` |x|2qβ´ n`1

2

, x P R
n

with respect to µ. Therefore, the probability measure T#µβ has density gβpT´1q with respect to
T#µ “ σ`. A simple calculation shows that

gβpT´1puqq “ Cβu
2β´pn`q
n`1 , u P S

n
`,

and so σβ,` “ T#µβ .
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Note the following relation between the cost functions ω (of Corollary 3.4) and α:

αpu, vq “ 1

2
ωpT´1puq, T´1pvqq, @u, v P S

n
``.

Let ν1, ν2 P PpSn`q be invariant under the map u ÞÑ p´u1, . . . ,´un, un`1q. If Hpν1|σβ,`q “ `8 or
Hpν2|σβ,`q “ `8 there is nothing to prove. Let assume that Hpν1|σβ,`q ă `8 and Hpν2|σβ,`q ă
`8. In particular, ν1 and ν2 do not give mass to S

n X tu P R
n`1 : un`1 “ 0u and can thus be seen

as elements of PpSn``q. Define ν1
1 :“ T´1

# ν1 and ν1
2 :“ T´1

# ν2, which are symmetric and so, according
to Corollary 3.4 applied to µβ , it holds

βTωpν1
1, ν

1
2q ď Hpν1

1|µβq `Hpν1
2|µβq.

If π1 is a coupling between ν1
1 and ν1

2 and π is the push forward of π1 under the map px, yq ÞÑ
pT pxq, T pyqq, it holds

1

2

ĳ
ωpx, yq dπ1px, yq “ 1

2

ĳ
ωpT´1puq, T´1pvqq dπpu, vq “

ĳ
αpu, vq dπpu, vq ě Tαpν1, ν2q,

since π has ν1 and ν2 as marginals. Therefore, Tαpν1, ν2q ď 1
2
Tωpν1

1, ν
1
2q. Finally, a simple calculation

shows that

Hpν1
i|µβq “ HpT´1

# νi|T´1
# σβ,`q “ Hpνi|σβ,`q,

which completes the proof of piq.
Let us now prove piiq. Let ν1, ν2 P PpSnq be invariant under the maps u ÞÑ ´u and u ÞÑ

pu1, . . . , un,´un`1q with densities f1, f2 with respect to σβ . For i “ 1, 2, it holds νipSn`q “ 1{2.
Define dνi,`puq “ 2fi1Sn`

puq dσβpuq “ fipuq dσβ,`puq. Then it holds

Hpνi|σβq “
ż
fi log fi dσβ “ 2

ż

Sn`

fi log fi dσβ “
ż
fi log fi dσβ,` “ Hpνi,`|σβ,`q.

On the other hand, if pU, V q is a coupling between ν1,` and ν2,` and ε is such that Ppε “ ˘1q “ 1{2 and
is independent of pU, V q, then X “ pU1, . . . , Un, εUn`1q, Y “ pV1, . . . , Vn, εVn`1q is a coupling between
ν1 and ν2, and it holds ErαpX,Y qs “ ErαpU, V qs. From this follows that Tαpν1, ν2q ď Tαpν1,`, ν2,`q.
Thus piiq immediately follows from piq, which completes the proof. �

For the probability measure σ (corresponding to β “ pn ` 1q{2), the conclusion of Corollary 3.6
can be improved, as shows the following result.

Theorem 3.7. For all symmetric probability measures ν1, ν2 on S
n, it holds

(41) pn` 1qTαpν1, ν2q ď Hpν1|σq `Hpν2|σq.

The preceding result is an improvement of a result by Kolesnikov [Kol20] who obtained the following
transport-entropy inequality on S

n:

(42) pn` 1qTαpν, σq ď Hpν|σq,
for all symmetric probability ν P PpSnq. The proof by Kolesnikov is based on the Monge-Ampère
equation relating the density of ν to the optimal transport map T transporting σ on µ. The de-
terminant of the Jacobian matrix of T is controlled with the help of the classical Blaschke-Santaló
inequality for convex bodies (see the proof of [Kol20, Theorem 7.3]). Kolesnikov also establishes links
between minimizers of the functional

ν1 ÞÑ Hpν1|σq ´ pn ` 1qTαpν1, ν2q,
with ν1, ν2 symmetric and the log-Minkowski problem; we refer to [Kol20] for further explanations
and references. Remark 3.11 below gathers further comments on (41) and (42).
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Before turning to the proof of (41), let us comment the role of the symmetry assumption. It turns
out that for any constant C ą 0, the inequality

CTαpν, σq ď Hpν|σq,
can not be true for all ν P PpSnq. This follows immediately from the following lemma:

Lemma 3.8. There exists ν P PpSnq such that Tαpν, σq “ `8 and Hpν|σq ă `8.

In particular, contrary to Fathi’s Inequality (29) for the standard Gaussian measure, (41) is not
true if only one of the probability measures ν1, ν2 is assumed to be symmetric.

Proof of Lemma 3.8. Let A Ă S
n be some spherical cap and define dν “ 1A

σpAq dσ. Then Hpν|σq “
´ logσpAq ă `8. On the other hand, if pX,Y q is a coupling between σ and ν, then denoting by

Aπ{2 “ ty P S
n : Dx P A s.t. dSnpx, yq ă π{2u,

it holds
PpdpX,Y q ă π

2
q ď PpY P Aπ{2q “ σpAπ{2q.

If A is small enough, then σpAπ{2q ă 1 and so PpdpX,Y q ě π
2

q ą 0. Therefore, by definition of α,
E rαpX,Y qs “ `8. The coupling being arbitrary, one concludes that Tαpν, σq “ `8. �

Remark 3.9. Note that the preceding construction can be easily adapted to show that, for any β ą n{2,
(38) can be false if only one of the measures ν1, ν2 is assumed to be symmetric.

Our proof of Theorem 3.7 is based on the following Kantorovich type duality for the cost function
α. To state this result, let us introduce additional notation. Recall that if C Ă R

n`1 is a convex
body, the support function of C is the function denoted by hC defined by

hCpyq “ sup
xPC

x ¨ y, @y P R
n`1

and when C contains 0 in its interior, the radial function of C is the function denoted by ρC defined
by

ρCpxq “ suptr ě 0 : rx P Cu, @x P R
n`1.

Lemma 3.10. For all probability measures ν1, ν2 on S
n, it holds

Tαpν1, ν2q “ sup
C

ż
´ lnhC dν1 `

ż
ln ρC dν2,

where the supremum runs over the set of all convex bodies C containing 0 in their interiors. Moreover,
when ν1 and ν2 are symmetric, the supremum can be restricted to centrally symmetric convex bodies
C.

This duality relation has been first established by Oliker in [Oli07] in his transport approach to the
Alexandrov’s problem on the Gauss curvature prescription of Euclidean convex sets (see also [Ber16]
in particular for the question of dual attainment). For the sake of completeness, we briefly sketch the
proof of Lemma 3.10.

