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This paper deals with the numerical modeling of immiscible three-phase flows. The main focus here is on the numerical treatment of the source terms of the model. A new scheme based on a more coupled approach than the preexisting fractional step strategy is presented. Properties of this scheme are given. Numerical applications highlight the benefits of this scheme in terms of both accuracy and stability.

Introduction

Some recent computations of immiscible three-phase flow models have highlighted some weaknesses of existing numerical schemes, for instance when representing vapor explosion [START_REF] Boukili | Simulation and preliminary validation of a three-phase flow model with energy[END_REF], and thus have urged the building of robust implicit schemes. This has also motivated to investigate the behavior of solutions of rather complex sets of PDEs, such as those arising in [START_REF] Hérard | A three-phase flow model[END_REF], which are used in [START_REF] Boukili | Simulation and preliminary validation of a three-phase flow model with energy[END_REF]. Moreover, it is widely admitted by the scientific community that the hyperbolic models at stake here contain inner relaxation processes that guarantee the return-to-equilibrium. The purpose of the current work precisely consists in better understanding the associated (at least expected) relaxation process first, and then taking advantage of the latter in order to stabilize approximate solutions obtained with help of rather classical Finite Volume procedures. In the sequel, we will focus on the model [START_REF] Hérard | A three-phase flow model[END_REF], and propose a two-step numerical strategy. This strategy accounts for the expected inner relaxation process in an suitable implicit way, and also uses an explicit Riemann-type solver in order to cope with convective effects.

First, the model presented in [START_REF] Hérard | A three-phase flow model[END_REF] is recalled as well as its main properties. We emphasize that the strategy that has been used to derive model [START_REF] Hérard | A three-phase flow model[END_REF] is similar to the one that has been used in [START_REF] Coquel | Closure laws for a two-fluid two-pressure model[END_REF], in the two-phase flow framework. This guarantees a meaningful definition of non-conservative products for these models. Then, the new numerical strategy to compute approximate solutions of [START_REF] Hérard | A three-phase flow model[END_REF] is presented. Eventually, numerical cases depict the effectiveness of the new method. This paper is the sequel of a work that is dedicated to two-phase flow models [START_REF] Herard | Two approaches to compute unsteady compressible twophase flow models with stiff relaxation terms[END_REF].

2 The immiscible three-phase flow model [START_REF] Hérard | A three-phase flow model[END_REF] The system of PDEs governing the time-space evolution of the variables is:

                         ∂α k ∂t + V I (W ) • ∇α k = S α k (W ) , ∂m k ∂t + ∇ • (m k U k ) = S m k (W ) , ∂m k U k ∂t + ∇ • (m k U k ⊗ U k + α k P k I) + 3 l=1,l̸ =k Π kl (W )∇α l = S U k (W ) , ∂α k E k ∂t + ∇ • (α k E k U k + α k P k U k ) - 3 l=1,l̸ =k Π kl (W ) ∂α l ∂t = S E k (W ) , (1) 
where ∀k ∈ 1, 3 , α k ∈]0, 1[ denote the statistical fractions which satisfy :

α 1 + α 2 + α 3 = 1 . (2) 
ρ k stand for the densities, m k = α k ρ k are the partial densities, U k the velocities, P k the pressures and E k the total energies which read

E k = ρ k (ϵ k + U 2 k /2
). The specific internal energies ϵ k are obtained through an Equation Of State (EOS): ϵ k = ϵ k (ρ k , P k ), and I stands for the identity. The velocity V I (W ) is chosen as :

V I = U 1 , (3) 
see [START_REF] Hérard | A three-phase flow model[END_REF], which leads to the following unique interfacial pressure definition, owing to the entropy inequality (see Appendix G of [START_REF] Hérard | A three-phase flow model[END_REF]):

Π 12 = Π 21 = Π 23 = P 2 , Π 13 = Π 31 = Π 32 = P 3 . (4) 
The state variable W ∈ R 11 is defined as:

W = (α 2 , α 3 , m 1 , m 1 U 1 , α 1 E 1 , m 2 , m 2 U 2 , α 2 E 2 , m 3 , m 3 U 3 , α 3 E 3 ) ⊺ . (5) 
In this work, the phase transitions are neglected, hence:

∀k ∈ 1, 3 , l ̸ = k S m k (W ) = 0 . (6) 
In order to close the source terms, the total entropy η(W ) paired with its entropyflux F η (W ), the temperature T k and the celerity c k are introduced:

η = m 1 s 1 (P 1 , ρ 1 ) + m 2 s 2 (P 2 , ρ 2 ) + m 3 s 3 (P 3 , ρ 3 ) , F η = m 1 U 1 s 1 (P 1 , ρ 1 ) + m 2 U 2 s 2 (P 2 , ρ 2 ) + m 3 U 3 s 3 (P 3 , ρ 3 ) . ( 7 
) 1 T k = ∂ P k (s k (P k , ρ k ))| ρ k ∂ P k (ϵ k (P k , ρ k ))| ρ k and c 2 k ∂ P k (s k (P k , ρ k ))| ρ k + ∂ ρ k (s k (P k , ρ k ))| P k = 0.
Functions s k denote specific entropies. Source terms are written, ∀k ∈ 1, 3 , as:

S α k = 3 l=1,l̸ =k K kl (W )(P k -P l ) ; S U k = 3 l=1,l̸ =k d kl (W )(U l -U k ) ; S E k = 3 l=1,l̸ =k q kl (W )(T l -T k ) + 3 l=1,l̸ =k d kl V kl (U l -U k ) , (8) 
(see [START_REF] Hérard | A three-phase flow model[END_REF][START_REF] Boukili | Simulation and preliminary validation of a three-phase flow model with energy[END_REF]), with the positive parameters

d kl (W ) = m k m l /(M τ U kl (W )), K kl (W ) = α k α l /(Π 0 τ P kl (W )) and q kl (W ) = m k m l C v k C v l /(τ T kl (W )(mC v ) kl ). Quantities C V k denote the specific heat capacities. V kl are phasic mean velocities: V kl = (U k + U l )/2. Π 0 is a positive pressure of reference, M = m 1 + m 2 + m 3 and (mC v ) kl = m k C v k + m l C v l .
For each phasic connection k -l, τ P kl (W ), τ T kl (W ) and τ U kl (W ) are the positive relaxation time scales related to the return to equilibrium of the associated thermodynamic quantity. Closure laws for the relaxation time scales can be found in the literature, see [START_REF] Gavrilyuk | The structure of pressure relaxation terms: the one-velocity case[END_REF] for the pressure or [START_REF] Ishii | Thermo-fluid dynamic theory of two-phase flow[END_REF] for the velocity and temperature. Model (1) with closures (3), ( 4), ( 6) and ( 8) is such that:

Property 1: (three-phase flow model in a 1D framework) If ∀k ∈ 1, 3 , α k stay in ]0, 1[ and ∥U k -U 1 ∥ ̸ = c k , then:
-The convective part of the model is hyperbolic and the associated eigenvalues are:

λ 1,2,3 (W ) = U 1 ; λ 4 (W ) = U 2 ; λ 5 (W ) = U 3 ; λ 6,7 (W ) = U 1 ± c 1 ; λ 8,9 (W ) = U 2 ± c 2 ; λ 10,11 (W ) = U 3 ± c 3 . (9) 
-Fields associated with λ k (k = 6 -11) are GNL. Other fields are LD.

-Smooth solutions of the model comply with an entropy inequality:

∂ t (η(W )) + ∇ • F η (W ) ≤ 0 . (10) 
-The model is symmetrizable.

Proof. The first three items can be found in [START_REF] Hérard | A three-phase flow model[END_REF] and the latter is detailed in [START_REF] Hérard | A class of three-phase flow models with energy[END_REF].