Proof. For any ν1, ν2 probability measures on S
n, Kantorovich duality [Vil09, Theorem 5.10 (i)] yields

to

(43) Tαpν1, ν2q “ sup
φ,ψ

ż
φdν1 `

ż
ψ dν2,

where the supremum runs over the set of couples pφ, ψq of bounded continuous functions on S
n such

that

(44) φpxq ` ψpyq ď αpx, yq, @x, y P S
n.
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Whenever ν1, ν2 are symmetric, and pφ, ψq satisfies (44), then defining φ̄pxq “ 1
2

pφpxq ` φp´xqq and

ψ̄pyq “ 1
2

pψpyq `ψp´yqq, x, y P S
n, the couple pφ̄, ψ̄q satisfies (44) (because αp´x,´yq “ αpx, yq) and

is such that ż
φ̄ dν1 `

ż
ψ̄ dν2 “

ż
φdν1 `

ż
ψ dν2.

Therefore, in this symmetric case, the supremum in (43) can be further restricted to couples of even
functions pφ, ψq. Let us now consider the α-transform fα of a function f : Sn Ñ R defined by

fαpyq “ inf
xPSn

tαpx, yq ´ fpxqu, y P S
n.

It is not difficult to check that whenever f is bounded on S
n, then fα is bounded continuous on S

n,
and if f is even then fα is also even. Using the well known double α-concavification trick, the duality
formula (43) can be further restricted to couples pφ, ψq of α-conjugate functions, that is to say such
that φα “ ψ and ψα “ φ (see [Vil09, Theorem 5.10 (i)]). Moreover, in the case where ν1, ν2 are
symmetric, (43) can be restricted to couples pφ, ψq of even α-conjugate functions. With the change
of functions h “ e´φ and ρ “ eψ, we see that pφ, ψq is a couple of continuous (even) α-conjugate
functions, if and only if ph, ρq is a couple of continuous (even) positive functions such that

hpxq “ sup
yPSn

ρpyqx ¨ y, @x P S
n and

1

ρpyq “ sup
xPSn

x ¨ y
hpxq , @y P S

n.

It is well known that to any such couple ph, ρq uniquely corresponds a convex body C containing 0 in
its interior such that h “ hC and ρ “ ρC ; we refer to [Oli07, Theorem 2] for details. In the case, h
and ρ are both even, then C is centrally symmetric, which completes the proof. �

Proof of Theorem 3.7. Let C be a centrally symmetric convex body in R
n`1. According to the clas-

sical Blaschke-Santaló inequality, it holds

|C||C˝| ď |Bn`1
2 |2.

Calculating the volume of C in polar coordinates yields to

|C| “ pn` 1q|Bn`1
2 |

ż

Sn

ˆż

R`

1Cpruqrn dr
˙
dσpuq “ |Bn`1

2 |
ż

Sn

ρCpuqn`1 dσpuq,

where ρC denotes the radial function of C. Similarly,

|C˝| “ |Bn`1
2 |

ż

Sn

ρC˝puqn`1 dσpuq “ |Bn`1
2 |

ż

Sn

1

hCpuqn`1
dσpuq,

using the well known (and easy to check) relation ρC˝ “ 1{hC , where hC is the support function of
C. So, for every symmetric convex C body in R

n`1, it holds

(45)

ż

Sn

ρCpuqn`1 dσpuq
ż

Sn

1

hCpuqn`1
dσpuq ď 1.

On the other hand, if ν1, ν2 are two symmetric probability measures on S
n, Lemma 3.10 yields

pn ` 1qTαpν1, ν2q “ sup
C

ż
´ ln

`
hn`1
C

˘
dν1 `

ż
ln

`
ρn`1
C

˘
dν2,

where the supremum runs over the set of all centrally symmetric convex bodies C containing 0 in
their interiors. Reasoning exactly as in the proof of Theorem 3.1, one sees that (45) implies (and is
in fact equivalent to)

pn` 1qTαpν1, ν2q ď Hpν1|σq `Hpν2|σq,
for all ν1, ν2 symmetric. This completes the proof. �
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In order to discuss Inequalities (41) and (42), let us recall that the uniform probability measure σ
on S

n satisfies the following Poincaré inequality: for any smooth function f : Sn Ñ R,

(46) λ1pSnqVarσpfq ď
ż

|∇Snf |2 dσ,

with the sharp constant λ1pSnq “ n (corresponding to the spectral gap of the Laplace operator on
S
n). Equality in (46) is reached for every linear forms. Under symmetry assumptions, the constant in

(46) can be improved. More precisely, for all smooth functions f : Sn Ñ R such that fp´uq “ fpuq,
for all u P S

n, it holds

(47) λ2pSnqVarσpfq ď
ż

|∇Snf |2 dσ,

where λ2pSnq “ 2pn` 1q is the second non-zero eigenvalue of the Laplace operator on S
n. Moreover,

Equality in (47) is reached whenever f is the restriction to S
n of an homogeneous polynomial of degree

2. For the sake of completeness we recall the classical argument leading to (47).

Proof of (47). For all d “ 0, 1, 2 . . . denote by Hd Ă L2pσq the space of degree d homogeneous
harmonic polynomials (restricted to S

n). It is well known that

L2pσq “
`8à

d“0

Hd

and that for all f P Hd, it holds ∆Snf “ ´dpd ` n ´ 1qf . If f : Sn Ñ R is a smooth even function

then it can be written as f “
ř`8
k“0 f2k, with f2k P H2k, for all k ě 0. Therefore, by integration by

part:
ż

|∇Snf |2 dσ “ ´
ż
f.∆Snf dσ “

`8ÿ

k“0

2kp2k`n´1q
ż
f2
k dσ ě 2pn`1q

`8ÿ

k“1

ż
f2
k dσ “ 2pn`1qVarσpfq,

which proves (47). Whenever f P H0 ‘H2, equality obviously holds. This is in particular the case if f
is the restriction to the sphere of a degree 2 homogeneous polynomial. Indeed, suppose that f “ P|Sn ,

where P : Rn`1 Ñ R is some degree 2 homogeneous polynomial. Then there is some constant c such
that ∆Rn`1P “ c. The polynomial Q defined by Qpxq “ P pxq ´ c

2pn`1q |x|2, x P R
n`1, is homogeneous

of degree 2 and harmonic. Moreover, it holds f “ Q|Sn ` c
2pn`1q and so f P H0 ‘H2. �

Recall the expression (40) which will be used in the following remark on optimality of (41).

Remark 3.11.

‚ First let us relate Kolesnikov’s Inequality (42) to existing transport-entropy inequalities on

S
n. A simple calculation shows that ´ log cosu ě u2

2
for all u P r0, π{2s. Therefore, (42)

implies that for all symmetric probability measures ν on S
n, it holds

(48)
n` 1

2
W 2

2 pν, σq ď Hpν|σq,

with W2 being the usual Wasserstein distance on S
n (with respect to the geodesic distance

dSn). The inequality (48) is an improvement of the following classical transport-entropy
inequality:

(49)
n

2
W 2

2 pν, σq ď Hpν|σq,

that holds for all ν P PpSnq. Inequality (49) can for instance be deduced from the log-Sobolev
inequality on S

n that holds with the optimal constant 2{n using the Otto-Villani theorem
[OV00]. The constant n{2 in (49) is optimal. Indeed, according to a well known general
linearization argument of [OV00], (49) implies the sharp Poincaré inequality (46). Using the
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fact that the function u ÞÑ ´ log cos
?
u is convex and increasing on r0, pπ{2q2s, it follows from

Jensen inequality that (42) implies the following transport-entropy inequality:

(50) ´ pn` 1q log cosW2pν, σq ď Hpν|σq

for all symmetric ν P PpSnq. Inequality (50) improves the conclusion of [EKS15, Corollary
3.29] in the case of symmetric probability measures on S

n. See Remark 7.4 of [Kol20] for
other transport-entropy inequalities derived from (42).