Numerical scheme

The overall scheme is quite similar to the one detailed in [START_REF] Boukili | Simulation and preliminary validation of a three-phase flow model with energy[END_REF]. It is a Finite Volume scheme for unstructured meshes. It consists of two main steps:

-I: First, compute explicitly a solution between t n ∆t --→ t * of the convective subsystem:

A(W )∂ t (W ) + ∇ • F (W ) + C(W )∇ • W = 0 , (11) 
using a Rusanov scheme [START_REF] Rusanov | The calculation of the interaction of non-stationary shock waves and obstacles[END_REF] adapted for non-conservative products. Equation (11) exactly corresponds to system (1), while setting all source terms to zero. -II: Then, compute an approximate solution of the ODE:

A(W )∂ t (W ) = S(W ) , (12) 
between t * ∆t --→ t n+1 . Equation (12) corresponds to system (1), when all spatial derivatives are set to zero. This step is solved with an implicit scheme.

The discretization of the time derivative is done with a first-order Euler scheme. The time step ∆t is determined by the Courant-Friedrich-Levy (CFL) condition of the first step. Details of the convective step are given in [START_REF] Boukili | Simulation and preliminary validation of a three-phase flow model with energy[END_REF]. An extension of the scheme proposed in [START_REF] Saleh | A relaxation scheme for a hyperbolic multiphase flow model -Part I: Barotropic EOS[END_REF] for a barotropic three-phase flow model to the current three-phase flow model (which includes energy equations) would be useful. This would give higher accuracy than the scheme used in the present work. This strategy has already been used in the case of a two-phase flow model in [START_REF] Coquel | A positive and entropy-satisfying finite volume scheme for the Baer-Nunziato model[END_REF].

We focus in the sequel on the numerical treatment of the source terms for this model. A fractional step algorithm, which fully decouples each relaxation effect, is employed in [START_REF] Boukili | Simulation and preliminary validation of a three-phase flow model with energy[END_REF]. However, in some cases, this method is not robust enough to compute a solution (see Part 4.4 of [START_REF] Boukili | Simulation and preliminary validation of a three-phase flow model with energy[END_REF]). Hereafter, a new method for a better handling of the source terms is presented. Setting for k ∈ 1, 3 ,

Φ k ∈ {U k , P k , T k }, ∆Φ kl = Φ k -Φ l , system (12) reads:                              ∂α k ∂t = 3 l=1,l̸ =k K kl (W )∆P kl , ∂m k ∂t = 0 , ∂m k U k ∂t = - 3 l=1,l̸ =k d kl (W )∆U kl , ∂α k E k ∂t - 3 l=1,l̸ =k Π kl (W ) ∂α l ∂t = - 3 l=1,l̸ =k q kl (W )∆T kl - 3 l=1,l̸ =k d kl (W ) U 2 k -U 2 l 2 .
(13) Setting: ∆ S ∈ R 6 , ∆ S = (∆U 12 , ∆U 13 , ∆P 12 , ∆P 13 , ∆T 12 , ∆T 13 ) ⊺ ∈ R 6 , it can be derived from (13):

∂ t (∆ S ) = -R relax (W )∆ S , (14) 
and the five stationary constraints:

∀k ∈ 1, 3 , ∂ t m k = 0 ; ∂ t 3 k=1 m k U k = ∂ t 3 k=1 α k E k = 0 , (15) 
with R relax a matrix in M 6 (R) of the form:

R relax (W ) =   R U U (W ) 0 0 R P U (W ) R P P (W ) R P T (W ) R T U (W ) R T P (W ) R T T (W )   , ( 16 
)
where each sub-matrix R IJ (W ), (I, J) ∈ {U, P, T } 2 is in M 2 (R). All coefficients of the sub-matrices are given in detail in [START_REF] Herard | A coupled algorithm to compute unsteady compressible immiscible three-phase flow models with stiff relaxation source terms[END_REF] for a class of three-phase flow models.