‚ Now let us discuss the sharpness of Inequality (41). Reasoning as above, we see that (41)
implies the following variant of (48):

(51)
n` 1

2
W 2

2 pν1, ν2q ď Hpν1|σq `Hpν2|σq,

for all symmetric probability measure ν1, ν2 on S
n. Adapting the linearization argument of

[OV00] (see below for a sketch of proof), one can see that (51) implies the Poincaré inequality
(47) for smooth even functions f : Sn Ñ R. In comparison, for the same class of functions
f , (48) only yields to Poincaré inequality with the sub-optimal constant λ “ n ` 1, so that
(41) is a strict improvement of (42). As explained above, the constant 2pn` 1q is sharp, with
equality obtained for instance for fpuq “ u21, u P S

n.

For the sake of completeness, let us recall how to deduce the Poincaré inequality (47) from (51).

Proof of (51) ñ (47). Let f : Sn Ñ R be a smooth and even function. Without loss of generality,
one can also assume that

ş
f dσ “ 0. Bounding the second order derivatives, one sees there is some

constant C ą 0 such that

fpvq ď fpuq ` |∇Snf |puqdSnpu, vq ` Cd2Snpu, vq, @u, v P S
n.

For all t ą 0, consider ν1,t “ p1 ´ tfqσ and ν2,t “ p1 ` tfqσ. For all t small enough, ν1,t and ν2,t are
symmetric probability measures on S

n. If π is an coupling between ν1,t and ν2,t for W2, it holds
ż
f2 dσ “

ż
f d

ˆ
ν2,t ´ ν1,t

2t

˙
“ 1

2t

ż
fpvq ´ fpuq dπpu, vq

ď 1

2t

ż
|∇Snf |puqdSnpu, vq ` Cd2

Sn
pu, vq dπpu, vq

ď 1

2t

ˆż
|∇Snf |2 dσ

˙1{2
W2pν1,t, ν2,tq ` C

2t
W 2

2 pν1,t, ν2,tq.

According to (51), it holds

1

t2
W 2

2 pν1,t, ν2,tq ď 2

n` 1

ˆ
Hpν1,t|µq

t2
` Hpν2,t|µq

t2

˙
,

and a simple calculation shows that
Hpνi,t|µq

t2
Ñ 1

2

ş
f2 dσ. Therefore,

lim sup
tÑ0

1

t2
W 2

2 pν1,t, ν2,tq ď 2

n` 1

ż
f2 dσ.

So passing to the limit above yields to

ż
f2 dσ ď 1

2

ˆż
|∇Snf |2 dσ

˙1{2 ˆ
2

n` 1

ż
f2 dσ

˙1{2
,

which amounts to (47). �
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In the following, we derive some simple consequences of Inequality (41) in terms of measure con-
centration for symmetric sets of the sphere. Whenever A,B Ă S

n, we will set

dSnpA,Bq “ inf
xPA,yPB

dSnpx, yq

to denote the distance between A and B.

Corollary 3.12. Suppose that A,B Ă S
n are two symmetric subsets of S

n, then dSnpA,Bq ď π{2
and it holds

(52) σpAqσpBq ď cosn`1pdSnpA,Bqq.

Proof. The fact that dSnpA,Bq ď π{2 is obvious. Inequality (52) is then immediately derived from
the transport entropy inequality (41) using a general argument by Marton which is detailed in e.g
[Goz07, Theorem 10]. �

Remark 3.13. Inequality (52) is not always true for general sets A,B such that dSnpA,Bq ď π{2.
Indeed, if A and B are two (small enough) spherical caps such that dSnpA,Bq “ π{2, then Inequality
(52) would imply that σpAqσpBq “ 0 which is obviously false.

In particular, if A is some symmetric set of S
n such that σpAq ě 1{2 and B “ S

nzAr, where
0 ă r ď π{2 and Ar “ ty P S

n : dSnpy,Aq ă ru is the r-enlargement of A, it holds

(53) σpSnzArq ď 2 cosn`1prq, @0 ď r ď π{2.

In comparison, for a general set A Ă S
n such that σpAq ě 1{2, the classical Talagrand inequality (49)

yields to

(54) σpSnzArq ď 2e´ nr2

4 , @0 ď r ď π{2

and, if A is supposed symmetric, Inequality (51) gives

(55) σpSnzArq ď 2e´ pn`1qr2

2 , @0 ď r ď π{2.

Since cosprq ď e´r2{2 for r ď 0 ď π{2, the bound (53) is clearly better than bounds (54) and (55).
On the other hand, the classical isoperimetric inequality on S

n implies that if a general set A Ă S
n is

such that σpAq ě 1{2, then

(56) σpSnzArq ď ψnprq :“ 1

2sn

ż π{2

r

cosn´1puq du, @r ě 0,

with sn “
şπ{2
0

cosn´1puq du (see e.g [Led01]), with equality if A is a spherical cap of measure 1{2. It
is not difficult to see that

cosnprq
n

ď
ż π{2

r

cosn´1puq du ď 1

sinprq
cosnprq
n

, @0 ă r ď π{2

and sn „
a

π
2n

, so that for any 0 ă a ă b ă π
2
,

c
cosn`1prq?

n
ď ψnprq ď c1

sinpaq cospbq
cosn`1prq?

n
, @r P ra, bs,

where c, c1 are constants independent of a, b and n. Thus for r P ra, bs the bound (53) is off only by a
factor of order 1{?

n from the optimal bound (56).
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4. Linearization of transport-Entropy inequalities

In this section, we show that the transport-entropy inequality (31) gives back the following sharp
Brascamp-Lieb type inequality due to Cordero-Erausquin and Rotem [CER].

Theorem 4.1. Assume that t ÞÑ vρptq “ ´ log ρpetq is convex and increasing. Then, for all f P
C8
c pRnq even and such that

ş
f dµρ “ 0,

(57)

ż
f2 dµρ ď 1

2

ż
H´1
ρ ∇f ¨ ∇f dµρ,

where the positive matrix Hρ is given by

1

2
Hρpyq “ 1

|y|
2

«˜
In ´ y b y

|y|
2

¸
v1
ρpsq ` y b y

|y|
2
v2
ρpsq

ff

where we set s “ 2 log|y|.

Remark 4.2. This result is exactly the one obtained in [CER, Theorem 3] for the probability µρ.

Namely, using the same notation as in [CER], if vρpsq “ wpes{2q, we find

2Hρpyq “ w1p|y|q
|y|

˜
2In ´ y b y

|y|
2

¸
` y b y

|y|
2
w2p|y|q,

which is easily seen to be the same matrix as the one appearing in [CER, Theorem 3]. As observed
in [CER], the Poincaré inequality (57) admits non-trivial equality cases, and is therefore sharp. Note
however that [CER, Theorem 3] is much stronger than Theorem 4.1 above since it shows that the
weighted Poincaré inequality (57) is satisfied not only by the model probability measure µρ but also by
any log-concave perturbation of µρ. This raises the question to know if (31) is also true for log-concave
perturbations of µρ.

Our proof, adapted from [CE17], relies on a well known linearization technique involving the
following Hopf-Lax operator

(58) RF pyq “ inf
xPRn

tF pxq ` ωρpx, yqu, y P R
n,

where we recall that the cost function ωρ is defined by

(59) ωρpx, yq “
#
log

´
ρpx¨yq2

ρp|x|2qρp|y|2q

¯
if x ¨ y ą 0

`8 otherwise
.

The following result collects some properties of the cost function ωρ and in particular relates the
matrix Hρ to the behaviour of ωρ near the diagonal.

Lemma 4.3. Assume ρ : R˚
` Ñ R

˚
` is nonincreasing, and that t ÞÑ ρpetq is log-concave. The cost

function ωρ defined in (59) then satisfies the following:

(1) ωρ ě 0.

If t ÞÑ ρpetq is furthermore assumed to be strictly log-concave, then

(2) if ρ is of class C3, then for every y ‰ 0, there exists a symmetric definite positive matrix Hρ

such that

ωρpy ` h, yq “ 1

2
Hρh ¨ h` op|h|2q

when h Ñ 0;
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(3) for every compact subset K and ρ ą 0, there exists a constant η ą 0 such that for all
x P K, y P R

n

|x´ y| ą δ ùñ ωρpx, yq ě η.

Remark 4.4. The log-concavity of t ÞÑ ρpetq is, in fact, equivalent to the nonnegativity of ωρ if ρ is
assumed nonincreasing.

Proof. First, note that by monotonicity, for any x, y P R
n,

ωρpx, yq ě log

˜
ρp|x||y|q2

ρp|x|2qρp|y|2q

¸
.

To prove point (1), it suffices to show that, for any s, t ą 0,

log

ˆ
ρpes{2et{2q2
ρpesqρpetq

˙
ě 0.

Rewriting this inequality in terms of vρptq “ ´ logpρpetqq, we find that it is equivalent to

vρ

ˆ
s` t

2

˙
ď 1

2
vρpsq ` 1

2
vρptq,

which in turn is equivalent to the convexity of vρ.

Item (2) is a direct consequence of the computation of the second derivative of ϕphq “ ωρpy, y`hq
or, in terms of the function vρ, ϕphq “ ´2vρplogpy ¨ py ` hqqq ` vρplogp|y|2qq ` vρplogp|y ` h|

2qq. We
find that

∇ϕp0q “ 0, ∇2ϕp0q “ 2

|y|
2

«˜
In ´ y b y

|y|
2

¸
v1
ρpsq ` y b y

|y|
2
v2
ρpsq

ff
— Hρ,

where we wrote |y|
2 “ es for brievety. Strict convexity implies monotonicity of vρ, so both matrices

appearing in the Hessian are nonnegative. Moreover, the second matrix is positive on the line spanned
by y, and the first matrix is positive on its orthogonal, thus their sum must be positive. For future
reference, we may rewrite Hρ in terms of ρ rather than vρ:

1

2
Hρ “ ´ρ1psq

ρpsq In `
ˆ
ρ12psq
ρ2psq ´ ρ2psq

ρpsq

˙
py b yq.

A Taylor expansion yields the formula of item (2).

The last point is an immediate (but useful enough to be stated) consequence of the strict convexity
of vρ. Notice that ωρpx, yq ą 0 whenever x ‰ y. This is true because the monotonicity and the
convexity of ρ are strict. The stated result is then simply the consequence of continuity, if x and y are
taken in some compact sets. However, we want a uniform estimate when y is any point in R

n, which
is a bit more than we can say with just continuity. Fix R ą 0. So far, we proved that the property is
true for all x, y such that |x| ă R and |y| ă 2R. If |y| ě 2R, then

ωρpx, yq ě log

˜
ρp|x||y|q2

ρp|x|2qρp|y|2q

¸

“ ´2vρ

ˆ
s ` t

2

˙
` vρpsq ` vρptq

if we once again write |x|
2 “ es and |y|

2 “ et. Since vρ is convex, v1
ρ is nondecreasing, and we find

that

ωρpx, yq ě ´2vρ

ˆ
logpR2q ` logp4R2q

2

˙
` vρplogpR2qq ` vρplogp4R2qq ą 0.

Combining this estimate at infinity with the local one we had due to continuity, we may conclude. �
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The next result establishes some Hamilton-Jacobi type (in)equation for Rpεfq as ε Ñ 0.

Lemma 4.5. Let f P C8
c pRnq, and assume that ρ is strictly decreasing, and that t ÞÑ ρpetq is log-

concave. Then

(60) Rpεfq ě εf ´ 1

2
ε2H´1

ρ ∇f ¨ ∇f ` opε2q,

when ε goes to 0, with

(61)
1

2
Hρ “ ´ρ1psq

ρpsq In `
ˆ
ρ12psq
ρ2psq ´ ρ2psq

ρpsq

˙
py b yq, s “ 2 log|y|.

Proof. As is usual when linearizing such semigroups, the key is to localize the infimum. Namely,
recalling (58),

Rpεfqpyq “ inf
xPRn

tεfpxq ` ωρpx, yqu,
if xε is a minimizer of this expression, we want to prove that |xε ´ y| goes to 0 uniformly in y as ε
goes to 0. Of course, we must also prove that such a xε exists.

We would like the result to be independent from the variable y. To that end, notice that since
f has compact support, we may restrict the study to y in a compact subset of Rn. Indeed, notice
that, in general Rpεfqpyq ď εfpyq. Assume more specificaly now that y P supppfqc. In that case,
Rpεfqpyq ď 0. Since ωρ ě 0, the infimum in the Hopf-Lax semigroup can only be reached for x “ y,
or for x P supppfq. In other words, whenever y P supppfqc,

Rpεfqpyq “ inf
xPRn

tεfpxq ` ωρpx, yqu “ minp0, inf
xPsupp f

tεfpxq ` ωρpx, yquq

Furthermore, according to the point iii. of Lemma 4.3, there exist ν ą 0 such that x P supppfq
and |x´ y| ą 1 implies that ωρpx, yq ą η. As such, if ε ă η{‖f‖8, dpy, supppfqq ą δ implies that
Rpεfqpyq “ 0.

We now restrict our study to some ball B that contains supppfq `Bp0, 1q. Assume that y P B. To
make the calculations a little bit clearer, we rewrite (58) as

Rpεfqpyq “ inf
hPRn

tεfpy ` hq ` ωρpy ` h, yqu,

The immediate estimate Rpεfq ď ε‖f‖8 means that to find the infimum, we may restrict h to be in
the set

th P R
n, εfpy ` hq ` ωρpy ` h, yq ď ε‖f‖8u Ă th P R

n, ωρpy ` h, yq ď 2ε‖f‖8u
Now, recall that for any y P B,

ωρpy ` h, yq “ 1

2
Hρh ¨ h ` op|h|2q,

where Hρ is a continuous (positive definite) function of y, and the remainder term is uniform in y.
This implies that there exists r, δ ą 0 such that |h| ă r implies

ωρpy ` h, yq ě δ|h|
2
.

Owing to point (3) of Lemma 4.3, there also exists η1 ą 0 such that if |h| ą r, then

ωρpy ` h, yq ě η1.