The counterpart for a similar class of two-phase flow models is given in [START_REF] Herard | Two approaches to compute unsteady compressible twophase flow models with stiff relaxation terms[END_REF]. From ( 14) and ( 16), conditions that guarantee the relaxation process over time can be exhibited, as it has been done in [START_REF] Herard | Two approaches to compute unsteady compressible twophase flow models with stiff relaxation terms[END_REF] for a two-phase flow model. Because of the block triangular structure of R relax , the overall method to compute an approximate solution of (13) is:

(i) Estimate the evolution of ∆U = (∆U 12 , ∆U 13 ) ⊺ between t * ∆t --→ t n+1 - according to:

∂ t (∆U ) = -R U U (W )∆U , (17) 
with R U U (W ) ∈ M 2 (R). Then update the state variable at time t n+1 - using the conservation law of the total momentum (see [START_REF] Boukili | Simulation and preliminary validation of a three-phase flow model with energy[END_REF] section 3.3.1). (ii) Compute the evolution of ∆ ∈ R 4 , ∆ = (∆P 12 , ∆P 13 , ∆T 12 , ∆T 13 ) ⊺ between t n+1 -∆t --→ t n+1 , solution of:

∂ t (∆) = -R P T (W )∆ , (18) 
with R P T (W ) ∈ M 4 (R) defined as:

R P T (W ) = R P P (W ) R P T (W ) R T P (W ) R T T (W ) . (19) 
Moreover, as the velocity relaxation is handled beforehand, the equation of evolution of the sum of the internal energies turns into a conservation law:

∂ t 3 k=1 m k ϵ k = 0 , (20) 
which enables to update W at time t n+1 , together with constraint (2).

Hereafter, setting time t n+1 - as t n for clarity, the algorithm in stage (ii) is:

Step 1: Compute the solution of (18) at t n+1 with a linear implicit Euler scheme and R P T (W ) frozen at time t n :

∆ n+1 = I 4 + ∆t R P T (W n ) -1 ∆ n , (21) 
with I 4 the identity matrix of size 4.

Step 2: Setting: 

   ξ n = m 1 ϵ 1 (P n 1 , T n 1 ) + m 2 ϵ 2 (P n 2 , T n 2 ) + m 3 ϵ 3 (P n 3 , T n 3 ) , T n+1 2 = T n+1 1 -∆T n+1 12 ; T n+1 3 = T n+1 1 -∆T n+1
   m n 1 ϵ 1 (P n+1 1 , T n+1 1 ) + m n 2 ϵ 2 (P n+1 2 , T n+1 2 ) + m n 3 ϵ 3 (P n+1 3 , T n+1 3 ) = ξ n , m n 1 ρ 1 (P n+1 1 , T n+1 1 ) + m n 2 ρ 2 (P n+1 2 , T n+1 2 ) + m n 3 ρ 3 (P n+1 3 , T n+1 3 ) = 1 .
(23) System (23) comes from (20) and the immiscible constraint [START_REF] Coquel | Closure laws for a two-fluid two-pressure model[END_REF].

The second case consists in a liquid water shock tube. For the numerical simulation, two meshes are considered: 50 000 cells and 100 000 cells. The CFL number is set to 1/2. At time t = 0s, the shock tube is set as in Table 1. All phasic velocities are set to zero at time t = 0s. When the numerical simulation starts, the tube contains three zones: a high pressure chamber filled with liquid water, a low pressure zone full of liquid water, and an interaction zone. In the high pressure chamber, all phasic pressures are set to 15 × 10 5 P a at time t = 0s. Throughout the interaction zone, aluminium droplets of 500µm diameter are introduced at time t = 0s. The droplet temperature is set to T 1 = 2500K. Thus, two Riemann problems have to be solved at x I12 = 2.0m and x I23 = 2.15m in a short transient regime, and then interact with one another. Figure 3 shows the evolution of the total pressure P mix = α 1 P 1 + α 2 P 2 + α 3 P 3 over time at two stations. Station 1 is located at x S1 = 1.4m and Station 2 is positioned at x S2 = 2.4m. Focusing first on Station 2, the minor decrease of the total pressure P mix at the beginning of the computation is the counterpart of what happens in the homogeneous case. After that, the small decrease of the total pressure at time t = 0.4ms corresponds to the right-going wave associated with the initial interface located at x I23 . At time t = 0.6ms, the incident right-going shock wave of magnitude 8.5 × 10 5 P a, generated at time t = 0s at x I12 arrives at Station 2. Then, the return-to-equilibrium process takes place till 3.8ms. Afterwards the left-going rarefaction wave reflected from the right-side reaches station 2. Besides, as Station 1 is located inside the initial high pressure chamber, P mix plateaus at 15 × 10 5 P a till t = 0.9ms, which corresponds to the arrival of the left-going rarefaction wave generated at x I12 .