If 2ε‖f‖8 ă η1, then ωρpy ` h, yq ď 2ε‖f‖8 implies that |h| ă r, and thus

Rpεfqpyq “ inf
|h|ăr

tεfpy ` hq ` ωρpy ` h, yqu,

The fact that Bp0, rq is compact implies the existence of a minimizer hε,

Rpεfqpyq “ εfpy ` hεq ` ωρpy ` hε, yq.
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Since ωρpy ` h, yq ě η|h|
2
, we can already state that |hε| ď C

?
ε for some constant C independent

from y, but we can do better. The functionf is Lipschitz for some constant L ą 0. Then,

εfpyq ´ εL|hε| ` δ|hε|
2 ď Rpεfqpyq ď εfpyq,

and thus |hε| ď C 1ε for C 1 “ L{δ ą 0, which we emphasize is independent from y.

Now that the minimizer hε is localized, the rest follows naturally.

Rpεfqpyq “ εfpy ` hεq ` ωρpy ` hε, yq

“ εfpyq ` ε∇fpyq ¨ hε ` 1

2
Hρhε ¨ hε ` opε2q

ě εfpyq ´ 1

2
ε2H´1

ρ ∇fpyq ¨ ∇fpyq ` opε2q,

since Hρz ¨ z ě 0, where z “ hε ` εH´1
ρ ∇fpyq. �

We are now in position to prove Theorem 4.1. Let us underline that in order to retrieve the sharp
constant in the final inequality, one needs to consider a two sided linearization involving Tωρ

pp1 ´
εfqµρ, p1 ` εfqµρq, rather than Tωρ

pp1 ` εfqµρ, µρq.

Proof of Theorem 4.1. Choose f P C8
c pRnq such that its integral against µρ is 0, and consider, for

ε ą 0, ν1 “ p1 ` εfqµρ and ν2 “ p1 ´ εfqµρ. Linearizing the entropy is straightforward: since
p1 ` εq lnp1 ` εq “ ε2{2 ` opε2q, the right-hand side of inequality (31) is equal to

Hpp1 ` εfqµρ|µρq `Hpp1 ´ εfqµρ|µρq “ ε2
ż
f2 dµρ ` opε2q.

For the left hand side, note that since Rpεfqpyq ´ εfpxq ď ωρpx, yq,

Tωρ
pν1, ν2q ě

ż
Rpεfq dν1 ´

ż
εf dν2

“
ż
Rpεfqp1 ` εfq dµρ ´

ż
εfp1 ´ εfq dµρ

Lemma 4.5 applies, and assuming that ε is sufficiently small, the remainder term is uniform and zero
outside of a compact. We may integrate it to find

Tωρ
pν1, ν2q ě

ż ˆ
εf ´ ε2

2
H´1
ρ ∇f ¨ ∇f

˙
p1 ` εfq dµρ ´

ż
εfp1 ´ εfq dµρ ` opε2q

“ ε2
ˆ

´1

2

ż
H´1
ρ ∇f ¨ ∇f dµρ ` 2

ż
f2 dµρ ` op1q

˙

Combine these two observations to find that, after dividing by ε2, letting it go to 0 leads to the
claimed Poincaré inequality. �

5. Transport-entropy form of reverse Blaschke-Santaló inequality on the sphere

The aim of this section is to draw connections between inverse Blaschke-Santaló inequalities and
cone measures, in the spirit of [Goz22, FGZ23].
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5.1. A short reminder about cone measures. Let us first recall the definition of a cone measure.

Definition 5.1 (Cone measures). Let C Ă R
n`1 be a centrally symmetric convex body of volume

1. The cone measure νC of C is the pushforward of the uniform probability measure on C under the
map

C Ñ S
n : x ÞÑ NC pρCpxqxq ,

with NC : BC Ñ S
n the Gauss map and ρC the radial function of C.

A characterization of cones measures has been obtained by Böröczky, Lutwak, Yang and Zhang in
[BLYZ13]. It is shown there that a symmetric probability measure ν on S

n is the cone measure of
some centrally symmetric convex body if and only if it satisfies the so-called subspace concentration
condition, which reads as follows: for every subspace F Ă R

n`1 of dimension 1 ď k ď n, it holds

(62) νpSn X F q ď k

n` 1

and moreover, if there is equality in (62) for some subspace F , then there is another subspace G such
that F XG “ t0u and dimpGq “ n ` 1 ´ k such that

νpSn XGq “ n ` 1 ´ k

n` 1

(and so, in particular, νpSn X pF Y Gq “ 1q). Note in particular, that any probability measure such
that νpSnXF q “ 0 for any hyperplan F satisfies the subspace concentration condition and is therefore
the cone measure of some centrally symmetric convex body.

Denote by ConvspRn`1q the set of all centrally symmetric convex bodies of R
n`1. In order to

construct a convex body C such that ν “ νC , the strategy of proof of [BLYZ13] relies on minimizing
the following functional:

ΦνpCq “
ż
log hC dν

over tC P ConvspRn`1q : |C| “ 1u. According to Theorem 6.3 of [BLYZ13], if ν satisfies the strict
subspace concentration inequality, that is if for all subspace F of dimension 1 ď k ď n the inequality
in (62) is strict, then there is some Co P ConvspRn`1q, with |Co| “ 1 such that

inf
CPConvspRn`1q:|C|“1

ΦνpCq “ ΦνpCoq

and moreover ν “ νCo
.

Recall that PspSnq denotes the set of symmetric probability measures on the n-dimensional sphere
S
n Ă R

n`1. In what follows, for all ν P PspSnq, we will set

Kpνq “ inf
CPConvspRn`1q

tΦνpCqu.

It turns out that the functional K can be related to those considered in Section 3. For any ν P PspSnq,
consider the functional Fν defined by

Fνpηq “ 1

n` 1
Hpη|σq ´ Tαpν, ηq,

where Tα is the transport cost introduced in Section 3.3. The quantity Fνpηq always makes sense in
R Y t´8u whenever η belongs to

P˚
s pSnq :“ tη P PspSnq : Hpη|σq ă `8u.

Lemma 5.2. Let ν P PspSnq;
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(a) It holds

Kpνq “ inf
ηPP˚

s pSnq
Fνpηq ´ log |Bn`1

2 |
n` 1

,

where |Bn`1
2 | denotes the Lebesgue measure of the unit ball Bn`1

2 Ă R
n`1.

(b) Moreover, if Kpνq is finite and Φν attains its infimum at some Co P ConvspRn`1q, with
|Co| “ 1, then ν is the cone measure of Co (ν “ νCo

) and Fν attains its infimum at

dηCo
“ |Bn`1

2 |ρn`1
Co

dσ.

A proof of this lemma can be found in [Kol20], but we include a proof for the sake of completeness.

Proof. (a) Note that

(63) Kpνq “ inf
CPConvspRn`1q

"ż
log hC dν ´ log

ş
ρn`1
C dσ

n ` 1

*
´ log |Bn`1

2 |
n` 1

.

This follows from the fact that if C P ConvspRn`1q, then
ż
ρn`1
C dσ “ |C|

|Bn`1
2 |

and from the identity hλC “ λhC . According to a classical duality formula relating Log-Laplace and
relative entropy functionals, for any bounded measurable f : Sn Ñ R,

log

ż
ef dσ “ sup

ηPPspSnq

"ż
ef dη ´Hpη|σq

*
,

with, as a convention Hpη|σq “ `8 whenever η is not absolutely continuous with respect to σ. Thus,
applying this formula to f “ log ρn`1

C , one gets

Kpνq “ inf
CPConvspRn`1q

inf
ηPPspSnq

"ż
log hC dν ´

ż
log ρC dη ` Hpη|σq

n` 1

*

“ inf
ηPPspSnq

inf
CPConvspRn`1q

"ż
log hC dν ´

ż
log ρC dη ` Hpη|σq

n` 1

*

“ inf
ηPPspSnq

"
1

n ` 1
Hpη|σq ´ Tαpν, ηq

*
,

where the last equality comes from Lemma 3.10.

(b) Now let us examine equality cases. Suppose that Kpνq is finite and Φν attains its minimal
value at Co P ConvspRn`1q, with |Co| “ 1. The fact that ν is the cone measure of Co is given by
Lemma 4.1 of [BLYZ13]. Define ηCo

as in the statement; since Co is of volume 1, ηCo
is a probability

measure. Applying Lemma 3.10, one gets

Kpνq “
ż
log hCo

dν ´
log

ş
ρn`1
Co

dσ

n` 1
´ log |Bn`1

2 |
n` 1

“ ´
„

´
ż
log hCo

dν `
ż
log ρCo

dηCo


` HpηCo

|σq
n` 1

´ log |Bn`1
2 |

n` 1

ě FνpηCo
q ´ log |Bn`1

2 |
n ` 1

ě Kpνq,

and, so all inequalities above are equalities. �
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5.2. From reverse Blaschke-Santaló inequalities to log-Sobolev type inequalities on the
sphere. Theorem 3.7, which is a direct consequence of Blaschke-Santaló inequality, can obviously be
restated in terms of a lower bound for the functional K: for all ν P PspSnq,

Kpνq ě ´ 1

n` 1
Hpν|σq ´ log |Bn`1

2 |
n` 1

.

This shows in particular that, if ν P P˚
s pSnq, the functional Fν takes finite values. The aim of what

follows is now to derive upper bounds on K from inverse Blaschke-Santaló inequalities. For all k ě 1,
recall the notation

cSk “ inf
ConvspRkq

|C||C˝|,

given in the Introduction. A celebrated conjecture due to Mahler [Mah39b, Mah39a], states that the
infimum above is attained for C “ r´1, 1sk or equivalently that cSk “ 4k{pk!q. According to a result
by Bourgain and Milman [BM87], this conjecture is known to be true up to a geometric sequence.
More precisely, there exists some a ą 0 such that, for all k ě 1, cSk ě ak{pk!q. The following result
connects the constant cSk and the functional K introduced above.

Proposition 5.3. For any ν1, ν2 P PspSnq, it holds

(64) Kpν1q `Kpν2q ď ´ log
`
cSn`1

˘

n` 1
´ Tαpν1, ν2q

Remark 5.4. Note that this inequality compares two quantities in RYt´8u. It entails in particular the
following non obvious fact: if ν1 and ν2 satisfy the strict subspace concentration inequality introduced
above, then, according to [BLYZ13, Theorem 6.3], Kpν1q ą ´8 and Kpν2q ą ´8, and so Tαpν1, ν2q ă
`8.

Proof. Using polar coordinates (as in the proof of Theorem 3.7), one sees that

|C| “ |Bn`1
2 |

ż

Sn

ρn`1
C puq dσpuq

and

|C˝| “ |Bn`1
2 |

ż

Sn

ρn`1
C˝ puq dσpuq

hold for all C P ConvspRn`1q. Plugging these expressions in

|C||C˝| ě cSn`1

yields

´ 1

n` 1
log

ż

Sn

ρn`1
C puq dσpuq ´ 1

n` 1
log

ż

Sn

ρn`1
C˝ puq dσpuq ´ 2 log |Bn`1

2 |
n ` 1

ď ´ log
`
cSn`1

˘

n ` 1
.

So, if ν1, ν2 P PspSnq, one gets thanks to (63)

Kpν1q `Kpν2q ď
ż
log hCpuq dν1puq ´ 1

n` 1
log

ż
ρn`1
C puq dσpuq ´ log |Bn`1

2 |
n ` 1

`
ż
log hC˝puq dν2puq ´ 1

n` 1
log

ż
ρn`1
C˝ puq dσpuq ´ log |Bn`1

2 |
n ` 1

ď ´ log
`
cSn`1

˘

n ` 1
`

ż
log hCpuq dν1puq ´

ż
log ρCpuq dν2puq.

Optimizing over C P ConvspRn`1q and using Lemma 3.10 completes the proof. �

The following log-Sobolev type inequality can be deduced from Proposition 5.3.
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Theorem 5.5. Let ν1, ν2 P PspSnq satisfy the strict subspace concentration inequality; if η1 “
e´V1σ, η2 “ e´V2σ are minimizers of Fν1 and Fν2 , then it holds

Hpη1|σq `Hpη2|σq ` pn` 1qTαpν1, ν2q

ď dn`1 ` n` 1

2

ż
log

ˆ
1 ` |∇SnV1|2

pn` 1q2
˙
e´V1 dσ ` n` 1

2

ż
log

ˆ
1 ` |∇SnV2|2

pn ` 1q2
˙
e´V2 dσ,(65)

with dn`1 “ log
´

|Bn`1

2
|2

cS
n`1

¯
.

Remark 5.6.

‚ With the notation of Lemma 5.2, there exist C1, C2 P ConvspRn`1q with unit volume such
that, for i “ 1, 2, ηi “ ηCi

and Vi “ ´pn` 1q log ρCi
´ log |Bn`1

2 |. In particular, the functions
Vi are differentiable almost everywhere on S

n.
‚ It is well known that the uniform probability measure σ on S

n satisfies the following log-
Sobolev inequality: for all dη “ e´V dσ with a smooth potential V : Sn Ñ R,

(66) Hpη|σq ď 1

2n

ż
|∇SnV |2e´V dσ.

The constant n in (66) is sharp (and corresponds to the spectral gap of the Laplace operator).
In particular, if η1, η2 P PpSnq have smooth densities of the form e´Vi , i “ 1, 2, then

(67) Hpη1|σq `Hpη2|σq ď 1

2n

ż
|∇SnV1|2e´V1 dσ ` 1

2n

ż
|∇SnV2|2e´V2 dσ.

Using the inequality logp1` xq ď x, x ą ´1, one immediately sees that (65) improves (67) in
the case where η1, η2 are minimizers of Fν1 , Fν2 with pn ` 1qTαpν1, ν2q ě dn`1.

‚ We do not know if the inequality

Hpη|σq ď n` 1

2

ż
log

ˆ
1 ` |∇SnV |2

pn` 1q2
˙
e´V dσ

is true for say symmetric probability measures dη “ e´V dσ with a smooth potential V : Sn Ñ
R (and constant n instead of n ` 1 without the evenness assumption). Since S

n satisfies the
curvature-dimension criterion CDpn´ 1, nq, the inequality

(68) Hpη|σq ď n

2
log

ˆ
1 ` 1

pn ´ 1qn

ż
|∇SnV |2e´V dσ

˙

holds true for all probability measures η (see [BGL14]). In [DEKL14, Theorem1.1], one can
also find the following variant of (68)

Hpη|σq ď 4

γ˚
1

log

ˆ
1 ` γ˚

1

8n

ż
|∇SnV |2e´V dσ

˙

with γ˚
1 “ 4n´1

pn`1q2 . Note that, contrary to (68), this inequality gives back (66) with the sharp

constant 2n.