Abscissa (m)

x ∈ [0; 2.0] x ∈]2.0; 

Table 1 .

 1 2.15[ x ∈ [2.15; 3.75] Initial conditions for test case 2. All phasic velocities are set to zero.

	α1	ϵ lim = 10 -8	ϵ lim	0.026
	α2	1 -2ϵ lim	1 -2ϵ lim	0.884
	P1 = P2 = P3 (P a) 1, 5 × 10 6	1, 0 × 10 5	1, 0 × 10 5
	T1 (K)	1000	363	2500
	T2 (K)	1000	363	363
	T3 (K)	1000	363	1000

Step 3: Update α n+1 

and the total energies :

(25)

Note that system (23) is non linear implicit. Hence we get:

Property 2: (P-T coupled relaxation algorithm) a) For a mixture of ideal gases, the solution of (23) exists and is unique inside the relevant domain of definition and statistical fractions remain in [0, 1]. b) If all of the principal minors of R P T (W ) are positive, then (21) ensures the discrete relaxation process over time, whatever the time step ∆t is.

Sketch of proof: a) Thanks to the specific structure of the ideal gas EOS, the internal energies are functions of only one thermodynamic variable. Because of that, the conservation of the sum of the internal energies in (23) gives the temperature at time t n+1 . The complete proof is similar to the one given in [START_REF] Herard | Two approaches to compute unsteady compressible twophase flow models with stiff relaxation terms[END_REF] for a two-phase flow model. b) The proof of the second property is also an extension of the one given in [START_REF] Herard | Two approaches to compute unsteady compressible twophase flow models with stiff relaxation terms[END_REF].

Numerical results

In the sequel, for a quantity Ψ ∈ {P, T }, the relaxation time scales are supposed to be identical on each phasic connection: τ Ψ 12 = τ Ψ 13 = τ Ψ 23 = τ Ψ . For simplicity, they are set as constants: τ P = 10 -5 s and τ T = 10 -3 s. Besides, in all of the following numerical test cases, each phase k is given a stiffened gas EOS: γ 1 = 22.84 (Jkg -1 K -1 ), Π 1 = 1.884 10 9 (P a), γ 2 = 1.615 (Jkg -1 K -1 ), Π 2 = 3.564 10 8 (P a), γ 3 = 1.086 (Jkg -1 K -1 ), Π 3 = 0 (P a). It represents a mixture of hot liquid metal, liquid water and its vapour.

First, let us consider a homogeneous flow. Thus, for each phase k, U k = 0 and for each quantity Ψ k we have: ∇ x Ψ k = 0. With this hypothesis, the set of PDEs associated with model ( 1) is identical to the one approximated by step (ii). At time t = 0 s, the pressures are set equal: P 1 = P 2 = P 3 = 1.0 × 10 5 P a and the temperatures are set as: T 1 = 2500K, T 2 = 363K and T 3 = 1000K. Figure 1 highlights the poor behaviour of the fractional step algorithm for the pressure P 1 with coarse time steps. As the time step is given by the convective part of the simulation under a CFL condition, the numerical method used to compute an approximate solution of (13) must be robust. The coupled algorithm obviously better captures the global behaviour of the solution on coarse time steps. Figure 2 confirms that the two schemes converge to the same solution with order 1.