We will need the following elementary result.

Lemma 5.7. Suppose C is a centrally symmetric convex body of volume 1 containing 0 and let
νC be its cone measure. Then the map T : S

n Ñ S
n : u ÞÑ NCpρCpuquq transports dηCpxq “

|Bn`1
2 |ρn`1

C pxq dσpxq onto νC and is optimal for Tα. Moreover

TαpηC , νCq “
ż

Sn

log

ˆ |∇Rn`1ρCpuq|
ρCpuq

˙
dηCpuq.
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Proof. By definition of νC , for any f bounded measurable function f on S
n, using polar coordinates

yields
ż

Sn

fpyq dνCpyq “
ż

C

fpT pxqq dx “ |Bn`1
2 |

ż `8

0

ż

Sn

fpT puqq1trďρCpuqupn ` 1qrn drdσpuq

“
ż

Sn

fpT puqq dηCpuq,

and so νC is the pushforward of ηC under the map T . Let us show that T is optimal for the transport
cost Tα. Indeed, using the inequality

(69) ´ log x ¨ y ě log ρCpxq ´ log hCpyq, @x, y P S
n,

one gets

TαpηC , νCq ě
ż
log ρCpxq dηCpxq ´

ż
log hCpyq dνCpyq

“
ż
log

ρCpxq
hCpNCpxρCpxqqq dηCpxq

“
ż
log

1

x ¨ NCpxρCpxqqq dηCpxq

ě TαpηC , νCq,
where we used that for any u P NCpzq

hCpuq “ z ¨ u, @z P BC
and that for ηC almost all x, NCpxρCpxqq contains a single point. Therefore,

(70) TαpηC , νCq “
ż
αpx, T pxqq dηC pxq “

ż
log ρCpxq dηC pxq ´

ż
log hCpyq dνCpyq.

For ηC almost all x P S
n, it thus holds

hCpT pxqq “ ρCpxqx ¨ T pxq
and so, using that h´1

C “ ρC˝ and ρ´1
C “ hC˝ , one gets

hC˝pxq “ x ¨ ρC˝pT pxqqT pxq.
So, for ηC almost all x, the vector ρC˝ pT pxqqT pxq is a subgradient of hC˝ at x. The set where hC˝ is
differentiable being of ηC measure 1, one gets that

∇Rn`1hC˝pxq “ ρC˝pT pxqqT pxq,
for ηC almost all x P S

n. Since |T pxq| “ 1, one gets ρC˝ pT pxqq “ |∇Rn`1hC˝ pxq| and so x ¨ T pxq “
hC˝ pxq

|∇
Rn`1hC˝ pxq| . Using again that hC˝ “ 1{ρC , one gets finally x ¨ T pxq “ ρCpxq

|∇
Rn`1ρCpxq| , which completes

the proof. �

We are now ready to prove Theorem 5.5.

Proof of Theorem 5.5. Let ν1, ν2 P PspSnq satisfy the strict subspace concentration inequality, and
let η1, η2 be minimizers of Fν1 , Fν2 , which exist according to Theorem 6.3 of [BLYZ13]. According to
Proposition 5.3, it holds

Hpη1|σq `Hpη2|σq ` pn` 1qTαpν1, ν2q ď dn`1 ` pn ` 1qTαpη1, ν1q ` pn` 1qTαpη2, ν2q.
Now, according to Lemma 5.7, one gets

pn ` 1qTαpηi, νiq “ pn` 1q
ż

Sn

log

ˆ |∇Rn`1ρipuq|
ρipuq

˙
dηipuq,
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where ηi “ |Bn`1
2 |ρn`1

i dσ and ρi is the radial function of some unit volume Ci P ConvspRn`1q.
Letting Vi “ ´ log |Bn`1

2 | ´ pn ` 1q log ρi, we see that, for all x P S
n at which ρi is differentiable,

∇
Rn`1ρi
ρi

pxq “ ´ 1
n`1

∇Rn`1Vipxq, and by projection on xK

∇Snρi

ρi
pxq “ ´ 1

n` 1
∇SnVipxq.

Since ρi is ´1 homogeneous, one gets

∇Rn`1ρipxq “ ∇Snρipxq ` p∇ρipxq ¨ xqx “ ∇Snρipxq ´ ρipxqx
and so

|∇Rn`1ρi|pxq
ρipxq “

d
|∇Snρi|2

ρ2i
pxq ` 1 “

d
|∇SnVi|2pxq

pn ` 1q2 ` 1,

at all point x P S
n where ρi is differentiable. This set of points being of full measure, this completes

the proof. �

5.3. Remarks on the log-Minkowski conjecture. The following log-Minkowski inequality has
been conjectured in [BLYZ12] (in relation to an equivalent log-Brunn-Minkowski inequality).

Conjecture 5.8 (log-Minkowski inequality). For all C,D P ConvspRn`1q with unit volume, it holds
ż
log

ˆ
hD

hC

˙
dνC ě 0,

where νC is the cone measure of C.

This conjectured inequality is known to be true in dimension 2 [BLYZ12], or when C and D have
a lot of symmetries [Sar15, BK22].

Note that Conjecture 5.8 is equivalent to the following property: if C P ConvspRn`1q has unit
volume, then C minimizes ΦνC , or equivalently (using Lemma 5.2), ηCpdxq “ |Bn`1

2 |ρn`1
C pxqσpdxq

minimizes FνC . This remark, immediately leads to the following version of Theorem 5.5:

Theorem 5.9. If Conjecture 5.8 holds true in R
n`1, then for all C1, C2 P ConvspRn`1q with unit

volume, it holds

HpηC1
|σq `HpηC2

|σq ` pn ` 1qTαpνC1
, νC2

q

ď dn`1 ` n` 1

2

ż
log

ˆ
1 ` |∇SnV1|2

pn` 1q2
˙
e´V1 dσ ` n` 1

2

ż
log

ˆ
1 ` |∇SnV2|2

pn ` 1q2
˙
e´V2 dσ,(71)

where, for i “ 1, 2, dηCi
“ |Bn`1

2 |ρn`1
Ci

dσ :“ e´Vi dσ and dn`1 “ log
´

|Bn`1

2
|2

cSn`1

¯
.

Proof. It suffices to apply Theorem 5.5 to ν1 “ νC1
and ν2 “ νC2

and to use the fact, explained above,
that ηC1

, ηC2
are minimizers of Fν1 and Fν2 . �

One can take advantage of the fact that both Mahler and log-Minkowski conjectures (5.8) hold
true when C,D are unconditional to get the following result.

Theorem 5.10. For all unconditional convex bodies C1, C2 Ă R
n`1 with unit volume, it holds

HpηC1
|σq `HpηC2

|σq ` pn` 1qTαpνC1
, νC2

q(72)

ď en`1 ` n ` 1

2

ż
log

ˆ
1 ` |∇SnV1|2

pn` 1q2
˙
e´V1 dσ ` n` 1

2

ż
log

ˆ
1 ` |∇SnV2|2

pn` 1q2
˙
e´V2 dσ,

where, for i “ 1, 2, dηCi
“ |Bn`1

2 |ρn`1
Ci

dσ :“ e´Vi dσ and en`1 “ log
´

pn`1q!|Bn`1

2
|2

4n`1

¯
.



TRANSPORT-ENTROPY FORMS OF DIRECT AND CONVERSE BLASCHKE-SANTALÓ INEQUALITIES 43

Remark 5.11. Using that |Bk2 | “ πk{2

Γp k
2

`1q one sees that en`1 „ pn ` 1q log
`
π
2

˘
, as n Ñ 8. The

sharpness of the Log-Sobolev type inequality of Theorem 5.10 is discussed in Remark 5.14 below.

Proof. For any ν P PspSnq, define

K̃pνq “ inftΦνpCqu,
where the infimum runs over the set of unconditional convex bodies C Ă R

n`1 of volume 1. Since the
inequality

|C||C˝| ě 4n`1

pn` 1q!
holds true for all unconditional convex body C Ă R

n`1, repeating the proof of Proposition 5.3 leads
to

(73) pn` 1qK̃pν1q ` pn` 1qK̃pν2q ď en`1 ´ pn ` 1qTαpν1, ν2q,
for all ν1, ν2 P PspSnq. According to [Sar15, Corollary 1.3], Conjecture 5.8 holds true whenever C,D

are unconditional. Therefore, for any unconditional convex body C Ă R
n`1, it holds K̃pνCq “ ΦνC pCq.

Moreover,

ΦνC pCq “ ´
„

´
ż
log hC dν `

ż
log ρC dηC


` HpηC |σq

n` 1
´ log |Bn`1

2 |
n ` 1

“ ´TαpνC , ηCq ` HpηC |σq
n` 1

´ log |Bn`1
2 |

n` 1
.

Applying (73) with, for i “ 1, 2, νi “ νCi
and Ci unconditional of volume 1 yields

HpηC1
|σq `HpηC2

|σq ` pn ` 1qTαpνC1
, νC2

q ď en`1 ` pn` 1qTαpνC1
, ηC1

q ` pn ` 1qTαpνC2
, ηC2

q.
The proof is then completed exactly as the one of Theorem 5.5. �

Remark 5.12. The equality K̃pνq “ Kpνq for all unconditional probability measure ν would have
enabled us to shorten the preceding proof, but we do not know how to prove it.

It turns out that the log-Sobolev type inequalities obtained in Theorems 5.9 and 5.10 imply back
a reverse Blaschke-Santaló inequality.

Theorem 5.13.

(a) If, for some constant d ą 0, the inequality

HpηC1
|σq `HpηC2

|σq ` pn ` 1qTαpνC1
, νC2

q

ď d` n ` 1

2

ż
log

ˆ
1 ` |∇SnV1|2

pn` 1q2
˙
e´V1 dσ ` n` 1

2

ż
log

ˆ
1 ` |∇SnV2|2

pn` 1q2
˙
e´V2 dσ,(74)

holds true for all C1, C2 P ConvspRn`1q with unit volume, then the following inequality holds
true: for all C P ConvspRn`1q,

(75) |C||C˝| ě c exp

ˆ
pn ` 1qTαpνC1

, νC2
q `

ż
log hn`1

C1
dνC1

´
ż
log ρn`1

C1
dνC2

˙
,

where c “ e´d|Bn`1
2 |2 and νC1

and νC2
are the cone probability measures of C1 “ 1

|C|1{pn`1qC

and C2 “ 1
|C˝|1{pn`1qC

˝.

(b) If C P ConvspRn`1q is unconditional, then (75) holds without restriction with the constant

c “ 4n`1

pn`1q! .
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Proof. Inequality (74) reads,

pn ` 1qTαpηC1
, νC1

q ´ HpηC1
|σq ` pn ` 1qTαpηC2

, νC2
q ´ HpηC2

|σq ě TαpνC1
, νC2

q ´ d,

for all C1, C2 P ConvspRn`1q with unit volume. Let us apply this inequality to C1 “ 1
|C|1{pn`1qC and

C2 “ 1
|C˝|1{pn`1qC

˝, where C is some centrally symmetric convex body. Using (70), one gets that

pn ` 1qTαpηC1
, νC1

q ´HpηC1
|σq “ ´

ż
log hn`1

C dν ` log |C| ´ log |Bn`1
2 |

and

pn ` 1qTαpηC2
, νC2

q ´HpηC2
|σq “ ´

ż
log hn`1

C˝ dν ` log |C˝| ´ log |Bn`1
2 |.

Since ´d “ log c ´ 2 log |Bn`1
2 |, the proof of paq is complete.

According to Theorem 5.10, in the unconditional case, (74) is true with the constant d “ en`1 “
log

´
pn`1q!|Bn`1

2
|2

4n`1

¯
. Thus repeating the preceding arguments, we see that (75) holds for all uncondi-

tional bodies C with the constant c “ 4n`1

pn`1q! , which proves pbq. �

Remark 5.14.

‚ Assuming the Log-Minkowski conjecture holds true in R
n`1, it follows from Theorems 5.9 and

5.13 (Item paq) that (75) holds with the constant c “ cSn`1. According to Lemma 3.10, the
exponential factor in the right-hand side of (75) is greater than or equal to 1. Note that this
term can be strictly greater than 1, because there is no reason in general that the function
´ loghC1

is a dual optimizer for the transport between νC1
and νC2

.
‚ If C1 “ c1B

n`1
8 and C2 “ c2B

n`1
1 where c1, c2 are positive constants ensuring the bodies have

volume 1, then there is equality in (73). Indeed, C “ Bn`1
8 is such that |Bn`1

8 ||pBn`1
8 q˝| “

4n`1

pn`1q! and so Inequality (75) (with c “ 4n`1

pn`1q!) implies that

(76) TαpνC1
, νC2

q `
ż
log hn`1

C1
dνC1

´
ż
log ρn`1

C1
dνC2

“ 0.

Plugging this relation in the proof above, one gets equality in (73). This shows that the
conclusion of Theorem 5.10 cannot be improved in general.

‚ A similar reasoning shows that more generally all couples pC1, C2q with C1 “ 1
|C|1{pn`1qC,

C2 “ 1
|C˝|1{pn`1qC

˝ with C being a Hanner polytope are such that (76) holds (and are equality

cases in (73)). Characterizing the class of convex bodies pC1, C2q for which (76) holds is a
challenging question that will be considered elsewhere.

Putting together the conclusions of Theorems 5.9 and 5.13 (Item paq) finally yields the following
result.

Theorem 5.15. If Conjecture 5.8 holds true in R
n`1, then the constant cSn`1 is the best constant

c ą 0 (that is the greatest) in the inequality

HpηC1
|σq `HpηC2

|σq ` pn ` 1qTαpνC1
, νC2

q

ď log

ˆ |Bn`1
2 |2
c

˙
` n` 1

2

ż
log

ˆ
1 ` |∇SnV1|2

pn` 1q2
˙
e´V1 dσ ` n` 1

2

ż
log

ˆ
1 ` |∇SnV2|2

pn ` 1q2
˙
e´V2 dσ,

where C1, C2 Ă R
n`1 are arbitrary centrally symmetric convex bodies with unit volume and, for

i “ 1, 2, dηCi
“ |Bn`1

2 |ρn`1
Ci

dσ :“ e´Vi dσ and νCi
is the cone measure of Ci.
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